Lawrence Berkeley National Laboratory # **LBL Publications** ## **Title** Note on Transistors for Avalanche-Mode Operation ## **Permalink** https://escholarship.org/uc/item/7114z399 ## **Authors** Miller, Harold W Kerns, Quentin A ## **Publication Date** 1962-05-01 # NOTE ON TRANSISTORS FOR AVALANCHE-MODE OPERATION Harold W. Miller and Quentin A. Kerns # TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545 # LAWRENCE RADIATION LABORATORY UNIVERSITY of CALIFORNIA BERKELEY #### **DISCLAIMER** This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. # UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory Berkeley, California Contract No. W-7405-eng-48 # NOTE ON TRANSISTORS FOR AVALANCHE-MODE OPERATION Harold W. Miller and Quentin A. Kerns May 23, 1962 # NOTE ON TRANSISTORS FOR AVALANCHE-MODE OPERATION* Harold W. Miller and Quentin A. Kerns Lawrence Radiation Laboratory University of California Berkeley, California May 23, 1962 We have found that selected Motorola transistors of the MM-486, MM-487, and MM-488 type are quite useful for avalanche-mode operation. Figure 1 shows a circuit used in conjunction with a traveling-wave oscilloscope for selecting avalanche units. The output of the line-type pulse generator is 40 to 60 volts (either polarity of output is available), and the rise time is less than 0.5 nsec. Figure 2 shows a plot of the static V-I characteristics of the collector-to-emitter junction for various units, avalanching and nonavalanching. Both avalanching and nonavalanching transistors of this type exhibit similar static characteristics, which thus offers little help in the selection of avalanche units. However, for avalanching units, negative-resistance regions (as shown in Fig. 2) should be avoided if time and amplitude jitter of the output pulse are to be minimized. In addition, it is significant that if a transistor avalanches at all, it will do so anywhere in the flat portion of the curves of Fig. 2, i.e., the standing current is not critical. The wide operating range is desirable, but has not been found in avalanche units previously used by the authors. At the higher end of the current range, some units free-run and are useful as high-rep-rate pulse generators. One can expect that 10 to 30% of the transistors will avalanche. There is some indication that those of the low-beta type (MM-486) give the best yield. There is a time delay of a few nanoseconds between application of a trigger pulse and the rise of the main avalanche current. Figures 3 and 4 show this delay, measured between the 50% point of the trigger-voltage waveform and the 50% point of the avalanche output waveform, as a function of trigger-voltage amplitude (Fig. 3) and static-collector current (Fig. 4). A temperature change from 70 to 150° F has negligible effect on time delay, but raises the breakdown knee (Fig. 2) to higher current (e.g., from 2×10^{-3} to $8\times10^{-3}\mu\text{A}$). This work was done under the auspices of the U.S. Atomic Energy Commission. #### FIGURE LEGENDS - Fig. 1. Avalanche test circuit. The circuit is triggered by a positive 2-nsec pulse from the mercury-switch pulser. Transformer T_1 is a 2:2 winding on a Ferroxcube 208 F125-3C core. `A low-capacitance vacuum-tube voltmeter is used to measure the collector-to-emitter voltage V_{CE} , and is removed before the pulse test. - Fig. 2. Direct-current V-I characteristics. Breakdown of nonavalanching and avalanching transistors is compared for a zero base-to-emitter junction at 25°C. - Fig. 3. Avalanche firing delay time as a function of the base-to-emitter trigger voltage at 25°C. The unit ceases to fire below 0.96 volts for $I_c = 10\mu A$, and below 0.8 V for $I_c = 200\mu A$. - Fig. 4. Avalanche firing delay time as a function of the dc collector current (for a typical avalanche unit) at 25°C. The unit was turned on with a base drive voltage of 2.5-v amplitude and 4-nsec pulse width. Fig. 1. Fig. 2. This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: - A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or - B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report. As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.