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Abstract

Under endoplasmic reticulum (ER) stress, unfolded proteins accumulate in the ER to activate the 

ER transmembrane kinase/endoribonuclease (RNase)—IRE1α. IRE1α oligomerizes, 

autophosphorylates, and initiates splicing of XBP1 mRNA, thus triggering the unfolded protein 

response (UPR). Here we show that IRE1α’s kinase-controlled RNase can be regulated in two 
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distinct modes with kinase inhibitors: one class of ligands occupy IRE1α’s kinase ATP-binding 

site to activate RNase-mediated XBP1 mRNA splicing even without upstream ER stress, while a 

second class can inhibit the RNase through the same ATP-binding site, even under ER stress. 

Thus, alternative kinase conformations stabilized by distinct classes of ATP-competitive inhibitors 

can cause allosteric switching of IRE1α’s RNase—either on or off. As dysregulation of the UPR 

has been implicated in a variety of cell degenerative and neoplastic disorders, small molecule 

control over IRE1α should advance efforts to understand the UPR’s role in pathophysiology and 

to develop drugs for ER stress-related diseases.

The UPR is an evolutionarily conserved intracellular signaling pathway triggered when 

unfolded proteins accumulate in the ER1,2. The UPR is believed to be centrally involved in 

the pathogenesis of numerous cell degenerative disorders, such as diabetes3 and 

neurodegeneration, and conversely the inappropriate survival of secretory cell tumors, such 

as multiple myeloma4. Because the UPR normally relegates irremediably ER stressed cells 

to apoptosis, the ability to control the UPR’s cell fate outcomes in both positive and negative 

directions may provide new therapeutic options for these diseases5. To this end, we have 

been developing pharmacological tools to both activate and inhibit the master regulator of 

the UPR, a bifunctional enzyme called IRE1α6–9.

IRE1α is an ER transmembrane protein that becomes activated when unfolded proteins 

accumulate within the organelle. Through an N-terminal ER lumenal domain that senses 

unfolded proteins, IRE1α monomers dimerize and potentially oligomerize in the plane of the 

ER membrane10–12. This event juxtaposes cytosolic kinase domains across individual 

IRE1α monomers, causing trans-autophosphorylation. In turn, autophosphorylation 

activates the C-terminal RNase domain to catalyze site-specific cleavage of the mRNA 

encoding the XBP1 transcription factor, excising a 26 nucleotide intervening region13,14. 

Religation of cleaved XBP1 mRNA and translation in the shifted open-reading frame 

produces the XBP1s (s = spliced) transcription factor, whose gene targets allow the ER to 

adapt to protein-folding stress.

Genetic analysis shows that activation of IRE1α’s RNase is normally dependent on kinase 

autophosphorylation6, but we previously identified an unusual relationship between these 

two domains that allows specific ligands of the kinase domain to bypass the 

autophosphorylation requirement and trigger RNase activation through ligand occupancy 

alone15. For instance, the orthogonal ATP-competitive inhibitor 1NM-PP1 rescues RNase 

activity of IRE1α mutants that lack kinase activity7,8,15. Other ligands that interact with the 

ATP-binding site of wild-type (WT) IRE1α also activate the RNase directly. For example, 

the ATP-competitive inhibitor APY29 and the clinically-approved drug sunitinib activate 

the RNase of yeast16 and murine IRE1α7.

Given the ability to allosterically activate IRE1α’s RNase through its kinase domain, we 

hypothesized that it may be feasible to also inhibit the RNase through the same kinase 

domain, but with a different class of kinase inhibitors. Two classes of kinase inhibitors—

called types I and II—have been identified, which stabilize alternate kinase active site 

conformations in numerous protein kinase targets17. Here we show that a known type I 

kinase inhibitor and a novel type II kinase inhibitor both shut down IRE1α trans-
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autophosphorylation, but have divergent effects on its RNase to activate or inactivate 

catalytic activity, respectively. Our findings demonstrate that IRE1α RNase activity can be 

either up or downregulated through selective targeting of its kinase domain to control UPR 

signaling, and predict that it may be possible to pharmacologically modulate other kinase-

coupled enzymes in a similar way.

Results

Divergent modulation of the IRE1α’s RNase activity

A co-crystal structure of yeast IRE1 bound with APY29—a predicted type I kinase inhibitor

—shows that the kinase catalytic domain is in an active conformation, which is a 

conformation typically adopted by protein kinases when bound to ATP and other type I 

inhibitors (Fig. 1a)16,18. Moreover, two additional co-crystal structures of yeast IRE1 and 

human IRE1α bound with ADP show that the kinase domain is similarly in an active 

conformation18–20. By stabilizing IRE1α’s kinase in the active conformation, these type I 

inhibitors act as ligands that allosterically activate its adjacent RNase domain. Therefore, we 

postulated that it might be possible to stabilize IRE1α’s kinase domain in an alternative 

conformation, and in so doing disable its RNase activity. To test this notion, we employed a 

class of small-molecule kinase inhibitors that have been described to selectively stabilize the 

inactive conformation of the ATP-binding site (type II inhibitors) for a variety of kinases; 

examples include the clinically-approved drugs imatinib and sorafenib17,21,22. The inactive 

ATP-binding site conformation stabilized by type II inhibitors is characterized by outward 

movement of the catalytically-important Asp-Phe-Gly (DFG) motif, and is therefore called 

the DFG-out conformation (Fig. 1a)17,23. In contrast, in all three co-crystal structures of 

IRE1 mentioned previously, the kinase domain adopts the DFG-in conformation16,19,20.

Therefore, we hypothesized that stabilizing an inactive ATP-binding site conformation of 

IRE1α with type II inhibitors may have inhibitory rather than activating allosteric effects on 

the RNase. To this end, several previously characterized type II inhibitors were screened for 

their ability to block the RNase activity of a recombinant soluble human IRE1α mini-protein 

construct containing the kinase/RNase domains—called IRE1α* (Supplementary Results, 

Supplementary Figs. 1 and 2). Since IRE1α* is basally autophosphorylated, its RNase is 

autoactive, and can be assayed using a FRET-quenched XBP1 RNA mini-substrate7 (Fig. 

1b). While all the compounds we tested with this assay contain the core binding elements 

predicted to stabilize the DFG-out conformation, only one ligand, 1, demonstrated 

measurable inhibition of IRE1α*’s RNase activity (Fig. 1c,d). 1 is a pyrazolopyrimidine-

based inhibitor that has been shown to stabilize the DFG-out conformation of the non-

receptor tyrosine kinases Src and Abl. Based on the co-crystal structure of 1 bound to Src 

(PDB: 3EL8)24, proposed contacts with IRE1α are shown in Fig. 1a.

Despite its modest activity, 1 served as a promising starting point to develop more potent 

allosteric RNase inhibitors. A number of similar analogs were generated and tested for 

RNase inhibition. While most modifications of 1 were deleterious, replacing the 

pyrazolopyrimidine scaffold with an imidazopyrazine core provided a significant increase in 

overall potency (compound 2, Fig. 1c,d). Furthermore, substituting the 4-anilino group at the 

C-3 position of 2 with a naphthylamine moiety provided 3, the most potent compound 
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identified in this study. Notably, 3 inhibits XBP1 RNA cleavage to a similar degree as 

STF-083010, an imine-based small molecule that directly inhibits the IRE1α RNase through 

covalent modification25.

Similar to APY29, 3 demonstrates dose-dependent reduction of IRE1α* kinase 

autophosphorylation in vitro (Fig. 2a and Supplementary Fig. 4). Thus, although 3 and 

APY29 are both IRE1α* kinase inhibitors, they demonstrate opposing effects on its RNase 

activity, with APY29 acting as a slight activator. To further characterize the differences 

between the two kinase inhibitors, we generated a version of IRE1α* with low basal RNase 

activity by using λ-phosphatase (λ-PPase) to remove activating phosphates from the enzyme 

(Fig. 2b and Supplementary Fig. 5). As expected, the dephosphorylated variant of IRE1α* 

(dP-IRE1α*) has significantly lower basal RNase activity than IRE1α*; incubating dP-

IRE1α* with increasing APY29 concentrations progressively restores its ability to cleave 

the XBP1 mini-substrate, plateauing at ~60% of the levels of IRE1α* (Figs. 2c,d and 

Supplementary Fig. 6). In contrast, 3 suppresses the residual RNase activity of dP-IRE1α*.

Competition experiments were performed to further explore the opposing effects of APY29 

and 3. Increasing concentrations of APY29 progressively reverse IRE1α* RNase inhibition 

caused by a fixed concentration of 3 (Fig. 2e). On the other hand, increasing concentrations 

of 3 restore RNase inhibition in the setting of a fixed concentration of APY29, with an 

expected increase in the IC50 (Fig. 2e and Supplementary Fig. 7). As predicted, APY29 

cannot rescue direct inhibition caused by the covalent RNase modifier STF-083010. Taken 

together, these results strongly suggest that APY29 and 3 are exerting their opposing effects 

on RNase activity through the same binding site.

The drug sunitinib is a promiscuous type I inhibitor that has been shown to inhibit the kinase 

activity of yeast and human IRE1α16,19. To investigate the differences between 3 and other 

ATP-competitive inhibitors of IRE1α, we further characterized the interaction of sunitinib 

with our IRE1α* and dP-IRE1α* constructs. As expected, sunitinib is a dose-dependent 

inhibitor of the autophosphorylation activity of IRE1α* (Supplementary Fig. 8a). In 

addition, sunitinib activates the RNase activity of dP-IRE1α*, which is consistent with its 

type I pharmacophore (Supplementary Fig. 8b). Therefore, both APY29 and sunitinib 

stabilize an ATP-binding site conformation that activates the RNase domain of IRE1α. Like 

APY29, increasing amounts of sunitinib are able to rescue the RNase activity of IRE1α* in 

the presence of a fixed concentration of 3 (Supplementary Fig. 8c). Together, these results 

show that 3 opposes the stereotypic RNase activation demonstrated by various type I ATP-

competitive inhibitors of IRE1α.

Analysis of the 3-IRE1α and APY29-IRE1α interactions

To further confirm that AYP29 and 3 are exerting their opposing effects through the same 

ATP-binding site, we next turned to a series of biochemical footprinting experiments26,27. 

Specifically, the accessibility of three native cysteine residues within human IRE1α 

(Cys572, Cys645, and Cys715) to alkylating agents in the presence or absence of APY29 

and 3 was determined (Supplementary Fig. 9). For these studies, electrophilic isotope-coded 

affinity tag (ICAT) reagents were used to allow a ratiometric and, therefore, quantitative 
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comparison of alkylation rates27. As Cys645 and Cys715 are located within the ATP-

binding cleft of IRE1α, the accessibility of these residues would be expected to be affected 

by ligands that occupy this site, while Cys572 is a solvent-exposed residue located on the 

top of the N-terminal lobe of the kinase. Consistent with both APY29 and 3 occupying the 

ATP-binding site of IRE1α, Cys645, which is located in the kinase hinge region, is highly 

shielded from alkylating agents in the presence of either inhibitor (Fig. 3a). In contrast, these 

inhibitors exert opposing effects on the accessibility of Cys715, with APY29 slowing the 

rate of alkylation and 3 increasing it. Cys715 is located in the activation loop of IRE1α (two 

residues C-terminal to the DFG-motif) and the divergent influence of APY29 and 3 on this 

residue is concordant with these ligands stabilizing different conformations of the activation 

loop (Fig. 3b). As expected, no detectable difference in the accessibility of Cys572, which is 

distal to the kinase active site of IRE1α, is observed in the presence of either inhibitor (Fig. 

3c).

Next, we performed molecular docking experiments to obtain a better understanding of how 

3 and APY29 interact with the ATP-binding site of human IRE1α. A model of the DFG-in 

ATP-binding site conformation was generated from a co-crystal structure of human IRE1α 

bound to ADP (PDB code 3P23, chain A)19. As a structure of IRE1α in the DFG-out 

conformation has not yet been described, a homology model of this conformation was 

generated by using the activation loop of another kinase—the tyrosine kinase Abl2—as a 

template. Both the DFG-in and DFG-out models were optimized using multi-step all-atom 

minimization and explicit water molecular dynamics (MD) simulations28. Predictably, the 

docked structure of APY29 bound to the DFG-in conformation of human IRE1α is similar 

to that of this ligand bound to the yeast IRE1 enzyme (Supplementary Fig. 10)16. The 

pyrazole ring of APY29 forms hydrogen bonds with the kinase hinge region and the 

pyrimidine moiety occupies the adenine pocket. Attempts to obtain a favorable pose of 

APY29 bound to the DFG-out conformation of IRE1α were unsuccessful, which is 

consistent with the ability of this ligand to exclusively stabilize the active conformation of 

the ATP-binding site.

The most favorable docking pose for 3 bound to the DFG-out conformation of IRE1α is 

shown in Figure 3d. In this pose, the imidazopyrazine ring of this ligand forms two 

hydrogen bonds with the hinge region and occupies the adenine pocket. The bulky naphthyl 

ring of 3 adopts an almost orthogonal conformation relative to the core scaffold and stacks 

against the Ile gatekeeper residue. Like other type II inhibitors, the trifluoromethylphenyl 

moiety of 3 occupies the hydrophobic pocket created by movement of the Phe sidechain in 

the DFG-motif. While 3 is well accommodated in the DFG-out conformation of human 

IRE1α, no favorable poses were observed for this inhibitor bound to the DFG-in 

conformation. Indeed, our docking studies predict that the only way that 3 can bind to 

IRE1α without movement of the DFG motif in the activation loop is if the inhibitor disrupts 

canonical interactions with the hinge region of the kinase.

To further experimentally test our docking model, we generated analogs of 3 that contain 

structural elements predicted to lower inhibitor potency (compounds 4 and 5, Fig. 1d). 4 
contains an N-methyl group that would be predicted to disrupt its interaction with the hinge 

region of IRE1α, and the amide linkage of 5 should not allow the trifluoromethylphenyl 
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moiety to form as favorable interactions with the hydrophobic pocket created by movement 

of the DFG-motif. Consistent with our model, both 4 and 5 show a markedly diminished 

ability to inhibit the RNase activity of IRE1α compared to 3 (Supplementary Fig. 11).

3 and APY29 divergently affect IRE1α oligomerization

Self-association of kinase/RNase monomers has been reported to increase RNase activity as 

dimers and/or higher-order oligomers form in yeast and mammalian IRE1 proteins11,16,19. 

Although it has not been resolved whether IRE1α RNase activation requires kinase 

dimerization or high-order oligomerization per se, it is generally accepted that monomeric 

species are inactive; furthermore, the degree of order may correlate directly with activity16. 

Thus we used APY29 and 3 to test the prediction that they would divergently affect the 

oligomerization state of human IRE1α as a basis for their opposing effects on its RNase 

activity. Specifically, we predicted that RNase activators should drive monomers into 

higher-order species (dimers and perhaps oligomers) from baseline. To test this prediction, 

increasing concentrations of IRE1α* were incubated with either DMSO, or saturating 

concentrations of APY29 or 3 and the ratio of oligomeric—defined as all species greater 

than monomers (mostly dimers) —to monomeric IRE1α was determined (Fig. 4a). In the 

absence of ligands, IRE1α* shows a concentration-dependent increase in the oligomer/

monomer ratio. The presence of APY29 further enhances—whereas 3 decreases—this 

concentration-dependent increase in the IRE1α* oligomer/monomer ratio. Taken together, 

our in vitro data support a model in which these two classes of kinase inhibitors divergently 

modulate IRE1α* RNase activity by exerting opposing effects on the oligomerization state 

of the enzyme (Fig. 4b).

IRE1α mutants show increased sensitivity to 3

Having used a truncated form of IRE1α for all our in vitro studies, we next turned to cell-

based experiments to test whether we could replicate divergent modulation of the full-length 

IRE1α transmembrane protein with the two classes of kinase inhibitors. We first tested and 

confirmed the on-target effects of 3 using IRE1α chemical-genetic systems we had 

previously developed7. Specifically, we employed tetracycline-inducible isogenic T-REx 

293 stable cell lines expressing either WT or a “holed” IRE1α gatekeeper mutantI642A to 

determine whether 3 is able to block the RNase activity of IRE1α in vivo. Induced with 

doxycycline (Dox), the transgenic WT-IRE1α or IRE1αI642A spontaneously cluster in the 

ER, trans-autophosphorylate and splice XBP1 mRNA, without requiring upstream ER stress 

(Fig. 5a and Supplementary Figs. 12 and 13). As expected, 3 inhibits autophosphorylation 

and XBP1 mRNA splicing in the WT cell lines (Supplementary Fig. 13a,b). Consistent with 

these inhibitory effects occurring through a direct interaction with IRE1α, control compound 

4 does not affect either of these parameters, even at the highest concentration tested 

(Supplemental Fig. 13c). Furthermore, we hypothesized that the enlarged ATP-binding 

pocket of IRE1αI642A would better accommodate the bulky C-3 substituent of 3, leading to 

enhanced sensitivity. Indeed, our docking studies suggest that the naphthyl ring of 3 is able 

to occupy a hydrophobic pocket that is accessible in IRE1αI642A and not the wild type 

protein (Supplementary Fig. 14). Confirming this notion, low nanomolar concentrations of 3 
are sufficient to completely block autophosphorylation and XBP1 splicing through this 
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mutant (Fig. 5a,b and Supplemental Figs. 15 and 16). Furthermore, increasing 

concentrations of the type I “bumped” inhibitor 1NM-PP1, which is selective for mutant 

kinases that contain Ala or Gly gatekeeper residues, is able to rescue the RNase activity of 

IRE1αI642A in the presence of 3 (Fig. 5c and Supplemental Fig. 17).

Our data suggest a model for IRE1αI642A, which can be activated merely through 

overexpression to basally splice ~50% of cellular XBP1 mRNA, that 1NM-PP1 further 

increases—while 3 reduces—the activity of the RNase (Supplemental Fig. 18). We propose 

that these divergent effects proceed from the stabilization of the kinase active site in two 

distinct modes by these inhibitors, with 1NM-PP1 acting on the “holed” IRE1αI642A kinase 

in a similar fashion as APY29 does for WT IRE1α. In summary, the type II pharmacophore 

3 likely enforces an inactive kinase conformation in IRE1αI642A, and as it does with WT 

IRE1α. Furthermore, 3 may stabilize monomeric IRE1αI642A, while 1NM-PP1 may promote 

oligomerization, as APY29 does for the WT IRE1α (Fig. 4b).

3 blocks both enzymatic activities of IRE1α in vivo

To further explore how IRE1α modulators affect the kinase and RNase activities of 

endogenous IRE1α under ER stress, we next turned to in vivo studies using INS-1 rat 

insulinoma cell lines, which are derived from insulin-producing pancreatic β-cell tumors and 

contain large well-developed ERs. These cells were treated with the ER SERCA ATPase 

pump inhibitor, thapsigargin (Tg), to induce ER stress and IRE1α activation at levels 

causing ~50% splicing of cellular XBP1 mRNA (Fig. 6a and Supplemental Fig. 19). 

Recapitulating our in vitro results, 3 and APY29 demonstrate opposing dose-dependent 

effects on ER stress-induced activation of the RNase of endogenous IRE1α (Fig. 6a and 

Supplemental Fig. 19). Furthermore, 3 abrogates IRE1α autophosphorylation at a similar 

concentration as it blocks RNase activity (Fig. 6b,c and Supplemental Figs. 20 and 21). 

Control compound 4 does not block the splicing of XBP1 mRNA (Fig. 6d and Supplemental 

Fig. 22). Consistent with its in vitro activity, the type I inhibitor sunitinib is able to partially 

inhibit the kinase activity of IRE1α, but has no effect on the RNase activity of this enzyme 

(Fig. 6b,c and Supplemental Figs. 20 and 21) at the concentrations tested. The RNase 

inhibitor STF-083010 was also tested in INS-1 cells that had been treated with Tg. As 

expected, this compound inhibits XBP1 splicing in a dose-dependent manner, but does not 

prevent IRE1α auto-phosphorylation (Fig. 6b,c and Supplemental Figs. 20 and 21). 

Therefore, 3 is the only compound identified to date that has the ability to block both 

enzymatic activities of IRE1α, both in vitro and in vivo (Fig. 6e).

Discussion

Recent studies show that the duration and amplitude of UPR activation powerfully affects 

both cell function and fate7,8,29,30. Indeed, many cell-degenerative diseases such as diabetes 

mellitus feature increased ER stress and UPR activation in affected cells3,31,32. These same 

markers are evident in a wide range of solid and hematopoietic malignancies33. To properly 

ascertain the role of the UPR in these disease contexts will require development of tool 

compounds that target critical nodes in the UPR in both positive and negative directions. 

The master UPR regulator IRE1α, which controls cell fate under ER stress, offers two 
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enzymatic targets that could be modulated with small molecules. In this work, we exploited 

the unusual mechanistic relationship between these two catalytic domains to inhibit the 

RNase from a distance by inhibiting the kinase.

Starting with known pharmacophores that stabilize an inactive conformation in other protein 

kinases, we optimized a type II inhibitor lead to produce 3. Despite inhibiting IRE1α kinase 

autophosphorylation similarly to the type I inhibitor APY29, 3 inhibits XBP1 mRNA 

splicing, even during ER stress. Consistent with competition studies, footprinting 

experiments strongly suggest that 3 and APY29 bind to the same ATP-binding pocket. 

However, these same footprinting experiments indicate that these inhibitors cause divergent 

effects on the activation loop of IRE1α, and support a model in which 3 and APY29 

promote distinct, mutually exclusive, movements of the DFG-motif contained within the 

activation loop.

The aforementioned experiments, combined with modeling studies, lead to a parsimonious 

model of IRE1α modulation by kinase inhibitors (Fig. 6e) that posits that the protein can 

adopt either a canonical DFG-in or a DFG-out conformation, as is seen with other kinases 

under the influence of types I and II inhibitors, respectively. However, while for other 

kinases these two distinct modes of inhibition stereotypically shut down kinase function, for 

the multi-domain kinase, IRE1α, the two inhibition modes have opposite and divergent 

results on the attached RNase activity. To our knowledge, this ability to modulate a second 

catalytic activity in a multi-domain kinase in two different directions with distinct classes of 

ATP-competitive inhibitors has not been reported to date. We expect that this ability may be 

extended to many of the other known multi-domain kinases.

Intriguingly, opposite effects on oligomeric state were found using the two compounds: 

while type I inhibitors increase the dimeric and possibly oligomeric state of IRE1α and the 

catalytic activity of the RNase, type II inhibitors decrease both in tandem. Given previous 

reports of a direct mechanistic relationship between the degree of order and RNase activity 

in IRE1 proteins16, we speculate that the inactive conformation that 3 stabilizes in IRE1α 

promotes the monomeric state.

It is of course conceivable that a different, previously unidentified active site conformation 

is adopted in the presence of 3; to fully resolve this particular point in the future will require 

atomic level co-crystal structures. Regardless, the particular kinase active site conformation 

stabilized by 3 has the unique and novel property of preserving the mechanistic coupling 

between the kinase and the RNase in IRE1α, allowing full inhibition of both activities in 

concert. We propose that this represents a new alternative to aldehyde-based covalent 

inhibitors of the RNase such as STF-083010 (or another recently reported compound called 

4µ8C34), which leave kinase autophosphorylation and oligomerization intact. In contrast to 

the action of direct RNase inhibitors, any biological signaling through the kinase that is 

dependent on phosphorylation of non-autonomous substrates or kinase-mediated scaffolding 

should be simultaneously quenched with type II kinase inhibitors.

In summary, the ability to now inhibit the effector RNase domain of IRE1α with type II 

kinase inhibitors complements our previous ability to activate the RNase with type I 
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inhibitors, independent of upstream ER stress, establishing opposite directions of control 

over this master UPR regulator. Thus, type II kinase inhibitors of IRE1α will expand on a 

toolkit that includes chemical-genetic systems to test and validate the UPR’s role in ER 

stress-related diseases. While 3 is not completely selective for IRE1α over other protein 

kinases, this compound serves as a starting point for the generation of more potent and 

selective inhibitors that may eventually be developed into disease-modifying drugs for ER 

stress-related disorders. Moreover, the ability to toggle the IRE1α RNase on and off through 

its kinase domain may serve as a precedent for pharmacologically targeting the many other 

kinase-coupled enzymes present in eukaryotes.

Methods

Synthesis and characterization of probes are described in the Supplementary Methods.

Expression and purification of IRE1α* and dP-IRE1α*

A construct containing the cytosolic kinase and RNase domains of human IRE1α (residues 

469–977, IRE1α*) was expressed in SF9 insect cells by using Bac-to-Bac baculovirus 

expression system (Invitrogen) with a 6-His-tag at the N-terminus, and purified with a Ni-

NTA (Qiagen) column. To generate dP-IRE1α*, basal phosphorylation sites were removed 

by incubating IRE1α* with λ-PPase (NEB) at a molar ratio of 5:1 (IRE1α*: λ-PPase) in 50 

mM HEPES pH 7.5, 100 mM NaCl, 1 mM MnCl2, 2 mM DTT, 0.01% Brij 35 for 40 min at 

RT. Dephosphorylation was verified by immunoblotting with an anti-phosphoIRE1α 

antibody.

Kinase assays

Inhibitors (initial concentration = 80 µM, 2-fold serial dilutions) were incubated with 

IRE1α* in cleavage buffer (20 mM Hepes at pH 7.5, 0.05% Triton X100, 50mM KOAC, 1 

mM Mg(OAC)2, 1 mM DTT) for 20 min, followed by incubation with 10 µCi [γ-32P]ATP 

(3000 Ci/mmol, Perkin Elmer) at RT for 30 min. Samples were then separated by SDS-

PAGE, and autoradiographed. The auto-phosphorylation level were quantified by setting the 

band intensity of IRE1α* without compound treatment as 1 and the background as 0.

In vitro RNase assay

5’FAM-3’BHQ-labeled XBP1 single stem-loop minisubstrate (5’FAM-

CUGAGUCCGCAGCACUCAG-3’BHQ) was purchased from Dharmacon. 0.2 µM IRE1α* 

or dP-IRE1α* were incubated with inhibitors or DMSO for 20 min in cleavage buffer, 

followed by incubation with 3 µM RNA substrate for 5 min. The reaction was quenched by 

adding urea to a final concentration of 4 M, and the fluorescence was detected on a 

SpectraMax M5 microplate reader (Molecular Devices) with excitation and emission 

wavelengths of 494 nm and 525 nm, respectively. The fluorescence intensities were 

normalized by setting the signal for the reaction with IRE1α* and DMSO to 1 and the 

reaction without IRE1α* to 0. The cleavage products were also resolved by urea PAGE after 

phenol/chloroform extraction and ethanol precipitation. Internally 32P-labelled mouse XBP1 

RNA was also used as a substrate, as described7.
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ICAT Footprinting

Heavy and light iodonated ICAT reagents were made as described by Underbakke et al27. 

Purified human Ire1α was exchanged into 50 mM Tris (pH 8.0), 50 mM KCl, 5 mM MgCl2, 

and 0.5 mM TCEP. One 3 µM stock solution was divided into three solutions, and each was 

mixed with either DMSO, APY29, or 5 to yield solutions containing 1% DMSO and 20 µM 

of inhibitor. Heavy labeling reagent was added to the protein solutions, and 25 µL aliquots 

were taken at specified times and quenched with excess DTT. Samples were precipitated 

with 0.2% sodium deoxycholate and 10% trichloroacetic acid on ice for 10 min. The 

mixtures were centrifuged at 4 °C for 15 min, and pellets were washed with cold acetone. 

The pellets were then resuspended in 30 µL of 200 mM Tris (pH 8.0), 7 M urea, and 2.4 mM 

light labeling reagent, and incubated in the dark for 30 min. The solutions were diluted with 

210 µL 200 mM Tris (pH 8.0), 5.7 mM CaCl2, 0.5 µg porcine trypsin (TPCK treated, 

Sigma), and 125 ng GluC (Roche), and incubated at room temperature overnight. Samples 

(0.3 pmol) were injected onto a Thermo Scientific Dionex Acclaim Pepmap100 NanoLC 

capillary column (C18, 150 mm length, I.D. 75 µm, 3 µm particle size) connected inline to a 

Finnigan LCQ mass spectrometer. Peptides of interest were identified by MS/MS data 

(Sequest), and corresponding XIC peaks were integrated. Alkylation curves were fit using 

GraphPad Prism software (Binding – Kinetics, Dissociation – One-phase exponential 

decay).

IRE1α* Cross-linking to determine oligomer to monomer ratio

Increasing concentrations of IRE1α* (0.49–30 µM) were incubated with DMSO, 3 (200 

µM), or APY29 (200 µM) for 20 min, then cross-linked by adding 250 µM disuccinimidyl 

suberate (DSS) (Pierce) for 1 hr at RT in cleavage buffer. The reaction was quenched by 

addition of 50 mM Tris-HCl (pH 7.5). The samples were then boiled, resolved on SDS-

PAGE, and immunoblotted for IRE1α with an anti-IRE1α antibody, (visualization and 

quantification with a LI-COR Odyssey scanner).

Cell culture and XBP1 mRNA splicing

INS-1 cells were grown in RPMI, 10% fetal calf serum, 1 mM sodium pyruvate, 10 mM 

HEPES, Pen/strep, 2 mM glutamine and 50 µM β-mercaptoethanol. T-REx 293 IRE1α or 

IRE1αI642A were grown in DME H-21 with 10% fetal calf serum and Pen/strep. After 1 hr 

incubation with compounds, INS-1 cells were treated with 6 nM thapsigargin for 4 hrs, and 

T-Rex 293 IRE1α-expressing cells were treated with 1 µM Dox for 8 hrs. The RNA was 

then extracted using RNeasy Mini Kit (Qiagen), and reverse transcribed using the 

QuantiTect Reverse Transcription Kit (Qiagen). XBP1 splicing was performed as previously 

described7. Primers used: sense primer rXBP 1.3S (5’- 

AAACAGAGTAGCAGCACAGACTGC-3”) and antisense primer rXBP 1.2AS (5’- 

GGATCTCTAAGACTAGAGGCTTGGTG-3’) for INS-1 cell line, while sense primer 

mXBP1.3S (5’-AAACAGAGTAGCAGCGCAGACTGC-3’) and antisense primer 

mXBP1.2AS (5’-GGATCTCTAAAACTAGAGGCTTGGTG-3’) for T-Rex 293 cell line. 

PCR products were resolved on 2.5% agarose gels, stained with EtBr, and quantified by 

ImageJ.

Wang et al. Page 10

Nat Chem Biol. Author manuscript; available in PMC 2013 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Statistical analysis

All experiments were performed in triplicate, unless otherwise specified. Results are shown 

as mean ± standard deviation (SD).

Other methods

Detailed information is available in the Supplementary Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by NIH: Director’s New Innovator Award DP2 OD001925 (F.R.P), RO1 DK080955 
(F.R.P), RO1 CA136577 (S.A.O.), R01 GM086858 (D.J.M); an American Cancer Society Research Scholar Award 
(S.A.O.) and the Burroughs Wellcome (F.R.P.) and Sloan (D.J.M) Foundations. S.B.H was supported by a 
predoctoral fellowship from the American Heart Association.

References

1. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. 
Science. 2011; 334:1081–1086. [PubMed: 22116877] 

2. Merksamer PI, Papa FR. The UPR and cell fate at a glance. J. Cell. Sci. 2010; 123:1003–1006. 
[PubMed: 20332117] 

3. Scheuner D, Kaufman RJ. The unfolded protein response: a pathway that links insulin demand with 
beta-cell failure and diabetes. Endocr. Rev. 2008; 29:317–333. [PubMed: 18436705] 

4. Carrasco DR, et al. The differentiation and stress response factor XBP-1 drives multiple myeloma 
pathogenesis. Cancer Cell. 2007; 11:349–360. [PubMed: 17418411] 

5. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. 
Nat. Cell. Biol. 2011; 13:184–190. [PubMed: 21364565] 

6. Tirasophon W, Welihinda AA, Kaufman RJ. A stress response pathway from the endoplasmic 
reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in 
mammalian cells. Genes Dev. 1998; 12:1812–1824. [PubMed: 9637683] 

7. Han D, et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to 
determine divergent cell fates. Cell. 2009; 138:562–575. [PubMed: 19665977] 

8. Han D, et al. A kinase inhibitor activates the IRE1alpha RNase to confer cytoprotection against ER 
stress. Biochem. Biophys. Res. Commun. 2008; 365:777–783. [PubMed: 18035051] 

9. Lin J, et al. IRE1 Signaling Affects Cell Fate During the Unfolded Protein Response. Science. 2007; 
318:944–949. [PubMed: 17991856] 

10. Credle JJ, Finer-Moore JS, Papa FR, Stroud RM, Walter P. On the mechanism of sensing unfolded 
protein in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 2005; 102:18773–18784. 
[PubMed: 16365312] 

11. Zhou J, et al. The crystal structure of human IRE1 luminal domain reveals a conserved 
dimerization interface required for activation of the unfolded protein response. Proc. Natl. Acad. 
Sci. USA. 2006; 103:14343–14348. [PubMed: 16973740] 

12. Gardner BM, Walter P. Unfolded proteins are Ire1-activating ligands that directly induce the 
unfolded protein response. Science. 2011; 333:1891–1894. [PubMed: 21852455] 

13. Calfon M, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the 
XBP-1 mRNA. Nature. 2002; 415:92–96. [PubMed: 11780124] 

14. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and 
spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 
2001; 107:881–891. [PubMed: 11779464] 

Wang et al. Page 11

Nat Chem Biol. Author manuscript; available in PMC 2013 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Papa FR, Zhang C, Shokat K, Walter P. Bypassing a kinase activity with an ATP-competitive drug. 
Science. 2003; 302:1533–1537. [PubMed: 14564015] 

16. Korennykh AV, et al. The unfolded protein response signals through high-order assembly of Ire1. 
Nature. 2009; 457:687–693. [PubMed: 19079236] 

17. Liu Y, Gray NS. Rational design of inhibitors that bind to inactive kinase conformations. Nat. 
Chem. Biol. 2006; 2:358–364. [PubMed: 16783341] 

18. Korennykh AV, et al. Cofactor-mediated conformational control in the bifunctional kinase/RNase 
Ire1. BMC Biol. 2011; 9:48. [PubMed: 21729334] 

19. Ali MM, et al. Structure of the Ire1 autophosphorylation complex and implications for the unfolded 
protein response. EMBO J. 2011; 30:894–905. [PubMed: 21317875] 

20. Lee KP, et al. Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in 
nonconventional RNA splicing. Cell. 2008; 132:89–100. [PubMed: 18191223] 

21. Wan PT, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic 
mutations of B-RAF. Cell. 2004; 116:855–867. [PubMed: 15035987] 

22. Schindler T, et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science. 
2000; 289:1938–1942. [PubMed: 10988075] 

23. Ranjitkar P, Brock AM, Maly DJ. Affinity reagents that target a specific inactive form of protein 
kinases. Chem. Biol. 2010; 17:195–206. [PubMed: 20189109] 

24. Dar AC, Lopez MS, Shokat KM. Small molecule recognition of c-Src via the Imatinib-binding 
conformation. Chem. Biol. 2008; 15:1015–1022. [PubMed: 18940662] 

25. Papandreou I, et al. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic 
activity against human multiple myeloma. Blood. 2011; 117:1311–1314. [PubMed: 21081713] 

26. Tu BP, Wang JC. Protein footprinting at cysteines: probing ATP-modulated contacts in cysteine-
substitution mutants of yeast DNA topoisomerase II. Proc. Natl. Acad. Sci. USA. 1999; 96:4862–
4867. [PubMed: 10220384] 

27. Underbakke ES, Zhu Y, Kiessling LL. Isotope-coded affinity tags with tunable reactivities for 
protein footprinting. Angew. Chem. Int. Ed. 2008; 47:9677–9680.

28. Bowers, KJ., et al. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06); Tampa, 
Florida, USA. 2006. 

29. Yoshida H, et al. A time-dependent phase shift in the mammalian unfolded protein response. Dev. 
Cell. 2003; 4:265–271. [PubMed: 12586069] 

30. Lu PD, et al. Cytoprotection by pre-emptive conditional phosphorylation of translation initiation 
factor 2. EMBO J. 2004; 23:169–179. [PubMed: 14713949] 

31. Huang CJ, et al. High Expression Rates of Human Islet Amyloid Polypeptide Induce Endoplasmic 
Reticulum Stress-Mediated Beta Cell Apoptosis, a Characteristic of Humans with Type 2 but Not 
Type 1 Diabetes. Diabetes. 2007

32. Oyadomari S, et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-
mediated diabetes. J. Clin. Invest. 2002; 109:525–532. [PubMed: 11854325] 

33. Feldman DE, Chauhan V, Koong AC. The unfolded protein response: a novel component of the 
hypoxic stress response in tumors. Mol Cancer Res. 2005; 3:597–605. [PubMed: 16317085] 

34. Cross BC, et al. The molecular basis for selective inhibition of unconventional mRNA splicing by 
an IRE1-binding small molecule. Proc Natl Acad Sci U S A. 2012; 109:E869–E878. [PubMed: 
22315414] 

35. Salah E, et al. Crystal structures of ABL-related gene (ABL2) in complex with imatinib, tozasertib 
(VX-680), and a type I inhibitor of the triazole carbothioamide class. J. Med. Chem. 2011; 
54:2359–2367. [PubMed: 21417343] 

Wang et al. Page 12

Nat Chem Biol. Author manuscript; available in PMC 2013 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Interaction of ATP-competitive inhibitors with the bifunctional kinase/RNase, IRE1α

(a) Proposed binding modes of type I and type II kinase inhibitors with the ATP-binding 

pocket of IRE1α. Left panel shows the contacts the type I inhibitor APY29 forms with yeast 

IRE1α (PDB code 3SDJ)18. The right panel shows the proposed contacts a type II inhibitor 

1 forms with IRE1α based on the co-crystal structure of the same inhibitor bound to Src 

(PDB code 3EL8) (also see Supplementary Fig. 3). (b) XBP1 RNA minisubstrate assay used 

for screening IRE1α modulators. The recombinant human IRE1α—IRE1α*—used in the 

assay spans residues 469–977, which includes the cytosolic kinase and RNase domains. 

Cleavage of the 5’FAM-3’BHQ-labeled XBP1 minisubstrate by IRE1α* results in FRET-

dequenching. (c) Endpoint fluorescence of IRE1α* catalyzed cleavage reaction of XBP1 
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minisubstrate in the presence of varying concentrations of inhibitors, or DMSO. 

STF-083010 is an imine-based compound that covalently inhibits the RNase domain. 

Relative fluorescence intensity is scaled to the signal observed with IRE1α* (1.0), or 

without IRE1α* (0). (mean ± SD, n = 3). (d) Structures of the type II kinase inhibitors used 

in this study.
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Figure 2. APY29 and 3 divergently modulate the RNase activity and oligomerization state of 
IRE1α*
(a) Inhibition of IRE1α* autophosphorylation in vitro by APY29 and 3. Normalized 

autophosphorylation levels and IC50 values for both compounds are shown. (b) λ-PPase 

treatment of IRE1α* produces dephosphorylated IRE1α* (dP-IRE1α*). Immunoblots using 

anti-IRE1α and anti-phospho IRE1α antibodies are shown. (c) RNase activities of IRE1α* 

and dP-IRE1 α* under varying concentrations of APY29 or 3 per the assay of Figure 1b. 

EC50 values were determined by fitting normalized fluorescence intensities (mean ± SD, n = 

3). (d) Urea PAGE of XBP1 mini-substrate cleavage by IRE1α* and dP-IRE1α* with and 

without 3 or APY29. (e) RNase competition assays between APY29 and 3. The red line 

shows IRE1α* RNase activity under fixed 3 and varying APY29 concentrations. The black 

line shows IRE1α* RNase activity under fixed APY29 and varying 3 concentrations. The 

blue line shows IRE1α* RNase activity under fixed STF-083010 and varying APY29 

concentrations (mean ± SD, n = 3).
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Figure 3. Characterization of 3's interaction with the ATP-binding site of IRE1α

Results of the ICAT footprinting experiments with IRE1α*. Alkylation rates were measured 

in the presence of DMSO (black), APY29 (blue) (20 µM), or 3 (red) (20 µM) (mean ± SD, n 

= 3). (a) Alkylation rate of Cys572. (b) Alkylation rate of Cys645. (c) Alkylation rate of 

Cys715. (d) A molecular model of 3's interaction with the ATP-binding site of IRE1α 

(grey). IRE1α is in the DFG-out inactive conformation. The imidazopyrazine ring of 3 
occupies the adenine pocket and the 3-trifluoromethylurea occupies the DFG-out pocket. No 

favorable poses for 3 bound to the DFG-in conformation of IRE1α could be determined.
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Figure 4. APY29 and 3 differentially affect the oligomerization state of IRE1α*
(a) Left panels shows immunoblots of IRE1α* after treatment with the crosslinker DSS (250 

µM). Increasing concentrations of IRE1α* were incubated with DMSO, APY29 (200 µM) or 

3 (200 µM). The right panel shows quantitation of the ratios of oligomeric to monomeric 

IRE1α* (b) Model of how type I and type II kinase inhibitors affect the RNase activities and 

oligomeric states of IRE1α* and dP-IRE1α*.
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Figure 5. Chemical-genetic modulation of IRE1α kinase and RNase activity in vivo
(a) Anti-total and anti-phospho IRE1α immunoblots of T-Rex 293 cells expressing “holed” 

IRE1αI642A under Doxycycline (Dox) control. Cells were pre-treated for 1 hr with 3 at 

indicated concentrations, then induced with Dox (1 µM) for 8 hrs. Plots show normalized 

phosphorylation levels and ratios of spliced XBP1 mRNA under varying concentrations 3 
(mean ± SD, n >= 3). (b) Quantification of the XBP1 cDNA amplicons from the cells 

described in (a). EtBr-stained agarose gels are shown in Supplementary Figure 16 (c). 

Competition between the “bumped” kinase inhibitor 1NM-PP1 and 3 against IRE1αI642A. T-

Rex 293 cells expressing IRE1αI642A were pre-treated for 1 hr with 3 (1 µM) ± varying 

concentrations 1NM-PP1 before Dox induction (1 µM) for 8 hrs. Quantification show ratios 

of spliced XBP1 mRNA as a function of 3 and 1NM-PP1 concentrations. [XBP1S = spliced 

XBP1; XBP1U = unspliced XBP1]
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Figure 6. Divergent modulation of endogenous IRE1α RNase activity under ER stress with types 
I and II kinase inhibitors
(a) Quantification of EtBr-stained agarose gel of XBP1 complementary DNA (cDNA) 

amplicons from INS-1 cells pre-treated for 1 hr with 3 or APY29 at indicated 

concentrations, followed by Tg (6 nM) for 4 hrs. Ratios of XBP1S over (XBP1S + XBP1U) 

are plotted (mean ± SD, n = 3). Gels are shown in Supplemental Figure 19. (b) Anti-total 

and anti-phospho IRE1α immunoblots using extracts from INS-1 cells pre-treated for 1 hr 

with 3, sunitinib or STF-083010 at indicated concentrations, followed by Tg (6 nM) for 2 
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hrs. (c) Quantification of EtBr-stained agarose gel of XBP1 complementary DNA (cDNA) 

amplicons from the INS-1 cells described in (b). Gels are shown in Supplemental Figure 20. 

(d) EtBr-stained agarose gel of XBP1 cDNA amplicons from INS-1 cells pre-treated for 1 hr 

with 4 at indicated concentrations, followed by Tg (6 nM) for 4 hrs. (e) Model of how type I 

kinase inhibitors (APY29 or sunitinib), type II kinase inhibitors (3), and RNase inhibitors 

(STF-083010) modulate the enzymatic activities of WT IRE1α. APY29 inhibits IRE1α 

trans-autophosphorylation but promotes oligomerization and activates the RNase domain. 

STF-083010 inhibits the RNase activity of IRE1α but does not affect kinase activity or the 

overall oligomerization state. 3 inhibits both the kinase and RNase domains of IRE1α and 

stabilizes the monomeric form. [Please note that these cartoons are not meant to differentiate 

between the relative orientations of monomer subunits in IRE1α.]
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