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Abstract: It has been shown previously that the transverse momentum dependent (TMD)
factorization of heavy quarkonium production requires a TMD shape function. Its pertur-
bative tail can be extracted by matching the cross sections valid at low and high transverse
momenta. In this article we compare the order-αs TMD expressions with the order-α2

s

collinear ones for J/ψ production in semi-inclusive deep inelastic scattering (SIDIS), em-
ploying nonrelativistic QCD in both cases. In contrast to previous studies, we find that
the small transverse momentum limit of the collinear expressions contains discontinuities.
We demonstrate how to properly deal with them and include their finite contributions to
the TMD shape functions. Moreover, we show that soft gluon emission from the low trans-
verse momentum Born diagrams provide the same leading order TMD shape functions as
required for the matching. Their revised perturbative tails have a less divergent behavior
as compared to the TMD fragmentation functions of light hadrons. Finally, we investigate
the universality of TMD shape functions in heavy quarkonium production, identify the
need for process dependent factorization and discuss the phenomenological implications.
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1 Introduction

In recent years, heavy quarkonium production in various inclusive processes has attracted
great interest as a way to probe the transverse momentum dependent (TMD) gluon distri-
butions [1–11]. In this paper, we focus on J/ψ production in semi-inclusive deep inelastic
scattering (SIDIS),

e(`) + p(P )→ e′(`′) + γ∗(q) + p(P )→ e′(`′) + J/ψ(Pψ) +X, (1.1)

where the particle momenta are given between brackets and the virtual photon momentum
is given by q = ` − `′. The J/ψ mass M2

ψ = P 2
ψ and the photon virtuality Q2 = −q2 > 0

are considered hard scales in the process, i.e. they are considered much larger than the
nonperturbative QCD scale ΛQCD, although most results will also be valid for photopro-
duction (Q2 = 0). The electron and proton masses will be neglected w.r.t. Mψ and Q

whenever possible. The virtual photon transverse momentum is denoted by qT and can be
directly related to the J/ψ transverse momentum Pψ⊥. The distinct subscripts used for
the transverse momentum components, specifically “T” and “⊥”, serve to emphasize the
different frames in which they are measured. In particular, we consider qT when both the
target proton and the J/ψ have no transverse components and Pψ⊥ when the photon and
the proton have only longitudinal components.

Depending on the value of |qT |, we can identify two different transverse momentum
regions, see figure 1. The high transverse momentum (HTM) region is given by the con-
dition |qT | � ΛQCD, while the low transverse momentum (LTM) region corresponds to
|qT | � µH . Here µH = f(Q,Mψ) with f(Q,Mψ) & Mψ generically denotes the hard scale
of the process. The cross section can be evaluated within the two transverse momentum
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regions by adopting the proper factorization that enables to separate the short-distance
from the long-distance contributions. The collinear factorization is applicable at HTM,
while the TMD factorization is expected to be valid at LTM [12], for which the cross sec-
tion is sensitive to TMD quantities. In addition, we can identify an intermediate transverse
momentum (ITM) region, namely ΛQCD � |qT | � µH , where both factorizations are valid.
Since our attention will be mostly directed towards this overlapping region, where |qT |
(or equivalently |Pψ⊥|) becomes small compared to the hard scale, we will neglect any
transverse momentum dependence in f(Q,Mψ).

To describe J/ψ hadronization we employ nonrelativistic QCD (NRQCD) [13], in which
the heavy-quark pair forms a Fock state, specified by n = 2S+1L

[c]
J : S denotes the spin,

L the orbital angular momentum, J the total angular momentum and c the color state of
the pair. Note that the pair can couple either as a color-singlet (CS), with c = 1, or as
a color-octet (CO) state, with c = 8. The (low-energy) transition from this general state
to the J/ψ is encoded in the nonperturbative Long-Distance Matrix Elements (LDMEs)
that are distinct for each quarkonium Fock state. States with different quantum numbers
n do not interfere as the cross section is proportional to a direct sum of LDMEs, up to
a required precision in the expansion w.r.t. v, which corresponds to the (non-relativistic)
relative velocity of the heavy quark-antiquark pair in the quarkonium rest frame. In the
following we will truncate the expansion up to the relative order v4, including the 3S

[1]
1

CS state and the 1S
[8]
0 , 3S

[8]
1 , 3P

[8]
J CO states. Note that, in the following we will not

consider the interference among P -wave states since it is not necessary in the evaluation
of the unpolarized differential cross section. However, we have taken them into account in
our brief digression on the production of polarized J/ψ mesons in SIDIS (see section 4).

In refs. [14, 15] it was found that the TMD factorized expressions have to take into ac-
count final state smearing effects that are encoded in the TMD shape function (TMDShF).
This nonperturbative hadronic quantity describes the transition from the heavy quark pair
to a bound quarkonium state, which not only contains the formation of the bound state in
terms of an LDME, but also the transverse momentum effects that arise from the soft-gluon
radiation.

In refs. [16, 17] the matching procedure in SIDIS has been investigated, according to
which the TMD and collinear expressions are compared in the ITM region. It was found
that the introduction of TMDShFs solves the mismatch between the collinear and TMD
expressions, by resumming |qT | divergences in the Sudakov factor. However, this term is
in contradiction with other studies, as it has been demonstrated that no double logarithms
in the nonperturbative Sudakov factor associated to heavy quark production are present
for pp → (J/ψ or Υ) + X [18] and for open heavy-quark pair production, both in ep [19]
and pp [20] collisions. The absence of the double logarithms in J/ψ production can also
be seen in ref. [21]. Due to this discrepancy, universality was assumed in [22] using the
explicit result of [18]; however, as we will see, this only holds for photoproduction, not
electroproduction.

We found that the discrepancy in the ep matching study arises from the presence
of discontinuities in the structure functions that appear in the small-qT limit of collinear
factorized expressions. These structure functions contain a Dirac delta function for which a
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qT

p

J/ψ

p

J/ψ

ΛQCD ≪ |qT | ≪ µH

|qT | ≪ µH

(TMD)
|qT | ≫ ΛQCD

(COLLINEAR)

dσ

Figure 1. Schematical overview of matching in ep→ e′J/ψ+X to obtain the leading order shape
function.

small-qT approximation is applied. The approximation employed in refs. [16, 17], which is
an extension of a well-known expression [23] to the heavy quarkonium case, would be valid
when multiplied by a continuous function, but that turns out to be invalid in the present
case of discontinuous hard scattering factors. In this article we show how to properly treat
these expressions to resolve this discrepancy.

In addition, we extend our analysis to single quarkonium production in pp collisions,
where the hard scale is a function of the quarkonium mass only: µH = f(Mψ) with f(Mψ) ∼
Mψ. This allows us to test the connection of TMDShFs obtained in different cases, i.e. to
study their universal properties. Even if we expect that the LDMEs are process independent
in the collinear description, the same is not necessarily true for the TMDShFs. Indeed in
the latter process dependences may arise due to the transverse momentum exchange with
other colored objects.

The paper is organized as follows. In section 2 we revise the matching procedure. In
particular, in section 2.1 we discuss the pole structure of the collinear cross section in the
small transverse momentum limit in detail, while the new TMDShF results for SIDIS are
presented in section 2.2. In section 3 we address the aforementioned process dependence,
comparing the TMDShFs in SIDIS and in pp collisions. Conclusions are given in section 4,
together with a summary of our findings. In addition, there are two appendices at the
end of this paper. In appendix A we present a more complete derivation of our method to
include the pole structure contributions in our results. In appendix B we derive the soft
gluon emission from the Born amplitude obtained through the eikonal approximation.

2 The matching procedure

The SIDIS reaction in eq. (1.1) is described by the conventional kinematical SIDIS variables

xB = Q2

2P · q , y = P · q
P · `

, z = P · Pψ
P · q

. (2.1)
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We consider a frame where the virtual photon has no transverse momentum component,
and we identify two light-cone directions n+ and n−, for which n+ · n− = 1. With these,
the Sudakov decomposition of the relevant momenta can be written as

Pµ = nµ+,

qµ = −xBnµ+ + Q2

2xB
nµ−,

Pµψ =
xBM

2
ψ⊥

zQ2 nµ+ + zQ2

2xB
nµ− + Pµψ⊥,

(2.2)

where P 2
ψ⊥ = −P 2

ψ⊥ is the squared J/ψ transverse momentum (w.r.t. the photon and
proton), while Mψ⊥ =

√
M2
ψ + P 2

ψ⊥ is the J/ψ transverse mass.
In particular, we will consider the fully unpolarized differential cross section

dσ/(dxBdydzdq2
Tdφψ), where φψ is the J/ψ azimuthal angle measured w.r.t. the lepton

plane. Moreover, we replaced the transverse momentum of the J/ψ with that of the pho-
ton qT (evaluated w.r.t. the hadrons); this replacement is achieved via

|qT | =
1
z
|Pψ⊥| . (2.3)

The differential cross section can be parameterised in the HTM region as follows [16]
dσ

dxBdydzdq2
Tdφψ

= α

yQ2

{[
1 + (1− y)2

]
FUU,⊥ + 4(1− y)FUU,

+ 2(2− y)
√

1− y cosφψF
cosφψ
UU + 4(1− y) cos 2φψF

cos 2φψ
UU

}
, (2.4)

where the first two subscripts of the structure functions F refer to the polarization of the
initial (unpolarized) proton and electron. The last subscript in FUU,P with P =⊥, refers
to the virtual photon polarization (transverse or longitudinal), while for FΦ

UU with Φ =
cosφψ, cos 2φψ the superscript refers to the angular term that accompanies it. Henceforth,
we will refer to the aforementioned hard scattering structure functions via the general
notation FΦ

UU,P . On the other hand, the same differential cross section evaluated in the
LTM region is given by

dσ
dxBdydzdq2

Tdφψ
= α

yQ2

{[
1+(1−y)2

]
FUU,⊥+4(1−y)FUU, +4(1−y)cos2φψF

cos2φψ
UU

}
,

(2.5)

where the structure function Fcosφψ
UU , being subleading power/twist, has not been included.

Note the difference in the structure functions: FΦ
UU,P are evaluated in collinear factorization,

while the calligraphic FΦ
UU,P are calculated within transverse momentum factorization.

2.1 From high to intermediate transverse momentum

In this section we provide a systematic method to investigate the small-qT limit of SIDIS
observables at HTM (|qT | � ΛQCD). Adopting the parton model, the production of a J/ψ
possessing a high transverse momentum component is possible at the lowest order in αs via

γ∗(q) + a(pa)→ cc̄[n](Pψ) + a′(p′a), (2.6)
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where a can be either a quark, antiquark, or gluon. In this kinematical regime we adopt
collinear factorization, for which

pa ≈ ξP . (2.7)
The perturbative amplitude squared |M|2 for the hadronic process in eq. (1.1) is

obtained by contracting the leptonic tensor Lµν with the amplitude H(a)[n]
µ , describing

the partonic process in eq. (2.6), and its conjugate H(a)[n]∗
ν . In particular, the lepton

tensor can be written as follows:

Lµν = Q2

y2

{[
1 + (1− y)2

]
εµν⊥ + 4(1− y)

(
εµν + εµνcos 2φψ

)
+ 2(2− y)

√
1− yεµνcosφψ

}
, (2.8)

where we introduced the tensors

εµν⊥ = −gµν⊥ , εµν = εµLε
ν
L, εµνcosφψ =

(
εµL

ˆ̀ν
⊥ + ˆ̀µ

⊥ε
ν
L

)
, εµνcos 2φψ =

(
ˆ̀µ
⊥

ˆ̀ν
⊥ + 1

2g
µν
⊥

)
. (2.9)

Moreover, gµν⊥ is the transverse projector

gµν⊥ ≡ g
µν − 1

P · q
(Pµqν + qµP ν)− Q2

(P · q)2P
µP ν , (2.10)

while εµL(q) is the longitudinal polarization vector

εµL(q) = 1
Q

(
qµ + Q2

P · q
Pµ
)
, (2.11)

and ˆ̀µ
⊥ is the unit vector along the transverse component of `, w.r.t. the photon-proton axis.

Henceforth, we refer to one of the tensors in eq. (2.9) via the general notation εµνP;Φ, where
P =⊥, and Φ = cosφψ, cos 2φψ. Employing this, the structure functions introduced in
eq. (2.4) can be evaluated via

FΦ
UU,P = 1

4 (4π)3 z
∑
n

∑
a

∫ x̂max

xB

dx̂
x̂

∫ 1

z

dẑ
ẑ

1
Q2 f

a
1 (ξ;µ2)εµνP;ΦH

(a)[n]
µ H(a)[n]∗

ν 〈O[n]〉

× δ
((1− x̂)(1− ẑ)

x̂ẑ
− 1− ẑ

ẑ2
M2
ψ

Q2 −
q2
T

Q2

)
δ(z − ẑ), (2.12)

where the sum n runs over the dominant LDMEs 〈O[n]〉 and a runs over the parton types.
Furthermore, we introduced the partonic scaling variables

x̂ = Q2

2pa · q
= xB

ξ
, ẑ = pa · Pψ

pa · q
= z, (2.13)

together with

x̂max = Q2

M2
ψ +Q2 . (2.14)

In ref. [16] the Dirac delta present in eq. (2.12) was expanded at small-qT as follows (see
its appendix B for the derivation)

δ

((1− x̂)(1− ẑ)
x̂ẑ

− 1− ẑ
ẑ2

M2
ψ

Q2 −
q2
T

Q2

)
∼ x̂max

[
log

M2
ψ +Q2

q2
T

δ(1− x̂′)δ(1− ẑ)

+ x̂′

(1− x̂′)+
δ(1− ẑ) +

M2
ψ +Q2

M2
ψ/ẑ +Q2

ẑ

(1− ẑ)+
δ(1− x̂′)

]
, (2.15)
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where

x̂′ = x̂

x̂max
. (2.16)

Note that on the right-hand side of eq. (2.15) the coefficient in front of the double delta
logarithmically diverges with qT . However, as we have found this is not sufficient to obtain
the correct behavior of structure functions in the ITM region, which is restored by adding
a constant term to the double-delta coefficient.1 The need to include this subdominant
term can also be understood from the following argument. The Dirac-delta expansion in
eq. (2.15) was obtained in ref. [16] by applying the full Dirac delta to two continuous test
functions. However, the structure functions defined in eq. (2.12) contain discontinuities
that come from the soft gluon radiation associated with the CO final state in the NRQCD
calculations (see appendix B). These contributions are made explicit via the decomposition
into poles through a Laurent expansion, namely2

1
(4π)3

1
Q2 ε

µν
P;ΦH

(a)[n]
µ H(a)[n]∗

ν ≡H(a)[n]
P;Φ (x̂′, ẑ) =H(a)[n];(0)

P;Φ (x̂′, ẑ)+
∞∑
k=1

( 1−ẑ
1−x̂′

)k
H(a)[n];(k)
P;Φ (ẑ),

(2.17)
where H(a)[n];(0)

P;Φ and all H(a)[n];(k)
P;Φ are finite. Despite the different notation, the amplitude

squared on the left-hand side of eq. (2.17) is in agreement with refs. [24, 25]. Note that
to get the pole structure on the right-hand side of eq. (2.17) we are explicitly writing the
amplitude squared in terms of x̂′ and ẑ (eqs. (2.13) and (2.16)). We have found that for
J/ψ production in SIDIS the poles are present only for the gluon-initiated process γ∗g with
the expansion running up to k = 2. Instead, the quark-initiated processes γ∗q are fully
described by the k = 0 finite term. Moreover, up to the precision considered in this work,
the poles contribute only to the structure functions FUU,P introduced in eq. (2.4).

These poles are under control when the amplitude squared is evaluated at high-qT
values, as the transverse momentum forces the phase space to deviate from ẑ = 1 and
x̂′ = 1. Solely when we consider the small-qT limit they have a significant impact. The
Dirac-delta expansion in eq. (2.15) is applicable only to the first term (H(a)[n];(0)

P,Φ ), while
all the others require a different approach. In particular, we can split the differential cross
section in eq. (2.4) into three parts in the HTM region, namely

dσ
dxBdydzdq2

Tdφψ
≡ dσA + dσB + dσC , (2.18)

1Note that this new term has the same divergence order as the other terms on right-hand side of eq. (2.15),
namely the coefficients of δ(1 − x̂′) and δ(1 − ẑ).

2Before performing the expansion, we suggest applying once the following relation, obtained from the
Dirac delta:

1
1 − ẑ

=
(ẑ − x̂′)M2

ψ + ẑ(1 − x̂′)Q2

x̂′ẑ2q2
T

.
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with

dσA = α

4yQ2 z
∑
n

∫ 1

0
dx̂′

∫ 1

0
dẑfa1

(
xB

x̂maxx̂′
;µ2
)
ẑ δ
(
G(x̂′, ẑ)

)
δ(z−ẑ)

×
{[

1+(1−y)2
]
H(a)[n];(0)
⊥ (x̂′, ẑ)+4(1−y)H(a)[n];(0)(x̂′, ẑ)

+2(2−y)
√

1−y cosφψH(a)[n];(0)
cosφψ (x̂′, ẑ)+4(1−y)cos2φψH(a)[n];(0)

cos2φψ (x̂′, ẑ)
}
〈O[n]〉 ,

dσB = α

4yQ2 z
∑
n

∫ 1

0
dx̂′

∫ 1

0
dẑfg1

(
xB

x̂maxx̂′
;µ2
)
ẑ δ
(
G(x̂′, ẑ)

)
δ(z−ẑ)

×
( 1−ẑ

1−x̂′
)[(

1+(1−y)2
)
H(g)[n];(1)
⊥ (ẑ)+4(1−y)H(g)[n];(1)(ẑ)

]
〈O[n]〉,

dσC = α

4yQ2 z
∑
n

∫ 1

0
dx̂′

∫ 1

0
dẑfg1

(
xB

x̂maxx̂′
;µ2
)
ẑ δ
(
G(x̂′, ẑ)

)
δ(z−ẑ)

×
( 1−ẑ

1−x̂′
)2 [(

1+(1−y)2
)
H(g)[n];(2)
⊥ (ẑ)+4(1−y)H(g)[n];(2)(ẑ)

]
〈O[n]〉,

(2.19)
where the function G(x̂′, ẑ) is given by

G(x̂′, ẑ) = ẑ(1− ẑ)(1− x̂′)−
M2
ψ

Q2 (1− ẑ)(x̂′ − ẑ)− q
2
T

Q2 x̂
′ẑ2. (2.20)

The difference in the lower integration limit for both x̂′ and ẑ between eqs. (2.12) and (2.19)
has been introduced for the convenience of the calculation. This modification is possible
since the added integration range does not contribute to the final result (see appendix A
of this work and appendix B of [16]). As mentioned, one can apply directly the delta
expansion in eq. (2.15) to evaluate the small-qT behavior of dσA. Instead, the expansions
of dσB and dσC are obtained by considering the integral w.r.t. dx̂ and dẑ of those terms
that are truly indeterminate in the limit qT → 0, with the indeterminacy solved by the
presence of the full Dirac delta (see eq. (2.20)).

Therefore, it is legitimate to approximate H[n];(k)
P (ẑ)→ H[n];(k)

P (1) which gives

H(g)[n];(1)
P (1) = −2

M2
ψ

M2
ψ +Q2H

(g)[n];(0)
P (1, 1),

H(g)[n];(2)
P (1) =

(
M2
ψ

M2
ψ +Q2

)2

H(g)[n];(0)
P (1, 1) .

(2.21)

Hence from eq. (2.19) we obtain

dσB ≈
α

4yQ2 f
g
1 (x;µ2)

(
−x̂max log

M2
ψ

q2
T

)
×
∑
n

[(
1 + (1− y)2

)
H(g)[n];(0)
⊥ (1, 1) + 4(1− y)H(g)[n];(0)(1, 1)

]
〈O[n]〉δ(1− z)

(2.22)
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and

dσC ≈
α

4yQ2 f
g
1 (x;µ2)

[
x̂max

2

(
log

M2
ψ

q2
T

− 1
)]

×
∑
n

[(
1 + (1− y)2

)
H(g)[n];(0)
⊥ (1, 1) + 4(1− y)H(g)[n];(0)(1, 1)

]
〈O[n]〉δ(1− z),

(2.23)

where x ≡ xB/x̂max. More details on the previous results can be found in appendix A. Since
the small-qT limit of these quantities is proportional to H[n];(0)(1, 1), we can effectively add
these terms to the double delta coefficient, obtaining that

H(g)[n]
P (x̂′, ẑ)δ

(
G(x̂′, ẑ)
x̂′ẑ2

)
∼ H(g)[n];(0)

P (x̂′, ẑ) δeff(x̂′, ẑ), (2.24)

with

δeff(x̂′, ẑ) = x̂max

[1
2

(
log

M2
ψ +Q2

q2
T

− 1− log
M2
ψ

M2
ψ +Q2

)
δ(1− x̂′)δ(1− ẑ)

+ x̂′

(1− x̂′)+
δ(1− ẑ) +

M2
ψ +Q2

M2
ψ/ẑ +Q2

ẑ

(1− ẑ)+
δ(1− x̂′)

]
. (2.25)

Considering the contributions from the various terms in eq. (2.25), we found that the
small-qT limit is dominated by the first two terms for this γ∗g channel (and similarly
the first two terms of eq. (2.15) for the quark and antiquark channels). Instead, the
contribution coming from the “+”-distribution of ẑ is subdominant and can be neglected
in the following. In principle, this last term will lead to a fragmentation-like contribution to
the process considered here. We will further comment on the connection to a fragmentation
description below.

Hence, the leading power behavior of the structure functions in the ITM region is
given by

FUU,P = σUU,P
αs
q2
T

[
L(q2

T )fg1 (x;µ2) +
(
Pgg ⊗ fg1 + Pgi ⊗ f i1

)
(x;µ2)

]
,

F
cos 2φψ
UU = σ

cos 2φψ
UU

αs
q2
T

(
δPgg ⊗ fg1 + δPgi ⊗ f i1

)
(x;µ2),

(2.26)

while F cosφψ
UU is suppressed by a factor of |qT |/µH w.r.t. the other structure functions.

This is in accordance with the TMD formula in eq. (2.5) which does not show any cosφψ
contribution too. The logarithmic function L(q2

T ) reads

L(q2
T ) = CA

(
log

M2
ψ +Q2

q2
T

− 1− log
M2
ψ

M2
ψ +Q2 −

11− 4nfTR/CA
6

)
, (2.27)
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and the quantities σUU,P and σcos 2φψ
UU are related to the partonic process γ∗g → cc̄[n] and

they correspond to (see ref. [16])

σUU,⊥ = e2
cααs

Mψ

(
M2
ψ +Q2

)
〈O[1S[8]

0 ]〉+ 4
7M4

ψ + 2M2
ψQ

2 + 3Q4

M2
ψ

(
M2
ψ +Q2

)2 〈O[3P [8]
0 ]〉

 δ(1− z),

σUU, = e2
cααs

Mψ

(
M2
ψ +Q2

)
16 Q2(

M2
ψ +Q2

)2 〈O[3P [8]
0 ]〉

 δ(1− z),

σ
cos 2φψ
UU = e2

cααs

Mψ

(
M2
ψ +Q2

)
−〈O[1S[8]

0 ]〉+ 4
3M2

ψ −Q2

M2
ψ

(
M2
ψ +Q2

)〈O[3P [8]
0 ]〉

 δ(1− z) .

(2.28)
Moreover, Pab in eq. (2.26) denotes the leading order, fully unpolarized splitting functions,
that can be found in ref. [26], while δPab are the splitting function of an unpolarized parton
into a linearly polarized gluon, which can be found in refs. [27, 28]. The convolution
(denoted by the “⊗” symbol) between these splitting functions and the parton distribution
functions is defined as

(P ⊗ fa1 )(x;µ2) =
∫ 1

x

dx̂′
x̂′
Pab(x̂′;µ2)f b1(x/x̂′;µ2), (2.29)

where Pab denotes either Pab or δPab.
The logarithmic function defined in eq. (2.27) is our most important difference com-

pared to ref. [16], where the logarithmic function contains twice the logarithm log[(M2
ψ +

Q2)/q2
T ] compared to eq. (2.27). This is due to the presence of the poles, not consid-

ered in ref. [16]. Indeed, it is through the inclusion of eqs. (2.22) and (2.23) that in
eq. (2.27) one of the logarithms has been removed. The price to pay corresponds to the
novel qT -independent terms found, namely 1 + log[(M2

ψ +Q2)/M2
ψ]. Clearly, eq. (2.27) has

an impact on the TMDShF derivation too, as will be discussed in section 2.2. Besides,
eq. (2.27) implies the presence of divergences related to soft gluon emission from the lead-
ing order γ∗g → cc̄[n] process. It is then possible to check the validity of this expression
by investigating the soft-limit of eq. (2.6) via the eikonal method, as done in appendix B.

Although our work is based on the J/ψ production in SIDIS, we expect that the
presence of the poles as in eq. (2.17) is an intrinsic feature of any inclusive quarkonium
production, and they apply to different processes and observables too. Hence, the suppres-
sion of the qT -logarithm in eq. (2.27) is not an exclusive outcome of the specific process
under consideration, but rather a general statement. Thus, these discontinuities may be
connected to other regularization procedures associated with CO contributions to heavy
quarkonium productions. While it is worthwhile to further pursue these connections in
the NRQCD factorization, we consider such a study to be beyond the scope of the current
paper but we hope to address it in the future. However, to emphasize the importance of
further investigation, we will briefly comment on the similarities of our findings with those
obtained by adopting the fragmentation function description.

The same cross section in the HTM region can be expressed in terms of fragmen-
tation functions, as shown in refs. [29–31]. Hence, the TMDShF may also be seen as a
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fragmentation-like function of a cc̄ into a J/ψ evaluated at ITM. The evolution of the
latter has been studied in ref. [30], which includes real contributions having a component
proportional to the (1− ẑ)+ distribution and another one to δ(1− ẑ). Hence, our analysis
is related to the latter term. However, an important difference concerns the integration
range of the outgoing gluon. The integration of the soft-gluon momentum in our case has
a lower limit set by the J/ψ transverse momentum (see eq. (B.11) of appendix B), whereas
no lower limit is present in ref. [30] causing infrared divergences. Therefore, the connection
between our work and the fragmentation-function description cannot be carried out fur-
ther without the inclusion of next order (real and virtual) contributions and, as previously
stated, we leave this discussion to further studies.

2.2 From low to intermediate transverse momentum

In this section we evaluate the evolution of the structure functions valid in the LTM region
(|qT | � µH) up to the ITM region. Even if not formally proven, there are strong arguments
in favor of TMD factorization [12]. Therefore, the differential cross section for the semi-
inclusive production of a J/ψ with a small transverse momentum component is given by
eq. (2.5). In this case, the structure functions F can be calculated from the partonic process

γ∗(q) + g(pa)→ cc̄[n](Pψ), (2.30)

where, contrarily to the HTM case, the initial gluon has a non-negligible transverse mo-
mentum component w.r.t. the parent proton, namely

pµa = ξPµ + pµT , (2.31)

with p2
T = −p2

T . Hence, eq. (2.30) leads to

FUU,⊥ = 2π2 e2
cααs

Mψ

(
M2
ψ +Q2

)
C [fg1 ∆[1S[8]

0 ]
]

+ 4
7M4

ψ + 2M2
ψQ

2 + 3Q4

M2
ψ

(
M2
ψ +Q2

)2 C
[
fg1 ∆[3P [8]

0 ]
] ,

FUU, = 2π2 e2
cααs

Mψ

(
M2
ψ +Q2

)
16 Q2(

M2
ψ +Q2

)2C
[
fg1 ∆[3P [8]

0 ]
] ,

Fcos 2φψ
UU = π2

2
e2
cααs

Mψ

(
M2
ψ +Q2

)
−C [wh⊥g1 ∆[1S[8]

0 ]
h

]
+ 4

3M2
ψ −Q2

M2
ψ

(
M2
ψ +Q2

)C [wh⊥g1 ∆[3P [8]
0 ]

h

] .
(2.32)

Following refs. [14–17, 22], we consider from the beginning the TMD factorized formula
that includes the presence of a TMDShF, ∆[n] or ∆[n]

h , which is related to the production
of a J/ψ with a small transverse momentum component w.r.t. the photon and proton. As
commented below eq. (2.25), in this paper we focus on the δ(1− ẑ) contribution from the
TMDShF. Subdominant terms and higher order corrections are also expected to contribute
away from z = 1. In that case the description of the heavy quark pair that hadronizes
into the heavy quarkonium state will be even more similar to a single-parton TMD frag-
mentation functions description applied in light hadron production. See also ref. [32] for a
description involving both single parton and parton-pair fragmentation processes.
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In the above equations convolutions between the TMD distributions and the TMDShFs
appear, namely

C
[
fg1 ∆[n]

]
(x, z, q2

T ) =
∫

d2pT

∫
d2kT δ

2(pT + kT − qT )fg1 (x,p2
T )∆[n](z,k2

T ),

C
[
wh⊥g1 ∆[n]

h

]
(x, z, q2

T ) =
∫

d2pT

∫
d2kT δ

2(pT + kT − qT )w(pT ,kT )h⊥g1 (x,p2
T )∆[n]

h (z,k2
T ),

(2.33)
where in the last line we introduced the weight function w defined as (with Mp the proton
mass)

w(pT ,kT ) = 1
M2
p (pT + kT )2

[
2(pT · kT )2 + p2

T

(
p2
T − k2

T

) ]
. (2.34)

Beyond the parton model approximation, soft gluon radiation to all orders is included
into an exponential Sudakov factor. One can relate its logarithmic divergences to the TMD
objects (both PDFs and shape function) involved in the reactions, whereas the remaining
perturbative qT -independent corrections are collected into the hard term. As a consequence
of the regularization of their ultraviolet and rapidity divergences, TMD-PDFs depend on
two different scales, respectively µ and

√
ζ. We take these two scales to be equal and denote

them by µ. In contrast, there are no rapidity divergences associated to the TMDShF. Thus,
we can impose for its rapidity parameter ζ∆ = 1, in line with ref. [33].

Implementing TMD evolution is more easily done in impact parameter space, where
convolutions in the cross section become simple products. Besides, in ref. [16] it was found
that, up to the precision considered, from the matching procedure it is possible to deduce
only the naive order-α0

s part of ∆[n]
h (z,k2

T ) that is proportional to δ(k2
T ). Note that in

reality smearing effects will be involved, but that small-kT behavior cannot be obtained
from a perturbative matching calculation, at least up to the perturbative order considered
here. As a consequence, in the following we focus on the convolution C[fg1 ∆[n]].

We define the Fourier transform of fa1 (x,p2
T ) as

f̃a1 (x, b2
T ) = 1

2π

∫
d2pT eibT ·pT fa1 (x,p2

T ), (2.35)

and the Fourier transformed TMDShF as

∆̃[n](z, b2
T ) = 1

2π

∫
d2kT eibT ·kT∆[n](z,k2

T ), (2.36)

from which

C[fg1 ∆[n]](x, z, q2
T ;µ2 = µ2

H) =
∫

d2bT e−ibT ·qT f̃g1 (x, b2
T ;µ2

H)∆̃[n](z, b2
T ;µ2

H), (2.37)

where we fixed the factorization scale so that the convolutions are evaluated at the hard
scale. The perturbative tail of the fully unpolarized gluon TMD fg1 , valid in the limit
|bT | � 1/ΛQCD, is given by [26]

f̃g1 (x, b2
T ;µ2

H) = 1
2π

∑
a=q,q̄,g

(Cg/a ⊗ fa1 )(x;µ2
b)e−

1
2S

g
A(b2

T ;µ2
H), (2.38)
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where µb = b0/|bT | with b0 = 2e−γE ≈ 1.123. Note that the coefficient function Ca/b in
eq. (2.38) can be expanded in powers of αs

Cg/a(x, µ2
b) = δabδ(1− x) +

∞∑
k=1

C
(k)
g/a(x)

(
αs(µb)
π

)k
, (2.39)

and can be explicitly found in refs. [26, 34]. Nevertheless, the coefficient C(k)
g/a in the right-

hand side of eq. (2.39) will not enter in the following (leading order) discussion since they
are independent of the parameter bT . Consequently, their explicit expression at all orders
is not required. Furthermore, the (leading order) Sudakov factor SA present in eq. (2.38)
reads

SgA(b2
T ;µ2

H) = CA
π

∫ µ2
H

µ2
b

dµ′2
µ′2

αs(µ′)
[

log µ2

µ′2
− 11− 4nfTR/CA

6

]

= CA
π
αs

(1
2 log2 µ

2
H

µ2
b

− 11− 4nfTR/CA
6 log µ

2
H

µ2
b

)
, (2.40)

where in the last line the running of the coupling has been neglected. By inserting
eqs. (2.39) and (2.40) in eq. (2.38) and using the DGLAP equations to evolve the PDF
from a scale µH down to the scale µb < µH , we find that up to order αs the perturbative
tail of the gluon TMD-PDF reads [34]

f̃g1 (x, b2
T ;µ2

H) = 1
2π

{
fg1 (x;µ2

H)− αs
2π

[
CA

(1
2 log2 µ

2
H

µ2
b

− 11− 4nfTR/CA
6 log µ

2
H

µ2
b

)
fg1 (x;µ2

H)

+
(
Pgg ⊗ fg1 + Pgi ⊗ f i1

)
(x;µ2

H) log µ
2
H

µ2
b

− 2
∑

a=q,q̄,g
(C(1)

g/a ⊗ f
a
1 )(x;µ2

H)
]}
,

(2.41)

where once again Pab denotes the leading order splitting functions [26]. Employing this,
and by requiring that the TMD expressions evolved to the scale µ2

H ≡ Q̃2 = M2
ψ+Q2 match

with the expansion of the collinear ones obtained in eq. (2.26), we deduce the TMDShF
perturbative tail

∆̃[n](z, b2
T ;µ2 = Q̃2) = 1

2π

[
1 + αs

2πCA
(

1 + log
M2
ψ

M2
ψ +Q2

)
log Q̃

2

µ2
b

]
〈O[n]〉δ(1− z)

+O(α2
s) +O(bTΛQCD), (2.42)

which in momentum space becomes

∆[n](z,k2
T ; Q̃2) = − αs

2π2k2
T

CA

(
1 + log

M2
ψ

M2
ψ +Q2

)
〈O[n]〉δ(1− z), (2.43)

valid in the |kT | � ΛQCD limit. Inserting eq. (2.42) in eq. (2.37), we find that the convo-
lution in momentum space is given by

C[fg1 ∆[n]](x, z, q2
T ; Q̃2)

= αs
2π2q2

T

[
L(q2

T )fg1 (x; Q̃2) +
(
Pgg ⊗ fg1 + Pgi ⊗ f i1

)
(x; Q̃2)

]
〈O[n]〉δ(1− z),

(2.44)
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where L(q2
T ) is the logarithmic function defined in eq. (2.27). Hence, with the choice

µ = Q̃, the first two lines of eq. (2.32) and the first line of eq. (2.26) match. Note how the
modification of eq. (2.27) compared to ref. [16] has a significant impact on the TMDShF
expression. Indeed, the TMDShF perturbative tail in eq. (2.43) does not contain any kind
of logarithmic divergence in kT , being tamed by the presence of the heavy mass. We
emphasized that the absence of kT -divergent terms associated to the quarkonium is in
accordance with other works in the literature, e.g. refs. [14, 15, 18–21].

For completeness, we remark that the matching of F cos 2φψ
UU and Fcos 2φψ

UU , which involves
the second convolution in eq. (2.33), is fulfilled by taking the perturbative tail of h⊥g1 [27]
up to αs order

h⊥g1 (x,p2
T ) = αs

π2
2M2

p

p4
T

(
δPgg ⊗ fg1 + δPgi ⊗ f i1

)
(x) +O(α2

s) (2.45)

and the leading order naive shape function

∆[n]
h (z,k2

T ) = δ(k2
T )〈O[n]〉δ(1− z) +O(αs), (2.46)

from which

C[wh⊥g1 ∆[n]
h ](x, z, q2

T ;µ2) = 2
π2
αs
q2
T

(
δPgg ⊗ fg1 + δPgi ⊗ f i1

)
(x;µ2)〈O[n]〉δ(1− z) . (2.47)

Since the h⊥g1 expansion starts at order αs, we notice that to get the non-trivial perturbative
tail of ∆h it is required that the SIDIS cross section within NRQCD is evaluated at order
αα3

s. However, this calculation is currently unavailable.

3 Universality

In the previous section, we found that an extra factor ∆ is needed to absorb all the qT -
divergent terms coming from the collinear limit, and we identified it as the dominant
TMDShF perturbative tail. However, it has been obtained at the particular scale Q̃,
whereas for more general application it needs to be considered at a general scale µH . This
can be obtained by tracing back the µH dependence in eq. (2.27), that is related to the full
Sudakov factor for J/ψ production in SIDIS in terms of this general scale and up to order
αs, namely

Sep,ψA (b2
T ;µ2

H) = 1
2S

g
A(b2

T ;µ2
H) +Bep(µ2

H) log µ
2
H

µ2
b

, (3.1)

where

Bep(µ2
H) = −αs2πCA

1 + log
M2
ψµ

2
H(

M2
ψ +Q2)2

 . (3.2)

We checked that eq. (3.1) (and subsequently eq. (3.2)) agrees in the kinematic limit corre-
sponding to a bound pair with the Sudakov factor obtained in the open heavy-quark pair
production in electron-proton collisions, which can be found in ref. [19].

It is not natural to fully include eq. (3.2) into something that we identify as the
TMDShF. Indeed, being a quarkonium-related object, its complete dependence is given by
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∆[n]
ShF(z,k2

T ;M2
ψ, µ

2 = µ2
H), while it may depend on the process-related hard-quantity Q

only via the µH choice. Thus, the Q2 dependence deriving from eq. (3.2) must stem from a
process dependent part, which can be incorporated into an extra process-dependent factor
S(b2

T ;M2
ψ, Q

2, µ2 = µ2
H).

Therefore, we split the full ∆[n]
ep into these two terms:3

∆[n]
ep (µ2

H) = ∆[n]
ShF(µ2

H)× Sep(µ2
H) . (3.3)

The ∆[n]
ShF is what we truly identify as the TMDShF and is universal because it solely

depends on Mψ. Instead, the Sep is an extra soft factor which incorporates the specific
process dependence and it can be removed by a proper choice of the factorization scale
µ = µH . This implies that at that scale the full ∆[n]

ep is equivalent to the TMDShF. At this
level, the simplest way to perform the splitting in bT -space is to take

∆̃[n]
ShF(z, b2

T ;µ2
H) = 1

2π

[
1 + αs

2πCA
(

1 + log
M2
ψ

µ2
H

)
log µ

2
H

µ2
b

]
〈O[n]〉δ(1− z), (3.4)

Sep(b2
T ;µ2

H) = 1 + αs
2πCA

(
2 log µ2

H

M2
ψ +Q2

)
log µ

2
H

µ2
b

. (3.5)

With this splitting convention and by taking µH ≡ Q̃, the full ∆[n]
ep reduces to the TMDShF,

implying that the latter is given by eq. (2.43).
To test the proposed factorization, one may consider another process and check if it is

possible to identify the same TMDShF in eq. (3.4). We take into account J/ψ production
in hadron collisions, namely pp → J/ψ + X.4 For this process the small-qT behavior
of the cross section evaluated in the HTM region has been calculated in ref. [18]. The
corresponding Sudakov factor can be written as

Spp,ψA (b2
T ;µ2

H) = SgA(b2
T ;µ2

H) +Bpp(µ2
H) log µ

2
H

µ2
b

, (3.6)

where

Bpp(µ2
H) = −αs2πCA

(
1 + 2 log µ2

H

M2
ψ

)
, (3.7)

in which the first term of eq. (3.7) is directly related to the δ8c term in ref. [18]. Also in
this case we checked that previous equations agree in the kinematic limit corresponding
to a bound pair with the open heavy-quark pair production Sudakov factor, which can be
found in the literature (for instance ref. [20]). Moreover, even if it is possible to produce
quarkonia in a CS state (e.g. ηc), for pp our perturbative tail only applies to CO states.

3Here we introduced the subscript “ep” to underline that this ∆ has been obtained for SIDIS.
4It should be mentioned that a J/ψ produced from gg fusion is necessarily in the CO state, because

production of a massive CS vector state from two massless gluons is not possible (Landau-Yang theorem).
Nevertheless, in case of a CO final state in pp scattering the gluon TMD will involve a different gauge link
structure than in ep and TMD factorization may not even hold. As there is much unclear about this, we
will ignore this complicating matter in this work.
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Despite this, we cannot exclude that a non trivial TMDShF perturbative tail applies to
the CS channel too, if one goes to next orders in perturbation theory.

Although the full ∆[n]
pp is different from ∆[n]

ep , we can still identify the same ∆[n]
ShF in

eq. (3.4), which is now combined with a different (extra) soft factor Spp, namely

∆[n]
pp (µ2

H) = ∆[n]
ShF(µ2

H)× Spp(µ2
H), (3.8)

with

Spp(µ2
H) = 1 + αs

2πCA
(

3 log µ2
H

M2
ψ

)
log µ

2

µ2
b

. (3.9)

Interestingly, for Spp the coefficient in front of the log is “3”, whereas the same coefficient
for Sep is “2”, which corresponds to the number of TMD quantities (PDFs and shape
functions) involved. Hence, even if process dependent, these terms are the same apart
from the number of TMDs involved. This may allow to guess the required term for other
processes, such as for di-quarkonium production in pp collisions (if that factorizes at all for
CO-CO production).

The factor Spp reduces to 1 when µH = Mψ, such that ∆[n]
pp (M2

ψ) = ∆[n]
ShF(M2

ψ). For
this scale choice, ∆[n]

ShF(M2
ψ) is compatible with the corresponding one presented in ref. [15]

for χc decay into light-quarks, where the NLO TMDShF up to corrections of O(|kT |−1) is
given by a constant too.

According to our findings, in principle one may obtain the value of ∆[n]
ep (Q̃2) from the

experimentally determined ∆[n]
pp (M2

ψ) = ∆[n]
ShF(M2

ψ)
(
6= ∆[n]

ep (M2
ψ)
)
, by evolving ∆[n]

ShF(M2
ψ)

to ∆[n]
ShF(Q̃2). Hence, we propose a strategy for the extraction of the TMDShF from dif-

ferent processes, relying on their factorizability. For processes where we have a dominant
hard scale it is reasonable to expect that by setting µH equivalent to it we reduce our
uncertainties in the extraction of the TMDShF.5 Then, this term can be re-used for every
process involving J/ψ by evolving ∆[n]

ShF to the scale µ′H and combining it with the proper
process-dependent extra soft factor S(µ′2H).

For completeness, we mention that the soft factor derived for the open heavy-quark pair
production also involves an additional process-dependent factor [35–37] (which is sometimes
denoted by ∆, but should not to be confused with ours). This additional factor stems from
soft radiation in the QQ̄ production and can in principle even depend on the angle of qT .
Hence, it is natural to expect an additional process-dependent soft term in the quarkonium
case too. In that sense we expect that our extra soft term S will acquire azimuthal and
rapidity dependences if one goes beyond the order and approximation we have considered,
as they are present in the ∆ quantity of refs. [35, 37].

5This applies to both pp, where we have only Mψ, and SIDIS, if Q � Mψ or Q � Mψ (including
photoproduction).

– 15 –



J
H
E
P
0
8
(
2
0
2
3
)
1
0
5

4 Conclusions

In this work, we revised the procedure to derive the leading order TMDShF perturbative
tail for heavy quarkonium production. We focused on the SIDIS unpolarized cross section,
which is parameterized in terms of structure functions. In particular, we considered the
cross section evaluated at low qT and order ααs, which involves the convolution between
the gluon TMD-PDF and a general TMDShF, taking the reasonable assumption that fac-
torization holds. This description should match the collinear one at high qT and order αα2

s

when both are evaluated at intermediate qT , namely ΛQCD � |qT | � µH . We emphasize
that, although the exact choice of µH is important from a phenomenological point of view
where it is advantageous to extend the intermediate-qT region, our findings hold for any
choice of µH .

We show that in the high transverse momentum region, these structure functions
present poles when the small-qT limit is taken. We expect that these poles will be con-
tained in other hard amplitudes concerning inclusive quarkonia production. Therefore, we
presented a systematic way to deal with them, showing how they provide non-negligible
terms in the expansion at small qT . These terms, neglected in [16, 17], significantly alter
our findings of the TMDShF perturbative tail. At variance with previous works, it does
not present a logarithmic dependence on the transverse momentum (double-logarithm in
bT -space), which makes them different from usual TMD fragmentation functions for light
hadron production. However, this non-logarithmic dependence is in agreement with other
works [14, 15], and with the Sudakov factors obtained for open heavy-quark pair production
in electron-proton and proton-proton collisions.

We remark that our results on the transverse momentum dependence of the TMDShFs
hold for every CO quarkonium state with the same quantum numbers as the J/ψ we
considered, e.g. Υ(nS) and ψ(2S). The magnitude of TMDShFs can be different though
and is determined by the LDMEs. This conclusion holds up to the precision considered,
corresponding to the αα2

s and v4 orders in the NRQCD double expansion. Moreover, the
same considerations apply if we take into account the polarization of the J/ψ, since the
kinematics is the same. Namely, we have the same TMDShF perturbative tail for both the
longitudinal and transverse J/ψ polarization states. Besides, to check that the same form
of the TMDShF applies for observables involving h⊥g1 we would require the computation of
the cross section within NRQCD at higher order in αs, both for polarized and unpolarized
J/ψ productions. However, this calculation is still unavailable.

Furthermore, we showed that if we consider the evolution w.r.t. the factorization scale
µ, the TMDShFs would have to depend on the hard scale Q too. As it is not reasonable to
include this dependence into a quantity that is related to the quarkonium formation solely,
we considered a split into two terms: a process-independent quantity that we identify as the
universal TMDShF, and an extra process-dependent soft factor. This then allows to make
a connection between ep and pp processes, without losing predictability completely. It is
also in line with results for open heavy quark production, where extra process dependent
soft factors are also required, at least in pp collisions [35, 37].
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Despite the process dependence, we showed that it is possible to extract the univer-
sal TMDShFs by appropriate choices of scales, which allows to relate different processes.
Hence, we expect that with the upcoming Electron-Ion Collider and more data provided
by pp facilities (e.g. LHC in fixed target mode) extractions of the TMDShFs will become
available in the future and new features of heavy quarkonium production will be uncovered.
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A The additional terms of the effective delta

In this appendix we provide more details on the derivation of eq. (2.25). Via the Laurent
expansion in eq. (2.17) we obtained the three terms presented in eq. (2.19). The first
integral, dσA, involves only finite terms in the double limit x̂′, ẑ → 1. On the contrary,
dσB and dσC include indeterminate terms. These are given by the poles, while other
quantities can be Taylor expanded around ẑ = 1 and x̂′ = 1; e.g. the quantities H[n];(k)

P (ẑ)
are decomposed as

H[n];(k)
P (ẑ) = H[n];(k)

P (1) +
∑
m

(1− ẑ)m dmH[n];(k)
P (ẑ)
dẑm

∣∣∣∣∣
ẑ=1

. (A.1)

After the first order, the presence of power of (1 − ẑ)m solves the indeterminacy, making
the quantity (1−ẑ)1+m

1−x̂ null in the double limit. Hence, one can approximate ẑ = 1 and
x̂′ = 1 whenever possible, and subsequently perform the analytic integral. To achieve so,
we can utilize the solution of x̂′ imposed by δ

(
G(x̂′, ẑ)

)
, namely

x̂′0 = 1−
(1− ẑ)2M2

ψ + ẑ2q2
T

(1− ẑ)(M2
ψ + ẑQ2) + ẑq2

T

. (A.2)
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Hence, via eq. (A.2) we are able to rewrite the denominator of the poles and, subsequently,
integrate analytically the remaining function. Explicitly, we have that

dσB ≈
α

4yQ2 f
g(x;µ2)

∑
n

[(
1 + (1− y)2

)
H(g)[n];(1)
⊥ (1) + 4(1− y)H(g)[n];(1)(1)

]
〈O[n]〉

×
∫ 1

0
dx̂′

∫ 1

0
dẑ
( 1− ẑ

1− x̂′
)
δ
(
G(x̂′, ẑ)

)
δ(1− z)

= α

4yQ2 f
g(x;µ2)

∑
n

[(
1 + (1− y)2

)
H(g)[n];(1)
⊥ (1) + 4(1− y)H(g)[n];(1)(1)

]
〈O[n]〉

×Q2
∫ 1

0
dx̂′

∫ 1

0
dẑ
(

1− ẑ
(1− ẑ)2M2

ψ + ẑ2q2
T

)
δ(x̂′ − x̂′0)δ(1− z)

= α

4yQ2 f
g(x;µ2)

∑
n

[(
1 + (1− y)2

)
H(g)[n];(1)
⊥ (1) + 4(1− y)H(g)[n];(1)(1)

]
〈O[n]〉

×
(
Q2

2M2
ψ

log
M2
ψ

q2
T

)
δ(1− z)

= α

4yQ2 f
g(x;µ2)

∑
n

[(
1 + (1− y)2

)
H(g)[n];(0)
⊥ (1, 1) + 4(1− y)H(g)[n];(0)(1, 1)

]
〈O[n]〉

×
(
−x̂max log

M2
ψ

q2
T

)
δ(1− z), (A.3)

and

dσC ≈
α

4yQ2 f
g(x;µ2)

∑
n

[(
1 + (1− y)2

)
H(g)[n];(2)
⊥ (1) + 4(1− y)H(g)[n];(2)(1)

]
〈O[n]〉

×
∫ 1

0
dx̂′

∫ 1

0
dẑ
( 1− ẑ

1− x̂′
)2
δ
(
G(x̂′, ẑ)

)
δ(1− z)

= α

4yQ2 f
g(x;µ2)

∑
n

[(
1 + (1− y)2

)
H(g)[n];(2)
⊥ (1) + 4(1− y)H(g)[n];(2)(1)

]
〈O[n]〉

×Q2
∫ 1

0
dx̂′

∫ 1

0
dẑ

(1− ẑ)2[(1− ẑ)(M2
ψ + ẑQ2) + ẑ2q2

T

]
[
(1− ẑ)2M2

ψ + ẑ2q2
T

]2 δ(x̂′ − x̂′0)δ(1− z)

≈ α

4yQ2 f
g(x;µ2)

∑
n

[(
1 + (1− y)2

)
H(g)[n];(2)
⊥ (1) + 4(1− y)H(g)[n];(2)(1)

]
〈O[n]〉

×Q2
∫ 1

0
dx̂′

∫ 1

0
dẑ (1− ẑ)3[

(1− ẑ)2M2
ψ + ẑ2q2

T

]2 (M2
ψ +Q2

)
δ(x̂′ − x̂′0)δ(1− z)

= α

4yQ2 f
g(x;µ2)

∑
n

[(
1 + (1− y)2

)
H(g)[n];(2)
⊥ (1) + 4(1− y)H(g)[n];(2)(1)

]
〈O[n]〉

×
[
M2
ψ +Q2

M2
ψ

Q2

2M2
ψ

(
log

M2
ψ

q2
T

− 1
)]
δ(1− z)

= α

4yQ2 f
g(x;µ2)

∑
n

[(
1 + (1− y)2

)
H(g)[n];(0)
⊥ (1, 1) + 4(1− y)H(g)[n];(0)(1, 1)

]
〈O[n]〉

×
[
x̂max

2
(

log
M2
ψ

q2
T

− 1
)]
δ(1− z), (A.4)

where we recall that x = xB/x̂max. Note how the last lines in eqs. (A.3) and (A.4) are
respectively equivalent to what is presented in eqs. (2.22) and (2.23).
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q

pa, a

J/ψ Pψ, b

(A)

q

pa, a

pg, c

J/ψ Pψ, b

(B)

q

pa, a

J/ψ Pψ, b

pg, c

(C)

q

pa, a

J/ψ Pψ, b

pg, c

(D)

Figure 2. Leading order diagrams for the process γ∗ + g → J/ψ(Pψ), with the inclusion of soft
gluon emission (in red) from initial and final states.

B Eikonal method

In this appendix we describe how to evaluate the soft gluon radiation from the leading
order partonic subprocess in eq. (2.30) by adopting the eikonal approximation.

The Born amplitude is depicted in figure 2.A and the soft gluon emission is obtained
by attaching a (soft) gluon to the initial (hard) gluon, as in figure 2.B, or to the heavy
quark-antiquark pair, figures 2.C and 2.D. The eikonal gluon has a four-momentum pg that
is negligible compared to the other (hard) momenta in the process. Hence, its polarization
vector ελg(pg) fulfills the following relation∑

λg

ε∗αλg (pg)εβλg(pg)→ −g
αβ . (B.1)

Moreover, the soft external gluon has color index c and the initial gluon and the outgoing
pair have color index a and b, respectively.

The leading order amplitude of figure 2.A is given by

M0 = δabM0, (B.2)

with
M0 =

∫ d4k

(2π)4 ε
µ
λa

(pa)gµνOνij(Pψ, k)Φ(b)
ji (Pψ, k), (B.3)

where ελa(pa) is the polarization vector of the incoming gluon, O(Pψ, k) the perturbative
operator related to the hard amplitude and Φ(b)(Pψ, k) the wave function of the non-
relativistic cc̄ pair. Note that we are considering the pair having total momentum Pψ
and relative momentum 2k, and i and j are the color indices of the quark and antiquark,
respectively.

The amplitudes for figures 2.B-2.D, where we have the insertion of an eikonal gluon,
are identified by M(I)

1 with I = B,C,D. They can be obtained from the Born one in
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figure 2.A through proper replacements in a light-cone gauge. Here we list those needed to
evaluateM1:

• Emission from the incoming gluon

a

a′

c
pa

pa − pg

pg

εµ(pa)→ −igsfaa′cε
µ(pa)

[(
pa · ε∗λg

)
/
(
pa · pg

)]

• Emission from the outgoing quarkonia (solely color octet)

Pψ + pg, b
′ cc̄ J/ψ Pψ, b

cpg

Pψ + pg, b
′ cc̄ J/ψ Pψ, b

cpg

Φji(Pψ, k)→

− igsfbb′c

[(
Pψ · ε∗λg

)
/
(
Pψ · pg

)]
Φji(Pψ, k)

From the first replacement we have that

M(B)
1 = δa′bM

(B)
1 = (−igsfabc) ε∗αλg (pg)

[
paα

pa · pg − iε

]
M0, (B.4)

which is valid independently from the Fock-state of the cc̄ pair, while from the second one
we get

M(C+D)
1 = δab′M

(C+D)
1 = (igsfabc)

Pψα
Pψ · pg

ε∗αλg (pg)M0, (B.5)

if the bound state is produced in a CO configuration (the relation is still independent of the
other quantum numbers). By combining eqs. (B.4) and (B.5) we obtain the full amplitude
that includes the soft gluon radiation from both the incoming gluon and the outgoing (CO)
cc̄ pair, namely

M1 = (igsfabc)
[
Pψα
Pψ · pg

− paα
pa · pg

]
ε∗αλg (pg)M0 . (B.6)

Averaging over colors and using eq. (B.1), we then find that

|M1|
2 = g2

sCA
[
2Sg

(
pa, Pψ

)
− Sg

(
Pψ, Pψ

)]
|M0|

2
, (B.7)
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where
Sg(v1, v2) = v1 · v2(

v1 · pg
)(
v2 · pg

) . (B.8)

Considering a frame where q and pa are along the z axis, we can choose two light-cone
vectors κµ+ and κµ− such that

pµa = xB
x̂max

κµ+,

qµ = −xBκµ+ + Q2

2xB
κµ−,

pµg = p+
g κ

µ
+ + p−g κ

µ
− + pµg⊥ = p+

g κ
µ
+ + p−g κ

µ
− − P

µ
ψ⊥,

(B.9)

where from the momentum conservation we have that Pψ⊥ = −pg⊥, while by considering
the softness of the gluon in the final state (q + pa)2 ≈M2

ψ.
We can introduce the variable xg defined by

xg = pg · pa
q · pa

= 2xB
Q2 p

−
g , (B.10)

which is also constrained by the momentum conservation

p2
g⊥

M2
ψ +Q2 ≤ xg ≤ 1 . (B.11)

Then, the phase space of the emitted (on-shell) soft gluon is given by

d4pg
(2π)3 δ

(
p2
g

)
= d2pg⊥

2(2π)3
dp−g
p−g

= d2Pψ⊥
2(2π)3

dxg
xg

, (B.12)

and the differential cross section will be proportional to the integration w.r.t. xg of eq. (B.7),
namely6

dσ1 ∝
g2
s

2(2π)3CA

∫ 1
p2
g⊥

M2
ψ

+Q2

dxg
xg

[
2Sg

(
pa, Pψ

)
−Sg

(
Pψ, Pψ

)]
|M0|

2 = g2
s

2(2π)3CA
[
2Ia−Iψ

]
|M0|

2
.

(B.13)
The argument of the integral reads

Sg
(
pa, Pψ

)
= pa · Pψ(

pa · pg
)(
Pψ · pg

)
≈ pa · q(

pa · pg
)[(
pa · pg

)
+
(
q · pg

)] = 2
M2
ψx

2
g + p2

g⊥
, (B.14)

while

Sg
(
Pψ, Pψ

)
=

M2
ψ(

Pψ · pg
)2 ≈ M2

ψ[(
pa · pg

)
+
(
q · pg

)]2 =
4M2

ψx
2
g(

M2
ψx

2
g + p2

g⊥
)2 . (B.15)

6The proportionality is due to the presence of Lorentz-invariant phase spaces, not explicitly shown here.
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Hence, we can solve eq. (B.13) analytically finding

Ia =
∫ 1

p2
g⊥

M2
ψ

+Q2

dxg
xg

2
M2
ψx

2
g + p2

g⊥
≈ 1
p2
g⊥

[
log

M2
ψ +Q2

p2
g⊥

+ log
M2
ψ +Q2

M2
ψ

]
(B.16)

and
Iψ =

∫ 1
p2
g⊥

M2
ψ

+Q2

dxg
xg

4M2
ψx

2
g(

M2
ψx

2
g + p2

g⊥
)2 ≈ 2

p2
g⊥
, (B.17)

so that
dσ1 ∝

αs
2π2p2

g⊥
CA

[
log

M2
ψ +Q2

p2
g⊥

+ log
M2
ψ +Q2

M2
ψ

− 1
]
|M0|

2 (B.18)

is in agreement with the first term of eq. (2.27).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] R.M. Godbole, A. Misra, A. Mukherjee and V.S. Rawoot, Sivers Effect and Transverse
Single Spin Asymmetry in e+ p↑ → e+ J/ψ +X, Phys. Rev. D 85 (2012) 094013
[arXiv:1201.1066] [INSPIRE].

[2] D. Boer and C. Pisano, Polarized gluon studies with charmonium and bottomonium at LHCb
and AFTER, Phys. Rev. D 86 (2012) 094007 [arXiv:1208.3642] [INSPIRE].

[3] R.M. Godbole, A. Misra, A. Mukherjee and V.S. Rawoot, Transverse Single Spin Asymmetry
in e+ p↑ → e+ J/ψ +X and Transverse Momentum Dependent Evolution of the Sivers
Function, Phys. Rev. D 88 (2013) 014029 [arXiv:1304.2584] [INSPIRE].

[4] W.J. den Dunnen, J.P. Lansberg, C. Pisano and M. Schlegel, Accessing the Transverse
Dynamics and Polarization of Gluons inside the Proton at the LHC, Phys. Rev. Lett. 112
(2014) 212001 [arXiv:1401.7611] [INSPIRE].

[5] A. Mukherjee and S. Rajesh, Probing Transverse Momentum Dependent Parton
Distributions in Charmonium and Bottomonium Production, Phys. Rev. D 93 (2016) 054018
[arXiv:1511.04319] [INSPIRE].

[6] A. Mukherjee and S. Rajesh, Linearly polarized gluons in charmonium and bottomonium
production in color octet model, Phys. Rev. D 95 (2017) 034039 [arXiv:1611.05974]
[INSPIRE].

[7] A. Mukherjee and S. Rajesh, J/ψ production in polarized and unpolarized ep collision and
Sivers and cos 2φ asymmetries, Eur. Phys. J. C 77 (2017) 854 [arXiv:1609.05596]
[INSPIRE].

[8] S. Rajesh, R. Kishore and A. Mukherjee, Sivers effect in Inelastic J/ψ Photoproduction in
ep↑ Collision in Color Octet Model, Phys. Rev. D 98 (2018) 014007 [arXiv:1802.10359]
[INSPIRE].

[9] F. Scarpa et al., Studies of gluon TMDs and their evolution using quarkonium-pair
production at the LHC, Eur. Phys. J. C 80 (2020) 87 [arXiv:1909.05769] [INSPIRE].

– 22 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.85.094013
https://arxiv.org/abs/1201.1066
https://inspirehep.net/literature/1083376
https://doi.org/10.1103/PhysRevD.86.094007
https://arxiv.org/abs/1208.3642
https://inspirehep.net/literature/1128034
https://doi.org/10.1103/PhysRevD.88.014029
https://arxiv.org/abs/1304.2584
https://inspirehep.net/literature/1227669
https://doi.org/10.1103/PhysRevLett.112.212001
https://doi.org/10.1103/PhysRevLett.112.212001
https://arxiv.org/abs/1401.7611
https://inspirehep.net/literature/1279490
https://doi.org/10.1103/PhysRevD.93.054018
https://arxiv.org/abs/1511.04319
https://inspirehep.net/literature/1404709
https://doi.org/10.1103/PhysRevD.95.034039
https://arxiv.org/abs/1611.05974
https://inspirehep.net/literature/1499059
https://doi.org/10.1140/epjc/s10052-017-5406-4
https://arxiv.org/abs/1609.05596
https://inspirehep.net/literature/1487296
https://doi.org/10.1103/PhysRevD.98.014007
https://arxiv.org/abs/1802.10359
https://inspirehep.net/literature/1657921
https://doi.org/10.1140/epjc/s10052-020-7619-1
https://arxiv.org/abs/1909.05769
https://inspirehep.net/literature/1753724


J
H
E
P
0
8
(
2
0
2
3
)
1
0
5

[10] U. D’Alesio, F. Murgia, C. Pisano and P. Taels, Azimuthal asymmetries in semi-inclusive
J/ψ + jet production at an EIC, Phys. Rev. D 100 (2019) 094016 [arXiv:1908.00446]
[INSPIRE].

[11] R. Kishore, A. Mukherjee and M. Siddiqah, Cos(2φh) asymmetry in J/ψ production in
unpolarized ep collision, Phys. Rev. D 104 (2021) 094015 [arXiv:2103.09070] [INSPIRE].

[12] A. Bacchetta, D. Boer, C. Pisano and P. Taels, Gluon TMDs and NRQCD matrix elements
in J/ψ production at an EIC, Eur. Phys. J. C 80 (2020) 72 [arXiv:1809.02056] [INSPIRE].

[13] G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation
and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. 55 (1997)
5853] [hep-ph/9407339] [INSPIRE].

[14] M.G. Echevarria, Proper TMD factorization for quarkonia production: pp→ ηc,b as a study
case, JHEP 10 (2019) 144 [arXiv:1907.06494] [INSPIRE].

[15] S. Fleming, Y. Makris and T. Mehen, An effective field theory approach to quarkonium at
small transverse momentum, JHEP 04 (2020) 122 [arXiv:1910.03586] [INSPIRE].

[16] D. Boer et al., J/ψ meson production in SIDIS: matching high and low transverse
momentum, JHEP 09 (2020) 040 [arXiv:2004.06740] [INSPIRE].

[17] U. D’Alesio et al., J/ψ polarization in semi-inclusive DIS at low and high transverse
momentum, JHEP 03 (2022) 037 [arXiv:2110.07529] [INSPIRE].

[18] P. Sun, C.-P. Yuan and F. Yuan, Heavy Quarkonium Production at Low Pt in NRQCD with
Soft Gluon Resummation, Phys. Rev. D 88 (2013) 054008 [arXiv:1210.3432] [INSPIRE].

[19] R. Zhu, P. Sun and F. Yuan, Low Transverse Momentum Heavy Quark Pair Production to
Probe Gluon Tomography, Phys. Lett. B 727 (2013) 474 [arXiv:1309.0780] [INSPIRE].

[20] H.X. Zhu et al., Transverse-momentum resummation for top-quark pairs at hadron colliders,
Phys. Rev. Lett. 110 (2013) 082001 [arXiv:1208.5774] [INSPIRE].

[21] M.G. Echevarria, Probing TMDs with quarkonium production, Talk19219 (2022).

[22] J. Bor and D. Boer, TMD evolution study of the cos 2φ azimuthal asymmetry in unpolarized
J/ψ production at EIC, Phys. Rev. D 106 (2022) 014030 [arXiv:2204.01527] [INSPIRE].

[23] R. Meng, F.I. Olness and D.E. Soper, Semiinclusive deeply inelastic scattering at small qT ,
Phys. Rev. D 54 (1996) 1919 [hep-ph/9511311] [INSPIRE].

[24] B.A. Kniehl and L. Zwirner, J/ψ inclusive production in ep deep inelastic scattering at
DESY HERA, Nucl. Phys. B 621 (2002) 337 [hep-ph/0112199] [INSPIRE].

[25] Z. Sun and H.-F. Zhang, QCD leading order study of the J/ψ leptoproduction at HERA
within the nonrelativistic QCD framework, Eur. Phys. J. C 77 (2017) 744
[arXiv:1702.02097] [INSPIRE].

[26] J. Collins, Foundations of perturbative QCD, Cambridge University Press (2013).

[27] P. Sun, B.-W. Xiao and F. Yuan, Gluon Distribution Functions and Higgs Boson Production
at Moderate Transverse Momentum, Phys. Rev. D 84 (2011) 094005 [arXiv:1109.1354]
[INSPIRE].

[28] S. Catani and M. Grazzini, QCD transverse-momentum resummation in gluon fusion
processes, Nucl. Phys. B 845 (2011) 297 [arXiv:1011.3918] [INSPIRE].

– 23 –

https://doi.org/10.1103/PhysRevD.100.094016
https://arxiv.org/abs/1908.00446
https://inspirehep.net/literature/1747591
https://doi.org/10.1103/PhysRevD.104.094015
https://arxiv.org/abs/2103.09070
https://inspirehep.net/literature/1851937
https://doi.org/10.1140/epjc/s10052-020-7620-8
https://arxiv.org/abs/1809.02056
https://inspirehep.net/literature/1692948
https://doi.org/10.1103/PhysRevD.51.1125
https://arxiv.org/abs/hep-ph/9407339
https://inspirehep.net/literature/374999
https://doi.org/10.1007/JHEP10(2019)144
https://arxiv.org/abs/1907.06494
https://inspirehep.net/literature/1744132
https://doi.org/10.1007/JHEP04(2020)122
https://arxiv.org/abs/1910.03586
https://inspirehep.net/literature/1758244
https://doi.org/10.1007/JHEP09(2020)040
https://arxiv.org/abs/2004.06740
https://inspirehep.net/literature/1791275
https://doi.org/10.1007/JHEP03(2022)037
https://arxiv.org/abs/2110.07529
https://inspirehep.net/literature/1944944
https://doi.org/10.1103/PhysRevD.88.054008
https://arxiv.org/abs/1210.3432
https://inspirehep.net/literature/1190526
https://doi.org/10.1016/j.physletb.2013.11.002
https://arxiv.org/abs/1309.0780
https://inspirehep.net/literature/1252574
https://doi.org/10.1103/PhysRevLett.110.082001
https://arxiv.org/abs/1208.5774
https://inspirehep.net/literature/1182523
https://agenda.infn.it/event/19219/contributions/170918/
https://doi.org/10.1103/PhysRevD.106.014030
https://arxiv.org/abs/2204.01527
https://inspirehep.net/literature/2062451
https://doi.org/10.1103/PhysRevD.54.1919
https://arxiv.org/abs/hep-ph/9511311
https://inspirehep.net/literature/402195
https://doi.org/10.1016/S0550-3213(01)00564-8
https://arxiv.org/abs/hep-ph/0112199
https://inspirehep.net/literature/568320
https://doi.org/10.1140/epjc/s10052-017-5323-6
https://arxiv.org/abs/1702.02097
https://inspirehep.net/literature/1512426
https://doi.org/10.1103/PhysRevD.84.094005
https://arxiv.org/abs/1109.1354
https://inspirehep.net/literature/926682
https://doi.org/10.1016/j.nuclphysb.2010.12.007
https://arxiv.org/abs/1011.3918
https://inspirehep.net/literature/877819


J
H
E
P
0
8
(
2
0
2
3
)
1
0
5

[29] Z.-B. Kang, Y.-Q. Ma, J.-W. Qiu and G. Sterman, Heavy Quarkonium Production at
Collider Energies: Partonic Cross Section and Polarization, Phys. Rev. D 91 (2015) 014030
[arXiv:1411.2456] [INSPIRE].

[30] Y.-Q. Ma, J.-W. Qiu, G. Sterman and H. Zhang, Factorized power expansion for high-pT
heavy quarkonium production, Phys. Rev. Lett. 113 (2014) 142002 [arXiv:1407.0383]
[INSPIRE].

[31] Z.-B. Kang, Y.-Q. Ma, J.-W. Qiu and G. Sterman, Heavy Quarkonium Production at
Collider Energies: Factorization and Evolution, Phys. Rev. D 90 (2014) 034006
[arXiv:1401.0923] [INSPIRE].

[32] K. Lee, J.-W. Qiu, G. Sterman and K. Watanabe, QCD factorization for hadronic
quarkonium production at high pT , SciPost Phys. Proc. 8 (2022) 143 [arXiv:2108.00305]
[INSPIRE].

[33] R.F. del Castillo, M.G. Echevarria, Y. Makris and I. Scimemi, Transverse momentum
dependent distributions in dijet and heavy hadron pair production at EIC, JHEP 03 (2022)
047 [arXiv:2111.03703] [INSPIRE].

[34] M.G. Echevarria, T. Kasemets, P.J. Mulders and C. Pisano, QCD evolution of (un)polarized
gluon TMDPDFs and the Higgs qT -distribution, JHEP 07 (2015) 158 [Erratum ibid. 05
(2017) 073] [arXiv:1502.05354] [INSPIRE].

[35] S. Catani, M. Grazzini and A. Torre, Transverse-momentum resummation for heavy-quark
hadroproduction, Nucl. Phys. B 890 (2014) 518 [arXiv:1408.4564] [INSPIRE].

[36] S. Catani, I. Fabre, M. Grazzini and S. Kallweit, tt̄H production at NNLO: the flavour
off-diagonal channels, Eur. Phys. J. C 81 (2021) 491 [arXiv:2102.03256] [INSPIRE].

[37] W.-L. Ju and M. Schönherr, Projected transverse momentum resummation in top-antitop
pair production at LHC, JHEP 02 (2023) 075 [arXiv:2210.09272] [INSPIRE].

– 24 –

https://doi.org/10.1103/PhysRevD.91.014030
https://arxiv.org/abs/1411.2456
https://inspirehep.net/literature/1326951
https://doi.org/10.1103/PhysRevLett.113.142002
https://arxiv.org/abs/1407.0383
https://inspirehep.net/literature/1304290
https://doi.org/10.1103/PhysRevD.90.034006
https://arxiv.org/abs/1401.0923
https://inspirehep.net/literature/1276125
https://doi.org/10.21468/SciPostPhysProc.8.143
https://arxiv.org/abs/2108.00305
https://inspirehep.net/literature/1898018
https://doi.org/10.1007/JHEP03(2022)047
https://doi.org/10.1007/JHEP03(2022)047
https://arxiv.org/abs/2111.03703
https://inspirehep.net/literature/1962932
https://doi.org/10.1007/JHEP07(2015)158
https://arxiv.org/abs/1502.05354
https://inspirehep.net/literature/1345260
https://doi.org/10.1016/j.nuclphysb.2014.11.019
https://arxiv.org/abs/1408.4564
https://inspirehep.net/literature/1311638
https://doi.org/10.1140/epjc/s10052-021-09247-w
https://arxiv.org/abs/2102.03256
https://inspirehep.net/literature/1845170
https://doi.org/10.1007/JHEP02(2023)075
https://arxiv.org/abs/2210.09272
https://inspirehep.net/literature/2166062

	Introduction
	The matching procedure
	From high to intermediate transverse momentum
	From low to intermediate transverse momentum

	Universality
	Conclusions
	The additional terms of the effective delta
	Eikonal method



