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PRrRICING MORTGAGE-BACKED SECURITIES IN A

MULTIFACTOR INTEREST RATE ENVIRONMENT:
A MULTIVARIATE DENSITY ESTIMATION APPROACH

Abstract

This paper develops a nonparametric, model-free approach to the pricing of mortgage-
backed securities (MBS), using multivariate density estimation (MDE) procedures to investigate
the relation between MBS prices and interest rates. While the usual methods for valuing MBSs
are highly dependent on specific assumptions about interest rates and prepayments, this method
will yield consistent results without requiring such assumptions. The MDE estimation suggests
that weekly MBS prices from January 1987 to May 1994 can be well described as a function of
the level and slope of the term structure. We analyze how this function varies across MBSs with
different coupons and investigate the sensitivity of prices to the two factors. As an application,
we use the estimated relation to hedge the interest rate risk of MBSs. These hedging results

compare favorably with other commonly used hedging methods.






1 Introduction

The mortgage-backed security (MBS) market plays a special role in the U.S. economy. Orig-
inators of mortgages (S&Ls, savings and commercial banks) can spread risk across the econ-
omy by packaging these mortgages into investment pools through a variety of agencies, such
as the Government National Mortgage Association (GNMA), Federal Home Loan Mortgage
Corporation (FHLMC), and Federal National Mortgage Association (FNMA).. Purchasers
of MBSs are given the opportunity to invest in default-free, interest-rate contingent claims
which offer different payoff structures from U.S. treasury bonds. These combined elements
lower an individual’s cost of obtaining a mortgage, creating welfare gains. Due to these
gains, the MBS market has been one of the fastest growing, as well as one of the largest, fi-
nancial markets in the United States. For example, in 1993, the face value of these securities
outstanding was 1.5 trillion dollars, in comparison to approximately 100 million outstanding
in 1980. The magnitude and growth of the MBS market demonstrate how important it is to
the financial and real sectors of the economy.

With increased holdings of MBSs, there have been well-documented cases of huge mon-
etary losses incurred by financial institutions and investment groups. The risk ménagement
(or lack thereof) of S&Ls’ mortgage portfolios is one example of financial institutions’ vul-
nerability to price variations in the mortgage market. This vulnerability is partly due to the
complexity of MBS pricing. On one level, pricing appears to be fairly simple. Fixed-rate
mortgages offer fixed nominal payments; thus, fixed-rate MBS prices will be governed by
pure discount bond prices. However, the mortgage holder has the option to prepay the ex-
isting mortgage and refinance the property with a new mortgage; hence, MBS investors are
implicitly writing a call option on a corresponding fixed-rate bond. Furthermore, prepay-
ment of mortgages (and thus the timing and magnitude of the MBS’s cash flows) can also
take place for reasons not related to the interest rate option.

The most common approach to valuing an MBS is throu‘gh the development of theoret-
ical models with specific parameterizations (see, for example, Dunn and McConnell (1981),
Schwartz and Torous (1989), Kau, Keenan, Muller and Epperson (1992) and Stanton (1994)).
While these models provide considerable insights into the pricing of MBSs, there are several
reasons why they are not necessarily the best vehicle for determining the relation between
MBS prices, interest rates, and prepayment rates. First, the theoretical approach requires
specification of all the features of the model. If this specification is incorrect, then it is

unclear how to interpret the MBS valuation. This is especially important given that many



of the models rely on unreasonable assumptions about the process generating interest rates
and prepayment behavior. Second, the applications of these models rely on parameters of
the model that must be determined, either through estimation or posited from “thin air”.

Recent research indicates that nominal prices of fixed income securities are governed by
both real and nominal factors, indicating that models of interest rates (and prepayment)
should contain at least two factors. As the dimensionality of the models increases, so does
the likelihood of both model misspecification and incorrect assumptions about parameter
values. An investor who wishes to hedge the interest rate risk contained in an MBS must
therefore be especially cautious in applying MBS models in practice.

An alternative approach to understanding the cross-relations between mortgage-backed
security prices, prepayment rates and interest rates is via a model-free methodology. In this
paper, we employ multivariate density estimation (MDE) procedures to estimate the func-
tional relation between MBS prices and their fundamentals.! The MDE procedure is well
suited to analyzing MBSs because, while financial economists have good intuition for what
the MBS pricing fundamentals are, the exact form is too complex (or assumption-specific) to
be determined precisely. Furthermore, in contrast to parametric or semi-parametric econo-
metric techniques, consistency of the MDE procedure (i.e., the MBS model specification) is
assured.

An added benefit of the MDE methodology is that it can accommodate multiple fac-
tors. Current empirical evidence favors a multifactor approach to fixed-income pricing (e.g.,
Stambaugh (1988), Litterman and Scheinkman (1991) and Pearson and Sun (1989)), point-
ing to at least two factors. Given the results of this research, we assume that the interest
rate level and the slope of the term structure span (possibly nonlinearly) the two pricing
factors. In this two-factor setting, we apply the MDE approach to the pricing and hedging
of mortgage-backed securities. We estimate the joint density between interest rate levels,
the slope of the term structure, and a cross-section of prices of MBSs with different coupons.
This joint density implies pricing functionals (in terms of the available information) and
reveals important characteristics of the distribution of MBS prices.

In order to study the small sample properties of the MDE method, we first examine
a simulated model of MBS prices. In this model, the economy is governed by a two-factor
Cox, Ingersoll and Ross (CIR) (1985a,b) model. Mortgage prepayments are introduced using

a modified version of the Schwartz and Torous (1989) model, which captures some of the

! For other empirical studies of MBS pricing and hedging see Breeden (1991), Harvey (1991), Richard and
Roll (1989), Schwartz and Torous (1989), and Stanton (1992).



salient features of prepayment behavior. The MDE approach is then applied to the simulated
economy. For this particular model, the MDE approach approximates well the functional
form of MBS prices.

The MDE method is then applied to GNMA securities of various coupons over the period
1987-1994. The data are prices of weekly TBA (to be announced) GNMAs with coupons
ranging from 7.5% to 10.5%.2 A within-sample and out-of-sample analysis is provided for the
pricing and hedging of these securities, respectively. ;From a pricing perspective the MDE
methodology captures the negative convexity of MBS prices. Of particular importance, the
relation between prices and the level of interest rates is also shown to be dependent on the
slope of the term structure. Consistent with economic intuition, two factors are necessary to
fully describe the effects of the prepayment option on prices. The analysis also reveals cross-
sectional differences, across GNMAs with different coupons, especially with regard to their
sensitivities to movements in the two interest rate factors. These sensitivities are used in
the out-of-sample hedging analysis, and the MDE methodology compares favorably to both
a linear hedge and an alternative nonparametric technique. As expected, the MDE method-
ology works especially well in low interest rate environments when the GNMAs behave less
like fixed maturity bonds.

The paper is organized as follows. Section 2 discusses the pricing of MBSs in a multifactor
framework. In Section 3, we describe the MDE methodology and its ability to explain MBS
prices using data from simulated economies. Section 4 provides a detailed description of
the data used in the study. Section 5 analyzes the pricing and hedging performance of the
MDE methods and alternative approaches throughout the 1987-1994 period. In Section 6,

we make some suggestions for future research and conclude the study.

2 Mortgage-Backed Security Pricing: Preliminaries

Mortgage-backed securities represent claims on the cash flows from mortgages which have
been pooled together and packaged as a financial asset. Investors in an MBS receive all
payments (principal plus interest) made by mortgage holders in a particular pool (less some
servicing fee). For many of these securities, the payments are guaranteed by government or
private agencies so there is no question of default. In the case of a household default, the

agency pays the remaining principal of that mortgage in the pool. Thus, the pricing of an

2A TBA contract is just a forward contract, trading over the counter. More details are provided in Section
4.



MBS can be reduced to valuing the mortgage pool’s cash flows at the appropriate discount
rate. MBS pricing then is very much an issue of estimating the magnitude and timing of the
pool’s cash flows.>

However, pricing an MBS is not a straightforward discounted cash flow valuation. This
is because the timing and nature of a pool’s cash flows depends on the prepayment behavior
of the holders of the individual mortgages within the pool. For example, independent of
interest rates, mortgages might be prepaid by individuals with enhanced wealth or who
relocate. These events will lead to early payments of principal to the MBS holders. In
addition, MBSs contain an embedded interest rate option. Mortgage holders have an option
to prepay their existing mortgage and refinance their property at the lower interest rate.
They are likely to do so as interest rates and hence refinancing rates decline to a certain
point below the rate of their current mortgage. This refinancing incentive tends to lower the
value of the mortgage to the MBS investor because the mortgages’ relatively high expected
coupon payments are replaced by an immediate payoff of the principal. The equivalent
investment alternative now available to the MBS investor is, of course, at the lower coupon
rate. Therefore, the price of an MBS with an X% coupon is roughly equivalent to owning
a default-free X% coupon-bearing bond and writing a call option on that bond (with an
exercise price of par). This option component induces a concave relation between the price
of MBSs and the price of default-free bonds (the so called “negative convexity”).

Modeling and pricing MBSs, hence, involves two layers of complexity: (i) modeling the
dynamic behavior of the term structure of interest rates, and (ii) modeling prepayment
behavior of mortgage holders. Below, we review the theoretical approach to pricing MBSs

and later contrast that approach with a nonparametric method for pricing MBSs.

2.1 Term Structure Dynamics and the Theoretical Approach to
MBS Pricing

In analyzing the term structure behavior, two related approaches are usually taken: (i) the
“technical” approach, and (ii) the “economic” approach. Technical studies, using such tools
as factor analysis, conclude that two to three factors suffice in order to explain most of the

variation in interest rates of various maturities.? “Economic” studies are concerned with

3For a description of MBSs and their relevant characteristics, see The Handbook of Mortgage-Backed
Securities, Fabozzi, editor, 1993.

4Litterman and Scheinkman (1991), for example, use three observable factors, all extracted from the
current term structure of interest rates: the level of the short rate, the spread between the short rate and the



linking the dynamics of the term structure to the properties of relevant fundamental factors,
namely, real interest rates (and other real variables), and inflation (and other monetary
variables). Some of the studies in this class also provide more detail on the underlying
economy and agents’ preferences. Such an extension is particularly relevant when studying
time varying premia in different maturity bonds.”> Put together, these studies provide both
the empirical and economic motivation for specifying multiple factors when describing the
dynamics of the term structure. They also provide insight into which time series model is
most appropriate. _

In the academic literature, however, most theoretical models of MBS pricing ignore multi-
factor pricing issues, and instead posit a one-factor interest rate model, preferring to focus on
the prepayment characteristics of MBSs.® In particular, in one of the earliest academic stud-
ies in the area, Dunn and McConnell (1981a,1981b) apply an option pricing approach to the
valuation of MBSs. This approach also determines the optimal prepayment strategy as part
of the MBS valuation process. The Dunn-McConnell model, however, has some unattractive
implications. First, the price of an MBS can never exceed par. Second, in their model all
mortgage holders refinance at the same time, as soon as interest rates fall below a critical
level. To correct the first problem, Timmis (1985), Dunn and Spatt (1986) and Johnston
and Van Drunen (1988) add transaction costs which must be paid by borrowers should they
decide to refinance their loans early. To relax the second restriction, Stanton (1994) extends
the model to include heterogeneous transaction costs across mortgage holders. Thus, there is
no longer a particular interest rate level which induces uniform prepayment and the exercise
price of the prepayment option is uncertain. This uncertainty may be related not only to
interest rates, but also to changes in the status of households within the mortgage pool (e.g.,

marital, relocation, and wealth). While these later models are theoretically appealing, they

long rate, and the curvature of the term structure. These three factors are shown to explain approximately
98% of the variation in interest rates.

 5The best example is the seminal work of CIR (1985a, 1985b), and some of the related empirical work
(e.g., Pearson and Sun (1989)), and multifactor extensions (Chen and Scott (1993)). The CIR model has two
crucial elements: (i) the distinction between the real economy and the role of inflation (although without any
interaction between the two), and (ii) stochastic volatility. Hence, it can be viewed as a “second generation”
model, accommodating the empirical evidence which emerges from the data more precisely than previous
log-linear models (see Singleton (1989) for a complete survey).

8Exceptions include Brennan and Schwartz (1985) who develop a multifactor MBS valuation model.

Interest rate movements are assumed to be governed by the Brennan and Schwartz two-factor model, and
prepayment is determined as in Dunn and McConnell (1981). Also, Waldman (1992) defines a notion of
“partial duration” - the sensitivity of an asset price to shifts in specific points in the yield curve, keeping the
rest constant. This is similar in spirit to our goals here; however, Waldman calculates the partial durations
using some (unspecified) parametric prepayment model, and numerically takes derivatives with respect to
variables of interest.



still have trouble capturing prepayment characteristics.

As an alternative, Schwartz and Torous (1989) use a Monte Carlo approach to price
MBSs. While this method cannot be easily applied to determining optimal prepayment
behavior, it can use empirical prepayment models to determine the timing of the cash flows.
These cash flows can then be discounted at the appropriate risk-adjusted rate. This enables
the researcher to incorporate the mortgage’s seasoning” and a mortgage pool’s burnout® (see
Richard and Roll (1989) for a discussion of various other factors affecting prepayment rates).
Of course, the impact of these factors will be somewhat related to interest rates; however, the
Monte Carlo approach gives the researcher more discretion in modeling prepayment behavior

than the theoretical approach.

2.2 A Nonparametric Approach to Valuing MBSs

Both the rational and empirical approaches to prepayment modeling and MBS valuation
depend crucially on the correct parameterization of prepayment behavior and on the correct
model for interest rates. Despite the widespread implementation of these models, they
have had limited success in pricing MBSs. In this project, we take a different approach
by estimating nonparametrically the relation between MBS prices and fundamental factors
related to the term structure. Specifically, we estimate the joint density of MBS prices
and term-structure factors. Given the estimated density, we can then calculate directly the
pricing functional for MBSs.

We do not necessarily advocate density estimation as a substitute for theoretical modeling
of MBS prices, but more as a complementary method of analysis. Specifically, the advantage
of using a multivariate density estimation (MDE) approach for pricing fixed-income securities
is that it is model-free. Apart from weak distributional assumptions (such as stationarity of
the inter-relations between the interest rate variables and MBS prices), no assumptions about
functional forms are needed. Thus, model specification plays a much smaller role with the

MDE approach than with the approaches discussed above. Of course, an empirical approach

"That is, prepayment rates on mortgages will initially tend to increase with the age of the mortgage,
since there are frictions to household changes. For example, brand new mortgages are unlikely to have been
taken out if the holders thought they were to get divorced, relocate or default.

8That is, for aged (and substantially prepaid) pools in a positive coupon spread environment, there is
a tendency for low future prepayments. The intuition is that if a mortgage holder were going to prepay,
then he/she would have already done so. This burnout effect could reflect nonoptimal behavior on the part
of some mortgage holders, or frictions they face in trying to refinance their property (e.g., the value of the
house may have fallen by such an amount that refinancing is no longer possible, yet there are sufficient costs
to defaulting).



like MDE introduces estimation error. While this is different from model misspecification, it
can have similar effects on pricing. This aspect of the MDE methodology is studied in the
next section.

The MDE approach can also incorporate multiple factors in a way which is internally
consistent and straightforward to implement. For example, although it is necessary to choose
the number of interest rate factors, the factors themselves can be unobservable. All that is
required is that the interest rate variables used in the estimation are invertible to the true
factors.®

If two factors can explain (i) the term structure (straight-bond component of MBSs),
(ii) the mortgage rate (refinancing incentive), and (iii) prepayment characteristics (economic
conditions), then, in the absence of estimation error, two interest rate variables should explain
most of the important features of MBS pricing. In practice (i.e., in small samples), these
variables should be chosen to maximize the information content of the two factors.

There are good reasons to choose the 10-year yield and the spread between this yield and
the 3-month T-bill rate for capturing the salient features of MBSs. The MBSs analyzed in
this paper have 30 years to maturity; however, due to potential prepayments and scheduled
principal payments, the old rule-of-thumb is to treat them as if they have maturities of 12
years (see, for example, The Handbook of Mortgage-Backed Securities, 1993). Thus, the
10-year yield should approximate the level of interest rates at which to discount the MBS’s
cash flows. Further, the 10-year yield has a correlation of .98 with the mortgage rate. Since
the spread between the mortgage rate and the MBS’s coupon determines the refinancing
incentive, the 10-year yield should prove useful when valuing the option component.

The second variable, the slope of the term structure (in this case, the spread between
the 10-year and 3-month rates) provides the market’s expectations about the future path
of interest rates, which helps determine variation in the discount rate over short and long
horizons. Thus, steep term structure slopes (relative to the 10-year yield) will discount
short-term and long-term bonds at lower and higher rates, respectively. Further, steep
term structures may imply increases in future mortgage rates, which impacts the market for
mortgage refinancing.

Other factors, of course, may play an additional role in the valuation of MBSs. For ex-

°In a related empirical investigation, Harvey (1991) also uses a density estimation procedure to estimate
MBS prices. Harvey (1991), however, only considers one-factor models and focuses in particular on the
ability of T-bond futures to hedge various GNMA prices during the 1986 period of volatile interest rates.
Breeden (1992) provides a description of the MBS market during the 1980’s, documenting negative convezity
of MBS prices and the effects of prepayments and aggregate economic conditions. Of particular interest, he
also uses a different nonparametric approach (based on the prevailing MBS market) to hedge GNMAs.



ample, if the level of interest rates is not the sole determinant of interest rate volatility (in
contrast to the CIR model), then volatility should directly impact the value of the prepay-
ment option embedded in the MBS. Similarly, the slope and level of the term structure may
" not be sufficient to explain interest rate movements; for instance, Litterman and Scheinkman
(1991) argue that the curvature of the term structure is also relevant (albeit less important).
Finally, prepayments themselves may be related to factors other than those associated with
interest-rate movements. Market factors or structural factors may cause prepayment rates
to change, affecting the pricing of MBSs. The importance of other factors is an empirical
question that is left for future research. We concentrate on the two interest rate factors
discussed above, and, in the next section, we describe the MDE approach and evaluate its

ability to estimate the pricing functional for MBSs in a two-factor economy.

3 The MDE Methodology

3.1 Nonparametric Density Estimation

We employ a kernel estimation procedure for estimating the relation between mortgage-
backed prices and components of the term-structure of interest rates.® Kernel estimation
is a nonparametric method for estimating the joint density of a set of random variables.
Specifically, given m-dimensional vectors z1,2s,...,27 (e.g., MBS prices, the interest rate
level, and the slope of the term )structure) from an unknown density f(z), then a kernel

estimator of this density is

fio= s 32 K (452). 8

t=1
where K(-) is a suitable kernel function and & is the window width or smoothing parameter.
This fixed window width estimator is often called the Parzen estimator. The density at any
point is estimated as the average of densities centered at the actual data points. The further
away a data point is from the estimation point, the less it contributes to the estimated
density. Consequently, the estimated density is highest near high concentrations of data
points and lowest when observations are sparse. ‘

The econometrician has at his discretion the choice of K(-) and h. It is important to

point out, however, that these choices are quite different than those faced by researchers

10For examples of MDE methods for approximating functional forms in the empirical asset pricing litera-
ture, see Pagan and Hong (1991), Harvey (1991) and Ait-Sahalia (1994).



employing parametric methods. Here, the researcher is not trying to choose functional forms
or parameters that satisfy some goodness-of-fit criterion (such as minimizing squared errors
in regression methods), but is instead characterizing the joint distribution from which the
functional form will be determined.

One popular class of kernel functions is the symmetric beta density function, which
includes the normal density, the Epanechnikov (1969) “optimal” kernel, and the commonly
used biweight kernel as special cases. Results in the kernel estimation literature suggest that
any reasonable kernel gives almost optimal results, though in small samples there may be
differences (see Epanechnikov (1969)). In this paper, we employ an independent multivariate
normal kernel, and leave for future research the issue of a particular kernel’s optimality for
our application. _

The other parameter, the window width, is chosen based on the dispersion of the obser-
vations. For the independent multivariate normal kernel, Scott (1992) suggests the window
width,

hi = ;T
where 7; is the standard deviation estimate of each variable z;, T is the number of obser-
vations, and m is the dimension of the variables. This window width has the appealing
property that, for certain joint distributions of the variables, it minimizes the asymptotic
mean integrated squared error of the estimated density function. Though the necessary dis-
tributional properties are not satisfied within our sample, Scott’s rule provides an objective
starting point for the MDE procedure.!?

Consider the relation between three variables: MBS prices (P ), the level of long-term
interest rates (¢;), and the slope of the term structure (z; — 15). Given the kernel estimate of
the joint density of these variables, f(Pmb,il,iz — 15), the price at time ¢ of an MBS at any

interest rate level and term structure slope can be estimated by

A

o . o . F(Prbits tiey e — s,
Pmb,t(zl,ta Ut — Zs,t) - E[P'mb,tlzl,h Ut — Zs,t] - / Pmb,t ( :n,t, _t’ t. 2 t)deb,t, (2)
f(ll,ty it — Zs,t)

which is readily calculated from the kernel estimation of the joint density and the prices at

1 There is some evidence that, in finite samples, the fixed-kernel estimators perform poorly in regions
where the observations are sparse, producing spurious peaks at these points, and where they are dense,
producing too little resolution around these points. A potential solution to this problem is the variable
kernel estimator (VKE) (see, for example, Breiman, Meisel and Purcell (1977)), which allows the window
width to vary across the data points. These window widths (though computationally intensive) lead to the
smoothing (unsmoothing) of the density where the data are sparse (dense). The extension to VKEs for
pricing MBSs will be considered in future research.



each data point in the sample. Specifically,

A

o pak () g ()
Pop(t,0 — 15) =

ij—is
. . N . . N b
T g {it—i [tr—is]—li1, e —ts,¢]
2= K ( hi ) K ( hiy i

v ‘_.-1— __1_ 2 . . . . .
where K (z) = 2r~2e~2% . Thus, for any given long rate :; and a given short rate ¢}, there is

(3)

a mapping to the MBS price P,.,(i},if — ). These prices can then be used to evaluate how
MBS prices move with fundamental interest rate factors.

One particular aspect of the MDE pricing framework deserves additional comment. If
two factors are sufficient, then the discussion so far implies that P, = Pms (37,17 — tF); that
is, given the two interest rates, the MBS price is deterministic. Thus, two periods with the
same interest rate environment, (i},7; —17), must also have the same MBS price. Of course,
in finite samples, equation (3) will not produce that result. MDE gives weight (possibly
inconsequential) to all observations, so that the price of the MBS with (2}, 1] —1}) also takes
into account MBS prices at surrounding interest rates. This is an advantage of MDE, not
a drawback. As with all nonparametric techniques, we view the pricing as stochastic, i.e.,
Py = Pos(if,i7 —1%) + €. Thus, MDE will help average out the different € errors from period
to period.

There are several sources for these errors in MBS pricing. The first is that the MBS prices
themselves are subject to measurement error. For example, bid prices vary slightly across
dealers and may be asynchronous with respect to the interest rate quotes. Furthermore, the
bid-ask spreads on the MBSs in this paper generally range from ;—znd to 34—2nds, depending
on the liquidity of the MBS. The second is that the MBS prices used in this paper refer
to prices of unspecified mortgage pools in the marketplace (see Section 4.1). To the extent
that the universe of pools changes from period to period, this introduces an error into the
pricing equation. Finally, there may be additional factors (as discussed at the end of Section
2.2) which could lead to differential pricing. While our application ignores these factors,
MDE will average out these elements if they are independent of the two interest rate factors.
Whether this is sufficient depends on the importance of these factors, and we hope to explore

additional factor pricing in future research.

3.2 MBS Pricing in a Simulated Economy

In this section, we examine the extent to which multivariate density estimation can un-

cover the relation between MBS prices and interest rates. As a first pass, we judge the

10



MDE’s ability to capture the salient features of MBS pricing in a simulated economy. While
this economy is simple in structure, it provides a useful benchmark by which to judge the
effectiveness of the MDE procedure. In particular, we wish to answer the following ques-
tion: under which circumstances (i.e., number of observations, range of data) does the MDE
perform well, that is, is the estimation error sufficiently small?

In the appendix, we describe a simple multifactor MBS pricing model, based on the
Schwartz and Torous (1989) model, which exhibits many of the commonly noted features of
mortgage prepayment. In particular, the simulated prices have three important character-
istics. First, the likelihood of prepayment increases as current interest rates fall relative to
the coupon rate on the mortgage. In addition, the higher the fraction of a mortgage pool
which has already prepaid, the lower the prepayment speed of the remaining loans in the
pool (a simple form of burnout). Second, interest rates are described by a two-factor CIR
model, using parameters estimated by Pearson and Sun (1989). To coincide with the range
of interest rates, we look at the pricing of 7%, 10% and 13% MBSs. Third, since the pricing
functional only has two sources of uncertainty, the MBS prices are deterministic functions of
the two CIR factors. To coincide with a more realistic setting, a mean zero, uniformly dis-
tributed error over a $1 range is added to each MBS price. This can be viewed, for example,
as a combination of the errors discussed in Section 3.1 above.

For this simulated model, Figure 1 graphs the prices of 7%, 10%, and 13% MBSs (with 30
years to maturity) against the 10-year yield for one particular simulation selected at random.
The prices reflect both the negative convexity of MBSs and a second (albeit small) interest
rate factor. At high interest rates, MBS prices behave much like those of a straight bond.
They become concave in the interest rate level only at low interest rates when the refinancing
incentive takes hold. This effect is apparent when comparing the 7%, 10%, and 13% MBSs.
The higher the coupon, the higher the interest rate at which the refinancing option takes
effect. The thickness of the pricing line, most evident at low interest rates, implies that there
are multiple MBS prices for a given interest rate level, which can be explained by variation
in the simulated model’s second factor and the uniform pricing errors.

Since the pricing functional only has two main sources of uncertainty, a two-factor MDE
should explain MBS prices well if there is no estimation error. Since the sample sizes are
finite, however, estimation error is clearly present. In order to document the estimation
error, we simulated 1000 independent economies each with 500 observations on interest rates
and MBS prices. For each economy, we estimated the MDE-implied pricing functionals for

MBS prices using data on the first 50 and 150 observations, as well as using the full sample
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of 500 observations. In order to make the pricing functionals comparable across different
sample sizes, the MBS prices were calculated using MDE for each sample size over the range
of interest rates in the first 50 observations and using the bandwidth for the MDE computed
with the standard deviation from the first 50 observations.'* Absolute pricing errors were
then calculated by taking the absolute valué of the difference between the MDE’s MBS price
and the model’s true MBS price (i.e., without pricing error) over this interest rate range for
a cross-section of term structure spreads. Of particular interest, note that the MBS price is
estimated from the MDE’s pricing functional for sets of interest rates and spreads that may
or may not have occurred in the sample. The only requirement is that these sets lie within
the relevant interest rate and spread ranges.

Figure 2 documents the average absolute pricing error of the MDE procedure across the
simulated economies and across several interest rate spreads. Note that the z-axis measures
the level of the interest rate relative to the maximum and minimum observed in the first
50 observations. The points “0” and “100” correspond to the minimum and maximum,
respectively. For a large range of interest rates in the sample, the MDE procedure’s estimate
of the MBS price coincides very closely with the true model price. For example, between
the 15th and 85th percentile of interest rate ranges, the absolute pricing errors are around
20 cents, 40 cents and 60 cents for the 500-, 150- and 50-observation sample, respectively.
Given that the observed prices are subject to uniformly distributed pricing errors, the MDE
clearly performs well here. Since the par values are $100, this represents approximately 2%
absolute pricing error for the 500-observation sample. As we look to the higher interest rate
levels within the sample, however, the estimation error increases.

Several observations on this estimation error increase are in order. First, the increase is
worse for the smaller sample sizes. For example, the 50-observation sample has absolute pric-
ing errors as high $1.50 (almost 1.5%), whereas the 500-observation sample has pricing errors
of less than 70 cents (.6%). Second, for the 50-observation sample, the pricing error increases
dramatically outside of the interest rate range (i.e., below 0% and above 100%). This shows
that MDE does not work well outside the data range; that is, the MDE interpolates the
functional relation quite well, but does not extrapolate at the tails of the data.'® Third, note

that the 150- and 500-observation samples perform better than the 50-observation sample in

12While the range of interest rates over the simulations can be quite large, the range over the first 50
observations is considerably tighter.

13This problem is less apparent in the left tail of the interest rate distribution for the 13% GNMA. At
very low interest rates, the option component is in-the-money and the MBS is much less sensitive to interest
rate movements. Thus, extrapolation is not an issue.
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the tails of the data. Recall that the interest rate range is chosen based on the 50-observation
sample; thus, the other sample sizes may contain some observations in the 0%— and 100%+
range of the data and the MDE will therefore not have to extrapolate MBS prices.

The overall conclusion from this particular simulated model is that the MDE works
well, especially within the range of interest rates and spreads observed in the data. At the
tails, however, the performance of the estimated pricing functional worsens. ‘The ensuing
errors seem to be monotonically related to the number of observations used in estimation.
Nevertheless, even in the extremes of the data, the pricing errors are still on average less
than 1%.

4 Data Description

4.1 Data Sources

Mortgage-backed security prices are obtained from Bloomberg Financial Markets and cover
the period January 1987 to May 1994. Specifically, we collected weekly data on 30-year fixed-
rate Government National Mortgage Association (GNMA) MBSs, with coupons ranging from
7%% to 10%%. The prices represent dealer-quoted bid prices on X% coupon-bearing GNMAs
traded for delivery on a to be announced (TBA) basis.

The TBA market is most commonly employed by mortgage originators who have a given
set of mortgages that have not yet been pooled. However, trades can also involve existing
pools, yet on an unspecified basis. Rules for the delivery and settlement of TBAs are set by
the Public Securities Association (PSA) (see, for example, Bartlett (1989)). For example,
an investor might purchase $1 million worth of 8% GNMAs for forward delivery next month.
The dealer is then required to deliver 8% GNMA pools within 2.5% of the contracted amount
(i.e., between $975,000 and $1,025,000), with specific pool information to be provided on a
TBA basis (just prior to settlement). This means that, at the time of the agreed-upon-
transaction, the characteristics of the mortgage pool to be delivered (e.g., the age of the
pool and its prepayment history) are at the discretion of the dealer. Nevertheless, for the

majority of the TBA’s, the delivered pools represent newly issued pools.'*

14There are several reasons for choosing the TBA market and the post 1986 time period to investigate
MBS pricing using the MDE methodology. First, during 1985 and 1986, interest rates dramatically declined,
leading to mortgage originations for a wide variety of coupon rates. Thus, the GNMA TBAs in 1987-1994
correspond to mortgage pools with little prepayment history (i.e., no burnout) and long maturities. In
contrast, prior to this period, the 7%% to 10%% GNMAs were backed by mortgages originated in the 1970’s
and thus represented a different security (in both maturity and prepayment levels). Second, MDE pricing
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With respect to the interest rate series, weekly data for the 1987-1994 period were
collected on the average rate for 30-year mortgages (collected from Bloomberg Financial
Markets),'® the prices of the 10-year Treasury note futures (representing the futures on the

cheapest-to-deliver security), and the yield on the 3-month Treasury bill.

4.2 Characteristics of Interest and Mortgage Rates (1987-1994)

Before describing the pricing and hedging results for MBSs using the MDE approach, we
briefly describe the environment for interest rates and mortgage rates during the sample
period, 1987-1994.

Table 1 provides ranges, standard deviations and cross-correlations of GNMA prices
(Table 1A), mortgage and interest rates (Table 1B), and rates of return (Table 1C) during
this period. The average price of the 9% and 10% GNMAs is above par (100.08 and 104.35
respectively), while that of the 8% GNMA is below par (95.58). The average 10-year rate
over the period is 7.78%, which, prepayments aside, may give us an idea about the source of
such price levels. The yield curve is upward sloping on average, as is the case in most sample
periods. The average spread is 2.12%, and the yield curve is rarely inverted (with the spread
obtaining its minimum at -.19%, and its maximum at 3.84%). Notice that the correlation
between the 10-year rate and the three month rate is .85, considerably higher in absolute
terms than the correlation of the 10-year rate with the spread, which is -.45. This finding
provides some additional motivation, from a purely empirical standpoint, for our choice of
pricing factors to be the 10-year rate and the spread (see Section 2.2).

Going back to the MBS data, we find that the 8% GNMA is more volatile than the 10%
GNMA, both in terms of price levels and in terms of returns, and behaves more like the
10-year T-note futures. For example, with respect to return series (Table 1C), the standard

deviation of returns on the 8% GNMA is .927 (in percent-per-week terms), 40% higher than

requires joint stationarity between MBS prices and the interest rate variables. This poses a potential problem
in estimating the statistical properties of any fixed maturity security, since the maturity is changing over
the life of that security. Note that the TBA market refers to unspecified mortgage pools available in the
marketplace. Thus, to the extent that there are originations of mortgages in the GNMA coupon range, the
maturity of the GNMA TBA is less apt to change from week to week. Of course, if no originations occur
in the coupon range, then the maturity of the available pool will decline. In this case, the researcher may
need to add variables to capture the maturity effect and possibly any prepayment effects. In our analysis,
we chose to limit the dimensionality of the multivariate system, and instead focus on the relation between
MBS prices and the two interest rate factors.

15Bloomberg’s source for this rate is “Freddie Mac’s Primary Mortgage Market Survey”, which reports
the average rate on 80% of newly originated 30-year, first mortgages on a weekly basis.

14



that of the 10% GNMA, yet similar to that of the T-note futures (which is .977).1¢ Also,
the correlation between the return series of the 8% GNMA and the T-note futures is .92,
higher than that between the 10% GNMA and the T-note futures, which is .85. It seems
reasonable to come to the preliminary conclusion that the 8% GNMA resembles the 10-year
note, more so than does the 10% GNMA. This can be explained as a result of the option
component being in the money for the 10% GNMA, that is, the “flattening” of the pricing
relation between interest rates and the 10% GNMA in the relevant range of interest rates
over our sample period.

The important element of the option component for MBS valuation is the refinancing
incentive. Since the mortgage rate represents the available rate at which homeowners can
refinance, it plays an especially important role with respect to this incentive. For example,
consider a 10% GNMA security. Note that this 10% GNMA is backed by 10.5% 30-year
mortgages since there is a .5% servicing fee associated with GNMA pools. Figure 3 graphs
the mortgage rate for 1987 through 1994. For most of the sample (especially 1990 on),
the existing mortgage rate lies below 10.5% and the prepayment option is at- or in-the-
money.!” Historically, given the costs associated with refinancing, a spread of approximately
150 basis points between the old mortgage rate and the existing rate is required to induce
rapid prepayments.’®* Under this assumption, a 10% GNMA first becomes in-the-money
in September of 1991 and remains there throughout the rest of sample. In contrast, a 9%
GNMA is in-the-money briefly in January 1992, July 1992 to December 1992, and January
1993 to April 1994.

16Return data calculations in Table 1C, as well as the return series used throughout the paper, are adjusted
series, with adjustments being made once a month when the prices of different contracts are spliced together.
The adjustment of the TBA GNMA price series is made during the splice week using a version of the “Cost
of Carry” model, modified for prepayments, known as the “Dollar Roll Breakeven” method (see Askin
and Meyer (1986)). We use the adjusted series for the hedging exercise (in Section 5.2), while the pricing
regressions are performed straight off the unadjusted price series. We use unadjusted prices because the
economics of comovements of rates and prices are most naturally captured and interpreted using the original
price series of the GNMA TBAs. On the other hand, hedging results using an unadjusted return series would
be difficult to interpret since every month the underlying asset switches to a new forward TBA contract.

17Figure 3 also graphs one of the interest rate factors, the 10-year yield. The correlation between the
10-year rate and the mortgage rate over our sample period is .980. However, there is a difference in the level
between the two series (i.e., on average 1.56%), representing the cost of origination and bank profits, among
other factors.

18See Bartlett (1993) and Breeden (1991) for some historical evidence of the relation between prepayment
rates and the mortgage spread. Note that in the 1990’s the 150 basis point spread has been somewhat lower
— in some cases, 75 to 100 basis points. Some have argued that this is due to the proliferation of new types
of mortgage loans (and ensuing marketing efforts by the mortgage companies) (Bartlett (1993)), though it
may also be related to aggregate economic factors, such as the implications of a steep term structure.
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5 Empirical Results

We describe the functional relation between GNMA prices and two interest-rate factors, the
level of interest rates (the 10-year yield) and the slope of the term structure (the spread

between the 10-year yield and the 3-month yield).

5.1 Pricing

We estimate the pricing functional given in equation (3) for each of the GNMA coupons. As
an illustration, Figure 4 graphs the 10% GNMA against the 10-year yield and the spread
between the 10-year and 3-month yield. The figure illustrates the well-known negative con-
vexity of MBSs. Specifically, the MBS price is convex in interest-rate levels at high interest
rates (when it behaves more like a straight 10% bond), yet concave at low interest rates (as
the prepayment option becomes in-the-money).

This functional form does not hold in the northwest region of the figure, that is, at low
spreads and low interest rates. However, recall from Section 3 that the MDE approach
works well in the regions of the available data, but extrapolates poorly at the tails of the
data and beyond. Figure 5 graphs a scatter plot of the 10-year yield against the spread
between the 10-year yield and the 3-month bill. As evident from the figure, there are periods
in which large slopes (3%-4%) are matched with both low interest rates (in 1993-1994) and
high interest rates (in 1988). However, few observations are available at low spreads joint
with low interest rates. Thus, the researcher needs to be cautious when interpreting MBS
prices in this range.

Within the sample period, the largest range of 10-year yields occurs around a spread of
2.70%. Therefore, we take a slice of the pricing functional for the 8%, 9% and 10% GNMAs,
conditional on this level of the spread. Figure 6 graphs the relation between GNMA prices
for each of these coupons against the 10-year yield. Several observations are in order. First,
the negative convexity of each MBS is very apparent. Second, the price differences between
the various GNMA securities narrows as interest rates fall. This just represents the fact that
higher coupon GNMAs are expected to prepay at faster rates. As GNMAs prepay at par,
their prices fall because they are premium bonds, thus reducing the differential between the
various coupons. Third, the GNMA prices change as a function of interest rates at different
rates depending on the coupon level, i.e., on the magnitude of the refinancing incentive.

Figure 7 graphs the derivatives of the pricing functional, %}fm, for the 8%, 9% and 10%
GNMAs. The derivatives follow a U-shaped pattern for each GNMA, which is consistent with
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an MBS having both a straight bond and an option component. Specifically, the derivatives
of the straight bond component should become more negative as ; falls, while the derivatives
of the option component should be increasing and positive. This combination is what causes
the U-shaped form. Moreover, the overall magnitudes of the derivatives are smaller for the
10%s than the 8%s, since the prepayment option becomes in-the-money at higher interest
rate levels for higher coupon MBSs. The fact that the derivatives are close for 8%s and
9%s at i; = 9.5%, while the derivatives are close for 9%s and 10%s at i; = 6.0%, is further
evidence of the option component. That is, at ¢ = 9.5%, the 8% and 9% GNMAs are clearly
both out-of-the-money in contrast to the 10% GNMA; while at 7, = 6.0%, the 9% and 10%
GNMAs are clearly both way in-the-money in contrast to the 8% GNMA.

Within the sample period, the widest array of spreads occur around 10-year yields of
8.9%. We therefore consider a slice of the pricing functional for the 8%, 9% and 10% GNMAs,
conditional on this level of interest rates. Figure 8 then graphs the relation between MBS
prices and the term structure slope, conditional on 8.9% yields. As is clear from Figure 8,
the slope plays a smaller role than the level in pricing MBSs. For example, over spreads of
0.0% to 4.0%, there is less than a $2 change in the price of the MBS for any of the coupons.
Nevertheless, for each GNMA security, high slopes tend to correspond with slightly lower
prices. For the higher coupon GNMAs, low slopes also suggest lower prices. This is not the
case, however, for the lower coupon GNMAs.

The above results suggest the presence of a second factor for pricing MBSs. To understand
the impact of the term structure slope, Figure 9 graphs the various GNMA prices against
interest rate levels, conditional on two different spreads (2.70% and .30%). Recall that the
slope of the term structure is defined using the yield on a full-coupon note, not a ten-year
zero-coupon rate. As a result, positive spreads imply upward sloping full-coupon yield curves
and even more steeply sloping zero-coupon yield curves. In contrast, when the spread is close
to zero, both the full-coupon and zero-coupon yield curves tend to be flat.1®

At high interest rate levels, the option to prepay is out-of-the-money. Consequently,
many of the cash flows are expected to occur as scheduled, and GNMAs have long expected
lives. The appropriate discount rates for these cash flows are the longer-term zero-coupon
rates. When the spread is high, the term structure is sharply upward sloping and long-
term zero-coupon rates are high. In contrast, holding the 10-year full-coupon yield constant,

short-term zero-coupon rates are lower for high spreads than when the term structure spread

19The spreads and interest rate ranges are chosen to coincide with the appropriate ranges of available
data, to insure that the MDE approach works well.
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is low. Consider first the effects on the price of an 8% GNMA. Since this security has its
cash flows concentrated at long maturities, its price should be lower for higher spreads, just
as we observe in Figure 9. On the other hand, the option component of the 10% GNMA is
much closer to being at-the-money, even for the highest interest rates shown in the figure.
Hence, at these interest rates, 10% GNMA prices do not follow the same ordering as 8%
GNMAs vis-a-vis the level of the spread. However, for much higher rates, one can expect
the same pattern. To see this, note that the 9% GNMA, falling between these two securities
in terms of expected cash flow life, has relative prices for the two spreads that lie between
the cases commented on above.

As interest rates fall, prepayments become more likely, and the expected life of the MBS
falls for GNMAs of all coupons. As this life declines, the levels of the shorter-term zero-
coupon rates become more important for pricing. In this case, high spreads imply lower
discount rates at the relevant maturities, for a fixed 10-year full-coupon yield. Consequently,
when the GNMAs are priced as shorter-term securities due to high expected prepayments,
high spreads imply higher prices for all coupons. This implication is illustrated in Figure 9
by the fact that, while prices always increase for declining long rates, the increase is much
larger when spreads are high. For the 8% GNMA, this effect causes the prices to cross at a
long rate of approximately 8.4%, while for the 10% GNMA it causes the bricing functionals
to diverge further as rates decrease. ,

The effect in Figure 9 is primarily driven by changes in expected cash flow life. The
10-year yield proxies for the moneyness of the option, the expected level of prepayments,
and the average life of the cash flows. The addition of the second factor, the term structure
slope, also controls for the average rate at which these cash flows should be discounted.

Figure 10 illustrates a similar, albeit slightly more complex, duration effect. This figure
graphs GNMA prices at low interest rate levels, conditional on spreads of 2.70% and 3.50%.
Again, these particular spreads are chosen to correspond to regions in which there is an
adequate amount of data. Following the reé,soning above, low interest rates imply that
GNMAs have short expected lives; hence higher spreads, which imply lower short-term
rates, should generate higher prices. Exactly this phenomenon is apparent for rates of 7%
and above. Below this level, however, the price functional for high spreads crosses the price
functional for lower spreads for each of the GNMAs.

There are three possible explanations for this effect. First, the effect may be spurious
and the crossover may be due to estimation error. An examination of the price data suggests

estimation error is not the problem. Average prices for this interest rate range are, in fact,
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higher for lower spreads. Second, there may be a missing factor for which we have not
controlled. For example, the spread and the long rate may not be sufficient to describe the
full term structure. Variations in intermediate rates not captured by the two factors could
explain the price variations. Such an explanation seems unlikely, although not impossible.
Third, the duration effect may be more complex than described previously. In particular,
the long rate may not be sufficient to proxy for expected prepayments and the expected
life of the cash flows. Consider that steeper term structures imply expectations of greater
increases in future rates. Under these circumstances, steeper term structures may imply
higher prepayments for a given long rate. This intuition is consistent with the prices in Figure
10. For very low long rates, steeper slopes imply higher prepayments, shorter expected life
and lower prices for premium GNMAs.

This section provides a multifactor pricing model for MBSs using MDE techniques. As
one application of this pricing, consider the goal of trying to hedge out the interest rate
risk inherent in MBSs. Below, we describe an approach for hedging MBSs. Of particular
interest, we apply this hedging approach to actual data in an out-of-sample setting. Thus,
these results can also be viewed as a measure of the MDE’s effectiveness for pricing and

hedging MBSs.

5.2 Hedging MBSs

If, as above, we assume that there are two pricing factors for fixed-income securities, then it
can be shown that a position in any three assets (in our case, one being the MBS) is fully

hedged if
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Over small movements in #; and 7,, this result holds essentially for any continuously
differentiable pricing function. Thus, a portfolio will be hedged if the investor holds one
MBS (at a cost of P,;) against w; of fixed-income asset #1 and w, of fixed-income asset #2.
Using equations (4) and (5), these hedged portfolios then can be constructed ez ante based
on the econometrician’s estimate of the partial derivatives of the three fixed-income assets
with respect to the two factors. These estimates can be generated from historical data (prior
to the forming of the hedge) using kernel estimation. For example, an estimate of a—g’;?!l can
be calculated from equation (3) using
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where K'(z) = —2r~2ze~2%. Unfortunately, it is difficult to estimate the derivative accu-

rately (see Scott (1992)); therefore, we average the estimated derivative with price sensitiv-
ities estimated over a range of long rates or slopes. For example, we calculate the elasticity
APy _ Prs(if) = Pru(i})
Ay ¢ — 1

for two different pairs of interest rates, (:¢,1¢), and average these values with the kernel

derivative. The points are chosen to straddle the interest rate of interest. Specifically, we
use the 10th and 20th nearest neighbors along the interest rate dimension within the sample,
if they exist, and the highest or lowest interest rates within the sample if there are not 10
or 20 observations with higher or lower interest rates. The return on the hedged portfolio is

then given by
Prbiyr + 01 (Priyr — Prg) + ©2(Pagy1 — Pay)
R?Lb,t ’

where it is assumed that the investor starts with one unit of GNMAs at time ¢. The hedged

portfolio can then be followed through time and evaluated based on its volatility and corre-

lation with the fixed-income factors, as well as other factors of interest.

5.2.1 Hedging Analysis

We performed an out-of-sample hedging exercise over the period January 1990 to May 1994.

Starting in January 1987, approximately three years of data (150 weekly observations) are
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used on a weekly rolling basis to estimate the joint density of the fixed-income instruments
(MBS, 3-month T-bill, and futures on the 10-year T-note) and the two interest rate factors
(level (10-year yield), and slope (10-year yield minus 3-month yield)). For each rolling period,

several different hedges were formed for comparison purposes:

1. To coincide with existing practice, a linear hedge of the GNMAs against the T-note

futures was estimated using rolling regressions.

2. Breeden (1991) suggests a roll-up/roll-down approach to computing hedge ratios. Specif-
ically, the hedge can be formed for an X% GNMA by computing the ratio between the
T-note futures price elasticity and the GNMA price elasticity. (The GNMA price elas-
ticity is calculated from the difference between GNMA prices of X + %% and X — %%
coupons for a 1% interest rate change. We investigate hedging of 8%, 9% and 10%
GNMAs using GNMAs with 7.5% through 10.5% coupons).

3. We investigate the two-factor MDE hedge described by the portfolio weights given in
equations (4) and (5).

4. To the extent that the second factor (the slope) seems to play a small role in pricing,
we employ a one-factor MDE hedge using the T-note futures and GNMA as a function
of only the 10-year yield.?°

Table 2 compares the performance (;f the four hedges for the 8% (Table 2A), 9% (Table
2B) and 10% GNMAs (Table 2C) over the 1990 to 1994 sample period. Consider first the
10% GNMA. The unhedged GNMA return has a volatility of .414% (41.4 basis points) on
a weekly basis. The two-factor MDE hedge reduces the volatility of the portfolio to 26.1
basis points weekly. In contrast, the one-factor MDE hedge, the roll-up/roll-down hedge
and linear hedge manage only 30.0, 29.4 and 34.9 basis points, respectively. As described in
Section 5.1, the 10% GNMA is the most in-the-money in terms of the refinancing incentive.
It is comforting to find that, in the GNMA’s most nonlinear region, the MDE approach
works well.

Figure 11 illustrates how the volatility of the hedged and unhedged returns move through
time. While the volatility of the unhedged returns declines over time, this pattern is not
matched by the hedged returns. To quantify this evidence Table 2C breaks up the sample
into four subperiods: January 1990 — February 1991, March 1991 — April 1992, May 1992

20The second factor should play an even smaller role in hedging weekly changes to the extent that the
range of slopes over any given period is much smaller than that over the entire sample.
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— June 1993, and July 1993 - May 1994. The most telling fact is that the MDE approach
does very well in the last subperiod relative to the other hedges (19.2 versus 39.4 basis
points for the roll-up/roll-down approach). This is a period in which massive prepayments
occurred in the first part of the period. Due to these prepayments, 10% GNMAs are much
less volatile than in previous periods. Thus, the linear and roll-up/roll-down approaches
tended to overhedge MBSs, resulting in large exposures to interest rate risks. This might
explain some of the losses suffered by Wall Street during this period. A

On the other hand, the MDE approach does not fare as well in the first two subperiods.
For example, the one- and two-factor hedges have 38.8 and 29.6 basis points of volatility
respectively versus the unhedged GNMA'’s volatility of 48.1 basis points in the second sub-
period. In contrast, the roll-up/roll-down hedge has only 26.4 basis points of volatility. We
can explain the poorer performance of the MDE approach based on our simulation results.
Recall that the MDE procedure does not extrapolate well beyond the tails of the data.
During the first and second subperiod, the rolling estimation period faces almost uniformly
higher interest rate levels than the out-of-sample forecast. Thus, hedge ratios were calculated
for sparse regions of the data.

Recall that the MDE two-factor hedge reduces the volatility to 65% of the unhedged
GNMA'’s volatility. Since the hedging was performed on an out-of-sample basis, there is
no guarantee that the remaining variation of the GNMA’s return is free of interest-rate
exposure. Table 2C provides results from a linear regression of the GNMA unhedged and
hedged portfolio’s return on changes in the interest rate level (i.e., At;¢) and movements in
the terms structure slope (i.e., A(4; — 1,.)). It gives the volatility of each portfolio due to
interest rate and term structure slope movements. For example, the volatility of the explained
portion of the 10% GNMA due to the interest rate level and slope is 28.6 basis points a week;
in contrast, the MDE two-factor hedged 10% GNMA’s interest rate risk exposure is only 5.4
basis points. Note that the roll-up/roll-down and linear hedges face much more exposure —
- 11.3 and 16.4 basis points, respectively. To make matters worse for these hedges, note that
this measure of exposure can be misleading. The regression method is only strictly valid
in a linear setting; and, thus, the volatilities are only a lower bound on the true volatility
due to interest rate exposure. To the extent that the MDE approach explicitly accounts for

nonlinearities, the other approaches may actually face even more exposure to interest rate
risk than implied by Table 2C.%!

21For completeness we also report the volatility of the returns due only to movements in the long rate.
These results are very similar to those discussed above, suggesting that most of the volatility on a weekly
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So far, we have described the results for hedging the 10% GNMA. Tables 2A and 2B
provides results for the 8% and 9% GNMAs. Essentially, the patterns are very similar to
the 10%, except that the MDE approach fares less well relative to the roll-up/roll-down
approach. To understand why this is the case, note that the 8% and 9% GNMAs have
a lower refinancing incentive. The bonds therefore behave more like a straight bond, and
are more volatile (see Table 1). Thus, because the negative convexity of the GNMAs is
less prevalent for the 8% and 9% coupons, one explanation for why the MDE approach
to hedging GNMAs fares relatively less well with lower coupons is that estimation error is
more important. In fact, the roll-up/roll-down method actually produces a lower volatility
of the hedged GNMA portfolio than the MDE two-factor approach for both the 8% and 9%
GNMAs (27.6 versus 29.4 basis points for the 8%s and 24.6 versus 25.6 basis points for the
9%s).

Multiple factors become less important from a hedging perspective as the GNMA coupon
falls (e.g., compare the 8% to 10%). This is to be expected, since we argued that the term
structure slope plays a role in pricing as the moneyness of the prepayment option changes
through time. The subperiod analysis confirms the intuition based on our findings for the 10%
GNMAs. While the relative hedging performance of the various approaches is still related to
the subperiods, it is less prevalent for the lower coupon GNMAs. The MDE approach fares
relatively best in periods with substantial nonlinearities, e.g., the 10% GNMAs during July
1993 to May 1994. The large prepayments which induced 10% GNMA prices to fall (ceteris
paribus) did not occur for the 8% GNMAs. After all, the 8% GNMAs are backed by 8.5%
mortgages, and the lowest 30-year fixed-rate mortgage only briefly dropped below 7%.

Of particular interest, both the MDE approach and the roll-up/roll-down hedges sub-
stantially reduce the interest rate exposure of their 8% and 9% GNMA hedge portfolios.
For example, for the 8% (9%) GNMA, the unhedged GNMA has 59.0 (41.1) basis point of
volatility due to the interest rate factors, while the MDE and roll-up/roll-down approaches

have only 4.3 (3.9) and 6.8 (1.2) basis points respectively.

6 Conclusion

In this paper we develop a model-free, nonparametric methodology for valuing mortgage-

backed securities. Instead of postulating and estimating parametric models for both interest

basis is attributable to variation in the long rate.
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rate movements and prepayments, as in previous approaches to mortgage-backed security
valuation, we instead estimate directly the functional relation between mortgage-backed
security prices and the level of economic fundamentals. We do this using multivariate density
estimation (MDE) to estimate the joint distribution of interest rate levels, the slope of the
term structure, and MBS prices. This approach yields consistent prices without the need to
make the strong assumptions about the processes governing interest rates and- prepayment
required by previous approaches.

Using simulated data, we confirm that the MDE procedure works well except when trying
to extrapolate beyond the range of the data. Using weekly prices for GNMA MBSs between
1987 and 1994, we find that these prices can be well described as a function of the level of
interest rates and the slope of the term structure. A single interest rate factor, as used in most
previous mortgage valuation models, is insufficient. The relation between.prices and interest
rates displays the usual stylized facts, such as negative convexity in certain regions, and a
narrowing of price differentials as interest rates fall. Most interesting, the term structure
slope plays an important role in valuing MBSs via its relation with the interest rate level
and the refinancing incentive associated with a particular MBS.

Using the estimated relation between fixed-income security prices and interest rates to
construct hedged portfolios, we find that our methodology compares favorably with other
commonly used hedging methods for MBSs. While the two-factor MDE hedge consistently
reduces the volatility of the GNMA portfolio, it performs especially well relative to the other
methods in periods for which the option component is important (such as 1993-1994).

In general, the MDE procedure will work well (in a relative sense) under the following
conditions. First, since density estimation is data intensive, the researcher either needs a
large data sample or an estimation problem in which there is little error in the relation
between the variables. Second, the problem should be described by a relative low dimen-
sional system, since MDE’s properties deteriorate quickly when variables are added to the
estimation. Third, and especially relevant for comparison across methods, MDE will work
relatively well for highly nonlinear frameworks. As it happens, these features also describe
derivative pricing. Hence, while the results we obtain here for GNMAs are encouraging, it
is likely that the MDE approach we develop would fare even better for other, more complex
derivative securities. An example in the mortgage-backed area is the pricing of interest only
(I0) and principal only (PO) strips, and collateralized mortgage obligations (CMOs), since
the relation between the prices of these securities and interest rates is more highly nonlinear

than that of a GNMA. The advantage of the MDE approach is its ability to capture arbi-
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trary nonlinear relations between variables, making it ideally suited to capturing the extreme

convexity exhibited by many derivative mortgage-backed securities.
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Appendix: Theoretical MBS Pricing Model

Interest Rates

Assume interest rates are described by the two-factor interest rate model estimated and
tested by Pearson and Sun (1989). The two factors are the instantaneous riskless real interest
rate, r, and the expected inflation rate, y. The real interest rate is given by r, = Ty + T,

where T is a constant, and

drl = k1 (6y — r4) dt + o1y/14 dZ}. (6)
The expected inflation rate moves according to the equation

dy; = K9(0; — yy) dt + azﬂde, ‘ (7)

where the two Brownian motions dZ} and dZ} are uncorrelated. The price level, p, moves

according to the equation

dpy = ype dt + crppt\/gﬁde,
where E(dZ2dZ?) = pdt. When T = 0, this reduces to the standard 2 factor CIR model. The
equilibrium risk premium for real bonds is Ar’. Pearson and Sun estimated the parameter
values 7 = —10, 0, = 0, p = 0, &1 = 7.4525, oy = 0.0197, 0, +7 = 0.0264, A = —0.0048,
ke = 0.0797, o2 = 0.1170, 6; = 0.093.

Prepayment and Calculation of Cash Flows

To value mortgage-backed securities, we need a model which specifies the cash flows each
period as a function of the history of interest rates.”? We use a model based on that of

Schwartz and Torous (1989). Prepayment is governed by a hazard function m;,?* defined by
T = 0.75 exp[fv(t)]-

Here, v(t) is a vector of explanatory variables, defined by

vi(t) = c—1,
U2(t) = (C - lt)sv
v3(t) = In(proportion of pool not yet prepaid),

220r a model of the expected cash flows each period, as long as the risk of deviation from this expected
value Is not priced.

23n other words, as At approaches zero, the probability of prepayment occurring in a time interval of
length At approaches mAt.
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where ¢ is the coupon rate on the mortgage, and /; is the yield on a long-term government
bond. We assume a one-year bond, and use parameters based on those estimated by Stanton
(1992), B, = 0.49, B, = —0.01, B3 = 0.15.**

Given my, the expected cash flow in month ¢, per dollar of initial principal, is given by
C, = SF;_, (X + (1= €e™/")BAL,, ),

where X is the scheduled monthly payment, given by

c/12

X =
T = (1 +¢/12)73%"

BAL; is the scheduled balance remaining on the loan at the end of month ¢,

X
BAL, = —— [1 = (1 + ¢/12)7¢%1] |

c/12
and SF; is the probability that the mortgage has not prepaid prior to ¢, given by SFq = 1,
and
SF, = (1 — e™/1?)SF,_,.
Valuation

Assets whose value depends only on current values of r and y can be valued by writing down
and solving a partial differential equation with appropriate boundary conditions (see Cox,
Ingersoll and Ross (1985a,b)). This approach cannot easily handle path dependence of the
sort we have described, where an asset’s cash flows depend on the entire history of interest
rates, rather than just the current values. An alternative approach is based on the fact that,
given the interest rate model described above, we can write V, the value of an asset which

pays out nominal cash flows at a (possibly path dependent) rate C, in the form

T &~
‘/t — E |:/ e_ft (Tu+yu)ducs ([S:i , (8)
t

where 7, = 1/ + 7, and 7’ follows the “risk adjusted” process,

dr', = [&1(01 —r) - )\f'T] dt + o/ 7, dZ} for all 7 > t, (9)

Joo—
ry = Ty

24To prevent the cubic term from dominating for extreme interest rates, (¢ —/{;) is replaced by either 4.05%
or —4.05% if its magnitude exceeds 4.05%.
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This says that the value of the asset equals the expected sum of discounted cash flows paid
over the life of the asset, except that it substitutes the risk adjusted process r' for the true
process r, for r. _

This representation leads directly to a valuation algorithm based on Monte Carlo sim-
ulation. For each (r;,y;) pair (simulated using the model described in equations (6) and
(7)), 500 paths for 7 and y were simulated using equations (9) and (7). Along each path,
the cash flows C; were calculated as above, then discounted back along the path followed by
the instantaneous nominal riskless rate 7 + y. The average of the sum of these values taken
over all simulated paths is an approximation to the value V. The more paths simulated, the -

closer this approximation.



TABLE 1: SUMMARY STATISTICS

Table 1A — Price Levels

8% GNMA 9% GNMA 10% GNMA T-Note Futures 3m T-Bill
Mean 95.578 100.084 104.347 100.713 98.607
Min 81.625 86.531 92.688 86.000 97.759
Max 106.563 108.281 110.937 116.906 99.334
Std.Dev. 6.287 5.260 4.294 6.905 0.461
Correlation Matrix
8% GNMA 1.000 0.992 0.987 0.982 0.860
9% GNMA 0.992 1.000 0.995 0.954 0.868
10% GNMA 0.987 0.995 1.000 0.951 0.887
T-Note Futures 0.982 0.954 0.951 1.000 0.839
3m T-Bill 0.860 0.868 0.887 0.839 1.000
Table 1B — Rates
13m 10y tioy — i3m  Mortgage Rate
Mean 5.659  7.779 2.119 9.337
Min 2.680  5.170 -0.190 6.740
Max 9.170  10.230 3.840 11.580
Std.Dev. 1.894  1.123 1.101 1.206
Correlation Matrix
13m 1.000  0.855 -0.848 0.882
10y 0.855  1.000 -0.450 0.980
10y — iam -0.848 -0.450 1.000 -0.518
Mortgage Rate | 0.882  0.980 -0.518 1.000
Table 1C — Adjusted Returns
8% GNMA 9% GNMA 10% GNMA T-Note Futures 3m T-Bill
Mean 0.065 0.066 0.059 0.054 0.106
Max 7.810 3.306 5.866 7.849 0.495
Min -3.409 -3.333 -2.914 -3.312 -0.006
95 percentile 1.362 1.136 0.952 1.414 0.178
5 percentile -1.447 -1.245 -1.052 -1.574 0.042
avg(|z|) 0.653 0.536 0.438 0.708 0.106
Std.Dev. 0.927 0.830 0.664 0.977 0.049
. Correlation Matrix
8% GNMA 1.000 0.969 0.923 0.917 0.377
9% GNMA 0.969 1.000 0.962 0.884 0.398
10% GNMA 0.923 0.962 1.000 0.845 0.368
T-Note Futures 0.917 0.884 0.845 1.000 0.377
3m T-Bill 0.377 0.398 0.368 0.377 1.000

Prices and returns of TBA contracts on 8%, 9% and 10% GNMAs, 10-year T-note futures, and 3-
month T-bills (returns are adjusted for splicing); and long rates (10-year, i19y), short rates (3-month,
izm), their difference (i10y — i3m), and the average mortgage rate. All data are weekly from January
1987 through May 1994. Returns are in percent per week, and interest rates are in percent per year.
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TABLE 2: HEDGING RESULTS
Table 2A — 8% GNMA

Roll-Up MDE

Period GNMA | Linear | Roll-Down | 1-fctr | 2-fctr
1/90-5/94 68.3 35.0 27.6 30.0 29.4
1/90-2/91 85.5 26.9 27.6 27.8 30.1
3/91-4/92 72.2 30.5 31.7 34.8 32.1
5/92-6/93 61.3 37.7 25.9 29.3 27.8
7/93-5/94 45.5 43.2 24.8 26.9 27.2

UAil,A(il—is) 59.0 15.0 6.8 6.1 4.3

TAL 59.0 15.0 68 6.1 4.2

Table 2B — 9% GNMA

MDE

Period GNMA | Linear | Breeden | l-fctr | 2-fctr
1/90-5/94 53.0 36.8 24.6 29.3 25.6
1/90-2/91 73.9 24.3 23.5 26.0 27.2
3/91-4/92 55.2 32.3 25.8 38.1 28.2
5/92-6/93 43.8 46.4 25.3 29.3 25.3
7/93-5/94 23.8 39.6 23.7 19.7 20.8

O-Aiz,A(ix—is) 41.1 18.7 1.2 5.5 3.9

TAq, 41.1 18.6 0.7 5.3 0.1

Table 2C — 10% GNMA

MDE

Period GNMA | Linear | Breeden | l-fctr | 2-fctr
1/90-5/94 41.4 34.9 29.4 30.0 26.1
1/90-2/91 58.2 24.0 22.3 27.6 27.8
3/91-4/92 48.1 33.8 26.4 38.8 29.6
5/92-6/93 34.8 44.6 29.2 29.5 27.8
7/93-5/94 20.3 32.2 39.4 18.8 19.2
O'Ail,A(i,—is) 28.6 16.4 11.3 5.9 5.4
T 28.6 16.4 11.3 5.7 1.4

Results of hedging the 8%, 9% and 10% GNMAs with various methods. Each method’s hedge ratios
are calculated using the past 150 weeks, for the next week. Hence the hedging period is January
1990 through May 1994. The methods are (1) GNMA - the total volatility of an open position (no
hedging), in basis points, (ii) linear — hedging via linear regression on T-note futures returns, (iii)
roll-up/roli-down — a method which infers hedge ratios from contemporaneous market prices of near
coupon MBSs, (iv) MDE - hedge ratios determined via a one factor (long rate only) and two factor
(long rate and spread) models, trading in T-note futures and T-bills in the corresponding hedge
ratios. The last two rows provide a measure of the quantity of interest rate risk (two factor risk or
one factor risk), which remains using each method’s hedging results. In all cases the numbers in the
tables represent the standard deviation of weekly returns in basis points.
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Figure 1: Simulated MBS Data
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Scatter plot of simulated 7%, 10%, and 13% GNMA prices in a two factor economy.
The model used is discussed in detail in the Appendix.
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Figure 2: Average MDE Pricing Errors
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Figure 3: The 10-Year Yield and the Mortgage Rate
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The yield on the “on-the-run” 10-year Treasury note and the average 30-year mortgage
rate, from January 1987 to May 1994.

33



Figure 4: Price of a 10% GNMA as a Function of the Long Rate and the Spread
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The price of a 10% GNMA as a function of the pricing factors: the long rate and

the spread. The pricing functional is estimated using the MDE approach and weekly
data from January 1987 to May 1994.
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Figure 5: Scatter Plot of the Long Rate vs. the Spread
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A scatter plot of the pairs of data available for the 10-year rate and the spread between
the 10-year rate and the 3-month rate, from January 1987 to May 1994.
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GNMA Prices

Prices of 8%, 9% and 10% GNMAs for various interest rates, with the spread fixed
at 2.70%, as estimated via the MDE approach using weekly data from January 1987

to May 1994.
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Figure 7: GNMA Price Elasticities
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Elasticities of 8%, 9% and 10% GNMAs with respect to the long rate (i.e., QZ‘“‘)
for various interest rates, with the spread fixed at 2.70%, as estimated via the MDE

approach using weekly data from January 1987 to May 1994.
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Figure 8: GNMA Prices vs. the Spread
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Prices of 8%, 9% and 10% GNMAs for various spread levels, with the long rate fixed
at 8.90%, as estimated via the MDE approach using weekly data from January 1987
to May 1994.
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Figure 9: GNMA Prices vs. the Long Rate for Different Spreads
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Prices of 8%, 9% and 10% GNMAs for various interest rates, with the spread fixed
at 2.70% and 0.30%, as estimated via the MDE approach using weekly data from
January 1987 to May 1994.



Figure 10: GNMA Prices vs. the Long Rate for Different Spreads
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Prices of 8%, 9% and 10% GNMAs for various interest rates, with the spread fixed
at 3.50% and 2.70%, as estimated via the MDE approach using weekly data from
January 1987 to May 1994.
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Figure 11: Hedging Errors
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