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Abstract The vibrational spectrum of granular packings can be used as a signature of the jamming transi-
tion, with the density of states at zero frequency becoming nonzero at the transition. It has been proposed
previously that the vibrational spectrum of granular packings can be approximately obtained from random
matrix theory. Here, we show that the autocorrelation function of the density of states shows good agree-
ment between dynamical numerical simulations of frictionless bead packs near the jamming point and the
analytic predictions of the Laguerre orthogonal ensemble of random matrices; there is clear disagreement
with the Gaussian orthogonal ensemble, establishing that the Laguerre ensemble correctly reproduces the
universal statistical properties of jammed granular matter and excluding the Gaussian orthogonal ensem-
ble. We also present a random lattice model which is a physically motivated variant of the random matrix
ensemble. Numerical calculations reveal that this model reproduces the known features of the vibrational
density of states of frictionless granular matter, while also retaining the correlation structure seen in the
Laguerre random matrix theory.

1 Introduction

Granular materials are a class of systems which are out
of equilibrium and not easy to understand within the
framework of standard statistical mechanics. For static
assemblies, the distribution of forces [1,2] and the con-
tinuum limit [3] are difficult to obtain. This is because
interparticle contacts are very stiff: a slight compression
of two particles that are in contact, by an amount that
is much less than the interparticle separation, gives rise
to large forces. Added complications are caused by the
fact that, for noncohesive granular matter, two particles
in contact repel each other when they are compressed,
but do not attract each other when they are moved
away from each other and the contact is broken; that
the repulsive force between particles is not a linear func-
tion of their compression when the compression is small;
[4] and that there are frictional forces between particles,
[5] resulting in history dependent forces. The dynamic
properties of granular matter are difficult to understand
because interparticle collisions are strongly inelastic. If
a high density of particles builds up in a region because
of random fluctuations, the collision rate and therefore
the rate of energy loss increases in the region. This can
trap particles in the region, causing the density fluc-
tuations to grow. [6] Experimentally, one observes dis-
tinctive phenomena such as force chains and stability
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against mechanical collapse in very sparse static pack-
ings, non-Maxwellian velocity distributions [7–9] and
inelastic collapse in dilute granular gases, [10,11] and
shear thinning and shear thickening. [12]

The tendency of flowing granular matter to get
‘jammed’ and stop flowing at low densities is a practical
problem that limits the flow rate in the industrial use
of granular materials. [13] Remarkably, the transition
from a flowing to a jammed state in granular matter,
structural glasses, and foams and colloids, can be stud-
ied with a unified approach. [14] When the transition
occurs at zero temperature and zero shear stress as the
density is varied, the transition point is called ‘Point
J,’ [15] and is characterized by diverging length scales
[16,17] suggestive of a second-order phase transition. At
the same time, other properties of the system change
discontinuously at Point J [15] as one would expect at
a first-order phase transition.

The density of states for vibrational modes in a gran-
ular system is one of the properties that has a signa-
ture of the transition at Point J. A jammed granular
system has mechanical rigidity. Even though the force
between two particles is a nonlinear function of the
compression between them, the small deviations from
the jammed state (which already has nonzero compres-
sion) can be analyzed using a linear model, resulting
in normal modes. Extensive numerical simulations [15]
on systems at zero temperature and zero shear stress
show that the density of states ρ(ω) as a function of ω
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approaches zero linearly as ω → 0 if the particle density
is greater than the critical density. As the particle den-
sity is reduced, the slope of ρ(ω) at the origin becomes
steeper, until at Point J, ρ(ω → 0) �= 0.

In the linearized analysis of vibrational modes, the
system can be treated as a network of random springs,
with the number of springs decreasing as Point J is
approached. It is natural to analyze the problem using
random matrices, and see how the resultant density
of states evolves near the transition. This has been
done [18,19] using the Laguerre ensemble instead of the
Gaussian orthogonal ensemble (GOE) for the random
matrices, in accordance with—as discussed in the next
section of this paper—the symmetries of the problem.
The model yields a broad peak in the density of states
that reaches ω = 0 as the transition is approached.
However, the model also predicts a gap in the density
of states near ω = 0 above the transition, which does
not match the numerical results. This is not surpris-
ing, because the density of states predicted by random
matrix theory is well known to suffer from non-universal
effects [20]. For instance, the density of states can be
changed at will by varying the assumed distribution of
the matrix elements. [21] Instead, the correlations in
the density of states and the distribution of level spac-
ings are more reliable indicators of the validity of the
random matrix approach [20].

The agreement of the level spacing distribution with
the GOE result has been observed elsewhere [22,23]
without reference to the Laguerre ensemble. The dis-
tribution of level spacings has been studied for the
Laguerre ensemble [24], without comparing to the
numerical data for bead packs, but it is unfortunately
indistinguishable from the results for the GOE. Taken
together, Refs. [22–24] show that the level spacing dis-
tribution for bead packs is consistent with random
matrix theory, without being able to confirm the appro-
priate ensemble.

To summarize, the density of states for random
matrix ensembles is known to be a non-universal fea-
ture; not surprisingly, therefore, the density of states
for the simplest version of the Laguerre ensemble shows
qualitative differences from the density of states of gran-
ular vibrational modes observed in numerical simula-
tions. On the other hand, the level spacing distribu-
tion is found to be too universal: there is agreement
between the Laguerre ensemble and numerical simu-
lations, but there is equally good agreement between
the GOE and numerical simulations. Thus, neither of
these can be considered as conclusive evidence for the
Laguerre ensemble.

In this paper, we therefore turn to the correlations
in the density of states predicted by random matrix
theory. We consider the correlation function for the
Laguerre ensemble, which differs from that for the GOE
near the low-frequency edge of the allowed range of
ω [25]. By comparing the correlations in the numer-
ically computed vibrational spectrum of frictionless
bead packs near the jamming transition to the predic-
tions of the Laguerre ensemble and the GOE, we are

able to demonstrate good agreement with the former
and to exclude the latter.

In addition, we construct a random lattice model,
which is a physically motivated variant of the random
matrix ensemble. Although it is not possible to calcu-
late the properties of this model analytically, numerical
results reveal that all the qualitative features of ρ(ω) are
reproduced. At the same time, the correlation functions
and the level spacing distribution seen in the idealized
random matrix theory are not significantly changed.
Models that are essentially mean field versions of our
model have been studied earlier [26,27], and differ from
our results mainly in the fact that the low-frequency
ρ(ω) ∼ ωd−1 behavior for a d-dimensional system is
not seen. The random lattice model is a variation of
a model used earlier to study the static properties of
free-standing granular piles (with vector forces) [28]; the
fact that such similar models yield results in agreement
with different experiments increases the credibility of
the model.

Other authors have studied variations of random
matrix theory: Ref [29] is an early random matrix model
for the related problem of the vibrational spectrum of
glasses close to the glass transition. Reference [30] stud-
ies several different random matrix ensembles and their
effect on the structure of eigenmodes with frequencies
in the boson peak. Reference [31] uses weighted Lapla-
cian dynamical matrices to reproduce an intermediate
regime in ρ(ω) (between the boson peak and the low-
frequency behavior) and ∼ ω4 scaling of the density of
states in this regime. Reference [32] uses a combination
of a random and a regular matrix for the dynamical
matrix, to eliminate the gap near ω = 0. Also, Ref. [33]
has studied an abstract model that they argue is in the
appropriate universality class.

The rest of this paper is organized as follows. Sec-
tion 2 reviews why the symmetry properties of the sys-
tems in which we are interested are in the Laguerre
universality class rather than the GOE. Section 3 has
the first main result of this paper: that the analyti-
cally calculated autocorrelation function for the den-
sity of energy levels of the Laguerre orthogonal ensem-
ble agrees with the correlation function from dynami-
cal simulations on bead packs, in the vicinity of Point
J, but that this is not true for the correlation function
for the Gaussian orthogonal ensemble. Section 4 has the
second main result of this paper: that the random lat-
tice model, which retains some spatial correlations dis-
carded by the simple random matrix model, is numer-
ically found to have a similar behavior for the density
of energy levels as seen in the molecular dynamics sim-
ulations, both at and away from Point J. The energy
level correlation function and the level spacings for the
random lattice model are also seen to agree with the
molecular dynamics results (and the Laguerre ensem-
ble results), in accordance with the expectation that
such correlations should only depend on the symme-
tries of the problem instead of the model details. Thus,
the random lattice model retains the points of agree-
ment between the Laguerre ensemble and molecular
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dynamics, and also successfully reproduces the density
of states.

2 Laguerre ensembles

We follow the approach of Ref. [18,19] here. Within lin-
ear response, if the particles in a frictionless granular
assembly are displaced slightly from their resting posi-
tions, their accelerations are of the form ẍ = −Kx,
where x is a N component column vector with (a
rescaled version of) the displacements of all the par-
ticles and K is a N × N matrix called the dynamical
matrix [34]. If d is the dimensionality of the granular
assembly, then each particle has d components to its
displacement, and N is therefore equal to d times the
number of particles.

The crucial observation [35,36] is that the connection
between accelerations and displacements is a two-step
process. Within linear response, each contact between a
pair of particles can be represented as a spring that has
been precompressed by some amount. Thus, one has a
network of springs, with various spring constants. When
a particle is displaced, it stretches (or compresses) each
spring that it is connected to, by an amount that is
equal to the component of its displacement along that
spring. Thus, we have

Δ�α = Ãαjxj (1)

where Δ�α is the amount by which the spring labeled
α is compressed. Here, xj is one component of the dis-
placement of one of the particles in the assembly. If
the particle is one of the two that is involved in the
α’th contact, then Ãαj is simply cos θαj , where θαj is
the angle between the direction of the α’th spring and
the direction of the j’th displacement, i.e., cos θαjxj is
the compression of the contact caused by the displace-
ment. If xj is not associated with either of the particles
involved in the α’th contact, then Ãαj = 0. Note that
Ã is a rectangular matrix: if there are M interparticle
contacts and N particle displacements, then Ã is an
M × N matrix. As one approaches Point J, the num-
ber of contact forces decreases, being equal to N at the
transition.

The spring exerts a restoring force that is propor-
tional to this compression; the spring constant kα can
be different for each spring. The restoring force on each
particle is the sum of the forces from all the springs it
is connected to. Therefore,

mj ẍj = −ÃT
jαkαΔ�α, (2)

i.e., the α’th contact force acts as a restoring force on
xj only if xj is associated with one of the two parti-
cles involved in the α’th contact, in which case AT

jα is
the same projection factor cos θαj that we had in the
dependence of fα on xj . Putting this equation together

with Eq. (1), we have

mj ẍj = −ÃT
jαkαÃαixi. (3)

Defining Aαj =
√

kαÃαj/
√

mj , this is equivalent to

√
mj ẍj = −AT

jαAαi
√

mixi (4)

We have implicitly assumed that the particles are fric-
tionless spheres, so that torque balance is trivially sat-
isfied. Absorbing a factor of √

mj in xj for each j, we
finally have the equation

ẍj = −AT
jαAαixi, (5)

i.e., the dynamical matrix K is a N × N matrix that is
equal to AT A.

In the random matrix approach to this problem, we
assume that all the entries in the matrix A are inde-
pendent Gaussian random variables, drawn from a dis-
tribution with zero mean and (with a suitable rescal-
ing) unit variance. This is the Laguerre random matrix
ensemble (also known as the Wishart ensemble in the
mathematical literature), and is different from assum-
ing that the elements of K are independent Gaussian
random variables (with the constraint that K is a sym-
metric matrix). The approach to Point J is modeled by
adjusting the ratio M/N to approach 1 from above.

The random matrix approach ignores the fact that
each contact force acts between only two particles, i.e.,
that each row in the matrix A has only 2d entries.
It also ignores the fact that the network of contacts
is created by particles rearranging themselves, which
would be expected to result in correlations between the
contact forces. To address these limitations, one would
need to construct a model which includes spatial infor-
mation about the contacts (or perform a full molecular
dynamics simulation), discussed in Sect. 4 of this paper.
When this is done, the non-universal results from ran-
dom matrix theory are affected without changing the
universal results.
It can be shown [37] that, for M ≥ N, the density of
states for the eigenfrequencies ω1, ω2 . . . ωN is

ρ(ω) =
1

Nπ

√
(Nb2 − ω2)(ω2 − Na2)

ω

a
√

N < ω < b
√

N (6)

where a =
√

M/N − 1 and b =
√

M/N + 1. When
M/N > 1, there is a broad peak in ρ(ω), with a gap
in the spectrum near ω = 0. The peak is not symmet-
ric, falling off much more sharply on the small ω side
than on the large ω side. In the middle, the peak slopes
downwards as ω is increased. As M/N is reduced, the
gap shrinks while the width of the peak remains con-
stant. When M/N = 1, ρ(ω) =

√
4N − ω2/(Nπ) which

matches the Wigner semicircle law for the Gaussian
orthogonal ensemble, and ρ(ω = 0) �= 0.
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Fig. 1 Plot of ρ(ω) vs ω, with ω scaled by
√

N, for (red,
solid) M/N = 1.0 and (blue, dashed) M/N = 1.2. For
M/N = 1.2, the gap at small ω and the asymmetry of the
peak are clearly visible. As M/N is increased, the asymme-
try in the shape persists, the gap at small ω broadens, and
the range of ω/

√
N for which ρ(ω) �= 0 remains equal to

b − a = 2

One can compare these analytical predictions with
numerical results, with data from the O’Hern group
[38]. The details of how the numerical simulations were
conducted are given in Ref. [38], but to summarize:
approximately 1000 frictionless bidisperse disks (half
large and half small) with a diameter ratio of 1.4 were
placed randomly in a square cell with periodic bound-
ary conditions, and allowed to relax to equilibrium,
at which point the frequencies of the normal modes
were measured. The interaction between the disks was
harmonic (only under compression), but the spring
constant was different for large–large, large–small and
small–small contacts. As with the analytical prediction,
there is a broad peak that falls off more sharply at small
ω than at large ω. The density of states ρ(ω = 0) = 0
except at the transition. However, the numerical data
does not show the gap in the spectrum near ω = 0 pre-
dicted by random matrix theory. The numerical data
also has a pronounced boson peak at a nonzero value
of ω, and a cusp in ρ(ω) at the origin at the transition
[15]. These features do not agree with the prediction
from random matrix theory, but as already discussed,
random matrix theory is not expected to yield the (non-
universal) density of states correctly. We return to this
point in Sect. 4, on the random lattice model.

3 Correlations

In this section, we subject the predictions of the random
matrix model to more stringent and appropriate tests,
by studying the (universal) correlations. The key fea-
ture of the random matrix spectrum is that it is rigid
(i.e., highly correlated). The rigidity of the spectrum
is revealed at small energy scales by the distribution
of consecutive level spacings. The longer range rigidity
can be demonstrated by the autocorrelation of the den-
sity of states or by specific statistical measures such as
the number statistic and the spectral rigidity [20].

Insight into the strong correlations between the
eigenvalues implied by the Laguerre ensemble distribu-

tion is provided by the following plasma analogy. We
focus on the case M = N + 1 since we are interested
in the spectrum for point J. For the Laguerre ensem-
ble, the rigidity of the spectrum arises from the fac-
tors of |ω2

j − ω2
i | in the joint probability distribution

p(ω1, ω2, . . . , ωN ) for the eigenvalues given by Eq. (A2)
If we rewrite this as exp(ln |ωj−ωi|+ln |ωj+ωi|), we can
interpret the probability distribution as the partition
function of a classical plasma of N particles located on
the positive ω axis at the locations ω1, . . . , ωN with log-
arithmic interactions between the particles as well and
between each particle and image particles at locations
−ω1, . . . ,−ωN . The particles are also confined near the
origin by a quadratic potential and are constrained to
remain on the positive ω axis by a hard wall at the ori-
gin. The plasma analogy is another argument to only
consider correlations for M ≈ N. If M/N > 1 (in the
N → ∞ limit), the gap in the Laguerre spectrum ρ(ω)
near ω = 0 means that the particles and their images
are well separated. The correlations between energy lev-
els in the Laguerre ensemble will then be indistinguish-
able from those for the GOE. Even for M ≈ N, the
difference between the two ensembles should be great-
est near ω = 0.

In terms of the variables xi = ω2
i , the one-point and

two-point correlation functions are defined as

R1(x) = N

∫ ∞

0

dx2 . . .

∫ ∞

0

dxNP (x, x2, . . . , xN )

(7)

and

R2(x, y) = N(N − 1)
∫ ∞

0

dx3 . . .

∫ ∞

0

dxNP (x, y, x3, . . . , xN ) (8)

Here, P denotes the joint probability distribution of
the squared frequencies xi = ω2

i which can easily
be deduced from the joint probability distribution
p(ω1, ω2, . . . , ωN ) given in Eq. (A2). The plasma anal-
ogy shows that calculation of the correlation functions
in Eqs. (7) and (8) is a formidable problem in classical
statistical mechanics. Nonetheless, it has been exactly
done by Nagao and Slevin [25] by rewriting the prob-
ability density in the form of a quaternion determi-
nant and performing the integrals by a generalization
of a theorem of Dyson [39] on integration over quater-
nion determinants. Before we give those results, we first
describe the unfolding procedure.

R1(x) is evidently the density of states, and we now
define

ξ(x) =
∫ x

0

dx′ R1(x′) (9)

where ξ(x) is the cumulative density of states. The
unfolded two point correlation function is then defined
as
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Fig. 2 The correlation function 1 − L2(ξ, 0) is computed
using vibrational spectra from 1000 realizations of the
jammed state. It appears as a staircase in the plot due to
the finite widths of the bins used to compute the correla-
tion. Also shown are the analytic results for the Gaussian
orthogonal ensemble (dotted blue curve) and the Laguerre
ensemble (solid black curve). The agreement of the vibra-
tional data to the Laguerre ensemble is clearly superior. The
vibrational spectrum data are based on simulations by Kyle
Vander Werf and Corey O’Hern described in Sect. 2

L2(ξ1, ξ2) =
1

R1[x(ξ1)]
1

R1[x(ξ2)]
R2[x(ξ1), x(ξ2)]

(10)

The exact expression for L2 is rather lengthy and is
given in the Appendix.

In Fig. 2, we plot 1 − L2(ξ, 0) as a function of ξ for
the Laguerre ensemble. The corresponding plot for the
Gaussian orthogonal ensemble is also shown. When ξ
is large, the two curves approach each other. Indeed,
the analytical expression for 1 − L2(ξ) for ξ 	 1 in the
Laguerre ensemble can be verified to be

1 − L2(ξ, 0)

=
sin2 πξ

(πξ)2
+

[
1

2
−

∫ ξ

0

dy
sinπy

πy

] [
cosπξ

ξ
− 1

πξ2
sinπξ

]

(11)

which coincides with the form for the same quantity
in the GOE, as expected since the effect of the image
charges in the plasma analogy for the Laguerre ensem-
ble should be small when ξ is large. However, although
the two curves coincide in the asymptotic limit ξ 	 1,
Fig. 2 shows that there is a range of ξ values where the
predictions of the Laguerre ensemble differ significantly
from the GOE. Hence, comparison to the correlation
function for the numerical data for the spectrum of the
jammed bead pack provides a stringent test that is able
to distinguish between the Laguerre ensemble and the
GOE.

The numerical data are analyzed as follows. The
vibrational frequencies obtained in the numerical sim-

ulations from all the 1000 realizations of the jammed
state are merged together, and bins are constructed
with 200 eigenvalues in each, i.e., there is an average
of 0.2 eigenvalues per realization of the jammed state
in each bin. Next, we calculate

1 − 1
(0.2)2

[〈n0ni〉 − 〈n0〉δi0] (12)

where ni is the number of vibrational frequencies in the
ith bin in any given realization, and the average is over
the realizations of the jammed state. The histogram of
the values obtained for this discretized correlation func-
tion is compared with the analytical prediction from the
Laguerre ensemble and the GOE, and as seen in Fig. 2,
the Laguerre ensemble fits the data very well within the
error bars (while the GOE does not).

For completeness, we also compute the distribution
of level spacings from the numerically computed vibra-
tional spectra for bead packs [38]. This is shown in
Fig. 3. Although the plasma analogy would suggest
that the level spacing distribution could be different
in the vicinity of ω = 0 and for large ω, this is not
found to be the case; both distributions are found to
be indistinguishable from the Wigner surmise, which
also matches—within our level of resolution— the dis-
tributions for the Laguerre ensemble [24] and the GOE.
Thus, although the level spacing distribution is consis-
tent with the Laguerre ensemble, it does not discrim-
inate between the Laguerre and Gaussian orthogonal
ensembles.

4 Random Lattice model

As discussed earlier, the extent to which the density
ρ(ω) of vibrational frequencies for jammed frictionless
granular materials agrees with the predictions of ran-
dom matrix theory is not a good test of the applicability
of random matrix theory to these materials, because the
distribution of eigenvalues is a non-universal prediction
of random matrix theory. Nevertheless, there are quali-
tative discrepancies between the numerically measured
ρ(ω) [38] and the density of eigenvalues {ωi} obtained
from random matrix theory that are worth trying to
address: the low-frequency gap, the absence of a cusp
at ω = 0 at the transition and the absence of a boson
peak.

In Eq. (5), we have assumed that the entries in
the matrix A are all independent random variables
drawn from a Gaussian distribution. In reality, since the
matrix A is supposed to be a mapping from coordinates
to contact forces, and only two particles are associated
with a contact, only the entries associated with two
particles (with d entries per particle for d-dimensional
particles) should be nonzero in any column of A. Thus,
A should be a sparse matrix.

In mean field theory, one would choose the two par-
ticles associated with each force randomly. This would
result in the system breaking up into separate clusters,
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Fig. 3 The red (solid) and blue (dashed) histograms show
the consecutive level spacing distribution for the numeri-
cally computed vibrational spectra of jammed frictionless
granular material. An ensemble of one thousand realizations
of the jammed state was used. The red histogram bins the
eleven consecutive level spacings between the frequencies ω5

through ω16 for each realization; the blue histogram eleven
consecutive spacings between frequencies ω400 through ω411.
Each spacing ωi+1 − ωi is normalized by 〈ωi+1 − ωi〉, where
the average is taken over the one thousand realizations. The
black curve corresponds to the Wigner surmise for the level
spacing distribution of the Gaussian orthogonal ensemble
(which is indistinguishable from the Wigner surmise for the
Laguerre ensemble at this level of resolution, as discussed in
Appendix Appendix B). The close agreement between the
two histograms and the solid black curve are consistent with
the predictions of our random matrix model of the jammed
state of frictionless granular matter

not connected to each other, leading to an overabun-
dance of zero modes unless one only retains the giant
connected cluster. Moreover, the concept of adjacency
would not be respected: two randomly chosen particles
would be likely to be far apart, and should not have
been allowed to share a contact.

Instead of choosing the particles associated with a
force randomly, we approximate the system as being
equivalent to a triangular lattice (with periodic bound-
ary conditions), but with each particle displaced from
the position where it would be in a perfect triangular
lattice. This randomizes the orientation of the contacts
between particles (Fig. 4).

To be specific, particles are arranged in successive
horizontal layers, with each particle having contacts
with the two particles immediately below it: slightly
to the left and slightly to the right. Shifting the num-
bering in each row by half a lattice spacing relative to
its predecessor, the particle (i, j) connects to the parti-
cles numbered (i, j − 1) and (i + 1, j − 1) with periodic
boundary conditions in both directions. (A particle in
the bottom layer, (i, 1), connects with (i − L/2, L) and
(i + 1 − L/2, L) in the topmost layer, where L is the
number of layers.) In addition, each particle has a prob-
ability p of connecting to an additional particle in the
row below it, i.e., a probability of 0.5p of connecting to
the particle at (i − 1, j − 1) and a probability of 0.5p of
connecting to the particle at (i + 2, j − 1), again with
periodic boundary conditions. All contacts are bidirec-
tional, so that each particle is connected to two to four

(4, 1)

(1, 2) (2, 2) (3, 2) (4, 2)

(1, 1) (3, 1) (5, 1)(2, 1)

Fig. 4 Arrangement of particles in the random lattice
model. Each particle rests on at least the two nearest neigh-
bors below it, shown as solid lines. In addition, a particle
occasionally also has a contact with a next nearest neighbor
below it on one side or the other. For clarity, these are shown
as dashed lines, even though they are completely equivalent
to the solid bonds. Each particle therefore has two, three or
four contacts from above. Periodic boundary conditions are
imposed on all four boundaries. As shown, the numbering
convention results in the particle (x, y) being shifted hor-
izontally by half a lattice spacing compared to (x, y − 1).
The bond angles are chosen randomly, and the vibrational
spectrum calculated

particles in the row above it. The spring constant κ
associated with each contact is an independent random
variable, with probability density

ρ(κ)dκ = 3κ2 exp[−κ3]dκ. (13)

This is what one would expect with exponentially dis-
tributed contact forces. Since the contact force f at a
Hertzian contact is related to the compression δx of the
contact as f ∼ (δx)3/2, and the linear stiffness if the
compression δx is changed by a small amount is found
by differentiating this expression to be κ ∼ (δx)1/2,
therefore f ∼ κ3. We choose units in which f = κ3.
Thus, an exponential probability density for f implies

ρ(f)df = exp[−f ]df = exp[−κ3](3κ2dκ) (14)

The bond connecting a particle to its left (right) neigh-
bor in the row below points down and to the left (right),
and the bond angles are uniform random variables in
the third (fourth) quadrant. If the particle at (i, j) is
also connected to (i − 1, j − 1), this bond angle is also
chosen to be a uniform random variable in the third
quadrant, with the constraint that it must be more hori-
zontal than the bond between (i, j) and (i, j−1). (There
is a similar condition if the additional contact is to the
right, to (i+2, j −1).) This model is similar to a model
introduced for free-standing granular piles [28], which
is a vector generalization of the scalar-force ‘q-Model’
used to model such systems [1,2]. We expect that our
results will not depend on the details of the model, as
long as the spring constants and bond angles are ran-
dom, the locality of interactions is respected, and the
number of contacts made by an individual particle can
vary in order to approach the jamming transition.

Having constructed the lattice, it is easy to obtain
the matrix A, and therefore the eigenvalues of AT A.
One difference from the Laguerre ensemble is that each
contact is associated with two particles, and therefore
four displacement variables, i.e., each row of Aαi has
exactly four nonzero entries. Another difference is that
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the translational invariance of the system is respected
by the matrix A; the consequence of this is discussed
later in this section.

Unlike the dynamical simulations, we compare with
[38], the random lattice model uses a Hertzian con-
tact force law rather than a harmonic law (with a dis-
tribution of spring constants). It also has the prop-
erty that every lattice site is connected to at least two
above it and two below, whereas granular assemblies
will have some particles with less than four contacts.
Most importantly, the random lattice model does not
enforce force balance at each lattice site. The objective
with the random lattice model is to show that random-
ness and locality are sufficient to yield the qualitative
aspects of the density of states while preserving the
level spacing distribution and the spectral correlations
of Random Matrix Theory with the Laguerre ensemble.
An improved version of the model, which would be a
more complicated version of the model in Ref. [28]—
because we do not have gravity to break the symme-
try of the system, finding the equilibrium state is more
complicated—can be studied if one is interested in how
the shape and location of an eigenmode is related to
force chains in the underlying stresses. We leave this
for future work.

The random lattice model (RLM) with 128×128 sites
was simulated in this manner, and the vibrational fre-
quencies from 100 different realizations of randomness
were merged and plotted as a histogram. The ratio of
the number of contact forces to the number of coordi-
nate degrees of freedom, which corresponds to M/N,
increases with the probability of a particle establishing
extra bonds: from 1 at p = 0 to 1.5 at p = 1.

The results are shown in Fig. 5. When M/N = 1, the
density of states ρ(ω) is nonzero at ω = 0, in agreement
with the dynamical simulations [38] and random matrix
theory. But in addition, there is a cusp in ρ(ω = 0) at
the transition point, as seen in the dynamical simu-
lations but not in random matrix theory. (This cusp
is also seen in some earlier mean field models [18,27]
which do not have local correlations; the random lat-
tice model also has the advantage of being very simi-
lar to a model used successfully to explain force chains
in static free-standing sandpiles.) The boson peak at
ω �= 0 seen in the simulations is also reproduced for the
lattice model, being most pronounced at the transition
point.

Moving away from the transition point at M/N = 1,
there is a small gap in the spectrum of ρ(ω) near
ω = 0. But this is a finite size effect; we have veri-
fied by increasing N while keeping M/N constant that
the gap decreases. This is inevitable: the global trans-
lational invariance of the random lattice model with
periodic boundary conditions ensures that there are two
zero modes, and the locality of the connections that are
made ensures that long wavelength oscillations have low
frequencies. Thus, when N → ∞ at constant M/N, the
density of states must scale as ωd−1 for small ω. This
is true in the dynamical simulations [38], and would be
true for any local model, not just the random lattice

Fig. 5 Histogram of vibrational frequencies obtained from
the random lattice model described in this paper. One hun-
dred realizations of 128x 128 random triangular lattices were
constructed, with the ratio M/N equal to 1.1 (top), 1.05
(middle) and 1.0 (bottom) respectively

model, but it is not true for random matrix theory as
seen in Eq. (6) with fixed M/N and N → ∞.

We see that the random lattice model reproduces
the qualitative features of the numerical density of
states ρ(ω)—the cusp in ρ(ω) near the origin when
M/N = 1, the boson peak, the ρ(ω) ∼ ωd−1 scaling
when M/N > 1—that random matrix theory is unable
to do. In addition, as seen in Fig. 6 and in Fig. 7, the dis-
tribution of spacings between consecutive frequencies is
found to be the same as for the random matrix ensem-
ble, consistent with the Wigner surmise, and the corre-
lation function 1 − L2(ξ, 0) at M/N = 1 matches that
obtained for the Laguerre ensemble. (The correlation
function is not compared away from the jamming tran-
sition because, as discussed earlier, it is indistinguish-
able from the GOE correlation function there.) This is
what one would hope, since the system is in the univer-
sality class of the Laguerre ensemble rather than the
GOE (since the dynamical matrix has the form AT A),
and any reasonable model of the system should be in
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Fig. 6 Correlation function 1−L2(ξ, 0) for the random lat-
tice model introduced in this paper (red staircase) and for
the Laguerre ensemble at the transition point (solid black
curve). Good agreement is seen between the two. The corre-
lation function for the Gaussian orthogonal ensemble is also
shown for comparison (dotted blue curve)

Fig. 7 Histogram of level spacings for the random lattice
model (red) and a fit to the Wigner surmise for the Gaus-
sian orthogonal ensemble (solid black curve). Spacings from
the fifth to the fifteenth normal mode frequencies are nor-
malized, as discussed in the paper, and combined to create
the histogram. The Wigner surmise fits the distribution very
well, but as discussed in the paper, this applies equally to
the Wigner surmise for the Laguerre ensemble

the same universality class. Thus, it is reassuring that
the random lattice model retains the positive features
of random matrix theory, while curing its problems.

5 Conclusions

In this paper, we show that a random matrix approach
can be used successfully to calculate the correlations
between vibrational frequencies in a granular system
near the jamming transition, if the matrix ensemble
is chosen correctly. By modifying the random matri-
ces according to physical considerations, a random lat-
tice model is constructed, which retains the correlation
functions of random matrix theory and also successfully
reproduces all the qualitative features in the density

of vibrational frequencies. The random lattice model
closely resembles a vector generalization of the q-model
that has previously been used successfully to under-
stand the distribution of stress in static granular mat-
ter [1,2,28]. That the same model is able to reproduce
both the static and vibrational properties of granular
matter suggests it may be more broadly applicable to
provide a unified understanding of the physics of gran-
ular matter.
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Appendix A Density of states

We start from the probability distribution for the M × N
rectangular matrix A, with each element of A an indepen-
dent random Gaussian variable with zero mean and unit
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variance:

p({A})
∏
i,j

dAij ∝ exp[−Tr(AT A)/2]
∏
ij

dAij

=
∏
ij

(
exp[−A2

ij/2]dAij

)
. (A1)

The Gaussian factor can be rewritten in terms of the eigen-
values ω2

1 , ω2
2 . . . ω2

N of AT A as exp[− ∑
ω2

i /2]. Using the
standard methods of random matrix theory, the measure∏

ij dAij can be expressed in terms of the ωi’s, and ‘angular
variables’ which can be integrated out. The reduced proba-
bility density for the ωi’s is

p({ω}) ∝
∏
i<j

|ω2
j − ω2

i |
∏

i

ωM−N
i exp

[
−

∑
i

ω2
i /2

]
. (A2)

Without loss of generality, we have chosen all the ωi’s to
be greater than zero. The distribution in Eq. (A2) is known
as the Marchenko–Pastur distribution in the mathematical
literature.

Rewriting the probability density in terms of λi =
ωi/

√
N, we have

p({λ}) ∝ exp

[
−N

∑
i

λ2
i

2
+ f ln |λi| +

∑
i<j

ln |λ2
i − λ2

j |
]

(A3)
where M/N = 1 + f. If M − N is O(N), a saddle-point
expansion yields

f

λ
− λ + P

∫ ∞

0

ρ(λ′)
[

1

λ − λ′ +
1

λ + λ′

]
dλ′ (A4)

wherever ρ(λ) �= 0. Here ρ(λ) is the density of eigenvalues,
normalized to

∫ ∞
0

ρ(λ)dλ = 1, and the P denotes the prin-
cipal value of the integral. Symmetrizing ρ(λ) by defining
ρ(λ < 0) = ρ(−λ), the function

F (λ) =

∫ ∞

−∞

ρ(λ′)
λ − λ′ dλ′ (A5)

of the complex variable λ is analytic everywhere except
that it has branch cuts on the real line over intervals where
ρ(λ) �= 0, where it is equal to

λ − f

λ
∓ iπρ(λ). (A6)

Furthermore, F (λ → 0) is finite, and F (λ → ∞) → 2/λ,
because the symmetrized extension of ρ(λ) integrates to 2.
This has the solution

F (λ) = λ − f

λ
−

√
(λ2 − a2)(λ2 − b2)

λ
(A7)

with

a =
√

M/N − 1

b =
√

M/N + 1. (A8)

The density of states is then

ρ(λ) =
1

π

√
(b2 − λ2)(λ2 − a2)

λ
a < λ < b (A9)

where we have removed the extension of ρ(λ) to λ < 0, so
that

∫ ∞
0

ρ(λ)dλ = 1. The density of states ρ(ω) has the same
form, but with a and b rescaled, which is not significant since
Eq. (A2) was already obtained after rescaling.

Appendix B Level spacing distribution

In this section, we argue that the distribution of consecu-
tive level spacings for the Laguerre ensemble Eq. (A2) is
indistinguishable from the GOE. To this end, it is useful
to recall that for the GOE, Wigner showed that a very
good approximation to the level spacing distribution can be
obtained by considering a model with just two levels. This
formula, known as the Wigner surmise, is indistinguishable
from the exact result, except in the tails of the distribu-
tion where, in any case, the weight is negligible, making the
distinction irrelevant for applications. Intuitively Wigner’s
surmise works because at small spacing the distribution is
dominated by the interaction between the two consecutive
levels; the other levels that are neglected in the analysis only
matter at large spacings. In the same spirit, we consider the
distribution Eq. (A2) for the case M = N = 2. We define
Δ = ω1 −ω2 as the spacing and ω = 1

2
(ω1+ω2) as the mean

energy of the two levels, and we take ω1 > ω2. For a fixed
ω, the level spacing distribution is then given by

p(Δ) ∝ Δ exp

[
−1

4
Δ2

]
. (B1)

for 0 < Δ < 2ω and p = 0 for Δ > 2ω. The normalization
factor is easily determined by imposing

N(ω)

∫ 2ω

0

dΔ Δ exp

(
−Δ2

4

)
= 1

⇒ N(ω) =
1

2[1 − exp(−ω2)]
. (B2)

It is possible to work out Δ(ω) the mean value of Δ in closed
form. We obtain

Δ(ω) =

∫ 2ω

0

dΔ Δp(Δ)

=

√
π Erf(ω) − 2ω exp(−ω2)

1 − exp(−ω2)
(B3)

We now define a rescaled level spacing δ = Δ/Δ(ω) which
has mean unity. The probability density function ρ for δ is
given by

ρ(δ) =
[Δ(ω)]2

2[1 − exp(−ω2)]
δ exp

[
−Δ

2

4
δ2

]
(B4)

for 0 ≤ δ ≤ 2ω/Δ and ρ(δ) = 0 for δ > 2ω/Δ.
The parameter ω is a measure of how close the two con-

secutive levels are to the edge; to be precise
∫ ω

0
dΩR1(Ω)

is the ordinal number of the pair whose spacing distribu-
tion is being considered; here, R1 is the mean density of
states corresponding to the distribution in Eq. (A2). It is
easy to verify that the distribution approaches the Gaus-
sian orthogonal ensemble as ω → ∞. More surprisingly and
perhaps disappointingly we find that for pairs of levels that
are quite near to zero frequency also the Gaussian orthogo-
nal ensemble is a good approximation. This means that in
testing whether the spectrum of jammed granular matter is
described by random matrix theory, we cannot use the level
spacing to distinguish between our model and the Gaussian
orthogonal ensemble.
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Fig. 8 Histogram of the spacing ω6 − ω5, between the
fifth and sixth frequencies for an ensemble of 10,000 spec-
tra drawn from the Laguerre ensemble as described in the
text. The spacings have been rescaled so that their mean
value is one. The solid black curve is the Wigner surmise for
the Gaussian orthogonal ensemble which is indistinguishable
from the Wigner surmise for the Laguerre ensemble, at the
resolution of this plot

Because the Wigner surmise is not exact, we have tested it
by directly simulating the Laguerre random matrix ensem-
ble. We generated an ensemble of ten thousand M ×N ran-
dom matrices A with M = N = 100. The matrix elements
were drawn from a Gaussian distribution with zero mean
and unit variance. We then evaluated the eigenvalues, ω2

i of
AT A. A histogram of the spacing between the fifth and sixth
levels, ω6 − ω5, in the ten thousand different realizations,
was plotted (see Fig. 8). The spacings were scaled to have
unit mean. The Wigner surmise for the Gaussian orthogonal
ensemble (and the Laguerre ensemble) was found to be an
excellent fit to the numerical data, confirming the analysis
above.

It is possible to derive an exact expression for the
level spacing distribution using the technology of quater-
nion determinants developed by Dyson [39] and Mehta [20]
and generalized to the Laguerre ensemble by Nagao and
Slevin [25]. This analysis would allow a more careful study
of the tails of the distribution where it might deviate from
the simple approximation derived here. Such an analysis is
not needed for the application considered in this paper but
is of intrinsic mathematical interest and we will return to it
elsewhere.

Appendix C Correlations of the Laguerre
ensemble

Nagao and Slevin [25] have shown that the correlations for
the Laguerre ensemble can be computed by rewriting the
distribution as a quaternion determinant and performing
the required integrals using a powerful generalization of a
theorem by Dyson [39]. Here, we summarize their results,
taking the opportunity to correct some typos in their paper,
and to present the results in a form that does not require
the reader to have familiarity with the specialized language
of quaternion determinants or Pfaffians.

We start by defining the unfolding function

ξ(x) =
1

2

∫ x

0

dt
[
tJ2

1 (t) − tJ0(t)J2(t) + J0(t)J1(t)
]
. (C1)

Fig. 9 Plot of the correlation function for the Laguerre
ensemble (solid curve) and the GOE (dotted curve). The
blue (solid) histogram is the correlation function for an
ensemble of 1000 spectra drawn from the Laguerre ensem-
ble generated as described in the previous section. The red
(dashed) histogram is the same but for a bigger ensemble
of 10,000 spectra. Comparison of the two reveals that the
departure of the numerical correlation from the exact ana-
lytic result is due in part to the finite bin width (which is
the same in both cases) but in part also due to the finite
size of the ensemble used to estimate the correlation. The
exact analytic result for the Laguerre ensemble is shown as a
smooth black curve; the dotted black curve is the correlation
function for the Gaussian orthogonal ensemble

Note that the order of the Bessel function in the first term
of the integrand above is given incorrectly in Ref. [25].

Next we define

r(x) =

√
J2
1 (x) +

1

2
J2
0 (x) − 1

2
J0(x)J2(x) (C2)

and

C(x, x′) = 2
xJ1(x)J0(x

′) − x′J0(x)J1(x
′)

(x − x′)(x + x′)
− J0(x)J1(x

′)
x′ .

(C3)
In terms of these functions, one can write down

S(ξ, ξ′) =
1

r(x)r(x′)
C(x, x′) (C4)

where it is understood that x is short for x(ξ) and x′ for
x(ξ′), the inverse of the function given by Eq. (C1). We also
write

I(ξ, ξ′) =
1

r(x)r(x′)

[∫ x

x′
dt

t

2
C(x, t) − θ(x − x′) +

1

2

]

(C5)
where θ denotes the unit step function and

D(ξ, ξ′) =
2

xr(x)r(x′)
∂

∂x
C(x, x′); (C6)

the variable of integration and the arguments of the inte-
grand in Eq. (C5) are given incorrectly in Ref. [25] (Fig. 9).
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With these definitions established, we can now write down
the principal result of Nagao and Slevin [25], namely

1 − L2(ξ1, ξ2) = S(ξ1, ξ2)S(ξ2, ξ1) +
1

2
I(ξ1, ξ2)D(ξ2, ξ1)

+
1

2
I(ξ2, ξ1)D(ξ1, ξ2). (C7)

We are interested in 1 − L2(ξ, 0). For this special case, we
obtain the simplifications

S(ξ, 0) =

√
2

r(x)

[
1

2
J0(x) + J2(x)

]
,

S(0, ξ) =

√
2

r(x)

[
1

2
J0(x) +

1

2
J2(x)

]
,

I(ξ, 0) =

√
2

r(x)

[∫ x

0

dt
t

2
C(x, t) − 1

2

]
,

I(0, ξ) =

√
2

r(x)

[
1

2
J0(x)

]
,

D(ξ, 0) = −
√

2

r(x)

[
1

6
J2(x) +

1

6
J4(x)

]
,

ρ(0, ξ) = −ρ(ξ, 0). (C8)

Equations (C7) and (C8) are the principal results needed
for our test of the random matrix model. As shown in this
paper, the histogram of the vibrational frequencies from the
numerical simulations agrees with the correlation function
for the Laguerre ensemble, but not the Gaussian orthogo-
nal ensemble (Fig. 9). The deviation from the histogram for
large ξ is consistent with the error bars, and is also con-
sistent with the deviations that are seen if a histogram is
obtained by simulating the Laguerre ensemble 1000 times.
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