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A COMPARISON OF THREE MODELS FOR A HUMPHREYS-TYPE
CONDITTONING SITUATIONE/

by
. . 2/
Richard C. Atkinson

Summary.

Three models for a Humphreys-type conditioning situation are presented. 1In
model T experimental trials are viewed as discrete units, and the possible influ-
ence of trace stimuli on behavior is not considered. Models II and III are
members of a class of representations which incorporates a concept of trace
stimuli as determining components of subsequent behavior. Functions expressing
the expected probabilities of responses are derived and predictions for the

three models compared.

1. Introduction.

The purpose of this paper is to provide an analysis of'a'Humphreys-type
conditioning situation in terms of statistical learning theory [3,4,6]. We
consider an experimental situation in which each trial begins with the presen-
tation of a signal. Following the signal, one or the other of two reinforcing

events, E or E2, occurs; the probability of E and E during a given

1 2

1

series being n and (l-n) respectively. The subject is instructed to pre-
dict on each trial which event, El or EE’ will occur. The behaviors available

to the subject are categorized into two classes, A and A.; an A

1 o response

1

is a prediction by the subject that E, will occur, and an A2 response is a

1
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prediction that E2 will occur.
In analyzing the situation the experimental psychologist is primarily
interested in two questions: (a) what is the relation between =x and the

asymptotic probability of an A, respanse and (b) what is the relation

between = and the rate of approach to the asymptote.

2. Model T. Several investigators [1,2,5,7] have provided the following
interpretation of the situation in terms of statistical learning theory.

They suggest that the stimulus governing the subjects response on each trial
is the signal. The signal is conceptualized as a population, Sc, of stimulus
elements which is sampled by the subject on each presentation of the signal;
the probability of any given element being sampled is ©. By association
principies [4] an element sampled from SC on a trial will become con-
ditioned to response Al if an El event occurs and to response A_ if

2

an E2 event occurs. The probability of an A, response at the end of

1

trial n is defined in the model as the proportion of elements in Sc that
are conditioned to Al, and similarly for the probability of an Ag.i/
We can then define the probability, p(n), that a given element in Sc

is conditioned to Al at the start of trial n as

(1) p(n)

(1-8)p(n-1) + & if an E, occurred on trial n-1,

or

(1-8)p(n-1) if an E, occurred on trial n-1 .

p(n)

i/ The reader is referred to Estes and Burke [4] for a statement of the
rationale underlying these assumptions. '




This leads to an expected difference equation

(2) p(n) = (1-6)p(n-1) + &=,

whose solution is

L4

(3) p(n) = - [ - p(0)](1-6)"

where p(0) is the probability that the given element is conditioned to an
Al response at the start of the first trial.

The mean value of p(n) over all elements in Sc is the expected pro-
portion of elements conditioned to Al' We have assumed that © 1s the same
for all elements in S, and may therefore interpret p(n) as the probability
of an Al response at the start of trial n.

By inspection of equation (3) we see model I predicts that (a) the pro-
babllity of an Al response approaches = as n becomes large, and (b) the
rate of approach&/ is independent of =x.

In the remaining part of this paper we develop alternative formaliza-

tions of the stimulus governing the subject's response and investigate the

relationships between these models and the above model.

3. Model II. We assume that the stimulus governing the elicitation of a
response on each trial is a compound of both (a) the signal stimulus and
(b) the reinforcing stimulus of the previous trial.

Let Sc represent the set of stimulus elements associated with the

E/ Rate of approach, in this paper, refers to the term raised to the
power n. For example in equation (3), the term (1-8).



signal and Si the set associated with the occurrence of 'Ei (i=1,2); assume
the three sets are pairwise disjoint. The sampling parameter associated with

S is ©', with S

o 1 . For most experimental

is Gl, and with 82 is 92

arrangements it is natural to assume 61 = 62; hence, to simplify notation,

we let 91 = 62 = 6.
Then on trial n the stimulus governing the probability of response is
composed of (a) samples from 8, and 8, if E, occurred on trial n-1 and

(b) samples from s, and 8, if E, occurred on trial n-1.

We define the following probabilities.

pc(n): probability that a given element in S  is conditioned to A

at the start of trial n.

pl(n): probability that a given element in Sl is conditioned to Al
at the start of trial n.

pg(n): probability that a given element in §, is conditioned to A
at the start of trial n.

By the same development employed in model I,
n
(%) p,(n) = m - [x - p (0)](1-8")" .

For pl(n), however, we have a probability = on each trial that 8,
is available for sampling and, in addition, a probability © that a given
element is sampled. That is, on any trial n there is a probability 6=

that an element in Sl is sampled. Hence




(5) p, (n)

(l-ejt)pl(n-l) +&n if an E, occurs on trial n-1,

or

pl(n) (l-egt)pl(n—l) ' if an E, occurs on trial n-1l .

2
The expected difference equation is then

(6) p(n) = (1-0 x)p (n-1) + Ox°

A similar argument leads to the following expression for pg(n).

(7) py(n) = [1-6(1-m)]p,(n-1) + 8(1-m)x -

Solving equations (6) and (7) we obtain

(8) p(n) = = - [x-p,(1)][1-62]"""

(9) py(n) = x - [x-py(1)1[1-6 + 0210

where pl(l) and pz(l) represent the probability that a given element is
conditioned to Al at the start of the second trial.

Next define pi[n|Ei] as the probability that an element in Si is con-
ditioned to the Al response at the start of trial n, given that an Ei

event occurred on trial n~l. By conditional probability considerations

(10) p,[n|E ] = (1-n)p; (n-1) + «[(1-8)p, (n-1) + 6]



and
(11) py[n|B,] = 7 py(n-1) + (L-m)[(1-8)p,(n-1)] .

One final definition is required before we can write the probability of an

Al response associated with the compound stimulus Sc and Si. In the presence

of Sc and Sl the effect of Sc on response probability is al and the effect

of S, is (l-al), Similarly, o

1 is defined for Sc and S,.. Again, in most

2

experimental arrangements, it is natural to assume Q) = a2 and hence we let

2

We can now write the expected probability of an A.l response at the start

of trial n.

(12) p(n) = & py(n) + (1) {x p;[a]E)] + (1-m)py[n]E) )

Substituting equations (8) and (9) into equations (10) and (11) and, in
turn, substituting the results into equations (12) yields the following expres-

sion.

(13) p(n) = n + (1-)8[3x° - n - 21°]

+

af x-p_(0)1(1-6")"

(1-a)n[=n - pl(l)](l-eﬁ)n_l

(1-a)(1-7)[xn - pg(l)](lqe + 8 “)n-l .

The function is defined for n=1,2,... . For the first trial (n=0) we




let p(0) = pc(o).
An inspection of equation (13) indicates that for a < 1, p(n) ap-
proaches an asymptote above =z Zfor % < <1l and an asymptote below =

1
for 0< < 5 - For x = O, % » or 1 the asymptote is =n. Further, the
approach to the asymptote is a function of ©, 6' and =x. For « = 1, equa-~

tion (13) reduces to equation (3).

. Model ITI. We assume that the stimulus which determines response proba-
bility on each trial is a compound of the reinforcing stimuli of the two
previous trials. More specifically, there are four stimuli, one of which

is present on each trial, that determine response probability. We define

the following four pairwise disjoint sets of stimulus elements.

Sij: set available for sampling on trial n given that an Ei reinforec-
ing event occurred on trial n-2 and an Ej reinforcing event

oceurred on trial n-l, where i=1,2 and J=1,2.

Again we assume the sampling constants associlated with the four sets are
equal and denoted by 6.

Next define Pij(n) as the probability that a given element in set Sij
is conditioned to the Al response at the start of trial n.

By considerations similar to those for equation (5) we obtain for an

is available for samp-

element in Sll a probability ﬂg that the set Sll

ing on a given trial and, hence, a probability © ﬂ2 that a given element

Sll is sampled on the trial. Therefore

(14) pll(n) = (l-eyfz)pll(n-l) + 0 ne if E, occurred on trial n-1



or

2 R .
pll(n) = (1-6xn )pll(n—l) if E, occurred on trial n-1.
This leads to the expected difference expression
(15) b, (n) = (1-6x°)p  (n-1) + © «
11" 11

By identical considerations we obtain

(16) plg(n) = [1-8 n(l—n)]ple(n-l) + e(l-ﬁ)ﬂ2
(17) Dy (1) = [1-6 5 (1-1)]p, (n-1) + O(1-s)x"
(18) p22(n) = [l—e(l—ﬂ)21p22(n-l) + 6(l-n)2n .

Next define pij[n|EiEj] as the probability that an element in Sij

is conditioned to Al at the start of trial n given that an Ei event

occurred on trial n-2 and Ej on trial n-1. By conditional probability

considerations

(19) by, [0]E,E ] = «°[p | (n-2)(1-6)° + 6(1-6) + ] + [1-x°1p, (n-2) ,
(20) p1o[0]E B, = n(1-1)[p, ,(n-2)(1-6) + 6] + [1-n(1-n)Ip,,(n-2) ,
(21) Py [0]EE ] = x(1-n)[p,, (n-2)(1-0)] + [1-x(1-x)Ip, (n-2) ,

(22) PoolnlBE,] = (1-1)%[pyy(a-2)(1-0)%] + [1-(1-x)%Ip p(n-2) -




We can now define the expected probability of an A, response on trial

1

n as
(23) : p(n) = o py;[0|EE ] + n(1-n)p [0 E)
+ “(l‘“)Pgl[n‘E2E11 + (l-n)2 p22[n'E2E2]

Solving recursive expressions (15)-(18), substituting the results in
equations (19)-(22), and in turn substituting these results in equation (23)

we obtain for the probability of an Al response at the start of trisl n

(24) p(n) = = + (26 - 62)[n4(l—n) - ﬂ(l—ﬂ)u] - 6[(l—n)212(2n-l)]

2 2 2 n-2

-2 -2
w(1-2)[1 - 8 (1-m)107yB)5 + 7p1Ppy ]

n-2
22

(1-m)%[1 - (1-m)"(20 - 6%)1y,8

2 2
where 713 = " - pij(e), By =1-0n,B,,=1- 6(1-x)°, and Bio = Boy

=1 - 0x(l-n). The function is defined for n=2,3,... . In dealing with

most experimental situations where no initial preference exists between Al

and p(1) = (1-0)% + 61 .

and A, it would be reasonable to assume p(0) = L 5

2

5. Comparison of Model I and Model ITII. In this section we are concerned

with a comparison between model I and III. But it should be noted that for
all comparisons the result obtained by model II, for any @, will be bounded

by the results of models I and III.
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Let pI(n) be the probability of an Al response defined in equation (3)
and pIII(n) be the probability of the same response as defined in equation
(24). Further, for simplicity let pI(O) = pIII(O) = % and, since (1)
= Prpp(1)-

An inspection of equations (3) and (24) indicates that the asymptotic

Pr1r
is not defined, let pI(l)

values for model I and model IITI are equal for =« = O, % s or 1. TIn the
. 1 i 1 .
interval 0 < <3, pI(oo) > pIII(oo) while for Z < x <1, pI(oo) < pIII(om).

Next, define the functions

N-1
(25) Xp(Wy) = W - zzg-Px(i) )
and
N-1
(26) Xppp(Moat) = N - ?"6 (1) -

For n =1

%7 (W,1) = Xy (W,1)
and
(27) lim  x(W,1) = <,
26
N - o0

Using the value of © obtained in equation (27) we can compute ‘XI(N,ﬂ) and
. 1

IIT o
(N,%), for all other values of =. Stated differently, the

(N,x) for any value of . XI(N,n) = (N,n); for = = 0, , or 1;

*111
XI(N,ﬂ) < X711
rate of approach to the asymptote for w= 0 or 1 1is identical for models
I and ITI, but for other values of =, the rate predicted by model I is

greater than the prediction by model III.
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