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ABSTRACT
Neuroactive compound discovery by high-content screens in zebrafish

Douglas Myers-Turnbull

Neuroactive compounds are crucial tools in drug discovery and neuroscience. However,

discovering mechanistically novel drugs has proven challenging. Behavioral screens in larval

zebrafish have helped researchers discover compounds with novel mechanisms.

In Chapter 2, we introduce and evaluate an open platform for behavioral screening,

SauronX. This instrument records movement behaviors in multiwell plates, capturing high-

resolution video data at high framerate (100 Hz) under complex photic and acoustic stimuli.

To test, we trained machine learning models to resolve phenotypes caused by compounds

with diverse mechanisms in fully randomized screens. First, we benchmarked the system with

14 quality–control (QC) compounds and found that all 14 could be distinguished from each

other and from vehicle controls. We then extended to a set of reference phenotypic readouts

from 648 neuroactive compounds.

The hardware and software system has been used in studies by several research groups,

so far limited to direct collaborations. In this work, we have sought to document the

platform fully, providing 3D diagrams, component information, and source code. We have

also deposited 7 years of phenotypic data for 3.2 million animals and 34,000 compounds. The

data are curated, structured, tied to extensive metadata, and available under a permissive

Creative Commons (CC-BY) license.
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CHAPTER 1

Introduction

1.1 Phenotypic screens for CNS drug discovery

Disorders of the central nervous system (CNS) affect 100 million Americans at an economic

burden of $920 billion per year [1]. Despite this, CNS drug discovery rates have declined [2].

Most projects screen for high-affinity interaction with one target [3]. Although extremely

high-throughput, these screens require prior knowledge of the disease-linked targets, which is

especially limited for CNS disorders [4, 5]. Although most projects are target-first, most first-

in-class drugs approved by the U.S. Food and Drug Administration (FDA) from 1999–2008

were discovered phenotype-first [6], suggesting that many CNS drug discovery projects would

benefit from phenotype-first screens.

In contrast to target-based screens, phenotypic screens require less understanding of

pathogenesis and can identify compounds with previously unknown and multitarget pharma-

cological actions. In many historical cases, a drug was discovered first, and its mechanism

only later [7, 8]. For example, the antidepressant activities of tricyclics and monoamine

oxidase inhibitors were discovered in psychiatric hospitals by observing patients. These dis-

coveries implicated serotonin in depression and lent to the development of selective serotonin

reuptake inhibitors (SSRIs) [9]. Such phenomenological discoveries are responsible for most

prototypical neuroactive drugs. Scaling phenomenological discovery to higher-throughput

using animal models is yielding a powerful approach to CNS drug discovery.
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1.2 Phenotypic profiling in zebrafish

Zebrafish larvae and embryos have long been used to assay environmental toxicants [10,

11] and have made waves in neuroscience as models for vision [12, 13, 14, 15, 16], threat

response [17], memory [18], algesia [19, 20, 21], and sleep [22, 23, 24]. These successes in

the laboratory have extended to the clinic: In a rare example of bench-to-bedside, the FDA

approved lorcaserin as an antiepileptic, based significantly on evidence in zebrafish [25]. More

recently, a zebrafish model was used in the life-saving treatment of a 12-year-old patient [26].

Genetic and compound-induced disease models in zebrafish larvae have shown promising

consistency with rodent models [27, 28].

Zebrafish are well-suited for phenotypic profiling, a quantitative, high-throughput approach

to phenotype-first compound discovery [29, 23]. Profiles are quantitative readouts of aggregate

animal movements in multiwell plates. These experiments often employ acoustic, photic

(light-based), and other stimuli to perturb the animals’ behavior in an effort to reveal

more compound-induced behavioral changes. Previous screens identified new neuroactive

compounds and predicted their targets, later supported by in vitro assays [30, 31, 23, 32,

33]. Diverse compounds have been identified, including photoactivatable transient receptor

potential channel A1 (TRPA1) ligands [34], antiepileptics [35], antipsychotics [36], appetite

modulators [37], and anesthetic-like compounds [38, 39].

One way to predict the pharmacology of a mechanistically novel compound is by association

to a compound of known pharmacology. This guilt-by-association approach links novel

compounds to known ligands, but it requires both reference profiles for compounds with

known pharmacology and a way to measure similarity between profiles.

The following chapter describes a phenotypic profiling hardware/software system, bench-

marks it for three criteria using quality–control data, and applies it on a set of 648 recognized

CNS-target ligands to build a preliminary set of reference profiles for guilt-by-association
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discovery campaigns.
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CHAPTER 2

Phenotypic screening with SauronX

2.1 Preface

This chapter has been adapted from the following manuscript. References to supplemental

items have been omitted from this dissertation but are available under the same DOI. All

material is open access.

‘Simultaneous analysis of behavior-modulating compounds in zebrafish with SauronX high-

lights avenues in neuroactive drug discovery.” (doi:10.1101/2020.01.01.891432v1) The authors

are Douglas Myers-Turnbull, Jack C Taylor, Cole Helsell, Matthew N McCarroll, Chris

S Ki,Tia A Tummino,Shreya Ravikumar,Reid Kinser,Leo Gendelev, Rebekah Alexander,

Michael J Keiser, and David Kokel.

2.2 Results

Here, we describe our platform in detail. We then benchmark our system in a machine

learning approach on 14 quality–control (QC) compounds, and then establish preliminary

reference phenotypic profiles from a chemical library of 648 known-neuroactive compounds.

2.2.1 An open phenotypic profiling platform

In our work to develop an open platform for behavioral profiling, we identified three require-

ments: the ability to screen without interruption, reproducibility of analyses, and extensibility

to add or remove hardware. We modified an existing system [1]. The new hardware/software

platform has been used to assay N,N-Dimethylaminoisotryptamine (isoDMT) analogs [2], a
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non-hallucinogenic ibogaine analog with therapeutic potential [3], and toxicants at the U.S.

Army Medical Research Institute of Chemical Defense (USAMRICD).

The setup is shown in Figure 2.1A on the following page. Plates are positioned on a flat

translucent stage, fixed in a groove so that sound propagated through the stage contacts

the plate uniformly. The plates are illuminated from the bottom with infrared light through

an acrylic diffuser and recorded with an overhead camera while light and sound stimuli are

applied. The digital camera is mounted to a telecentric lens with an infrared pass filter so

that the photic stimuli do not affect the video. The lens eliminates parallax, resulting in all

wells having the same apparent dimensions, simplifying feature calculations and eliminating

parallax corrections as potential confounding variables. The camera captures 1 Mpx to

6 Mpx (16-bit depth) images at a preset frame rate of 100 Hz to 150 Hz. Nanosecond-resolved

timestamps corresponding to the image sensor acquisition are used to precisely synchronize

captured frames with stimuli. Computer-aided design (CAD) files and related information

are available in the Data Repository [4].

To expand the repertoire of observable behavioral responses, stimuli are applied during

capture. Photic stimuli are delivered via 6 overhead LED arrays. Acoustic stimuli from

audio files are delivered through surface transducers mounted on the stage. A microphone,

photosensor, and secondary camera verify the delivery and timing of stimuli. These stimuli

evoke compound-dependent behaviors that would not otherwise be observed. For example, we

observed a compound-modulated ‘step’ response to 355 nm ultraviolet light, which is visible

to zebrafish [5]. This response differs markedly from 400 nm light.

We use a 4-step workflow (Figure 2.1B on the next page). Animals are anesthetized in

cold water and dispensed into the wells of a multiwell plate, dosed, and incubated for 1 hr.

The plates are placed in the instrument, and the animals are acclimated in darkness for 5

minutes. A battery of stimuli is then applied while video is recorded. Videos can be analyzed

in many ways, including tracking of animals. For the experiments in this manuscript, we used

9

https://osf.io/nyhpc/


A B

C

clozapine
solvent

time (min) audio
soft solenoid
hard solenoid

UV (365 nm)white

blue (460 nm)green (523 nm)
red (623 nm) violet (400 nm)

170

camera

LEDs
solenoids

transducer

secondary 
camera

acryllic stage

IR source

IR pass �lter

plate groove

sensors

telecentric 
lens

di�usor

microphone

breadboard

fra
me

m1
m2

m100k

...

0

100
k

1. Design 
experiment

sauronx submit 5c18d9f

Submit

valinor.ucsf.edu

3. Enter plate info
on website

4. Copy and paste
command

2. Prepare plate

5. Experiment 
runs

6. Full videos 
are deposited 
and features 
are calculated

7. Analysis 
library queries 
from database

SauronLab

camera

database

st
im

ul
us

m
ot

io
n 

(p
x)

Figure 2.1: Overview of hardware/software platform. (A) Front view of the instrument. (B) Stages
of the experimental/computational pipeline. (C) Example motion-trace for wells treated with vehicle
(dimethyl sulfoxide (DMSO)) or clozapine at 50 µM. Top: motion within the well as a function of time.
Bottom: stimuli applied over time. The shaded colors represent application of high-intensity light, the black
lines depict the waveforms of audio assays, and the gray vertical lines (at the end) denote the application of
acoustic stimuli by solenoids. N = 12 wells / condition.
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multiple (8) animals per well and calculated a simple feature (motion-trace) of aggregate

locomotor activity over time (Equation 2.1 on page 26). Although using multiple animals

per well complicates per-animal tracking, it resulted in much higher algorithm performance

(discussed later). Figure 2.1C on the previous page shows example traces under a standard

battery for vehicle (DMSO solvent) or the antipsychotic clozapine.

A website is used to design plate layouts, stimulus batteries, and experiments, as well

as to organize and search for genetic constructs and compound stocks. A custom language

called Gale can be used to design assays from simple expressions (but is not required). The

hardware is driven by custom software. Post-processing of data is not coupled to capture,

allowing many plates to be run in sequence without interruption. After a run completes,

the videos are compressed and archived permanently, and data is inserted into a relational

database on a remote server.

The database incorporates coarse-grained and fine-grained data. The coarse-grained data,

such as hierarchical grouping of experiments, simplifies search. The fine-grained data is

included for reproducibility and post-hoc diagnostics. For example, compound treatments are

indicated by ‘batch’, with supplier information and lot numbers. In developing the system, we

identified information required to conduct reproducible, audit-able analyses. In accordance,

we propose a minimum information standard [6] at https://osf.io/nyhpc/.

These data are used in an open source analysis platform (sauronlab), which provides tools

for search and analysis. Analyses include quantifying the strength of phenotypes, classifying

and clustering phenotypes, analyzing mechanism of actions (MOAs), and searching for similar

phenotypes. All analyses are tied to a timestamp that restricts the data queried from the

database, ensuring that results do not change when new data is added. Notebooks illustrating

these analyses with code and output are available at sauronlab-publication.

In contrast to commercial phenotyping systems, the hardware, data storage, and analysis

are uncoupled. Videos are efficiently compressed and can be stored indefinitely and analyzed
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with additional methods at any point. Although the hardware is larger than most commercial

systems at 61 cm×61 cm×114 cm, this simplified construction and enabled rapid iteration

between analyzing data and adapting hardware. As part of an effort to develop an open

alternative to commercial systems, we benchmarked the platform’s ability to distinguish

compound-induced phenotypes.

2.2.2 Discrimination of phenotypes for quality–control compounds

We wanted to evaluate the platform in a way that is not constrained to a single phenotype.

Specifically, we sought to test the ability to detect compound-induced phenotypes (detection

criterion), identify phenotypes caused by the same compounds while distinguishing those

caused by different compounds (distinction criterion), and group compounds with similar

mechanisms or effects (grouping criterion).

First, we curated a set of 14 compounds with diverse structures and MOAs. The lethal

control used a high dose of the anesthetic eugenol, which is routinely used as a humane

method to euthanize fish [7, 8]. These 14 compounds and 2 controls formed the QC set.

Experiments were run using 7-day-old wild-type zebrafish 1 h post-treatment under a standard

battery (Figure 2.1C on page 10).

For each compound, we selected a 5-point logarithmic concentration gradient to capture

the range between phenotypic inactivity and lethality. 8 replicate plates were screened, with

all compounds and concentrations on each plate in random positions. For each compound

and concentration, a binary treatment–vehicle Random Forests (RF) classifier was trained to

assign the motion vectors as either treatment or vehicle. The same procedure was used for

treatment–lethal models. We plotted the resulting out-of-bag accuracy values in concentration–

response curves. Due to the high dimensionality, such curves are not expected to be sigmoidal

or even monotone increasing. For most compounds, treatment–vehicle accuracy increased

with concentration, while treatment–lethal accuracy dropped sharply at high concentrations
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Table 2.1: Quality–control compounds with optimal concentrations.

Compound Concentration (µM) Primary mechanism of action
almorexant 90 OX1, OX2 antagonist
bromocriptine 16 D2, D3 agonist
clozapine 50 D2, 5-HT2A antagonist
donepezil 16 AChE inhibitor
endosulfan 0.32 GABAAR antagonist
etomidate 6.25 GABAAR agonist
haloperidol 25 D2 antagonist
indoxacarb 6.25 NaV inhibitor
(S)+ketamine 100 NMDAR antagonist
lidocaine 1200 NaV inhibitor
optovin 6.25 TRPA1 opener
(+)-sertraline 25 SERT inhibitor
tiagabine 100 GAT inhibitor
tracazolate 25 GABAAR modulator

orexin receptor; D1/D2/D3 (dopamine receptors 1/2/3); 5-HT1/5-HT2 (sero-
tonin receptors); acetylcholinesterase; GABAAR (GABA ionotropic recep-
tor); voltage-gated sodium channel; N-Methyl-D-aspartate receptor; TRPA1
(transient receptor potential channel A1); serotonin transporter; GABA trans-
porter.

(Figure 2.2A on the next page). Notably, treatment–lethal accuracy was high even for sedating

doses of the anesthetic etomidate [9], indicating that sedation and lethality were distinguished.

Using these data, we set an ‘optimal’ concentration per compound by balancing phenotypic

strength with non-lethality (Table 2.1). This optimal-concentration set was screened in 15

replicate plates, with 6 replicates of each compound per plate. In compound–vehicle models,

the mean accuracy was 93%. In contrast, randomly false-labeling controls yielded 49% for

vehicle–vehicle comparisons. This established that compounds could be separated from

controls, meeting the detection criterion.

The phenotypes were then visualized together using t-distributed stochastic neighbor

embedding (t-SNE) [10]. Each compound generated a cloud of replicate profiles generally

separate from the controls and other compounds (Figure 2.3 on the next page), indicating

an ability to identify phenotypes caused by the same compounds and distinguish them from

others. A RF multiclass classifier was trained to quantify this.

The out-of-bag predictions were visualized in a confusion matrix (Figure 2.4A on page 15).
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(left axis; blue) and treatment–lethal (right axis; red) accuracy. Opaque lines denote the median accuracy,
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optovin
sertraline
tiagabine
tracazolate

endosulfan
etomidate
haloperidol
indoxacarb
ketamine
lidocaine

lethal
vehicle
almorexant
bromocriptine
clozapine
donepezil

Figure 2.3: T-SNE projection of motion vectors in the optimal-concentration QC set. Each point denotes
one well. N = 90 wells/condition.

14



A B

0

20

40

60

80

100

pr
ed

ict
io

ns
 (

%
)

prediction

op
to

vi
n

en
do

su
lfa

n
br

om
oc

rip
tin

e
clo

za
pi

ne
do

ne
pe

zil
in

do
xa

ca
rb

ha
lo

pe
rid

ol
ve

hi
cle

al
m

or
ex

an
t

tia
ga

bi
ne

se
rt

ra
lin

e
ke

ta
m

in
e

tr
ac

az
ol

at
e

lid
oc

ai
ne

et
om

id
at

e
let

ha
l

op
to

vi
n

en
do

su
lfa

n
br

om
oc

rip
tin

e
clo

za
pi

ne
do

ne
pe

zil
in

do
xa

ca
rb

ha
lo

pe
rid

ol
ve

hi
cle

al
m

or
ex

an
t

tia
ga

bi
ne

se
rt

ra
lin

e
ke

ta
m

in
e

tr
ac

az
ol

at
e

lid
oc

ai
ne

et
om

id
at

e
let

ha
l

prediction

optovin
endosulfan

bromocriptine
clozapine
donepezil

indoxacarb
haloperidol

vehicle
almorexant

tiagabine
sertraline
ketamine

tracazolate
lidocaine

etomidate
lethal

ac
tu

al

Figure 2.4: Confusion matrix of QC compound phenotypes. (A) Confusion matrix from a multiclass
classification model (Random Forests) on the optimal-concentration QC set. N = 90 wells/condition.
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wells/condition.

The labels were sorted by an algorithm that maximized block–diagonal structures, grouping

like phenotypes. The diagonal was high (mean=94%), reflecting accurate self-classification and

phenotypic uniqueness. The classifier distinguished several compounds, such as almorexant

and tiagabine, that were poorly separated in Figure 2.3 on the previous page. As an adversarial

experiment, we collected a dataset of only vehicle-treated wells and false-labeled them to

mimic the real dataset. Classifiers were unable to distinguish the false-labeled treatments

(Figure 2.4B), supporting the distinction criterion.

Grouping of compounds (grouping criterion) was harder to assess with few compounds.

Although generally distinguishable, lidocaine, etomidate, and tracazolate were sorted nearby.

These compounds reduced movement, analogous to their effects in humans, but they evoked

noticeably distinct responses to stimuli. This offered anecdotal but encouraging support for

grouping.
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Figure 2.5: Top: Frame-by-frame feature weights the optimal-concentration multiclass model (values sum
to 1). Some extreme values were cropped for visual clarity. Bottom: Stimulus battery as in Figure 2.1C on
page 10. N = 90 wells/condition.

2.2.3 Data-driven protocol optimization

We hypothesized that this approach of classification on a QC set served as a general evaluation

method to guide experimental design. We applied it to design a stimulus battery, optimize

experimental and computational methods, and quantify the impact of potentially confounding

variables.

In a data-driven approach to design a battery, we compared 53 30 s to 60 s behavioral assay.

Assays that provided high classification accuracy were included in the final battery. Back-

ground (stimulus-free) assays had notably low performance and most of the acoustic assays

with pure tones yielded little information. While pure tones are commonly used [11], acoustic

assays generated from complex environmental sounds resulted in higher accuracy. Assays

with high-frequency light stimuli and those with simultaneous photic and acoustic stimuli also

performed well. Likewise, the optimal-concentration classifier (Figure 2.4A on the previous

page), heavily weighted frames occurred near stimuli (Figure 2.5), directly highlighting their

importance. Although these experiments were based on few compounds, this data-driven

approach eliminated assays that provided low phenotypic information and suggested that

complex assays may be more useful for resolving compound-induced phenotypes.

Next, we evaluated how performance changed under different experimental conditions.

Using a separate data set, we evaluated using 3, 4, 6, 8, and 10 animals per well. Accuracy
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quality–control compounds from metadata variables and average motion.

increased with the number of animals (Figure 2.6A). These two results showed a trade-off

between higher performance and the logistics and ethics of using more animals.

Similar to this optimization of experimental protocols, computational methods could be

benchmarked. We benchmarked several classification models, testing across hyperparameter

sets (Figure 2.6B). Neural networks, random forests, and support vector machines (SVMs)

outperformed simple models like linear classifiers and k-nearest neighbors (k-NNs), suggesting

that powerful models were needed.

Finally, we considered the impact of potentially confounding variables, such as time of day

(hour:minute) and exact duration of compound treatment (deviation from 1 h). None of the

variables we tested were predictive (Figure 2.6C. In contrast, the arrangement of compounds

within a plate significantly affected phenotypic readouts, demonstrating a critical need to

control for positional confounding. These experiments pointed to a general procedure to

compare and optimize protocols.

2.2.4 A reference set of CNS-target ligands

To predict mechanisms for novel compounds, we sought a set of reference profiles from com-

pounds with diverse pharmacological actions. We used the SCREEN-WELL Neurotransmitter
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Figure 2.7: NT-650 hit-calling. (A) Distribution of accuracy for treatment–vehicle (black, solid) and
vehicle–vehicle (blue, dashed). The hit threshold is shown at x=63%. N = 648 non-control wells for
treatment–vehicle. (N = 200 classifiers for vehicle–vehicle.) (B) Distribution of hits (opaque) and total
compounds (translucent) per major neurotransmitter system. N = 104 compounds.

library (NT-650, Enzo Life Sciences), which contained 648 CNS ligands. A fully randomized

screen was performed, generating approximately 7 replicates per compound at 33 µM in a

648-compound reference set.

To identify hit compounds, per-compound treatment–vehicle and treatment–lethal classi-

fiers were trained as per the QC set. Visualizing the accuracy values, vehicle–vehicle values

were centered near 50% (Figure 2.7A) The treatment–vehicle values were long-tailed, indicat-

ing that compounds falling within this tail were likely active. To select phenotypically active

compounds (hits), we applied an accuracy threshold that excluded 99.5% of vehicle–vehicle,

yielding 106 nonlethal hit compounds. Only 1 compound, tetrahydrodeoxycorticosterone,

was lethal at the concentration tested, though other compounds may have been toxic but

nonlethal.

To know which types of compounds were more phenotypically active, we grouped com-

pounds by the neurotransmitter systems that they primarily target (Figure 2.7B). Dopamin-

ergic and serotonergic systems were enriched for phenotypic activity, while adenosinergic,

purinergic, and glutamatergic were depleted, though all 13 had at least one hit. Aside from
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the GABA ionotropic receptor (GABAAR) , enriched targets were mostly monoaminergic,

including monoamine transporters and dopamine, serotonin, histamine, and muscarinic

receptors.

Multiclass models were then trained to distinguish between the 104 treatments, along with

controls. The results were visualized in a sorted confusion matrix (Figure 2.4A on page 15). A

strong diagonal indicated that the compounds were phenotypically coherent. Several clusters

were observed, including GABAAR, dopamine transporter (DAT), and dopamine, glutamate,

and melatonin receptor ligands. These data indicate that the behavioral screening paradigm

is capable of distinguishing neuroactive molecules that interact with discrete neurotransmitter

systems. Importantly, multiple chemical scaffolds were present per cluster, indicating scaffold

hopping [12] and illustrating the potential for this approach to be used to discover structural

starting points for new drugs.

2.3 Discussion

Here we presented an open platform for behavioral phenotyping in zebrafish and posted

complete specifications. To facilitate data mining, we deposited phenotypic data for 34,000

compounds and 3.2 million animals.

Prior studies validate behavioral profiling as a way to discover and characterize neuroactive

compounds. Different hardware, zebrafish strains, and computational methods have been

applied, and this diversity calls for quantitative evaluations. We found that classification in a

quality–control set provided an intuitive and powerful metric to summarize performance. This

approach has immediate applications, such as optimizing protocols and assessing the impact

of confounding variables. In particular, positional confounding can significantly affect results,

supporting a need for treatment randomization. The SCREEN-WELL Neurotransmitter

library provides compounds physically arranged by their major pathways, illustrating how this

confounding could solely explain a promising result. We provide a lower bound on performance
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and hope this will invite comparisons using the same approach or the development of superior

or complimentary benchmarks.

Certain modifications could expand the observable subset of compound-induced movement

behaviors. First, we used a concentration of 33 µM, but the concentration–response experi-

ments indicated that some compounds were phenotypically inactive below 100 µM. Second,

affecting complex states such as aggression, addiction, or learning may improve resolution.

We used a trivial readout for high-dimensional movement behaviors, but tracking [13, 14,

15], optical flow [16], probabilistic models [17], and deep learning [18] have been successful in

analyzing similar data.

Finally, technologies like RNA-seq and mass spectrometry could be applied in concert

with behavioral experiments as powerful, high-throughput, and high-dimensional approaches

to delineate the mechanisms underlying behavioral modifications. Future studies will likely

leverage advances in many of these areas to improve the resolution of behavioral profiling.

Although data from SauronX has been published in recent studies, these have been

limited to use at the University of California, San Francisco (UCSF) and through direct

collaborations. We suggest that other groups may benefit from this platform, and we hope to

spur comparison and further development of open systems for behavioral phenotyping.

2.4 Methods

2.4.1 Extra: Object detection for discrete phenotypes

Seeking a way to identify lethal compound treatments that could be interpreted more directly,

we trained You Only Look Once v5 (YOLOv5) [19, 20] deep-learning object-detection models.

Single frames from 46 wells were annotated by drawing rectangles around individual animals

and labeling them alive or deceased, based on morphology. For potential future applications,

we also included other phenotypes, labeling lateral orientation (as a sign of loss of righting
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Figure 2.9: Results for the YOLOv5 models. (A–C:) test set loss curves for object (A), bounding box (B),
classification of alive versus deceased (C). (D) Mean average precision in validation set for intersection
over union 0.5. (E) Example well with detected objects and labels.

reflex) and curvature (as a sign of active motion). Considering only live/deceased, live were

detected with 93% precision (Figure 2.9), and deceased with 57%. The low precision for

deceased likely resulted from a relative paucity of training examples (lethal concentrations

are preferentially avoided), but the number of deceased animals were counted as 8 − alive.

YOLOv5 (Git tag v5.0; commit f5b8f7d54c9f) models were trained on images at time

16:55 from 46 wells and 11 plates. Boxes were drawn around animals and labeled using

labelImg. Augmented images were generated under 𝐷4 symmetry operations. Cross-validation

was performed with a 3:1 train:test split.

2.4.2 Animal husbandry

Zebrafish husbandry was performed as described [21]. Embryos were from group matings

of wild-type zebrafish (Singapore, ZFIN:ZDB-GENO-980210-24) raised on a 14/10-hour
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Table 2.2: LED stimuli.

color chromaticity intensity manufacturer part number
red 625 nm 4.6×102 lm Osram Sylvania LZ4-40R108-0000
green 525 nm 6.6×102 lm Osram Sylvania LZ4-40G108-0000
blue 650 nm 3.9×103 mW Osram Sylvania LZ4-40B208-0000
violet 400 nm 3.0×103 mW LED Engin LZ4-40UB00-00U7
UV 365 nm 8.8×102 mW New Energy LST1-01G01-UV01-00
white 4000 K 1.6×103 lm New Energy 1

‘Intensity’ values are (total) radiant or luminous flux reported in documentation, not
measured. 1 XHP70A-00-0000-0D0BN240E-SB01

light/dark cycle in 28 °C egg water (Instant Ocean (003746) with NaHCO3 to pH 7.0–7.4)

[21] until 7 dpf. Animals were maintained in a facility accredited by the Association for

Assessment and Accreditation of Laboratory Animal Care (AAALAC). Experiments were

performed in accordance with protocols approved by UCSF’s Institutional Animal Care Use

Committee (IACUC) and in accordance with the Guide for the Care and Use of Laboratory

Animals [22].

2.4.3 Software and data availability

Hardware information, protocols, links to software repositories, extended supplemental data,

and the full database are available at https://osf.io/nyhpc. Software is released under an

Apache 2.0 license.

2.4.4 Instrument

Note that most of this information is derived from the supplemental methods file for

doi:10.1101/2020.01.01.891432v1. A PointGrey Grasshopper GS3-U3-41C6M-C camera

(FLIR Integrated Imaging Solutions) and infrared pass filter were used (LE8744 polyester

#87, LEE Filters). Six light-emitting diode (LED) arrays were positioned overhead, with 4

LEDs per array.

Two surface transducers were fastened on the stage (5 W transducer, Generic) and used
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with a 150 W amplifier (APA150, Dayton Audio). Two 36 V push–pull solenoids (SparkFun

Electronics) were positioned near the top of the plate, one contacting the stage directly, and

the other contacting a 1 mm-deep strip of synthetic felt. Audio files are provided along with

sound pressure level (SPL) measurements in the supplement.

An Arduino Mega 2560 rev 3 (Arduino.cc) drove the LEDs, solenoids, and small sensors

while a computer directly controlled the microphone, transducers, and camera.

2.4.5 Video acquisition and processing

Videos were captured for a fixed framerate of 100 Hz and fixed region of interest (ROI),

1600 × 1068 in 8-bit grayscale. Video data was streamed from the camera to a high-

performance Non-Volatile Memory Host Controller Interface Specification (NVMe) drive

(Samsung EVO 970 PRO M.2 1 TB, Samsung) as raw image sensor (‘RAW’) data. Acquisition

was handled via custom driver code based on the Spinnaker C++ software development kit

(SDK) version 1 (FLIR Systems). Acquisition for preset framerate up to 150 Hz was generally

stable (neither capture nor transfer were throttled), but we noted that both a fast NVMe

drive and transfer via USB 3.1 Gen 1 (i.e. not USB 3.1) was required for this throughput.

We chose 100 Hz as our default framerate given the observation that the NVMe drive would

need to store raw data for two experiments at the same time (one being compressed while

the other is being acquired).

After acquisition, timestamps from the firmware clock corresponding to image sensor

acquisition were mapped to a std::chrono::high_resolution_clock system clock in the

drivers. These were then used to trim the video frames to the exact start and end of the

battery using timestamps from the image sensor. After these excess frames were deleted, data

were compressed with High-Efficiency Video Encoding (HEVC) via ffmpeg 4 using Quick Sync

Video (Intel) hardware encoding on an Intel i7-9700K Coffee Lake 8-Core 3.6 GHz processor.

This was found to provide better performance with no perceptible loss in quality over both
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software encoding and hardware encoding on a GeForce GTX 1060 (NVIDIA) graphics card.

We used Constant Quantization Parameter (CQP) (15) to maintain a constant loss suitable

for feature calculation. Quick Sync was called with keyframe interval 100 and preset ‘veryfast’.

These parameters were selected after extensive testing; significant compression artifacts were

not observed for these values. A typical video was circa 200 GB in image sensor output (RAW

files) and circa 5 GB of compressed data for a 17-minute video. Compression ratios were

noticeably higher for videos with less motion. Data were finally partitioned into ROIs for

wells for feature calculation.

2.4.6 Data collection and filtration

Healthy larvae were sorted and then immobilized with cold egg water with 25 mL of 4 °C

added to 12 mL room-temperature egg water in a 100 cm petri dish containing about 1,000

fish. 8 larvae in 300 µL were then distributed by pipette into the wells of 96-well plates, using

trimmed tips to avoid injuring the animals. Plates were incubated at room temperature for

1 hr, at which animals were mobile.

For QC experiments, compound plates and aliquots were stored at −20 °C. 2.0 µL of

solvent-dissolved compound was then added to each well. Solvents were dimethyl sulfoxide

(DMSO) except for donepezil (water). Some donepezil wells had less than 2.0 µL remaining

due to evaporation (annotated in the database). Each concentration–response curve included

5 concentrations on a logarithmic scale with an additional hypothesized ideal concentration.

The optimal-concentration QC set was replicated across 15 plates, applying 6 replicates

of the 14 compounds and 2 controls (16 × 6 = 96). The vehicle-only adversarial control

experiment was collected with 3 plates using earlier hardware and a different battery. However,

optimal-concentration QC accuracy was high when subsampled to 3 plates. 5/14 optimal-

concentration plates and 1/9 concentration–response plates were excluded because hardware

sensors flagged them for potential problems.
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The SCREEN-WELL Neurotransmitter library (Enzo Life Sciences) was purchased in

solution at 10 mM (peptides 100 µM) in 2015 and stored at −80 °C. A Biomek FXP (Beckman

Coulter) was used for randomization.

For NT-650, 1 µL was added per well to yield 33 µM, except for peptides at 0.33 µM.

Treatments were randomized across plates and wells. Each plate contained 14 DMSO, 8

water, and 6 lethal eugenol controls, except for 1 of every 7 plates due to an uneven split. 7

replicates were screened per compound, with deviation from 7 due to a subsequent filtration.

13/80 plates were excluded based on sensor readout. We also filtered 23/7680 wells that had

insufficient volume of compound in the daughter plate. DIVERSet was screened as provided

at 33 µM/well, 1 µL.

2.4.7 Phenotype analysis

Pre-interpolation motion vectors were

𝑚′(𝐼𝑡) = ∑𝑖𝑗 1 ∣𝐼𝑡
𝑖𝑗 − 𝐼𝑡−1

𝑖𝑗 ≥ 10∣ , (2.1)

where 𝐼𝑡 is the image matrix at 1-indexed frame 𝑡. The threshold 10 was chosen by comparing

a histogram of pixel intensity changes in wells with and without fish. The final motion

𝑚 was then quantified by linear interpolation of 𝑚′ values and image sensor acquisition

timestamps to align frames and stimuli. The Scipy 1.3.0 [23] function interp1d was called

with kind=previous and fill_value=extrapolate.

RFs were trained with scikit-learn 0.24.1 (RRID:SCR_002577) [24] with default hyperpa-

rameters except for the number of estimators, which was 20,000 for treatment–vehicle and

40,000 for multiclass classification. Reported accuracies were out-of-bag.

For NT-650 hit-calling, 4 replicate treatment–vehicle classifiers were trained per compound.

Per classifier, all replicate treatment wells were compared with the same number of randomly

sampled vehicle wells, restricted to the plates containing the compound treatment and with
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the same solvent (DMSO or water). Amoxapine (CHEMBL1113) was dissolved in N-methyl-

2-pyrrolidone (NMP); it was compared to DMSO. Lethality was detected by an analogous

procedure. For the NT-650 multiclass problem, the mean was taken over 5 confusion matrices,

each trained on a stratified subset with 4 wells per compound.

2.4.8 Visualization

Motion-trace visualizations were smoothed from 100 Hz to 10 Hz with a sliding window.

T-SNE parameters were scikit-learn defaults. Concentration–response curves were computed

with 1,000 bootstrap samples. kernel density estimate (KDE) were Gaussian, calculated

with statsmodels 0.10 (RRID:016074) [25] by calling kdensityfft with kernel=gau and

bw=normal_reference. Matrix sorting used confusion matrix ordering (CMO) [26] via clana

version 4.0; simulated_annealing was called with default arguments.

2.4.9 Control experiments and battery design

Assays subject to constraints were generated exhaustively, using LED assays, pure tones and

environmental sounds, and combinations. Assays were ranked by the 80th percentile of their

accuracy over the 16 unique treatments. The number-of-fish experiment used 2 randomized

plates, 2 plates / condition.
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D.M-T. designed the experiments, performed the analyses, and wrote the paper. D.M-T.,

C.H., C.S.K., and D.K. developed the hardware and drivers. D.M-T., C.H., and C.S.K.

wrote the software. J.C.T. collected the data and assisted design. R.A., T.A.T., and D.M-T.
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CHAPTER 3

Parallel neurochemical and neurophysiological data

3.1 Preface

Intrigued by the image of a space of phenotypic profiles in a reference set such as NT-

650, we sought data on the post-treatment zebrafish brain. The desire was to paint a

neuropharmacological landscape through multiple data types captured in the same model

animal. Temporally between a compound’s putative MOAs (i.e. from literature) and its

phenotypic profile are data types that can be accessed with high- and moderate-throughput in

vivo techniques. Here, we discuss two: phospho-ERK imaging, and neurotransmitter profiling

by mass spectrometry. Matt McCarroll, Paul Schnier, and Shigenari Hayashi contributed to

this work.

3.2 Phospho-ERK imaging

Phospho-ERK (p-ERK) can be used as a proxy to locate active neurons and active neural

networks in zebrafish. We took this approach with confocal microscopy, generating whole-

brain activity maps in larval zebrafish following treatment with QC compounds (Figures 3.1A

and 3.1B on the following page). P-ERK can be detected in active neurons within minutes

following an action potential. To ensure accumulation of this biomarker, we treated the

animals with compound for one hour, the same treatment duration used in our QC SauronX

data. The resultant maps outlined neuroanatomical regions and specific neurons associated

with QC treatments, summarized in Figure 3.2 on page 34.
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Figure 3.1: Phospho-ERK imaging of zebrafish under compound treatment. (A) Total ERK levels in a
vehicle-treated adolescent zebrafish. n = 1. Confocal projections showing the average fluorescent intensity
of image-registered larval brains stained with anti-phospho-ERK. (B) The ratio of phopho-ERK to total
ERK levels for compound-treated zebrafish, divide by the same ratio for vehicle-treated animals. n = 10
animals / condition. Pixels are white where 𝑝 ≥ 10−4.

3.3 Neurotransmitter profiling by mass spectrometry

In a higher throughput setup, we quantified global (whole-animal) levels of neurotransmitters

by mass spectrometry (Figure 3.3 on page 35).

3.4 Methods

3.4.1 Phospho-ERK imaging

P-ERK imaging was performed as described [1]. Animals were fixed, washed, perme-

abilized, incubated with antibodies, and imaged on a Leica SP8 confocal microscope

(RRID:SCR_018169). Images were registered, averaged, and adjusted for brightness and con-

trast. Heatmaps were computed via Z-Brain MAPmap, Git commit 423ba96b with arguments

nPermutes = 500; FDRThresh = 0.0005; UsingERK = 1. Brightness and contrast were
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Figure 3.3: Optovin (6.25 µM, clozapine (50 µM), ketamine (100 µM), and tracazolate (25 µM) were
tested at the same concentrations as in Table 2.1 on page 13. Thiopental was tested at 50 µM. Haloperi-
dol (6.25 µM), donepezil (50 µM), lidocaine (200 µM), sertraline (12.5 µM), almorexant (50 µM), and
bromocriptine (50 µM). Both tracazolate-treated replicates failed quality–control checks. n = 100 animals
per sample.
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adjusted using Fiji (RRID:SCR_002285). The following antibodies were used: anti-tERK

(1:750, Cell Signaling #4696) and anti-pERK (1:750, Cell Signaling #4370).

3.4.2 Neurotransmitter profiling

Lysate samples were purified by an Oasis Mixed-mode Cation eXchange (MCX) exchange

extraction column (Waters) and dried in a SpeedVac vacuum concentrator (Thermo Fisher

Scientific). Samples were reconstituted in 10 µL 70% acetonitrile. Liquid chromatography-

–mass spectrometry (LC–MS) experiments were performed on an Orbitrap Fusion Lumos

Tribrid Mass Spectrometer (RRID:SCR_020562)) interfaced to a nano-liquid chromatography

(LC) system (Thermo Fisher Scientific).

Mobile phases A and B consisted of water and acetonitrile, respectively. The loading

chromatography conditions were 70% B, which was increased linearly to 97% over 25 min using

a ZIC Hilic column (SeQuant) column with 1 µL injection volume. The nano-electrospray

ionization (nano-ESI) source was operated in both positive and negative ionization modes

with a capillary voltage of ± 1900 V. Mass spectra were acquired in the 𝑚/𝑧 range of 70 Da

to 700 Da. Xcalibur (Thermo Fisher Scientific) was used for mass spectrometry (MS) control,

data collection, and analysis. Relative quantification of analytes was obtained by generating

an extracted ion chromatogram (XIC) for each ion and comparing the average area for 3 runs

per sample.
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Figure A.1: Example captured frame with ROI overlay.
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Table A.1: Database identifiers for referenced SauronX data.

Dataset Runs
C–R QC 6883,6885,6887,6888,6894,7029,7030,7031
O-D QC 7327,7329,7330,7331,7349,7473,7521,7522,7605
NT-650 7667,7638,7706,7649,7971,7944,7697,7705,7672,7693,7975,7701,

7666,7972,7710,7681,7974,7694,7686,7709,7679,7682,7687,7731,
7743,7983,7751,7987,7970,7771,7759,7980,7783,7762,7940,7957,
7772,7801,7806,7824,7823,7977,7831,7984,7828,8232,8233,8231,
8238,8234,8226,8225,7943,8235,8237,8239,8241,7988,8240,8229,
8230,8228,8227,8236,7833,7832,7829,7830,7836,7834,7849,7842,
7841,7847,7840,7850,7882,7894,7900,7895

Prestwick 8433,8434,8435,8436,8443,8444,8445,8448,8459,8460,8461,8462,
8463,8464,8465,8466

DIVERSet 6579,6580,6634,6636,6647,6664,6666,6669,6671,6673,6679,6682,
6684,6685,6688,6692,6695,6698,6701,6703,6705,6706,6708,6712,
6714,6716,6720,6722,6725,6727,6728,6730,6756,6759,6761,6766,
6768,6773,6775,6777,6778,6783,6801,6803,6804,6808,6811,6813,
6815,6825,6845,6848,6851,6855,6865,7035,7036,7038,7083,7088,
7097,7098,7140,7143,7147,7174,7180,7218,7219,7222,7257,7258,
7259,7264,7280,7282,7283,7287,7290,7293,7294,7296,7311,7314,
7315,7320,7325,7376,7380,7382,7385,7387,7390,7399,7401,7403,
7404,7406,7410,7412,7413,7414,7418,7424,7435,7436,7441,7446,
7448,7450,7453,7457,7459,7461,7464,7468,7469,7470,7477,7479,
7491,7493,7495,7507,7509,7512,7927,7928

Identifiers correspond to the tag field of the database table runs.
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