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A COMPARISON OF THREE MODELS FOR A HUMPHREYS-TYPE

CONDITIONING SITUATION~/

by

Richard C. Atkinsong/

Summary.

Three models for a Humphreys-type conditioning situation are presented. In

model I experimental trials are viewed as discrete units, and the possible influ-

ence of trace stimuli on behavior is not considered. Models II and III are

members ofa class of representations which incorporates a concept of trace

stimuli as determining components of SUbsequent behavior. Functions expressing

the expected probabilities of responses are derived and predictions for the

three models compared.

The purpose of this paper is to provide an analysis ofa Humphreys-type

conditioning situation in terms of statistical learning theory [3,4,6]. We

consider an experimental situation in which each trial begins with the presen-

tation of a signal. Following the signal, one or the other of two reinforcing

events, El or E2, occurs; the probability of El and E
2

during a given

series being rr and (l-rr) respectively. The subject is instructed to pre-

dict on each trial which event, El or E
2

, will occur. The behaviors available

to the subject are categorized into two classes, Al and A2; an Al
response

is a prediction by the subject that El will occur, and an A2
response is a

~/ This research was supported the Sciences Division of the
Ford Foundation and in part by the Office of Naval Research under Contract NR 171-

g/ The author wishes to thank ProfessorP. Suppes for suggestions in carry
ing out this research.
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prediction that E
2

will occur.

In analyzing the situation the experimental psychologist is primarily

interested in two questions: (a) what is the relation between ~ and the

asymptotic probability of an Al response and (b) what is the relation

between ~ and the rate of approach to the asymptote.

2. Model L Several investigators [1,2,5,7] have,provided the following

interpretation of the situation in terms of statistical learning theory.

They suggest that the stimulus governing the subjects response on each trial

is the signal. The signal is conceptualized as a population, S , of stimulus
c

elements which is sampled by the subject on each presentation of the signal;

the probability of any given element being sampled is e. By association
...

principles [4] an element sampled from Sc
on a trial will become con-

ditioned to response Al if an E
l

event occurs and to response A2 if

an E
2

event occurs. The probability of an Al response at the end of

are conditioned to

is defined in the model as the proportion of elements intrial n

AI' and similarly for the probability of an

S
c

A ')j
2·

that

We can then define the probability, p(n), that a given element in

is conditioned to Al at the start of trial n as

S
c

(1) pen) = (l-e)p(n-l) + e if an El occurred on trial n-l ,

or

pen) =: (l-e)p(n-l) if an E
2

occurred on trial n-l .

1/ The reader is referred to Estes and Burke [4] for a statement of the
rationale underlying these assumptions.
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This leads to an expected difference equation

pen) = (1-9)p(n-l) + 91C,

whose solution is

pen) = 1C - [1C - p(a)](1_9)n ,

where pea) is the probability that the given element is conditioned to an

Al response at the start of the first trial.

The mean value of pen) over all elements in S is the expected pro
c

portion of elements conditioned to A
l

. We have assumed that 9 is the same

for all elements in S , and may therefore interpretc pen) as the probability

of an Al response at the start of trial n.

By inspection of equation (3) we see model I predicts that (a) the pro-

bability of an Al response approaches 1C as n becomes large, and (b) the

rate of approach~/ is independent of 1C.

In the remaining part of this paper we develop alternative formaliza-

tions of the stimulus governing the subject's response and investigate the

relationships between these models and the above model.

3. Model II. We assume that the stimulus governing the elicitation of a

response on each trial is a compound of both (a) the signal stimulus and

(b) the reinforcing stimulus of the previous trial.

Let S represent the set of stimulus elements associated with thec

~7 Rate of approach, in this paper, refers to the term raised to the
power n. For example in equation (3), the term (1-8).
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the set associated with the occurrence ofE. (i=1,2); assume
1

the three sets are pairwise disjoint. The sampling parameter associated with

8
c

is 8', with 8
1

is 8
1

, and with 8
2

is 8
2

, For most experimental

arrangements it is natural to assume 8
1

= 8
2

; hence, to simplify notation,

Then on trial n the stimulus governing the probability of response is

composed of (a) samples from 8c and 81 if El occurred on trial n-l and

(b) samples from 8
c

and if occurred on trial n-l.

We define the following probabilities.

p (n): probability that a given element in 8 is conditioned to Alc c
at the start of trial n.

Pl(n): probability that a given element in 81 is conditioned to Al
at the start of trial n.

P2(n): probability that a given element in 8
2

is conditioned to ~
at the start of trial n.

By the same development employed in model I,

(4) p (n) = ~ - [~ - p (O)](1_8,)n .
c c

For Pl(n), however, we have a probability ~ on each trial that 8
1

is available for sampling and, in addition, a probability e that a given

element is sampled. That is, on any trial n there is a probability 8~

that an element in 81 is sampled. Hence
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Pl (n) = (1-811: )Pl(n-l) + 8 11:

or

The expected difference equation is then

if an E
l

occurs on trial n-l,

if an E
2

occurs on trial n-l .

(6)

A similar argument leads to the following expression for P2(n).

Solving equations (6) and (7) we obtain

(8)

where Pl(l) and P2(1) represent the probability that a given element is

conditioned to Al at the start of the second trial.

Next define p.[nIE.] as the probability that an element in S. is con-
l l l

ditioned to the Al response at the start of trial n, given that an E.
l

event occurred on trial n-l. By conditional probability considerations

(10)
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and

(11)

One final definition is required before we can write the probability of an

Al
response associated with the compound stimulus S and S. ' In the presence

c l

of S and Sl the effect of S on response probability is 0:1
and the effect

c c

of Sl is (1-0:1 ) . Similarly, 0:
2

is defined for S and S2' Again, in mostc

experimental arrangements, it is natural to assume 0:1 = 0:
2

and hence we let

We can now write the expected probability of an Al response at the start

of trial n,

Substituting equations (8) and (9) into equations (10) and (11) and, in

turn, substituting the results into equations (12) yields the fOllowing expres-

sion,

- o:[rr-p (O)](l_e,)n
c

- (l-o:)rr[ rr - Pl (1)] (l_err)n-l

The function is defined for n=1,2, "0 For the first trial (n=O) we
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let p(O) = P (0).
c

An inspection of equation (13) indicates that for a < 1, pen) ap

1proaches an asymptote above ~ for 2 < ~ < 1 and an asymptote below ~

for For
1

~ ::::: 0, 2 ' or 1 the asymptote is ~. Further, the

approach to the asymptote is a function of e, e i and ~. For a = 1, equa-

tion (13) reduces to equation (3).

4. Model III. We assume that the stimulus which determines response proba-

bility on each trial is a compound of the reinforcing stimuli of the two

previous trials. More specifically, there are four stimuli, one of which

is present on each trial, that determine response probability. We define

the following fourpaiFwise disjoint sets of stimulus elements.

8 .. : set available for sampling on trial n given that an E
l
. reinforc

lJ

ing event occurred on trial n-2 and an E.
J

reinforcing event

8 ..
lJ

occurred on trial n-l, where i=1,2 and j:::::l,2.

Again we assume the sampling constants associated with the four sets are

equal and denoted by 6.

Next define Pij(n) as the probability that a given element in set

is conditioned to the Al response at the start of trial n.

By considerations similar to those for equation (5) we obtain for an

element in 811 a probability ~2 that the set 811 is available for samp

ing on a given trial and, hence, a probability 6 ~2 that a given element

8
11

is sampled on the trial. Therefore

(14) 2 2
::::: (1-611: )Pll(n-l) + e ~ if occurred on trial n-l
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or

2
Pll(n) = (1-81C )Pll(n-l) if E2 occurred on trial n-l.

This leads to the expected difference expression

By identical considerations we obtain

(16)

(18)

Next define p .. [nIE.E.] as the probability that an element in S..
lJ l J lJ

is conditioned to Al at the start of trial n given that an Ei event

occurred on trial n-2 and E. on trial n-l. By conditional probability
J

considerations

222
= 1C [Pll(n-2)(1-8) + 8(1-8) + 8] + [1-1C ]Pll(n-2) ,
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We can now define the expected probability of an A
l

response on trial

n as

p(n)

Solving recursive expressions (15)-(18), substituting the results in

equations (19)-(22), and in turn substituting these results in equation (23)

we obtain for the probability of an A
l

response at the start of trial n

2 2 2 n-2
- ~ [1 - ~ (28 - 8 )]711~11

where 2 2
7ij = ~ - Pij(2), ~ll = 1 - 8 ~ , ~22 = 1 - 8(1-~) , and ~12 = ~21

= 1 - 8 ~ (l-~). The function is defined for n=2,3,... . In dealing with

most experimental situations where no initial preference exists between Al
1 1

and A2 it would be reasonable to assume p(O) = 2 and p(l) = (1-8)2 + 8~.

5. Comparison of Model I and Model III. In this section we are concerned

with a comparison between model I and III. But it should be noted that for

all comparisons the result obtained by model II, for any 0, will be bounded

by the results of models I and III.
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Let PI(n) be the probability of an A
l

response defined in equation (3)

and PIII(n) be the probability of the same response as defined in equation

1(24). Further, for simplicity let PI(O) =PIII(O) = 2 and, since PIII(l)

is not defined, let PI(l) = PIII(l).

An inspection of equations (3) and (24) indicates that the asymptotic

1
values for model I and model III are equal for :rr = 0, 2 ' or 1. In the

interval 0 < :rr <~, PI ( 00) > Plrr (00) while for ~ < :rr < 1, Pr ( 00) < PrrI( 00 ).

Next, define the functions

N-l
Xr (N,11:) = N 11: - L. Pr(i) ,

i=O

and

(26)

For :rr = 1

and

1
lim X(N,l) - 28

N ~ 00

Using the value of e obtained in equation (27) we can compute Xr(N,:rr) and

1
XIII(N,:rr) for any value of 11:. Xr(N,:rr) = XrrI (N,11:); for :rr = 0'2 ' or 1;

X
I

(N,11:) < X
rrr

(N,11:), for all other values of :rr. Stated differently, the

rate of approach to the asymptote for :rr = 0 or 1 is identical for models

I and rII, but for other values of :rr, the rate predicted by model I is

greater than the prediction by model III.
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