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Significance

Collective intelligence processes 
such as voting and crowd-
sourcing select for prosocial 
participants through their 
voluntary nature. In large-scale 
online experiments, we induced 
participation among free riding 
participants by manipulating 
incentives. We found that, in 
contrast to prior intuitions, 
recruiting such participants 
increases collective intelligence 
due to their better-quality 
ratings. Our results were robust 
across diverse populations and 
across virtual environments that 
simulate different real-world 
scenarios. We suggest that 
recognizing the collective action 
dimensions of collective 
intelligence can improve 
outcomes in systems by 
embracing the diversity in 
contributor motivations.
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Incentivizing free riders improves collective intelligence  
in social dilemmas
Ofer Tchernichovskia,1 , Seth Freyb,c , Nori Jacobyd,2 , and Dalton Conleye,1,2

Edited by David Melamed, The Ohio State University, Columbus, OH; received July 6, 2023; accepted October 5, 2023 by Editorial Board Member  
Mark Granovetter

Collective intelligence challenges are often entangled with collective action problems. For 
example, voting, rating, and social innovation are collective intelligence tasks that require 
costly individual contributions. As a result, members of a group often free ride on the 
information contributed by intrinsically motivated people. Are intrinsically motivated 
agents the best participants in collective decisions? We embedded a collective intelligence 
task in a large-scale, virtual world public good game and found that participants who 
joined the information system but were reluctant to contribute to the public good (free 
riders) provided more accurate evaluations, whereas participants who rated frequently 
underperformed. Testing the underlying mechanism revealed that a negative rating bias 
in free riders is associated with higher accuracy. Importantly, incentivizing evaluations 
amplifies the relative influence of participants who tend to free ride without altering the 
(higher) quality of their evaluations, thereby improving collective intelligence. These 
results suggest that many of the currently available information systems, which strongly 
select for intrinsically motivated participants, underperform and that collective intel-
ligence can benefit from incentivizing free riding members to engage. More generally, 
enhancing the diversity of contributor motivations can improve collective intelligence 
in settings that are entangled with collective action problems.

collective intelligence | crowd wisdom | social feedback | social dilemmas |  
computational social science

Collective intelligence (1) is driven by communication and cooperation (2) through 
increasingly technologically mediated environments (3–7), especially at larger scales. This 
is evident in peer-production systems (8, 9), collaborative filtering (10), social ratings 
(11), voting (12, 13), tagging (14), and other social mechanisms ubiquitous on the Internet 
(15). In such crowd-sourced systems, information is a public good vulnerable to free riding 
(16): that is, most people exploit information often but contribute evaluations rarely, if 
ever. The collective action problem of incentivizing information-sharing is typically passed 
over in studies of collective intelligence, despite the fact that all but a fraction of people 
free ride on crowd-sourced information goods in real world applications. Here, we merge 
these problems into a joint collective action/collective intelligence paradigm to investigate 
what features of technologically mediated environments (17–19) may facilitate or hinder 
collective intelligence when they are vulnerable to free riding (20–22). We use the term 
“free rider” without implying any antisocial motive; rather, we deploy the term simply to 
refer to participants with lower contributions to the group. Regardless of its drivers, free 
riding has the effect of under-provisioning the public information good. The challenge 
here is that even simple manipulations, such as introducing incentives, can affect the 
amount of information but also can change the population characteristics of responders 
in terms of diversity of motivation, skills, and personalities of responders. The critical 
question is how these changes in the amount, accuracy, and biases of evaluations add up 
to affect collective intelligence overall.

We evaluated the role of social preferences in securing efficient collective learning (23) 
by using incentives to measure the effect of participants who are intrinsically less motivated 
to contribute to the evaluation pool. Intuitively, because of their intrinsic motivation to 
serve the group, a cohesive population of cooperative, intrinsically motivated agents should 
outperform a mixed population including less motivated agents. Alternatively, a diversity 
of motivational styles may increase the diversity of information sources, which is known 
to increase collective intelligence (24) and stability (25). To study the interactions between 
collective intelligence and (intrinsic versus extrinsic) motivation, (26) we explicitly modeled 
the public good aspect of frequency and quality of information sharing. In contrast to prior 
studies, we did not provide performance-based incentives: The incentives we provide are 
to contribute, not necessarily to contribute well (27). Providing (and removing) incentives 
for mere participation within a public good provisioning scenario allows us to study the 
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direct effect of incentives on subjects in a collective action frame-
work, while testing for the compositional effects on crowd wisdom 
due to variation in who participates. While acknowledging that 
many factors that we cannot control (or exclude) might drive these 
behaviors, we attempt to narrow down mechanistic options by 
supplementary experimental manipulations.

Results

Joint Collective Action/Collective Intelligence Games. We 
gauged collective intelligence by presenting participant groups 
with multiarmed bandit (MAB) problems, which have known 
optimal behavior (28–31). In each turn of our explicit MAB 
game, the participant selects one of two displayed arms (Fig. 1A) 
that are randomized from a pool of nine arms (Explicit MAB 
GAME: artificial design and SI Appendix, Figs. S8 and S9). Each 
arm dispenses a fixed (but initially unknown) number of coins 
once the lever is pressed. A dashboard next to each available 
lever presents the mean rating score. The goal is to select the 

arm with higher reward, which requires exploration and memory. 
The optimal strategy for finding the best arm is well understood 
(30, 31) but here we combine it with a public good problem: 
Participants can opt in to share ratings of bandit arms for the 
next five rounds (turns). Ratings were posted on a common 
dashboard, a shared public information good (Fig. 1 A, Top). In 
this manner, participants can opt in to help each other by sharing 
their experience (as with crowd-sourced recommendation systems) 
or avoid interacting with the information system and act based 
on experience alone. Once opted in (joining a club or guild of 
players, see SI Appendix, Figs. S9B and S11C), participants can 
either cooperate or “free ride,” namely decline to provide publicly 
beneficial ratings. The choice of whether to rate or free ride was 
repeated in every turn, with no penalty for free riding (SI Appendix, 
Fig.  S11D). In this manner, we can distinguish a decision to 
dissociate from the information system (opt out from the club and 
from the dashboard) from a decision to exploit the dashboard and 
free ride (use the information without contributing; SI Appendix, 
Fig. S1C). We estimate cooperation as the overall proportion of 

Fig. 1. Public good collective intelligence games expose the collective action dimension of crowd intelligence. (A) An explicit 9-arm-bandit game (MAB) with 
a voluntary recommendation system. In each turn, the participant selects one of two displayed arms (levers in A). Each arm dispenses a fixed (but initially 
unknown) number of coins once the lever is pressed. A dashboard next to each available lever or ferry presents the mean rating score. (B) A 9-arm MAB problem 
embedded in a 3D naturalistic game. In each turn, the participant selects one of two displayed arms (ferry type in B). (C) Participants collect coins on islands and 
select between two ferry types to commute between islands and then ride the ferries. The game includes a total of nine ferry types (=bandit arms) that vary in 
their speed. (D) Ratings scores vs. arm profit. Data are jittered to improve visualization. The line shows the linear trend. (E) Estimation of collective intelligence 
via accumulation of voluntary ratings. Time course of correct % bandit pairwise comparisons (above chance) by an observer of the rating scores presented in 
the dashboard over iterations. (F) Game stages schema (balanced order). At the end of the game, we identify influenced participants as those who rated more 
often once incentivized.

http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
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choosing to rate (#ratings/(#ratings + #declined + #opted-out). 
We could then test whether collectives improve faster (choose arms 
with higher reward) when it is encouraged, but not profitable, 
to provide information (the default in collective intelligence) 
or profitable—which may reduce the relative contribution of 
intrinsically motivated agents.

For the selection of intrinsically motivated agents to be ecolog-
ically valid, we developed a naturalistic 3D game (MAB game: 
naturalistic design and SI Appendix, Figs. S10 and S11) that does 
not explicitly reveal the collective intelligence problem and, 
instead, provides an experience similar to that of collective action 
problems in the real world (Fig. 1B), where people are not obliged 
to contribute evaluations (32). In the naturalistic game, partici-
pants choose and evaluate service utilities while exploring and 
gaining profit in the virtual world (these virtual gains were paid 
to participants as real money at the end of the game). In each turn, 
participants navigate in virtual islands to search and collect coins 
(that count toward their monetary reward for participation, Fig. 1 
B and C). They commute between islands by riding simulated 
ferries. Each ferry type corresponds to an arm in the embedded 
MAB problem with a total of nine ferry types (=bandit arms). As 
in the explicit MAB game, in each turn, players choose between 
two arms (ferry types) selected from the overall nine, with a dash-
board indicating aggregated rating scores for each ferry. Here, the 
arm reward is not monetary but the speed of the ferry: faster ferries 
save time that can be used for collecting more coins and thus 
increase subjects’ revenues. In all other respects, the two games 
were identical.

We evaluate the rate of convergence of evaluations towards 
ground truth from the viewpoint of an observer of the dashboard 
who needs to choose between a random pair of arms. Rating scores 
were noisy (Fig. 1D), but as the game proceeded, the mean score 
gradually approximated the bandit arms’ rewards (Analysis varia-
bles). We calculate the probability of choosing a higher-reward 
arm based on presented dashboard ratings that are available in 
each game iteration (turn). For example, after 10 turns, most arms 
are unknown, but after 100 turns, an observer who chooses an 
arm with a higher mean score is likely to gain more. Our estimate 
of the collective intelligence is the curve of the proportion of arms 
solved (selected correctly above chance, Fig. 1E).

Prior to the games, we prescreened participants to exclude bot 
usage and extreme inattentiveness (Prescreening and bot detection). 
In both games, participants voluntarily rated about a third of the 
turns (37%, n = 184 valid participants in the explicit MAB game 
and 35%, n = 115 valid participants in the naturalistic game). 
This proportion of rating behavior is comparable to the proportion 
of altruistic behavior reported in a long-term prisoner's dilemma 
game (2). In order to estimate the effect of this volunteer (non-
random sample) on collective intelligence, we incentivized partic-
ipants to rate by offering a monetary bonus in exchange for 
submitting each rating score. In one group (Fig. 1F), the incentive 
was presented in the first part of the game and removed in the 
second half, and in the other group, it was presented in the second 
half. This allowed us to evaluate the incentive effect on cooperation 
and on rating accuracy within-subject. We identified participants 
who responded to the incentive and contributed more ratings as 
“influenced” participants (Fig. 1F and Subgroups definitions). 
Therefore, the incentive influence can be used to identify ratings 
contributed by participants whose rating frequency was uninflu-
enced by rewards and ratings contributed mostly by influenced 
participants, who frequently free ride or opt out unless incentiv-
ized. We first test for an incentive effect regardless of order or type 
of disengagement and then explore the dynamic effect of adding 
and removing the incentive on different behaviors.

Cooperation vs. Rating Accuracy. In the naturalistic game 
(Fig. 2A) the incentive increased the proportion of ratings (pooled 
across participants) from 35% [CI: 30 to 42] to 70% [CI: 64 
to 77] (Bootstrap confidence intervals for pooled means). At the 
individual level, about 46% of participants were influenced 
by the incentive and contributed more ratings. Interestingly, 
incentivizing less intrinsically motivated participants did not 
decrease but increased the pooled rating accuracy computed as 
R2s of rating scores (pooled across participants) against the ground 
truth (see intrinsic vs. incentivized participants in Fig.  2B). 
We evaluate this outcome in a subset of 64 subjects who rated 
frequently enough to obtain a robust estimate of their accuracy, 
which is the within-subject R2s of rating scores with the ground 
truth (Analysis variables). Rating accuracy was significantly higher 
in the influenced participants (Fig.  2C, mean and SEM R2 = 
0.44 [0.39 to 0.50] in influenced vs. R2 = 0.20 [0.15 to 0.25] in 
uninfluenced participants, P = 0.002, Mann–Whitney U test, n 
= 38 and 28 uninfluenced). Further, ratings from less intrinsically 
motivated participants, who rated less than 50% of ferry rides, 
were more accurate compared to ratings from participants 
who rated more than 50% regardless of the incentive (Fig. 2D,  
P = 0.013, Mann–Whitney U test, n = 52 and 33 valid participants). 
In sum, participants who were reluctant to contribute to the 
public good provided higher quality ratings.

These outcomes were all replicated in a new group (n = 250 
participants) who played the explicit MAB game (Fig. 2 E and F), 
although due to differences in game and reinforcement design 
(Explicit MAB GAME: artificial design and MAB game: naturalistic 
design), the incentive (bonus) was less effective and increased rat-
ings contributions to only 51% [CI: 44 to 56] and only 29% of 
participants were measurably influenced by the incentive and rated 
more often. Consistently with the results of the naturalistic game, 
here too, incentive influence and low proportion of ratings were 
both associated with higher rating accuracy within subjects (Fig. 2 
G and H). Quantitatively, we observed mean and SEM accuracy 
R2 = 0.65 [0.58 to 0.73] in influenced vs. R2 = 0.31 [0.27 to 0.35] 
in uninfluenced participants (P = 0.0039, Mann–Whitney U test, 
n = 53 and 31 uninfluenced). Similarly, participants who rated 
less than 50% were more accurate (R2 = 0.47 [0.4 to 0.54] vs.  
R2 = 0.34 [0.29 to 0.39] in participants who rated more than 
50%, P = 0.054 Mann–Whitney U test).

Finally, in two additional groups who played the naturalistic 
game (n = 170 participants), we tested for an effect of stronger 
and weaker incentives and obtained similar results with no effect 
of incentive magnitude (within the range we tested) on rating 
accuracy within influenced and uninfluenced participants 
(SI Appendix, Fig. S2).

The experimental design allows us to distinguish between less 
intrinsically motivated participants who opt out from the infor-
mation system and those who joined but (at least occasionally) 
declined to contribute ratings (free riders). We tested it by per-
forming meta-analysis across groups of naturalistic game partici-
pants (n = 444 valid participants and 7,596 rating scores). The 
incentive affected both the decision to opt out and the decision 
to free ride and exploit the dashboard: Incentives increased par-
ticipation (opting in joining the club decisions) from 66 to 74%, 
and reduced free riding (within participants who opted in) from 
23 to 10%. Interestingly, rating accuracy was higher in participants 
who free ride (Fig. 3A, t = 2.7, P = 0.008) but slightly lower in 
participants who opted out (Fig. 3B, NS). This suggests that the 
positive effect of the incentive on rating accuracy may stem from 
incentivizing the free riders—who were already engaged with rat-
ing information but were reluctant to contribute to it without a 
reward for their ratings.

http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
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Finally, we look at the dynamic effects of adding and removing 
incentives by performing a meta-analysis across groups of natu-
ralistic game participants (SI Appendix, Fig. S1D). Removing the 
incentive during the second half of the game strongly decreased 
the number of ratings from influenced participants (from 803 to 
276), but it did not affect the pooled rating accuracy of these 
influenced participants (R2 = 0.21 [0.16 to 0.27] during incentive 
vs. R2 = 0.17 [0.11 to 0.24] after incentive removal, NS). Similar 
results were obtained when the incentive was added in the second 
part of the game (SI Appendix, Fig. S1E). Comparing participants 
who joined the game early or late did not reveal any differences 
in rating accuracy either (SI Appendix, Fig. S1F). Overall, results 
suggest that the incentive simply boosted the number of ratings 
from influenced participants (indicated as numbers in SI Appendix, 
Fig. S1). Differences in the pooled rating accuracy can be explained 
by changes in the composition of participants who contributed 
to the public good, with stronger influence from participants who 
were less intrinsically motivated during the incentive.

Rating Accuracy and Collective Intelligence. The incentive 
accelerated the MAB improvement because rating scores became 
more abundant and more accurate. To isolate the relative 
contribution of rating accuracy, we used the naturalistic game 
data to simulate the progression of the MAB solution. In the 

simulation, we run the same number of turns as in the real data, 
bootstrapping game turns with replacement. The simulated agent 
chose arms with higher median scores or randomly if ratings were 
not available for both arms or were equal. We ran the simulation in 
two manners to assess the relative contribution of rating quantity 
(cooperation level) and accuracy. In the first simulation, the agent 
based its choice on the objective reward of the arms (perfect 
rating). We used this type of information that is not available to 
the real participant to evaluate the effect of ratings quantity. In 
the second way, we run the simulation, the agent’s choices were 
based on the bootstrapped real (actual) ratings. The difference in 
performance between the two simulations estimates the effect of 
ratings accuracy. That is, it estimates the residual contribution of 
rating accuracy to the solution within a given amount of rating 
scores (level of cooperation). Based on cooperation level alone 
(Fig. 4, blue curves), the higher cooperation rate in the incentivized 
group could have allowed them to solve half of the bandit arms 
within nine iterations, compared to 20 iterations in the control 
(intrinsic) group. But with real ratings, it would have taken about 
80 iterations in the incentivized group (Fig. 4A, green curve), and 
more than 500 in the control group (Fig. 4B, red curve). Note 
that the nonsimulated data from the experiment (Fig. 4C) show 
similar trends to the simulated data (Fig. 4C, green curve and 
Fig. 4B, green curve; Fig. 4C, red curve and Fig. 4A, red curve), 

Fig. 2. In both the naturalistic and formal conditions, intrinsically motivated participants provided less informative ratings than those who were responsive to 
incentives. Naturalistic game: (A) Intrinsic vs. incentivized percentage of ratings. (B) Pooled rating accuracy (R2s with ground truth) with 90% bootstrap error bars 
comparing intrinsic vs. incentivized participants. We also present rating accuracy separately for participants that were influenced by the incentives compared to 
those who did not rate more often once incentivized. (C) Within subject rating accuracy comparing incentive-influenced to uninfluenced participants. (D) As in 
(C), comparing participants of low (<50, less intrinsically motivated) vs. high (>=50, more intrinsically motivated) proportions of rating (mean and SEM). Explicit 
MAB game: E–H, same as A–D for the explicit MAB game.

http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
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with some nonmonotonic behavior indicating temporal effects 
that are not captured by the simulation. These results suggest that 
rating accuracy is a major impeding factor to collective intelligence 
in public good problems.

Numerosity vs. Rating Accuracy. A possible explanation of 
our results so far is that participants who rated less frequently 
are rational players who, on the one hand, are more skilled in 
estimating (and memorizing) the bandit arm rewards and, on 
the other hand, decide to either opt out or to free ride (Subgroups 
definitions) as contributions do not increase their monetary 
compensation. To test for that, we introduced a simple quantity 
estimation test (Fig. 5A and SI Appendix, Fig. S7) prior to the 
public good game. We hypothesize that if participants who rated 
less frequently are indeed rational and more skilled players, they 
should also perform better on the quantity estimation test. In this 

manner, performance in the estimation test would be predictive 
of accurate rating in the public good MAB game. We therefore 
compared the evaluation accuracy across the quantity estimation 
and public good games. Since ratings in the public good games 
are voluntary, we could only include data from participants who 
rated public goods enough times (>5, see Analysis variables) to 
obtain a stable estimate. In the explicit MAB game, the quantity 
estimation task predicted only 6.8% of the variance in rating 
accuracy within subjects (Fig. 5B, n = 84 valid participants with 
sufficient data to estimate accuracy, P = 0.02, Pearson correlation). 
In the naturalistic game, it predicted a negligible portion of the 
variance in rating accuracy (about 1%, Fig.  5C, n = 78 valid 
participants, NS). Overall, the quantity estimation task poorly 
predicted rating accuracy in our public good games.

To test whether improving the quality of participants can 
improve prediction, we replicated the experiments with a cohort 

Fig. 3. Rating accuracy in free riders and opted-out participants: (A) Rating accuracy in participants who never free ride (n = 109) vs. those who did free ride  
(n = 190). Free riding was associated with more accurate ratings (t test, t = −2.7, P = 0.008). (B) Participants who never opted out were slightly more accurate 
than those who did (t = 1.5, P = 0.13, NS).

Fig. 4. Simulations show that relying on intrinsic motivation of intrinsically motivated participants slows the collective’s convergence on the game solution. 
Bootstrap simulation of collective intelligence comparing intrinsic (A) vs. incentivized (B) cohorts. Data is from the naturalistic game. Blue curve simulates the 
progression based on % ratings with an agent that uses the objective arms reward. The red/green lines simulate the progression based on the actual ratings 
(sampled with replacement from n = 287 intrinsic ratings and 519 incentivized ratings). The gap between the lines represents the marginal effect of rating 
accuracy, given the amount of rating scores. (C) Direct comparison of the real time experimental results.

http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
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of strongly selected participants (MTurk workers with >99% 
approval over more than 5,000 completed tasks). Ratings pro-
vided by the strongly selected cohort were much more accurate 
(mean and SEM within-subject R2 = 0.60 ± 0.04 in the strongly 
selected cohort vs. R2 = 0.34 ± 0.04 in the standard cohort, 
SI Appendix, Fig. S3), but here too, rating accuracy in the quantity 
estimation task did not predict rating accuracy in the public good 
game (R2 = 0.01, Fig. 5D, n = 69 valid participants, NS). Further, 
there were no statistically significant differences between unin-
fluenced and incentive-influenced participants in quantity esti-
mation accuracy of matches in a pile (mean R2 = 0.57 in 
uninfluenced vs. R2 = 0.64 in influenced, NS). Why would a 
participant who performed well in the quantity estimation task 
provide inaccurate ratings in the public good game? One option 
is that different subpopulations of participants differ in their rat-
ing biases in the public good game and that rating biases can 
potentially interact with rating accuracy.

Rating Bias vs. Rating Accuracy. To evaluate whether differences 
in rating biases can explain the higher accuracy in the influenced 
participants, we tried to identify idiosyncratic differences in 
mean rating scores across participants. We tested for a correlation 
between participants’ mean rating scores (an estimate of 
participant's positive or negative rating bias) and rating accuracy. 
In the explicit MAB game, the within-subject mean rating score 
was negatively correlated with rating accuracy, explaining 19% of 
the variance (SI Appendix, Fig. S4, R2 = 0.19, P < 0.001, Pearson 
correlation). A similar effect was detected in the naturalistic 
game: Mean rating scores were negatively correlated with rating 
accuracy, explaining about 27% of the variance (Fig. 6A, n = 78 
valid participants, R2 = 0.27, P < 0.001, Pearson correlation). 
These results show that ratings from more accurate people were 

more likely to be biased downward, thus suggesting that rating 
bias can explain at least some of the variance we observed in rating 
accuracy between the influenced and uninfluenced participants. 
Indeed, the incentive-influenced participants showed a negative 
rating bias (SI  Appendix, Fig.  S6D). We therefore suggest that 
social bias rather than cognitive factors mediate the differences in 
rating accuracy across influenced vs. uninfluenced participants in 
the public good game.

We considered that the near-zero rating accuracy in participants 
who rated very high could be a trivial ceiling effect. It could either 
indicate a strong positive bias in attitude (toward both participa-
tion and evaluation), or mirror a “lazy” strategy of rating high by 
default, driven perhaps by a moral self-licensing effect in which 
the prosocial act of being willing to rate gives license for the 
self-interested act of rating poorly (33). We tested whether this is 
the case using two approaches: First, looking at the cohort of 
strongly selected workers (with 99% approval), rating accuracy 
was much higher and mean rating scores were lower compared to 
our standard cohort, but the trend remained similar (Fig. 6B). It 
persisted even when considering only participants whose mean 
rating scores did not exceed 80% (Fig. 6B). A second approach to 
testing for a “lazy ratings” effect is by imposing extra effort (time 
costs) for submitting high scores. These time-costs were shown to 
be salient in a previous study (34). To test the effects under time 
costs, we ran additional experiments (N = 100 valid participants) 
where participants submitted ratings using a costly slider (34). 
The costly slider requires pressing continuously on the buttons of 
a “crawling” slider. Note that the time cost is proportional to the 
deviation from the center, requiring an increasing investment of 
time to report extreme scores. As expected, the time cost reduced 
the mean rating scores (histogram in Fig. 6C), but it did not elim-
inate the negative trend (Fig. 6C, n = 52 valid participants,  

Fig. 5. Numeracy does not account for the lower accuracy of ratings by intrinsically motivated participants. (A) Prior to the public good game participants 
were presented with a quantity estimation task, where they estimated the number of matches in 12 images presented in a pseudo-random order. (B) Scatter 
plot of participant R2 in the quantity estimation task against participant's R2 in the MAB game (n = 84 valid participants) shows a positive correlation between 
rating accuracy and basic estimation skills. (C and D) The same effect as in B for the ferry games with 95% approval (C, n = 78 valid participants) vs. 99% approval  
(D, n = 69 valid participants) cohorts.

http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
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R2 = 0.14, P < 0.001). Finally, we combined both treatments 
(highly selected group + costly signaling), and again the negative 
correlation was replicated (Fig. 6D, n = 48 valid participants, R2 
= 0.18, P < 0.001, Pearson correlation).

As an additional validation, we wanted to confirm that the lower 
mean scores by influenced participants did not stem from their 
choosing less profitable MAB arms. On the contrary, we found that 
influenced participants chose slightly better MAB arms (SI Appendix, 
Fig. S6 A and C, NS). Although the influenced participants chose 
slightly more profitable arms, their mean rating scores were still 
lower, confirming a negative bias, one that was even stronger in the 
naturalistic games (SI Appendix, Fig. S6 B and D).

Rating Accuracy vs. Survey Responses. So far, we found that 
our incentive improved rating accuracy by recruiting ratings from 
a subpopulation of participants who rate more accurately. We 
also showed that participants who tend to free ride, rate more 
accurately. However, all these estimations are intrinsic to the game 
and subject to collider bias, e.g., free riders might also be more 
rational or more attentive. We therefore tested whether rating 
accuracy is associated with specific personality traits. In a new 
group (n = 131 participants), we performed a Big Five personality 
test (35) and altruism assessment test (36) after participants played 
the naturalistic game. We cannot exclude the possibility that the 
game might have biased the survey responses to a certain extent. 
Within these limitations, we found that rating accuracy was 
negatively correlated with altruism score (r = −0.62, P < 0.05, False 

Discovery Rate (FDR) adjusted, SI Appendix, Fig. S5A), but not 
with quantity estimation accuracy (SI Appendix, Fig. S5B). We also 
found a negative correlation between altruism score and incentive 
influence (n = 68 valid participants, R = −0.33, FDR adjusted  
P = 0.03, SI Appendix, Fig. S5), confirming that the incentive 
recruited ratings from participants with lower altruistic tendency—
who tend to rate more accurately. We also found a positive 
correlation between openness score and incentive influence (n = 
68 valid participants, R = 0.35, FDR adjusted P = 0.02), which 
suggest that personality traits other than altruism might also 
explain accuracy in rating score. All other personality measures 
were not significantly correlated with the incentive influence.

Discussion

The joint collective action/collective intelligence games revealed 
strong interactions between incentives, free riding behavior, and 
collective intelligence. For example, free riders who were respon-
sive to incentives provided higher quality evaluations and balanced 
out the over-optimistic ratings of more intrinsically motivated 
contributors. Recruiting ratings from less intrinsically motivated 
participants decreased the average rating score, which, most likely, 
brings the information system average closer to the population 
mean (the ground truth). A recent study shows that incentives 
can be used to reinforce accurate evaluations (27) within subjects. 
Here, we show further that even an incentive that is not designed 
to (and did not) alter evaluation accuracy within subjects can still 

Fig. 6. Mean rating scores and rating accuracy are negatively correlated across conditions. Scatter plot of mean rating scores vs. mean rating accuracy. Each 
marker presents a mean rating score and accuracy for one person. Correlations in all panels are all statistically significant (P < 0.001); histograms are of mean 
rating scores. We compare two treatments: cost-free ratings (clickbar, A and B) and costly ratings (slider, C and D). For each treatment, we recruited standard 
cohorts and strongly selected cohorts (99% approval, right). For costly signaling, participants rated using a slider with two buttons (center). Pressing a button 
continuously moves the cursor slowly, with a time cost of up to 3 s for reporting extreme scores.

http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
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increase collective intelligence, simply by adding more ratings 
from differently motivated participants into the pool of evalua-
tions. This is significant because it is often impractical to reinforce 
accurate evaluation, especially when there is no ground truth 
against which to anchor—which is the case in most real-world 
applications. More generally, manipulating signaling incentives 
and costs can be used for identifying features of technologically 
mediated environments that either hinder or facilitate collective 
intelligence, even when the ground truth is not accessible in real 
time. Such manipulations can also potentially reveal hidden sam-
pling endogeneity effects (37) that might compromise the relia-
bility of crowd-sourced evaluations.

Our study design allows for estimation of collective intelligence 
in a public-good game that is vulnerable to free riding. However, 
our intrinsic measures (e.g., free riding) are merely descriptive, 
and we cannot infer motivation. Although free riding behavior 
was correlated with higher rating accuracy, and although rating 
accuracy is also negatively correlated with altruism score, we can-
not infer causality, and our evidence regarding motivation should 
be interpreted cautiously. In particular, free riding is a rational 
behavior, and rational behavior is likely to be associated with 
rating bias. Other mechanisms cannot be excluded either. For 
example, some competitive participants might submit many inac-
curate ratings in order to gain relative advantage. Conversely, some 
intrinsically motivated participants may submit many evaluations 
in order to better memorize which arms were more profitable. The 
results of the numerosity skills tests and altruism survey suggest 
that such cases are likely to be the minority, but they cannot be 
excluded. Within these limitations, our results suggest that manip-
ulating incentives can improve information quality and correct 
biases that otherwise hinder collective intelligence in a collective 
action setting. We don't know whether future studies with 
stronger extrinsic validations will be able to positively identify a 
single motivation and exclude all others, but they can hopefully 
help in further narrowing down the list of viable candidate 
mechanisms.

Differences in rating biases between participants who submit 
ratings more or less frequently may vary in different scenarios, but 
even in our simple virtual environment, where priors are presum-
ably weak, biases, and differences in accuracy across subgroups 
were surprisingly strong. We suspect that intrinsically motivated 
participants underperform because of their stronger bias. If true, 
adding evaluations from less intrinsically motivated participants 
is likely to be beneficial in many complex real-world scenarios. 
Since many of the currently available information systems strongly 
select for prosocial and intrinsically motivated participants 
through their voluntary nature, they are likely to underperform. 
In these situations, collective intelligence may benefit from incen-
tivizing even a fraction of free riders to engage.

An additional open question is whether the improved informa-
tion quality we observed is sustainable. According to previous 
studies, external incentives may “crowd out” evaluations from 
intrinsically motivated participants (38) with potentially long-term 
negative effects. However, a recent massive study (39) did not 
detect any negative unintended consequences of offering a pay-
ment incentive for getting COVID vaccine over prolonged periods 
and across multiple domains. One limitation of that study is that 
the payment was low and increased vaccination rate by only about 
5%. In our study, the incentive increased participation by about 
30%, also with no apparent side effects. We replicated this out-
come in a range of incentive magnitudes (SI Appendix, Fig. S2) 
and found that all incentive magnitudes increased rating accuracy. 
However, we cannot exclude that in natural conditions incentives 
might reveal negative outcomes over time.

Understanding how incentives may affect collective intelligence 
is particularly important for testing new voting systems, such as 
liquid democracy (40). Campbell et al. (13) show that collective 
intelligence decreases with liquid democracy because people tend 
to delegate too much, reducing the effective sample size for crowd 
wisdom. This negative effect overwhelmed the positive effect of 
delegation to good experts. Our findings suggest a different per-
spective to this: In a voluntary rating system where people tend 
to exploit, incentivizing people to vote may have a positive effect 
because people who vote less are often more like “experts”—they 
rate more accurately. Perhaps an optimal level of incentives (41) 
in liquid democracy can reduce delegation to a level that maxi-
mizes the proportion of accurate evaluations in the pool while 
maintaining an effective sample size.

In the wild, collective intelligence platforms like online 
crowd-sourced ratings and peer production systems are public 
goods that come with the risk of collective action problems like 
free riding. By capturing this explicitly in an experimental design, 
we observe the interactions between collective action and collective 
intelligence to find that mixed populations of participants that 
diverge in terms of their motivation outperform (show greater 
group intelligence than) entirely intrinsically motivated popula-
tions, suggesting that motivational diversity may be just as impor-
tant as diversity in knowledge and experience in leveraging crowds 
towards optimal collective outcomes. Our results demonstrate the 
promise of large-scale online experiments to contribute to the 
understanding of collective intelligence challenges that are entan-
gled with collective action problems.

Materials and Methods

All data and code for the paper can be found in the Open Science Foundation 
(OSF) repository: https://osf.io/d953m/.

Participants.
Recruitment and participants. Participant recruitment was managed by PsyNet, 
a framework to develop and deploy large-scale online experiments. We recruited 
a total of 1,281 participants. For each experiment, participants were recruited 
automatically until we collected the desired sample. Sample size was determined 
by a sample-size analysis (see Sample-size power analysis below). After excluding 
participants that are suspected to have used bots (see below) and participants 
who did not finish the games, we included 721 participants who made 15,028 
decisions. All participants provided informed consent in accordance with the Max 
Planck Society Ethics Council approved protocol (2021_42). All participants were 
recruited online using Amazon Mechanical Turk (MTurk). We required three con-
ditions to take part in our experiments: i) be at least 18 y old, ii) be in a quiet 
environment (e.g., a room with low background noise), and iii) use an up-to-date 
Google Chrome browser. These requirements guaranteed compatibility with our 
testing platform, PsyNet (see PsyNet below). Participants were paid at a US $9/h 
rate according to how much of the experiment they completed (e.g., if participants 
left the experiment early, they were still paid proportionally for their time).
Prescreening and bot detection. Relying solely on highly curated participants 
would have defeated the purpose of the current study, which aims to under-
stand both motivated and unmotivated participants. In MTurk, worker quality, 
demographic composition and motivation of participants are highly variable, 
which can properly simulate a public good problem in a natural and diverse 
environment, with some proportion of participants that try to minimally engage 
or even exploit the experimental system and compensation mechanisms. Still, 
we needed to exclude participants who use bots or were otherwise completely 
disengaged. We also needed to test whether the quality of recruits affected our 
findings. To address that, we implemented the following prescreening task, which 
we also used as a treatment:

All participants performed a simple quantity estimation task prior to the game 
(see procedures below for details). We used the quantity estimation task as a bot/
attention detector: Our Javascript code exposed the correct answers, such that 
bots (but not ordinary participants, at least without trying to inspect the javascript 

http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
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code manually) could fetch those numbers and match them with each image. In 
a similar manner, we detected and excluded data from 11 cases that we suspected 
as either less sophisticated bots (most excluded participants) or inattentive partic-
ipants that provided very low quality of quantity estimations R2 < 0.2 (less than 
1% of the excluded participants). In this manner, we detected 11.3% of bot usage 
in standard quality cohorts but only 1.6% of bot usage in the strongly selected 
cohort. Once a bot usage was identified, we excluded the bot-generated data. 
However, to prevent adaptation, we allowed suspected Bots to finish the task and 
fully compensated them.

Other exclusions. Each MTurk worker could only participate in each study 
once.

Standard participant cohorts. Participants with at least 2,000 previously 
submitted tasks on MTurk with a 95% approval rate on average.

Strongly selected participant cohorts. Participants with at least 5,000 previ-
ously submitted tasks on MTurk with a 99% approval rate on average.
Details of participants’ groups. Overall attrition rate was 560 out of 1,281 par-
ticipants. Most attrition was due to technical failure to run the WebGL game on 
the browser. We only included participants who performed the full experiment 
in the analysis. The details of the participant groups in each experiment are pro-
vided in Table 1.
Asynchronous experimental design. We run all experiments asynchronously, such 
that participants join the game, do their task, and leave the system independently. 
This means that participants who joined early experienced a different information 
system than those who joined late. We did not detect strong differences in out-
comes between participants who joined early, and those who joined late within 
treatment arms. For example, comparing within-subject rating accuracy across 
uninfluenced and influenced participants shows similar differences, when restrict-
ing the analysis to participants who joined early, or to those who joined late in the 
game (SI Appendix, Fig. S1F). Most other measures including #Ratings, #Opted-out, 
%Free ride, Incentive influence, and #Coins collected were within the margin of error. 
However, the mean rating score was somewhat higher in participants who joined 
late (63.8 ± 1.1 in early vs. 67.4 ± 1 in late participants), probably due to priming.

Procedure.
PsyNet. The experiments were all implemented using PsyNet (https://psynet.
dev/) (42), a framework for complex experiment design which builds on the 
Dallinger (https://dallinger.readthedocs.io/), a platform for online automatic 
participant recruitment.
Game programming and design. Online games were deployed by combining 
PsyNet and Unity®. We developed an interface for embedding WebGL com-
piled 3D Unity® games in our PsyNet experiments. All games were designed 
and developed by our team. Participants interact with the experiment via a web 
browser, which communicates with a back-end Python server cluster responsible 
for organizing the experiment and communicating with WebGL Unity games. In 
our experiments, this cluster was managed by Heroku (https://www.heroku.com/), 
supporting the experiment management and stimulus generation workload, as 
well as a Postgres database for sorting results. All groups were presented with 
detailed video instructions to decrease the reliance of specific terms in the expe-
rience of participants. Code for the implemented experiments can be found in 
the OSF repository: https://osf.io/d953m/.
Quantity estimation task. Following Tchernikovski et  al., participants were 
sequentially presented with 12 images showing piles of matches (34). For each 
image, we prompted the participant to estimate the number of matches. To avoid 
responding without paying attention to the image, participants had to wait at 
least 12 s before responding. After submitting an estimation, we presented the 
correct answer.

1. Task instructions: You will play two games. This first is a game of 
guessing the number of matches in an image. We will present 12 
images, and pay you 5 cents for each image you estimated.

2. We require that you spend at least 12 s estimating each image. 
This was enforced by enabling the Next button (SI Appendix, Fig. S7) 
after 12 s.

Explicit MAB GAME: artificial design.
Game design. Bandit arms provide a fixed reward (one to nine coins). After 

instruction slides, participants play 20 turns, where in each turn, they choose an 

arm of the two available options, and receive a reward and feedback based on 
their choice.

Game progression. The first step in each experiment is an informed consent. 
After the informed consent, participants see general instructions (SI Appendix, 
Fig. S8). Then, they are introduced to a waiting room which introduces a delay 
of 5 to 20 s, which is used here only for compatibility with future synchronized 
games (SI Appendix, Fig. S9A). Then, they are proposed to join the club (or guild) 
(SI Appendix, Fig. S9B), and in this case they will be further asked to perform 
rating, or not join the club and in this case they will not see ratings and not be 
asked to rate. Next, we present the status of the incentive by either presenting 
“We now pay for rating the arm” or removing incentive “We no longer pay for 
rating.” Finally the game starts (SI Appendix, Fig. S9C), and the turn starts with a 
choice based on the rating information (if available) and based on the incentive 
(if available; SI Appendix, Fig.  S9D). In all cases, participants received reward 
and feedback after the end of each trial (SI Appendix, Fig. S9E), and in case they 
opted in (participate in the club), they are further asked to choose to rate or skip 
rating. In case that the participant chooses to rate, they are introduced with a 
rating device, such as a clickbar (SI Appendix, Fig. S9F) which they can move. In 
the experimental condition “costly slider” the participants are not free to move the 
slider directly but instead they need to press continuously on the push buttons 
(SI Appendix, Fig. S9G).

Incentive design. For each five turns (before turns 1, 6, 11, and 16), the partic-
ipant was prompted to choose if to join a player's club or play singly (SI Appendix, 
Figs.  S9 and S13). Once joined a club, the player should decide in each turn 
whether to rate arm or not (SI Appendix, Fig. S8C). There was no penalty for free 
riding. Incentive to rate was introduced either for turns 1 to 10 (early incentive) 
or for turns 11 to 20 (late incentive).
MAB game: naturalistic design.

Game design. Bandit arms (different ferries) provide a fixed reward, with ride 
duration (speed) ranging between 2 and 20 s. The game included 20 turns. After 
instruction slides, participants played 4 turns of training, followed by two sessions 
of eight turns each (Fig. 1F).

Game progression. The first step in each experiment is an informed consent. 
After the informed consent participants were presented with the instructions for 
the game via a short video and slides (SI Appendix, Fig. S10). Then, participants 
went through a guided training phase where they experienced the game under a 
controlled environment that makes sure they understand the task and calibrates 
their expectations. In the first trial, they collected coins (SI Appendix, Fig. S10A) 
and experienced the fastest ferry (SI Appendix, Fig. S10 B–D). Then, they experi-
enced riding the ferry and were prompted about the second trial (SI Appendix, 
Fig. S10 C–D). In the next two trials, the participant was also introduced with 

Table 1. Group composition
Group Participants Valid Evaluations Ratings

1. Explicit MAB 250 182 3,640 1,550

2. Naturalistic, 
stand selection

212 114 2,436 1,121

3. Naturalistic, 
strongly 
selected

122 85 1,793 946

4. Naturalistic, 
CostSlider, 
stand selection

274 107 2,256 963

5. Naturalistic, 
CostSlider, 
strong selection

122 70 1,470 825

6. Naturalistic, 
small/large 
bonus

170 95 2,003 953

7. Naturalistic, 
personality tests

131 68 1,430 712

Total 1,281 721 15,028 7,070
#participant is the number of recruited participants. #valid is the number of participants 
who finished the experiment and were not excluded as bots. #Evaluation is the number of 
human decisions if to rate the MAB/ferry. #Ratings is the actual number of rating scores 
submitted.

http://www.pnas.org/lookup/doi/10.1073/pnas.2311497120#supplementary-materials
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selecting a MAB arm and rating it after the ferry ride (SI Appendix, Fig. S10E). 
Participants were informed about the end of the training phase. Next, we pre-
sented the status of the incentive by either presenting “We now pay for rating 
the ferry” (SI Appendix, Fig. S11D) or removing the incentive: “We no longer pay 
for rating the ferry.” Next, participants make a choice of whether to join the ferry 
club (this opt-in/opt-out choice repeat every 5 turns) (SI Appendix, Fig. S11 A–C) 
or without incentive (SI Appendix, Fig. S12 C and F).

If participant joined the club (opted in), the dashboard was presented. After rid-
ing, the player could still decline rating without sanctions (SI Appendix, Fig. S11D). 
If the player opted out, she can play alone and not receive requests for feedback 
for five turns (SI Appendix, Fig. S11F).

Incentive design. For each five turns (before turns 1, 6, 11 and 16), the partic-
ipant was prompted to choose whether to join a player's club or play singly. The 
incentive included two components: free ferry ride (one cent saving per ride) and 
a reward for submitting ratings, which we varied between games (1 to 2 coins,  
2 to 4 coins, 6 to 12 coins per rating). Once she joined the “ferry club,” the player 
was prompted to decide in each turn whether to rate the ferry or not. There was 
no penalty for free riding. Incentive to rate was introduced either for turn 4 to 12 
(early incentive) or for turns 13 to 20 (late incentive).
Personality tests. We conducted a shorter version of the Big Five personality test 
(35) and the altruism assessment test (36) after participants played the naturalistic 
game. SI Appendix, Fig. S12 shows screenshots from the Big Five test.

Quantification and Statistical Analysis.
Subgroups definitions. We focused on comparing rating accuracy in two sub-
groups of participants: Those who responded to the incentive by rating more 
often, and those who did not. In the naturalistic game, participants play 16 
rounds: 8 with incentive and 8 without incentive (in a balanced order).

Influenced participants. We defined incentive-influenced participants where 
#ratings(incentivized) - #ratings(intrinsic) > 1. This threshold was determined by 
evaluating the distribution of net incentive influence which is the number of ratings 
with minus without incentive (SI Appendix, Fig. S13). As shown, the distribution is 
bimodal, and with a sharp peak around zero and a broad mode above it. Given the 
steep drop from 138 to 19 on the right side, we considered a threshold of >1 as 
conservative enough. All other participants were called uninfluenced (including rare 
cases of apparently negative influence, see below). A posteriori, setting a more liberal 
threshold #ratings(incentivized) - #ratings(intrinsic) > 0 gives very similar results:

With >1 we got R2(influenced, uninfluenced) = [0.468, 0.29].
With >0 we get R2(influenced, uninfluenced) = [0.453, 0.29].
Other thresholds can be tested by editing line 64 in the script “Initial data 

processing” in the deposited data.
Opt in and Opt out (from the participant guild or club). Participant decision 

if to opt in or out was repeated every five turns. See SI Appendix, Figs. S9B and 
S11 B and C.

Free riding. Participants who opted in to the participant club and further 
decided each turn if to rate or not (free ride). See SI Appendix, Figs. S9E and S11D.
Sample-size power analysis. We used data from the explicit MAB game (n = 182 
valid participants) to estimate sample size needed for all other groups. We focused 
on within-subject comparison between incentive-influenced and uninfluenced 
participants. We calculated the mean rating accuracy for each group:
Rating accuracy within subject

Given:
Influenced Uninfluenced Diff means Pooled SD

0.56 0.32 0.24 0.35

0.36 0.31

Then, with alpha=0.05 (Type I error rate), beta = 0.2 (Type II error rate.), 
q0=q1=0.5 (proportion of trials in incentivized conditions, and expected pro-
portion of influenced participants), we obtained N(sample) = 33, N(total) = 66. 
Therefore, we recruited 212 participants for our standard cohort to obtain 114 
valid participants. For all other groups, we aimed at obtaining about 70 to 100 
valid participants to test for replication in different conditions.

Bootstrap CIs for pooled means. We performed bootstrap analysis by ran-
domly sampling participants with replacement. Bootstrap was performed 100 
times, and 90% CI was computed.
Analysis variables.

Ground truth/arm reward. Number of coins per MAB arm in explicit MAB 
game. In the naturalistic game, we considered ferry ride duration (ranging from 2 
to 20 s) as a negative reward. For each participant, we computed the mean rating 
score and the mean arm reward.

Rating scores and % rated. Our rating devices had the range of 0 to 100. In 
the game, participants were presented with mean scores. In figures, we present 
raw scores or mean scores, or % rated (Fig. 2), which is the proportion of turns 
where a rating score was submitted.

Pooled rating accuracy. The coefficient of determination R2 between the 
ground truth and pooled rating scores for each treatment or subgroup.

Within-subject rating accuracy. The coefficient of determination R2 between 
the ground truth and rating scores submitted by a participant. For the analysis of 
rating accuracy, we included only participants who voluntarily rated the MAB arms 
at least five times (out of 16 turns) which we considered as the minimum sample 
size for obtaining a meaningful within subject R2: The proportion of participant 
the fit this criterion varied across groups, ranging between 47% in the raw MAB 
game to 81% in the naturalistic game with strongly selected cohorts. A posteriori 
we tested a range of threshold between 4 and 7 and found that our results are 
insensitive to the specific choice:

With n > 4 we got R2(influenced,uninfluenced) = [0.46, 0.30]
With n > 5 we got R2(influenced,uninfluenced) = [0.46, 0.29]
With n > 6 we got R2(influenced,uninfluenced) = [0.47, 0.29]
With n > 7 we got R2(influenced,uninfluenced) = [0.49, 0.29]
%bandit arms solved. Input vectors are ground truth and mean score for each 

arm. For each pair of arms (9 arms → 36 pairs), if both have rating data, and if 
mean ratings are not equal, test if score and ground truth are aligned. For example 
if reward i > reward j and score i > score j, we increment the score. If they are mis-
aligned we decrement the score. A score of 36 means that scores and ground truth 
are aligned for all pairs of arms. We present the score as percentage (that is score/36 
* 100). See ComputeBanditScore() code in deposited data: (https://osf.io/d953m/).

Random jitter for display purpose. We used a random jitter for display pur-
pose only in Fig. 1D. The jitter was done by adding a uniformly distributed 1 unit 
noise to the integer MAB reward.

Simulation code. See ComputeSolution() in deposited data: (https://osf.io/
d953m/).

Data, Materials, and Software Availability. Experimental results data have 
been deposited in Osf.io (https://osf.io/d953m/) (43).
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