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ARTICLE OPEN

Clinical EEG slowing induced by electroconvulsive therapy is
better described by increased frontal aperiodic activity
Sydney E. Smith 1✉, Vincent Ma2, Celene Gonzalez3, Angela Chapman4, David Printz5,6, Bradley Voytek 1,7,8,9,10 and
Maryam Soltani5,6,10

© The Author(s) 2023

Electroconvulsive therapy (ECT) is one of the most efficacious interventions for treatment-resistant depression. Despite its efficacy,
ECT’s neural mechanism of action remains unknown. Although ECT has been associated with “slowing” in the
electroencephalogram (EEG), how this change relates to clinical improvement is unresolved. Until now, increases in slow-frequency
power have been assumed to indicate increases in slow oscillations, without considering the contribution of aperiodic activity, a
process with a different physiological mechanism. In this exploratory study of nine MDD patients, we show that aperiodic activity,
indexed by the aperiodic exponent, increases with ECT treatment. This increase better explains EEG “slowing” when compared to
power in oscillatory peaks in the delta (1–3 Hz) range and is correlated to clinical improvement. In accordance with computational
models of excitation-inhibition balance, these increases in aperiodic exponent are linked to increasing levels of inhibitory activity,
suggesting that ECT might ameliorate depressive symptoms by restoring healthy levels of inhibition in frontal cortices.

Translational Psychiatry          (2023) 13:348 ; https://doi.org/10.1038/s41398-023-02634-9

INTRODUCTION
Since its introduction as a treatment for psychotic disorders more
than 80 years ago, electroconvulsive therapy (ECT) has been
widely used to treat affective illness. Indeed, ECT is the most
efficacious treatment for Major Depressive Disorder (MDD), and it
is often the preferred treatment for individuals who have failed to
respond to numerous antidepressant trials. Similarly, ECT is the
preferred treatment option for patients who are severely ill and
require rapid relief of symptoms (e.g., due to active suicidality,
psychotic depression or depression associated with loss of
appetite and severe weight loss). One study showed that up to
80% of patients with treatment-resistant depression responded to
ECT and many achieved full remission of their symptoms and were
able to resume normal functioning [1]. In extreme cases of MDD
involving suicidal intent, a 10-session course of ECT can rapidly
reduce suicidal thoughts and acts, as reported by one multisite
collaborative study of over 100 patients [2].
Given how well established, widely used, and clinically effective

ECT is for the treatment of psychiatric conditions, it is surprising
that its precise neural mechanism of action has not yet been
identified. This is, however, not to say that no neural effects of ECT
have been identified. Perhaps the most widely replicated
observation is that ECT is associated with a “slowing” of the
electroencephalogram (EEG). Specifically, patients who receive
ECT display increases in “slower”, or lower-frequency, delta
(1–3 Hz) and theta (3–8 Hz) band power [3–8]. This “slowing” is
observable both acutely, after any single treatment, and

longitudinally over the course of a multi-session course of ECT
[9]. Despite this, the neural mechanism behind EEG slowing
remains unclear. In addition, how this increase in spectral power in
the low-frequency range is related to clinical outcome remains
ambiguous [10]: several studies link EEG “slowing” to clinical ECT
improvement [4, 5, 11–13], some show the inverse relationship
[14, 15], and others find no significant relationship [7, 16–18].
Although EEG “slowing” is one of the largest and most

consistent effects in the ECT literature, it is not the only
electrophysiological feature that has been associated with ECT
treatment. For instance, decreases in alpha power [6], decreases in
beta and gamma power [18], and increases in total spectral power
(<30 Hz) [4, 7, 16] have all been observed with ECT. We
hypothesize that these effects are actually the result of a change
in a single, often overlooked EEG process: a change in aperiodic
activity (Fig. 1). Specifically, we hypothesize that the plethora of
EEG alterations observed in depression and in ECT treatment may
be more parsimoniously explained by a change in aperiodic EEG
activity. This interpretation may help disambiguate past observa-
tions of changes in spectral band power while simultaneously
being better grounded by theoretical models of the physiological
generators of aperiodic activity [19].
To understand aperiodic activity, it is important to contrast it

with the more well-studied periodic—or oscillatory—activity.
Methodologically, aperiodic and oscillatory activity are both
reflected in the power spectrum of EEG data. While oscillatory
power is concentrated at specific frequencies, neural power
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spectra also exhibit a broadband 1/fχ scaling, where power is
inversely proportional to frequency. The aperiodic exponent, χ,
characterizes the slope of the power spectrum (Fig. 1A). An
increase in the aperiodic exponent would cause a “steepening”
rotation in the power spectrum, producing a large, consistent
increase in low-frequency power (Fig. 1B). This rotation could
additionally produce apparent increases in total power, and/or
decreases in alpha, beta, and gamma power depending on the
spectral rotation frequency, like the fulcrum of a lever [20, 21].
Changes in the aperiodic component have been linked to
cognitive and perceptual states [21, 22], development [23], aging
[24], anesthesia [25], and disease states such as ADHD [26] and
schizophrenia [27]. Aperiodic activity has also been linked to the
physiological effects of deep brain stimulation treatment for major
depressive disorder [28].
Importantly, if changes in the aperiodic exponent are not

controlled for in analyses, changes in spectral band power can be
misinterpreted as changes in oscillatory power, even where no
true oscillation exists. Recent methods allow for explicitly
separating oscillations and aperiodic activity [20, 29]. Because
neural oscillations likely have fundamentally different physiologi-
cal origins than aperiodic activity [30–32], conflating the two can
lead to false conclusions about the neurobiological underpinnings
of a particular electrophysiological change, which in turn can
impact the development of more effective, targeted treatments.
Thus far, analyses of EEG power spectra from ECT studies have not
looked at aperiodic activity, but rather have measured power in
the delta and theta ranges, under the assumption that power in
those bands is equivalent to the existence of an oscillation in that
frequency. Here, we investigate the hypothesis that ECT produces
an increase, or steepening, in the aperiodic exponent in a
population of 9 patients with MDD receiving a 12-session
treatment of ECT. We analyze aperiodic and oscillatory EEG from
frontal electrodes before and after approximately every fourth ECT

session, repeating this procedure periodically throughout a full
course of ECT. To test the aperiodic hypothesis, we compare
changes in the aperiodic exponent to changes in canonical delta
band power and delta oscillatory power as measured via spectral
parameterization. We find that, acutely, increases in the aperiodic
exponent better explain the observed increases in delta band
power post-ECT, as opposed to true increases in delta oscillation
power. Furthermore, we demonstrate that the aperiodic exponent
continues to increase longitudinally through a course of ECT
treatment and that the magnitude of this increase is related to
clinical symptom improvement, an effect not seen in canonical
delta band power. These results identify aperiodic activity as a
promising avenue for further research on the mechanism of ECT,
especially in light of the relationship of aperiodic activity to
excitation-inhibition balance [32] and the cortical inhibition theory
of depression [33].

RESULTS
Clinical effects
The severity of depressive symptomatology as measured by the
QIDS-SR decreased over the course of a 12-session ECT treatment
for all nine patients included in the study (β=−0.87,
p= 7.42 × 10−12, 95% CI[−1.12, −0.62]), demonstrating the
efficacy of ECT as a treatment of MDD (Fig. 2C).

Acute EEG effects
Following a session of ECT, EEG signals recorded from frontal
electrodes displayed a significant increase in aperiodic exponent
(pre = 1.20 ± 0.23 μV2 Hz−1, post = 1.71 ± 0.32 μV2 Hz−1;
t(19)=−5.98, dz= 1.81, p= 9.20 × 10−6). This increase appears
as a striking steepening of the power spectrum, with the average
spectra across channels and subjects seeming to “rotate” around a
frequency between 20 and 22 Hz (Fig. 3A, B).

Fig. 1 Hypothesis (aperiodic vs. oscillatory delta). A Spectral parameterization quantifies the power spectrum as a composite of periodic
and aperiodic components. Unlike traditional band power measures that conflate periodic and aperiodic activity, oscillatory power is defined
as relative power above the aperiodic component (pink dashed line). B Increases in the aperiodic exponent can cause apparent increases in
total (T) band power, while power relative (R) to the aperiodic component remains unchanged. True increases in oscillatory power show
increases in both total power and relative power. C Delta in the EEG trace vs. aperiodic activity. EEG with delta oscillations (where a delta peak
is present in the spectra) is visibly different from EEG with only aperiodic activity, though both can qualitatively look like EEG “slowing”. Only 4/
9 EEG patients had delta peaks in their spectra for every session and 6/9 had a delta peak for any session.
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We also observe the expected acute increase in delta band
power (pre = 0.30 ± 0.14 μV2 Hz−1, post = 1.10 ± 0.65 μV2 Hz−1;
t(19)=−5.73, dz= 1.70, p= 1.59 x 10−5) (Fig. 3C). However, the
apparent EEG “slowing” effect is largely driven by the observed
steepening of aperiodic activity; after controlling for changes in
the aperiodic exponent (decomposing oscillatory and non-
oscillatory estimates of PSD), oscillatory delta power changes
were much less pronounced (pre = 0.31 ± 0.17 μV2, post =
0.45 ± 0.26 μV2 t(12)=−2.62, dz= 0.63, p= 0.022) (Fig. 3D).
Oscillatory delta power in pre-ECT recordings was not parame-
trically distributed, but a non-parametric Wilcoxon signed-rank
test returned a similar result (W(12)= 15.0, p= 0.033). The effect
size of the increase in delta band power is comparable to that of
the increase in aperiodic activity, more so than the effect size of
the change in delta oscillation power. Crucially, only four out of
the nine patients had a detectable delta oscillation in frontal
electrodes for every session and only six out of the nine had a
detectable delta oscillation in frontal electrodes in any session.
This highlights the importance of spectral parameterization to
detect oscillations. These results suggest that the well-replicated

effect of ECT on delta band power is largely driven by the
aperiodic exponent increase, instead of an increase in the power
of an oscillation in the delta band.

Longitudinal EEG effects
The acute effect of ECT on EEG activity is potentially confounded
by the effects of the anesthetic used during ECT treatment.
Therefore, it is critical to also assess longitudinal changes in ECT
treatment. To do this, we examined EEG activity across treatment
days, before the introduction of anesthesia (Fig. 2). We found that
the aperiodic exponent in frontal electrodes increases with
repeated ECT treatments throughout a 12-session ECT course, as
modeled by a linear mixed-effects model (β= 0.027, p= 0.018,
95% CI[0.005, 0.048]) (Fig. 4A, B).
Unlike some previous studies that have found longitudinal

increases in canonical delta band power, we find no significant
effect of treatment on delta band power (β= 0.072, p= 0.269, 95%
CI[−0.056, 0.201]) (Fig. 4D). This finding highlights the importance
of spectral parameterization and its ability to disambiguate
aperiodic and oscillatory activity, thereby allowing us to identify

Fig. 2 Schematic of the study. A Single session process to capture acute effects of ECT on EEG. B An example of the longitudinal protocol, in
which the single session process for EEG is repeated at ECT treatment sessions 1, 4, 8, and 12. C Clinical symptoms improve over the course of
ECT treatment as measured by the Quick Inventory of Depressive Symptomatology–Self Report (QIDS-SR) scale (β=−0.87, p= 7.42 × 10−12).
The solid green line is the population-level model prediction, with shaded areas representing the 95% confidence interval of the prediction.
Due to the constraints of recording in a clinical environment, a complete set of EEG recordings/clinical ratings was not possible for every
subject, but subjects were included with a minimum of 2 sessions of pre- and post-ECT EEG recording (n= 9).
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the longitudinal increase in aperiodic activity, a result which would
have been impossible using only canonical band power.

Clinical improvement and the aperiodic exponent vs. delta
band power
The longitudinal increase in aperiodic exponent significantly
tracks clinical improvement in this cohort of MDD patients
receiving ECT, as indexed by QIDS-SR assessment (Fig. 4C). We
extracted the linear mixed-effects coefficients (β) and intercepts of

each variable (aperiodic exponent and QIDS-SR score) as it
improved over repeated sessions for each patient. Each coefficient
represents the rate of change for each variable with repeated
treatments, and each intercept represents a proxy for a baseline
measurement, as only 6 out of 9 patients had a baseline EEG
recording. We then performed a Pearson correlation of the rates of
QIDS-SR improvement and exponent increase for each patient and
found a significant relationship (r= 0.68, p= 0.046, 95% CI[0.02,
0.92]), in which greater improvements in clinical severity were

Fig. 3 Acute effects. A Power spectra of frontal electrodes pre- and post-ECT treatment. There is a visible “steepening” of the spectrum after
ECT treatment. B The aperiodic exponent of the power spectra pre- and post-ECT treatment, averaged across frontal electrodes for each
patient. There is a large, highly significant (t(19)=−5.98, dz= 1.81, p= 9.20 × 10−6) increase in the aperiodic exponent for almost every
patient. C Delta (1–3 Hz) band power pre- and post-ECT treatment, averaged across frontal electrodes for each patient. When measured
canonically, not controlling for the aperiodic exponent, a large, significant increase (t(19)=−5.73, dz= 1.70, p= 1.59 × 10−5) in delta band
power appears. D There is a small, yet significant increase in true oscillatory peak power in the delta range (t(12)=−2.62, dz= 0.63, p= 0.022).
Only 6/9 patients had a detectable delta oscillation pre- and post-ECT for any session. The effect size of the delta band power increase is more
similar in magnitude to that of the aperiodic increase than the effect size of the delta oscillation power.
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associated with smaller longitudinal increases in aperiodic
exponent. Additionally, we found no significant correlation
between clinical improvement and delta band power (r= 0.086,
p= 0.83, 95% CI[−0.61, 0.71]).
The observation that a greater improvement in QIDS-SR is

associated with less of a change in aperiodic activity over ECT
treatment is counterintuitive; however, there is a strong correlation
between the change in aperiodic activity over treatment and the
baseline aperiodic activity (r=−0.89, p= 0.001, 95% CI[−0.98,
−0.54]). This means that patients whose baseline aperiodic activity
was steepest showed the least amount of aperiodic steepening with
treatment. When we perform a multiple linear regression, the
change in QIDS-SR is related to both the change in aperiodic activity
and the baseline aperiodic activity (Radj

2= 0.67, F(2, 6)= 9.16,
p= 0.015). Importantly, after controlling for baseline aperiodic
activity, the correlation between change in QIDS-SR and change in
aperiodic activity remains significant (t= 3.92, p= 0.008). Addition-
ally, when controlling for the change in aperiodic activity, the
correlation between QIDS-SR and baseline aperiodic activity is also
significant (t= 2.69, p= 0.036). In other words, patients whose
baseline aperiodic activity was already steep showed the smallest
amount of aperiodic steepening and the greatest change in QIDS-SR.
However, these results should be considered exploratory and be

interpreted with caution due to the small sample of the cohort
included in this study. For example, a non-parametric Spearman
rank correlation suggests a weaker correlation (Spearman’s
ρ= 0.63 p= 0.067, 95% CI[−0.05, 0.91]), and an analysis of the
Cook’s difference value indicates that the Pearson correlation was

influenced by a single patient. More investigation is needed to
definitively identify a relationship between changes in aperiodic
activity and reduction of symptom severity for patients with MDD.

DISCUSSION
The observations that the aperiodic exponent increases as an
acute effect of ECT and that it continues to increase throughout a
course of multi-session ECT treatment are novel and present a
promising avenue for future research. Specifically, if supported by
future evidence, the observation that frontal aperiodic activity
increases in ECT has the potential to connect long-standing EEG
evidence to a potential mechanism of action. Although the exact
physiological processes that produce the aperiodic activity
indexed by the aperiodic exponent have not been precisely
identified, one simple, yet promising, model suggests aperiodic
activity in the local field potential (LFP) represents a summation of
postsynaptic and transmembrane currents in a region [31]. A
simplified model of excitatory glutamatergic and inhibitory
GABAergic activity was able to capture changes in the aperiodic
exponent [32]. In that model, the aperiodic exponent indexes the
ratio of excitatory (E) to inhibitory (I) potentials present in the LFP,
or excitation/inhibition (EI) balance. Specifically, the model
indicates that a population of neurons with an EI balance biased
toward a greater proportion of inhibitory activity would produce a
more steeply sloped power spectrum and thus, a larger aperiodic
exponent, than a population with an EI balance biased toward
excitation. Normal changes in EI balance have been related to

Fig. 4 Longitudinal effects. A Power spectra and aperiodic fits (straight lines) for average frontal PSDs for a single patient at three pre-
treatment sessions. B Aperiodic exponent significantly increases longitudinally (β= 0.027, p= 0.018). The solid green line is the population-
level model prediction, with shaded areas representing the 95% confidence interval of the prediction. C Across patients, improvements in
QIDS-SR scores, as quantified by the coefficients of a linear mixed-effects (LME) model fit to the data, are correlated to the increase in aperiodic
exponent (r= 0.68, p= 0.046); however, this correlation should be interpreted with caution due to the small sample size. The solid teal line is
the population-level model prediction, with shaded areas representing the 95% confidence interval of the prediction. D Delta band power
does not significantly change longitudinally (β= 0.072, p= 0.269).
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aspects of cognition, perception, and brain state [25] and
dysfunctions in EI balance have been linked to several neurop-
sychiatric and mood disorders, including MDD [34, 35].
This model of aperiodic activity and its relationship to EI balance

is especially pertinent in light of the cortical inhibition theory of
depression. This theory states that patients experiencing symptoms
of MDD have insufficient or dysfunctional inhibitory processes in
various brain areas, including frontal cortices [33, 36]. Specifically,
these patients have insufficient GABAergic activity, reflected by
reduced numbers of GABA neurons in the prefrontal cortex [37].
The prefrontal cortex plays an essential role in regulating EI balance
in distributed networks throughout the brain [38] and therefore,
disruptions in EI balance in the prefrontal cortex could have
widespread consequences affecting multiple networks, including
limbic structures [39] and the serotonergic and noradrenergic
systems targeted by pharmacological antidepressants [40].
The cortical inhibition theory has accumulated support from

electrophysiology [41], proton magnetic resonance spectroscopy
[42, 43], and cell type-specific molecular genetics [44], all of which
highlight an abnormally low level of GABAergic activity in patients
suffering from depression. Pharmacologically, this imbalance has
been treated using factors that directly or indirectly reduce
excitatory glutamatergic activity and increase inhibition with
GABA agonists [34]. Treatments for depression, including ECT and
serotonin-reuptake inhibitor antidepressants, have been shown to
increase cortical GABA concentrations using proton magnetic
resonance spectroscopy [45, 46]. However, the link to how the
electrophysiological changes seen with ECT could be reflecting
changes in EI balance has not yet been established [47]. In line
with cortical inhibition theory, one proposed mechanism of ECT is
that ECT ameliorates the symptoms of depression by directly
inducing inhibitory activity over large portions of the cortex,
causing widespread changes in functional connectivity and
network dynamics [48]. The data presented here supports this
proposed mechanism, suggesting that ECT increases inhibition as
indexed by the aperiodic exponent of the power spectrum.
Although cortical inhibition theory has accumulated support

from the multi-modal studies described above and is supported by
the results of this exploratory EEG study, it is not the only theory of
depression and the mechanisms underlying the efficacy of ECT.
Patients with MDD have also been observed to have reductions in
anatomical volume, particularly in the hippocampus and amygdala
[49]. Other theories cite disruptions in network connectivity across
brain regions [50]. Hemispheric differences in EEG measures have
also been a popular subject of MDD research, the most well-known
being frontal alpha asymmetry [51] (however, recent high-powered
meta-analyses have not been able to replicate this result [52, 53]).
Furthermore, we found no significant hemispheric differences in
any of the measures used in our analyses including the aperiodic
exponent, delta band power, or delta oscillatory power (Supple-
mentary Fig. 1). It is important to note that most of the patients
included in our study received bilateral stimulation during ECT and
therefore, hemispheric differences might be less pronounced.
Future investigations are needed to assess the relationship
between stimulation laterality and potential hemispheric differ-
ences in EEG measures like aperiodic activity.
Questions remain about whether the aperiodic exponent is a

suitable non-invasive indicator for depression treatment response.
We found a significant relationship between the degree of clinical
symptom improvement and aperiodic exponent change, given that
the directionality of the relationship indicates that larger increases in
exponent are associated with smaller improvements in depressive
symptomatology. Although counterintuitive, this is not incongruent
with our interpretation that ECT restores aperiodic activity to healthy
levels. Both baseline aperiodic activity and the change in aperiodic
exponent throughout treatment are significantly related to treat-
ment response. Specifically, patients who exhibit the lowest
aperiodic activity (“flatter” spectra) at baseline show the greatest

increases (“steepening”) in aperiodic exponent, but they also show
smaller improvements in clinical symptoms. We hypothesize that
patients who begin treatment with lower aperiodic activity have the
greatest capacity to show increases in aperiodic exponent because
they have more “room to improve”. However, baseline aperiodic
activity can also bias treatment response, where patients who begin
ECT with elevated aperiodic activity might be more sensitive to ECT,
thereby exhibiting a greater therapeutic response. These exploratory
results present testable hypotheses regarding the role of aperiodic
activity, both longitudinally and at baseline, in the therapeutic neural
mechanism of ECT.
While promising, the size of the cohort included in this study was

limited due to constraints of a clinical environment and restrictions
around research during the COVID-19 pandemic, potentially leading
to underpowered analyses of relationships between EEG and clinical
improvement. At the relatively short timescales of a 4-week ECT
treatment, ECT-induced restoration of inhibition might also not be
related to clinical improvement. For instance, a recent method for
estimating EI balance using spectral dynamic causal modeling for
RS-fMRI found no relationship between treatment effectiveness and
changes in EI balance when patients were scanned before and after
treatment [54]. Furthermore, due to ethical considerations and the
exploratory nature of this study, the analysis described here did not
include a control group of healthy adults receiving ECT or of MDD
patients receiving a sham ECT treatment. The lack of a control
condition limits the generalizability of these results. However, the
profound and significant within-patient, longitudinal increase in
frontal aperiodic activity still presents a novel electrophysiological
finding and a promising avenue for a potential mechanism of
function for ECT in MDD.
Although the short timescale of this study prohibits us from

drawing firm conclusions about long-term changes in aperiodic
activity and its relationship to the clinical efficacy of ECT, other
studies have shown abnormally elevated levels of slow-frequency
activity in EEG persisting weeks to months post-treatment
[16, 55, 56]. Like the results seen in this study, this increase in
slow-frequency power might be better explained by an increase in
the aperiodic exponent, potentially suggesting a similar inhibition-
related mechanism for ECT at longer timescales. Whether the
aperiodic exponent could be used to predict treatment response
from ECT, or from other treatment methods such as TMS or
various pharmacological interventions, remains an open but
enticing path for understanding the neurobiological basis for
individualized treatment of MDD.

METHODS
Participants
Nine patients with a diagnosis of MDD as per the Diagnostic and Statistical
Manual of Mental Disorders V were included in the study. Patients were
recruited from the population of patients preparing to undergo ECT as part
of their regular clinical treatment. Only patients with complete EEG
recordings pre- and post-ECT treatment from at least two sessions were
included in the present analysis. Written informed consent was provided
by all patients and the study received ethical approval from the Veterans
Association San Diego Health System (VASDHS) Institutional Research
Board under the protocol H150012.

Electroconvulsive therapy
ECT was administered three times per week according to VASDHS protocol.
ECT was administered with a square wave, constant-current, brief-pulse
device Thymatron System IV. Treatment was provided clinically at the
discretion of the provider. Per standing clinical protocol, treatments were
generally initiated at 5–10%, with subsequent treatments adjusted according
to electrode placement (2x threshold for bilateral, 6x threshold for unilateral)
with further adjustments as needed based upon seizure quality and duration
(with a target of at least 30 s by EEG.) ECT was administered three times per
week. See Table 1 for measures used per patient. Methohexital and
succinylcholine were the typical anesthetic medications used (see Table 1).
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Treatment termination was based on response, clinical factors, and/or the
patient’s expressed wish to discontinue ECT.

Clinical measures
Quick Inventory of Depressive Symptomatology–Self Report (QIDS-SR) [57]
was administered by a clinician before each treatment session.

EEG recording and data preprocessing
EEG recording procedures were designed to capture both acute effects of a
single ECT treatment as well as longitudinal changes in EEG throughout the
course of treatment (Fig. 2A). At the beginning of each session, 10min of
eyes closed, resting state EEG was recorded prior to administration of
anesthetics or seizure induction. Following the seizure, patients were allowed
to recover for at least 30min until fully conscious and verbally commu-
nicative. This period was included in the study design in order to allow for
recovery from the anesthetic medication as well as allow the research team
to communicate with the patient about the recording procedure. This
collection procedure was performed for multiple ECT sessions of the 4-week
treatment (Fig. 2B). Due to constraints of the clinical environment, full
recordings were not collected from every patient, but every patient included
in the study had, at minimum, complete pre- and post-ECT recordings from
two treatment sessions (Fig. 2C). A 14-channel EEG headset device (Emotiv
EPOC+, https://emotiv.com) containing saline-soaked felt pad sensors (online
reference located at left/right mastoid) was used for all recordings. EEG data
was sampled at 2048 Hz with internal downsampling at 256 or 128 Hz and
built-in notch filters at 50 and 60Hz for a bandwidth of 0.16–43 Hz.
EEG data was preprocessed to remove artifacts using a custom script in

Python and MNE v.0.23.0 [58]. First, channels with excessive noise and
evidence of displacement were rejected manually based on visual
inspection. Data were then high-pass filtered at 1 Hz. To detect and
remove ocular artifacts and eyeblinks, ICA was applied to the filtered data.
Components containing ocular artifacts were removed. Due to the small
number of channels, ICA could not always remove ocular and muscular
artifacts, so as a final step, data segments were selected manually. Data
was inspected visually and artifact-free segments were selected. Once
selected, these segments were then detrended and concatenated. The first
100 s of this concatenated data was used for analysis. We employed this
procedure due to the amount of noise in the data and the small number of
channels in the device. Because this concatenation technique produced
high-amplitude, high-frequency artifacts, we restricted our analyses to a
low-frequency range (1–30 Hz) to avoid any contamination of the power
spectra. Because the preprocessing procedure used in this study was
abnormal, an analysis of concatenated segments was performed and
found no relationship between the length of the segments used and the
EEG features quantified in this study, namely aperiodic exponent, delta
band power, and delta oscillation power.

Data analysis. Data analysis was performed with python using numpy
v.1.18.1 [59], scipy v.1.6.2 [60], MNE v.0.23.0 [58], neurodsp v.2.1.0 [61], and
specparam v.1.0.0. Statistics were performed with python using statsmo-
dels [62] and with R [63] to calculate linear mixed models using the lme4
library [64]. Only frontal channels AF3, AF4, F7, F8, F3, and F4 were
included in the analysis. The code needed to reproduce the analysis and
figures is provided here: https://github.com/voytekresearch/smith_ect.

Computing power spectral density (PSD)
PSDs were estimated using Welch’s method [65] using 1.0 s Hamming
windows with 0.5 s overlap. Custom functions for this can be found in
NeuroDSP [61], an open-source digital signal processing (DSP) toolbox for
neural time series.

Spectral methods
The spectral parameterization method and toolbox were used for the
calculation of aperiodic exponents as well as oscillatory power [20]. In this
model, the power spectrum is composed of two electrophysiological
components: aperiodic and periodic (oscillation) activity (Fig. 2A). This
approach permits the disambiguation of contributions from oscillatory and
aperiodic activity to the power spectrum. The aperiodic component of
neural power spectra is described by the exponent and offset. Oscillatory
activity is described by the center frequency, power, and bandwidth of
identified peaks. Oscillation peaks are defined as peaks in the power
spectrum exceeding a threshold of 1.5 standard deviations from the rest of
the power values in the spectrum. If delta peaks were detected in the

1–3 Hz range, delta oscillatory power was defined as the power in the peak
relative to the aperiodic component.
For methodological comparison, canonical delta band power was

calculated as the mean of spectral power in the delta (1–3Hz) frequency band.
Spectral parameterization and canonical band power evaluation were

performed on the power spectrum of each channel (AF3, AF4, F3, F4, F7,
and F8) for each recording session (pre and post). For each session, each
EEG feature (aperiodic exponent, delta oscillatory power, and delta band
power) was averaged across all six frontal channels. For acute effects
analysis, EEG features from each pre-ECT session were compared to those
from the corresponding post-ECT session. For longitudinal analyses, only
features from pre-ECT sessions were used to ensure that longitudinal
changes in EEG features were not contaminated by effects of lingering
anesthesia or postictal states unrelated to treatment efficacy.

Statistical analysis
Clinical effects: Statistical evaluation of clinical effects was performed
using a linear mixed-effects model fit to the total QIDS-SR clinical rating
score. Patients were included as a random effect and ECT session number
as a fixed effect.

Acute EEG effects: Effects of any given session of ECT on the
aperiodic exponent, delta oscillatory power, and canonical delta band
power were statistically evaluated using two-sided, related-measures t-
tests. Specifically, pre-ECT values were compared to post-ECT values for
each patient, independent of session number. Each feature is reported as
a mean ± standard deviation. Data were tested for normality using a
Shapiro-Wilk test, and a Wilcoxon signed-rank test was used to evaluate
data that was non-parametric.

Longitudinal EEG effects: Similar to the statistical evaluation of clinical
effects, the evaluation of longitudinal effects of repeated ECT sessions on
the three EEG features (aperiodic exponent, delta oscillatory power, and
canonical delta power) was performed using linear mixed-effects models.
A linear mixed effect model was fit to each EEG feature with patient as a
random effect and ECT session number as a fixed effect. Only pre-ECT
values were included in the model to avoid the potential confounding
effects of the anesthetic on EEG activity.

Associating EEG features with clinical effectiveness: To determine if
a significant relationship between the aperiodic exponent and clinical
rating score was present, we used the lme4 library in R to extract the
coefficients for each variable from the linear mixed-effects models. This
approach produced three coefficients for each patient, corresponding to a
rate of change for the QIDS-SR score, aperiodic exponent, and delta band
power. We then used a Pearson correlation to assess the relationship
between QIDS-SR score x aperiodic exponent and QIDS-SR x delta band
power. To account for the influence of outliers, we performed the same
analysis using a Spearman correlation. To investigate the relationship
between the QIDS-SR score, aperiodic exponent, and baseline aperiodic
exponent, we performed a multiple linear regression. As only 6 out of 9
patients had a baseline EEG measurement, a proxy measure of baseline
aperiodic exponent was computed as the intercept of the LME model.

DATA AVAILABILITY
All code used for all analyses and plots are publicly available on GitHub at https://
github.com/voytekresearch/smith_ect/. The data collected in this study is considered
sensitive medical information and is therefore not available at this time under
restriction of the VASDHS Institutional Review Board.

CODE AVAILABILITY
All code used for all analyses and plots are publicly available on GitHub at https://
github.com/voytekresearch/smith_ect/.
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