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ABSTRACT OF THE DISSERTATION 

 

Over the past years, numerous reports have surfaced demonstrating the 

outstanding superiority of combinatorial therapies over single drug treatments, one such 

example was the successful treatment of the human immunodeficiency virus with a combination 

therapy. The main problem faced when designing a multi-drug therapy is that combining a set of 

drugs at different possible concentrations yields a large testing parametric space, and thus the 

search of an optimal combination becomes a major challenge. To solve this issue, the Feedback 

System Control (FSC) optimization scheme has emerged as a better alternative for achieving a 

therapeutic goal when compared to the typical trial and error methods; FSC’s primary advantage 

is its ability to circumvent the need for detailed information of the cellular functions of the system 

of interest. It has been demonstrated that only tens of iterations out of a large number of 

possible combinations are needed to achieve a desired response, as opposed to testing the 

entire search space. This effort-saving approach actively manipulates the complex biological 

systems as a whole, rather than controlling the system’s individual intrinsic pathways.  

  To further exploit the capabilities of this platform, FSC has now taken advantage of 

the benefits offered by multivariable experimental designs such as orthogonal array composite 

designs; these designs are intended to draw valid correlation conclusions from an experimental 

data set while further minimizing the number of tests performed. In the context of FSC, they 

provide the initial conditions to be tested, which facilitate the development of quadratic models 

describing the relationship between the drug combinations and their efficacies with a reliable 

statistic correlation. This method is known as FSC.II. 

In this project, the FSC.II methodology was used to find a drug combination for 

tuberculosis treatment. In six iterations, several three and four drug combinations were found to 

be superior to the standard regimen, which represented a drastic decrease in the number of 

experiments needed to find the optimal combinations for inhibiting tuberculosis infection on cell 
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based assays. The results obtained were then verified through a colony forming unit cell based 

assay to verify tuberculosis killing. 

These results will provide a basis of drug combinations to be tested on an animal model, 

where only a small number of subjects will be needed to find the optimal drug combination. 

Furthermore, future efforts will focus on using the FSC scheme to model the drug combination 

efficacy as a temporal function of a drug combination, which would allow the optimization of a 

drug combination efficacy over time on a single individual subject; this method would be suitable 

for both animal and human clinical tests and will an outstanding step towards personalized 

medicine. 
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Feedback System Control: Optimizing drug combinations 

for tuberculosis treatment 

 

I. Introduction 

 

I.I. Motivation 

I.I.I. Tuberculosis facts 

 

Tuberculosis (TB) is an ancient disease that has plagued humankind and claimed victims 

since prehistory, and it reached epidemic proportions in Europe and North America during the 

18th and 19th centuries. 

The study of TB began in the 19th century with the work of Théophile Laennec, and it 

culminated with the identification of the tubercle bacillus as the infectious etiologic agent by 

Robert Koch in 1882 [1]. The tuberculin skin test was not developed until 1907, and its utility 

was demonstrated three years later as a detection tool for latent tuberculous infection in 

asymptomatic children [2]. In the late 19th and early 20th centuries, there was a surge of 

sanatoria that were solely dedicated to the treatment of patients infected with TB. Vaccination 

against the disease was widely used following World War I, and the modern era of TB treatment 

started with the discovery of streptomycin in 1944 [3]. 

Currently, TB remains a major global public health concern. It is the worldwide second 

leading cause of death from an infectious disease after the human immunodeficiency virus 
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(HIV). In 2012 only, an estimated of 8.6 million people developed TB, and 1.3 million died from 

the disease. [4]. 

 

 

Fig. 1. Estimated TB incidence rates by country, 2012. Reproduced with permission, from Global 

Tuberculosis Report 2013, World Health Organization [4]. 

 

TB is highly contagious, since it spreads from person to person through the air. When 

people with lung TB cough, sneeze or spit, they propel the TB germs into the air; a person 

needs to inhale only a few of these germs to become infected. Once it becomes active, TB 

attacks the respiratory system and other organs and destroys body tissue [5]. 

The control of TB is complicated by the fact that about a third of the world’s population 

has latent TB, that is, they are infected with Mycobacterium tuberculosis (MTB), the causative 

pathogen of TB, but are asymptomatic. MTB’s unique cell wall, which has a waxy coating 

primarily composed of mycolic acids, allows the bacillus to lie dormant for many years [6]. The 

body's immune system may restrain the disease, but it does not fully clear it. While some people 
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with this latent infection will never develop active TB, about 10% of those latently infected 

eventually develop the active disease during their lifetimes [5]. 

Without treatment, TB mortality rate is high. Effective drug treatments were first 

developed in the 1940s, and the most effective first line drug against TB, rifampicin, became 

available in the 1960s [3]. 

Currently, drug-susceptible TB is treated with a six month regimen of four first line drugs, 

isonazid, rifampicin, ethambutol and pyrazinamide; whereas multidrug resistant TB (MDR-TB), 

which is defined as resistance to isonazid and rifampicin, the two most powerful first-line drugs, 

requires more expensive and more toxic drugs. Second-line treatment options are limited, not 

always available, and quite lengthy: The World Heath Organization (WHO) recommends twenty 

months of treatment, and extensive chemotherapy is often required (up to two years). 

 

 

Fig. 2. Percentage of new TB cases with MDR-TB by country, 2012. Reproduced with 

permission, Global Tuberculosis Report 2013 , World Health Organization [4]. 
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The treatment of MDR-TB is that much more complex, expensive, and toxic that about a 

third of all the patients infected with MDR-TB die [8]. 

 

 

Fig. 3. TB treatment is complex and depends on several variables. Reproduced, Treatment of 

tuberculosis, MMWR Recommendations and reports, Centers for Disease Control and 

Prevention [7]. 
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The most common causes of MDR-TB are inappropriate treatment, incorrect use of anti-

TB drugs, or use of poor quality medicines. In 2012, an estimated 450,000 people developed 

MDR-TB, and there were 170,000 deaths associated with it [4]. The high complexity and 

prohibitive cost of the MDR-TB treatment means that less than a fifth of all the MDR-TB patients 

receive the proper treatment. Without a significantly simpler, faster, cheaper oral treatment for 

MDR-TB, it is no possible to scale up treatment for the increasing demand. The WHO has 

issued a target to treat 80% of the MDR-TB cases by 2015, but with the current state of the art 

this target is not feasible [8]. 

Recently, a new extensively drug-resistant TB (XDR-TB) strain, also known as extremely 

drug-resistant TB has emerged. It has been reported by ninety-two countries; on average, 9.6% 

of MDR-TB cases are XDR-TB. These new strains respond to even fewer available medicines: 

XTDR-TB is resistant to fluoroquinolone, isoniazid and rifampin, and to at least one of the three 

injectable second line drugs (capreomycin, kanamycin, amikacin) [8,9]. 

 

 

Fig. 4. Countries that had notified at least one case of XDR-TB, 2012. Reproduced with 

permission, Global Tuberculosis Report 2013 , World Health Organization [4]. 
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I.I.II. Goals and challenges for tuberculosis treatment development 

  

Over the past decade TB drug, research and development has experienced a surge 

powered by an urgent need to control the disease and come up with new, more effective 

treatments for both drug sensitive and drug resistant TB strains. As a result, there are several 

products in clinical development, and a large pipeline of early stage compounds aimed to 

improve efficacy, safety, and shortening if the duration of the treatment for both drug sensitive 

and drug resistant strains, as well as for latent TB infections [10]. 

Pharmaceutical companies continue to search for effective treatments for TB, as many 

strains of the bacteria have developed a resistance to first-line drugs currently used to treat the 

disease. Moreover, identifying drugs that will shorten treatment and thereby improve adherence 

is one of the most important goals in improving TB treatment. Ideally, finding such drugs would 

be based on the understanding of the mechanisms of mycobacterial action; however, there are 

several challenges that have yet to be addressed to fully achieve these goals. 

Currently, both a clear understanding of persistence mechanisms and fully validated 

animal models the reliably predict human treatment duration are lacking. The mouse model 

appears to reflect human treatment results but not in all circumstances, and it lacks adequate 

prospective data to be considered truly validated at this time. Without a fundamental 

understanding of the TB mechanisms for latency, shortening the therapy to days rather than 

months is not a feasible goal in the near future; it is realistic, however, to pursue a reduction of 

the treatment to three to four months even with combinations of the already available and 

currently in development drugs [10]. 

 A second challenge for TB drug development is the very long timeline of clinical trials. 

Phase 2 studies for TB drugs usually take at least two years, and pivotal studies require a 
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minimum of three years. On top of this, the requirement for multidrug therapy adds an additional 

layer of complexity; since a few weeks of single drug use may lead to the development of drug 

resistance, it is not allowed to test single drugs beyond Early Bacterial Activity (EBA) studies. 

Additionally, current therapy should not be withheld for any longer than necessary, thus 

experimental research on patients is quite limited [10]. 

 Moreover, since people must be treated with a combination of four drugs according to 

the standard treatment, new drugs should be tested as a single drug replacing one of the 

components of a current regimen, and this replacement has to be done one at a time. This 

method would require not a minimum of 6 years, but a minimum of 6 years times four, that is, 

over two decades just to finalize clinical trials [10]. 

Added to all these limitations, the spread of MDR-TB and the appearance of XDR-TB 

pose new challenges for the prevention, treatment, and control of this deadly disease.  

 

I.II. Theoretical Background 

I.II.I. The importance of drug combinations 

  I.II.I.I. A case of success: the human immunodeficiency virus therapy 

 

On June 5th of 1981, the Centers for Disease Control and Prevention (CDC) released a 

report of five cases of Pneumocystis carinii pneumonia in previously healthy young men located 

in Los Angeles, California; by then, two of them had already died [11]. This report would later be 

acknowledged as the first published scientific account of what in 1984 would be known as  HIV, 

the causative agent of the Acquired Immune Deficiency Syndrome  (AIDS) pandemic [12]. As 

the death rate kept increasing, several single drugs were used as treatment, but none of them 
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provided significant results. It wasn’t till 1995 that a new breakthrough was achieved: on 

December 6th, the Food and Drug Administration (FDA) approved the first protease inhibitor 

Invirase. Protease inhibitors could be used in combination with one or two of the reverse 

transcriptase inhibitors (NRTIs), this was known as Highly Active Antiretroviral Therapy 

(HAART) [13]. This new multidrug therapy became widely available in 1996 [14], and it was 

responsible of a rapid decline in the death rate. During that year, the CDC documented the first 

overall decline in the annual incidence of AIDS in the United States; the death rate declined 23% 

within a year, and this trend continued for the following years [15]. 

 

 

Fig. 5. HIV related deaths in the US, per year. The timeline shows single drugs and drug 

combinations as they were released [11, 12, 14, 15]. 

 

 The HIV case is a prime example of how drug combinations can change the course of a 

pandemic disease. The use of multiple drugs presents numerous advantages over single drug 
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therapies: drug combinations may be helpful to attack multiple and different targets within a 

bionetwork, facilitate treatment for heterogeneous populations, or provide a deal with multiple 

diseases simultaneously [16]. 

Moreover, the use of drug combinations possesses another important advantage over 

single that of drug therapy. Monotherapies often lead to disease recurrence and subsequent 

ineffectiveness of standard treatment due to drug resistance development. Drug resistance can 

develop by several mechanisms: decreased drug uptake, increased drug efflux, activation of 

detoxifying systems, activation of DNA repair mechanisms, and evasion of drug-induced 

apoptosis, among others [17]. Thus, in order to overcome drug resistance, the drug treatment 

should consist of several drugs simultaneously attacking these mechanisms necessary for the 

disease progression.  

Typically, multicomponent therapies have one or more of the following goals [18]: 

 

- Reduce the frequency at which developed drug resistance arises by combining drugs with 

minimal cross-resistance, such that emergent resistance requires acquisition of multiple 

mutations in a rapid fashion. 

- Diminish drug doses with non–overlapping toxicity and similar therapeutic profile so as to 

achieve efficacy with fewer side effects. 

- Cell sensitizing to the action of a drug through the use of another drug (chemosenstization) or 

radiation (radiosenstization), usually by altering the cell cycle. 

- Achieve enhanced potency by drug additive effects 

Multicomponent drugs are now the standard treatment for multiple diseases, but their 

development has required arduous empirical testing. The design of such therapies is quite 
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challenging since the interactions between drugs are not well understood, as the crossover 

between the affected cellular pathways is quite difficult to comprehend. Besides the inherent 

complexity of all bio systems, their inner networks dynamically connect and disconnect on a 

frequent basis. In addition to all these challenges, the response to stimuli of a diseased cell is 

quite different from a healthy cell; thus, predicting the therapeutic effect of a drug combination is 

dauntingly complicated. 

 

I.II.I.II. Drug combination characterization techniques 

 

 Currently, there are two main techniques used to characterize drug combination 

performance as compared to monotherapy: the Loewe additivity model and the Bliss 

independence model  [18]; 

The Loewe additivity model assumes that two drugs act through a similar mechanism by 

calculating a combination index. According to the theory, the combined effects of two drugs,    

and    can be calculated as [19]:    

(  )   

(  )   
  

(  ) 

(  ) 
  

(  ) 

(  ) 
  

( ) 

(  ) 
  

( ) 

(  ) 
                                     (1) 

Where    is the fraction affected by  ,    is the fraction not being affected by  , and     

is the half maximal effective concentration (EC50) value of  . Since    (     )      (    )  

            , a plot of       (     ) with respect to      ( ) will be linear with a slope 

  [19]. If the slope of the plot generated by these equations is not 1, then: 

[
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(  )   
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(  ) 
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(  ) 

(  ) 
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(  ) 
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This combination index    describes the interactions in between two drugs: if      the 

effects are additive, if      they are synergistic, and if       the effects are antagonistic. 

There are several approaches based on the Loewe additivity model such as the interaction 

index of Berenbaum [20], median-effect method of Chou and Talalay [19], mutually exclusive 

model method of Berenbaum [21], bivariate spline fitting of Sühnel [22], the parametric response 

surface approach of Greco [23] and Weinstein [24], the approach of Gessner [25], the 

parametric response surface approach of Greco and Lawrence [26], and the use of multivariate 

linear logistic model of Carter [27, 28, 29] and Brunden [30]. Moreover, there are several 

concepts that are consistent with the Loewe additivity model such as the similar joint action [31], 

simple similar action [32], and concentration addition [33]. 

The second main technique to characterize drug combinations is the Bliss independence 

model [34]. It assumes that two inhibitors act through independent mechanisms, such that 

                                                      (3) 

That is, each drug has a certain probability of having an effect on the system, and the 

cumulative effect is the result of combining those probabilities. The effects of each individual 

drug are calculated based on the Hill model as: 

  
    (

 

  
)
 

  (
 

  
)
                                                          (4) 

where   is the measured effect after drug exposure, and      is the control effect no drug is 

applied. 

 The Bliss independence model has several advocate models such as the fractional 

product method of Webb [35], the method of Valeriote and Lin [36], the method or Drewinko [37], 
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the method of Steel and Peckham [38], and the method of Prichard and Shipman [39]. Some 

synonyms for the Bliss independence model include: the independent effects, independent joint 

action [31], independent action [32], response addition [33], effect summation [40], and effect 

multiplication [41]. 

These two techniques yield different outcomes, which generates a heated debate as to 

which method handles noisy clinical data and uncertainty in a better way.  None of these studies 

offer any information about the mechanism of action of the drug combination; as a result, they 

have a limited predictive ability. Furthermore, they require extensive experimental work to 

determine dose-response curves for inhibitors, both individually and in combination. Another 

limitation is the difficulty to adapt these models to combinations of three or more drugs, since 

they require large parametric search spaces to be tested in their full extension. And most 

importantly, none of these models are intended to optimize drug combinations from a big pool of 

drugs. 

 

I.II.I.III. Current drug combination optimization methods 

 

In order to solve the enormous challenge that is to find an optimal drug combination, a 

top-down, model free approach combined with sparse search strategies that maximize statistical 

power while minimizing the number of trials should be considered. Several research studies 

developed in many different engineering fields have led to powerful control tools to drive 

systems toward required performances; hence, they can provide an ideal candidate for 

developing new therapies. 

A new approach to solve this issue is to use either deterministic or stochastic search 

algorithms; deterministic algorithms can be used for linear approximations, while stochastic 
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models are favored towards searches over highly non-linear spaces. In stochastic optimization, 

neither the biological model nor an analytical expression of the objective function is needed, 

making these methods very useful for drug cocktail optimization problems. Among some of the 

most popular stochastic optimization schemes are the gur game, simulated annealing, and 

differential evolution. In this regard the Feedback System Control  (FSC) scheme, a top-down 

modeless approach that originally started by taking advantage of these types of search 

algorithms, serves as a formidable candidate for optimizing drug combinations. 

 

I.II.II. Feedback System Control as an optimization scheme 

  I.II.II.I. Feedback System Control I 

 

 As previously stated, combining several drugs at different possible concentrations yields 

to a large testing parametric space, which makes the search of an optimal combination a major 

challenge.  Traditional experimental design techniques for drug cocktail optimization start by 

studying a biological system response to a coarse grid of drug combinations, and once the best 

combinations are recognized the search is narrowed to the neighboring combinations around 

them. Although this method can achieve better results than the use of individual drugs, it seldom 

ends in a local maximum performance [42, 43] Therefore, there is a blatant need to use a 

different approach to tackle this problem. 

It has been previously reported that a closed-loop optimization scheme serves as a 

better alternative for achieving a therapeutic goal when compared to the typical trial and error 

method. This method is known as the Feedback System Control  (FSC) scheme. The FSC is 

analog to a traditional closed loop control system (Fig 6 a). According to the classic control 

theory, any system which is intended to be controlled consists of an input, a plant and an output. 
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In order to control the system, the output is feed backed and compared to the initial input, then a 

controller makes the necessary adjustments to achieve the desired output. In this scheme, the 

plant dynamics have to be known in full detail in order to implement a useful controller. 

 

 

 

 

 

 

Fig. 6. a) Traditional Closed loop control system. b) Schematic of the FSC. 

 

 The FSC, on other hand, aims to circumvent the need for detailed information of the 

cellular functions of the system of interest. When this method is used to drive a biological 

system to a desired state, drug cocktails are used as the input to stimulate the system, and the 

biomarkers indicating the biological responses of interest, such as cell viability, are evaluated. 

This cocktail performance is then fed back and analyzed by a stochastic search algorithm, which 

chooses a new drug cocktail to be tried out. This process is repeated until the system is driven 

into achieving the desired biological response [44]. 

a) 

b) 
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 The stochastic search algorithm is an essential component of the FSC.I scheme. For this 

method to work, it is required that the chosen algorithm does not require any previous 

knowledge or training of data to form a metamodel. Different kinds of algorithms can be used, 

each with different properties, but they all have in common a search departing from initial 

random conditions. One of the most widely used algorithms for this approach is the differential 

evolution algorithm; this approach will be explained below to exemplify the operation of FSC.I. 

 

I.II.II.I.I. Example of application of the Differential evolution algorithm for FSC.I 

 

The  differential  evolution  (DE)  algorithm is  a  stochastic search  algorithm  that  

optimizes  a  problem  by  iteratively improving  candidate  solutions  with  regard  to  a  given 

measure of quality;  this algorithm mimics the biological evolution process coined by Charles 

Darwin as natural selection.  In general, the DE algorithm is useful when performing a cost 

function minimization task, particularly when the cost function is nonlinear, non-differentiable 

and/or multimodal [45]. 

In order to illustrate how the algorithm works, suppose there is a pool of 6 different drugs 

in 10 different concentrations each, and the goal is to find the drug combination which yields the 

best therapeutic window (Fig. 7).  

We start by randomly generating 5 different combinations or searchers, denoted   
 , where i ϵ 

{1,2,3,4,5}, and   refers to the  th generation or iteration; these combinations will be modified as 

the three basic steps of the algorithm are carried out: mutation, crossover and selection. 
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Fig. 7. Differential Evolution Scheme. 

 

During the mutation process, 5 different mutated combinations denoted   
 , will be 

generated based on the original combinations as Eq. 5: 

   
     

    (   
      

 )                                  (5) 

where    
 ,     

  and    
  refer to three combinations other than the  th combination in the   

  generation, and   is a mutation factor between 0 and 2 giving more differential variance as it 

increases its value. 

The next step is the crossover, in which a new set of combinations is generated, each 

denoted as   
  and where each element forming a particular combination is generated as Eq. 6: 

  
  {

  
          

  
          

                                                        (6) 
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Where      is a random number between 0 and 1, and    is a crossover constant. 

During the crossover, is it ensured that the new combination   
  takes at least one element from 

the mutation vector   
 . 

The last step of the DE algorithm is the selection, where the new combinations   
  are 

tested, and their performance is compared to the original combinations   
 . If they perform better 

then they become   
   ; otherwise the combination   

  is retained and becomes    
   . Then the 

entire process is performed again.  For our purposes, the DE generates the next   
    to be 

used as an input in the FSC scheme.  

It has been demonstrated that only tens of iterations out of a large number of possible 

combinations are needed as opposed to testing the entire search space. This effort-saving 

approach actively manipulates the complex biological systems as a whole, rather than analyzing 

the processes through individual signaling pathways in a network [46]. This method has been 

successfully used to optimize conditions for several and different biological systems where the 

goal to be achieved is multi-dimensional. 

 

I.II.II.II. Lessons learned from FSC.I and transition to FSC.II 

 

There are two key findings from the multiple FSC.I experiments conducted in the past. 

First, likely because of synergies among their mechanisms of action, the concentration of each 

drug in a combination is significantly lower than when used alone. Second, the system response 

plotted against drug doses is a quadratic surface [47], and these findings have been repeated 

over and over across different biological systems.  This simple shape is surprising, but it can be 

interpreted from an evolutionary perspective: over millions of years of selection, biological 
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systems that were too sensitive to environmental perturbation, responded dramatically and 

failed to survive. Existing biological systems therefore must have developed a robustness and 

adaptiveness to perturbation, which is reflected in the smooth drug response surface.  

The consequence of this is that a relatively small number of drug-dose combinations is 

sufficient to describe the a system response as quadratic function expressed as: 

                                                   (7) 

              
         

  

 

where   is the efficacy of combinatorial drugs,    is the  th drug dosage,    is the single drug 

coefficient of the  th drug,     is the synergetic coefficient between the  th and  th drugs, and 

    is the quadratic coefficient for the  th drug. 

 In the simplest case where only one drug concentration has to be optimized, only three 

concentrations are needed to determine the parabolic curve; for a two-drug combination, six 

concentrations are required to determine the shape of the paraboloid. By extension, data from 

only ~100 combinations of a set of 14 drugs are needed to fit the quadratic surface in 14 

dimensional coordinates. 

 

I.II.II.III. Surface Response Methodology for FSC.II 

 

 Based on the previous findings, it was suggested that the FSC methodology could 

benefit from a rational selection of conditions to be tested instead of a random selection of 

testing points. It was found that there is an existing field intended to achieve suck task: the 

Response Surface Methodology (RSM) is a collection of statistical and mathematical methods 
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intended to develop, improve, and optimize processes in which the objective is influenced by 

multiple variables [48]. 

 RSM has been used for optimization of biochemical processes such as hydrolysis of 

pectic substrates, enzymatic synthesis of fatty esters, cholesterol oxidase production, alkaline 

protease production in bioreactors, to name a few [49, 50, 51, 52, 53, 54, 55, 56, 57, 58]. 

RSM is widely used to analyze the effects of independent variables by generating a 

mathematical model which describe the process [59, 60], where the data is collected by 

statistical methods, resulting in valid and objective conclusions. 

RSM is carried out in stages. The first stage is intended to screen the most important 

factors from a large number of factors. The second stage has the purpose of determining the 

optimum region. The final stage is meant to fit a second order model to the optimum region 

found on the second stage. FSC.II uses the first and second stages as the initial iteration, and 

takes the second stage result as the input for a subsequent iteration to complete the third stage. 

Depending on the number of factors, the FSC.II methodology may require one or more iterations 

to predict the optimal combination. 

Before applying the RSM methodology, it is first necessary to choose an experimental 

design that will define which experiments should be carried out in order to generate the proper 

model; there are some experimental matrices for this purpose. Experimental designs for first-

order models (e.g., factorial designs) can be used when the data set does not present curvature 

[61]. One of the most popular experimental designs is orthogonal arrays. They significantly 

reduce the number of experiments to be performed, while the conclusions drawn from small 

scale experiments are still valid over the entire region spanned by the experiment factors [62]. 

An orthogonal design is where the matrix XTX is diagonal. If the goal is to approximate a 

response function to experimental data that cannot be described by linear functions, then 
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experimental designs for quadratic response surfaces should be used, such as three- level 

factorial, Box–Behnken, central composite, and Doehlert designs [61]. 

Xu et. Al. introduced a new class of composite designs that are based on a two-level 

factorial design, and a three-level orthogonal array, these are called Orthogonal Array 

Composite Designs (OACD) [63]. An orthogonal array consisting of   runs,   factors,   levels 

and strength   is denoted as   (      ), and is an     matrix in which all    level 

combinations appear equally often in every     submatrix. There are plenty of successful 

applications using either 2-level factorial designs or 3-level orthogonal arrays [64, 65, 66, 67, 

68], but there are only a very few examples of applications using OACDs.  

 An OACD for   factors, denoted by        ,will consist of 3 parts:  

a)    cube points (       ) where all        or    This facilitates analysis according to the 

theorem that states the following: For the first-order model (linear polynomial) and a fixed 

sample size. If all variables lie between -1 and 1, then the variance of the coefficients is 

minimized if the design I s orthogonal, and all the variables are at their outer positive or negative 

limits (i.e., -1 or +1) [61]. 

b)    additional points with all           . 

c)    center points will all    = 0.  

 Composite designs have a total of            points, and 3 or 5 levels depending on 

whether     or not. The two-level part can be a    full factorial or a regular      fractional 

factorial design; these can also be either central composite designs (CCD) or small composite 

designs (SCD). In any case,       axial points are chosen to be the additional points. For the 

three-level portion, an orthogonal array that accommodates at least   three-level factors can be 



 21 

designed, and then the minimum aberration or generalized minimum aberration subset is 

chosen. 

 Composite designs are used to fit a second-order model as the one described in 

equation 7. In order to estimate the quadratic terms    , all factors must have at least 3 levels. 

Thus, using a OACD will allow to estimate the linear effects,    and two factor interactions     

with the 2-level portion, and the linear and quadratic effects     with the 3-level portion; each of 

the linear terms is estimated three times, and each of the bilinear and quadratic effects is 

estimated twice [63]. 

In the context of FSC, the OACD can provide the initial conditions to be tested and the 

drug combinations to be examined during the subsequent iterations. It would facilitate the 

development of quadratic models describing the relationship between the drug combinations 

and their efficacy with a reliable statistic correlation.  

 

 

II. Project description 

 

This project is a collaborative effort between Prof. Marcus Horwitz’ research group, 

affiliated to the Division of Infectious Diseases, School of Medicine, and the Mechanical and 

Aerospace Engineering Department, School of Engineering. While Prof. Horwitz group 

contribution consisted on carrying out the cell culture, delivering the drug combinations to the 

cultured cells, executing the readout assays and collecting all the data, the author arranged the 

experimental designs, prepared the drug combinations and performed the data analysis. 
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II.I. Objective 

 

The purpose of this work is to use a novel approach to optimize a drug cocktail intended 

to treat TB by using the Feedback System Control scheme. Concretely, by using this approach, 

we expect to:  

- Develop a combination of drugs for TB treatment to serve as an alternative therapy. 

- Reduce the labor, time and costs associated to drug cocktail design experiments. 

- Reduce the potential side effects of our drug cocktail by penalizing the use of aggressive 

drugs. 

- Direct our findings into animal tests and subsequent clinical trials implementation. 

 

 

II.II. Cell culture & readout essays 

 

 For this project, two main readout essays were used: a Green Fluorescent Protein (GFP) 

Expression for TB inhibition detection, and a Colony Forming Unit (CFU) count for TB killing 

assessment. The timelines for each essay are described below: 

 

Day 1: Plate MTB-iGFP 

Day 2: Expand THP-1 monocytic cells 

Day 8: Differentiate THP-1 cells to macrophage-like cells 

Day 11: Prepare Drug Combinations                                                   
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       Prepare MTB-iGFP and infect THP-macrophages                            

       Deliver drug combinations and induce IPTG  

Day 15: Fix cells and stain nuclei with DAPI 

Day 16: Imaging 

Day 17-21: Data Readout & Analysis 

  

Readouts are nuclei count and integrated granule intensity. These two readouts lead to 

the calculation of the integrated bacterial green fluorescence per nucleus, which is normalized to 

obtain a 0-100% Inhibition output. 

A second in vitro assay for assessment of intramacrophage MTB killing by Colony 

Forming Unit (CFU) determination is planned as follows: 

 

Day 1:    Plate MTB 

Day 2:    Expand THP-1 monocytic cells 

Day 8:    Differentiate THP-1 cells to macrophage-like cells 

Day 11:  Prepare drug combinations 

                Prepare MTB and infect THP-1 macrophages 

                Deliver drug combinations 

Day 12:  Lyse infected macrophages 1-day post infection 

                Serial dilute and plate the lysate on 7H11 agar plates 
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                Incubate the plates at 37°C, 95% air-5% CO2 for two weeks. 

Day 14:  Lyse infected macrophages 3-day post infection 

                Serial dilute and plate the lysate on 7H11 agar plates 

                Incubate the plates at 37°C, 95% air-5% CO2 for two weeks. 

Day 26:  Enumerate CFU on plates from 1-day post infection 

Day 28:  Enumerate CFU on plates from 3-day post infection 

Day 29-30: Data readout & analysis 

Readout for this essay is calculated as 

 

                         (
                        

                          
)                (8) 

 

II.III. Drug library 

 

For this project, 14 drugs were selected to be part of the drug pool for the combinatorial 

experiments. These drugs, along with their assigned code are listed below. 

 

D1 Amoxicilin/Clavulanate (A/C): Amoxicilin is a penicilin that inhibits cell wall synthesis, while 

clavulinic acid is a beta-lacamase inhibitor [69]. 
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D2 Clofazimine (CLZ): The mechanism of action is unknown, but it may be related to DNA 

binding. It has anti-mycobacterial, anti-inflammatory and immunosuppressive properties [69, 70]. 

 

D3 Cycloserine (CYC): It is a structural analogue of D-Alanine, and it inhibits alanine racemase, 

which forms D-alanine from L-alanine. It also inhibits the incorporation of D-alanine into 

peptidoglycan pentapeptide, necessary for bacterial wall synthesis [69, 71]. 

 

D4 Ethambutol (ETH): An oral chemotherapeutic agent that inhibits mycobacterial 

arabinosyltransferases, which are involved in the polymerization of D-arabinofuranose to 

arabinoglycan, an important cell wall component. It may also inhibit the synthesis of spermidine 

in mycobacteria [69, 72]. 

 

D5 Isonazid (INH): It is the most active drug for the treatment of TB caused by susceptible 

bacteria. It is a nicotinamide analog, which plays a role in the inhibition of synthesis of my colic 

acids, an important component of mycobacterial cell walls [69]. 

 

D6 Linezolid (LNZ): A class of oxazolidinone antibiotic, inhibits protein synthesis at the early 

phase of protein translation, preventing the binding of formy-methionine tRNA. This drug has 

been used off-label in combination regimens to treat MDR-TB patients, but its contribution to 

these combinations is still unclear [69, 73]. 

 



 26 

D7 Moxifloxacin (MXF): A fluoroquinolone that inhibits bacterial DNA replication by binding itself 

to and inhibiting topoisomerases II and IV; moxifloxacin has 100 times higher affinity for bacterial 

DNA gyrase than for mammalian [69, 74]. 

 

D8 Nitroimidazopyran (PA824): It is a pro-drug requiring reductive activation, its anaerobic 

mechanism of action is believed to be inhibition of cytochrome c oxidase by nitric oxide, 

affecting cell respiration. It also has an aerobic killing effect by inhibiting mycolic acid and 

protein synthesis. It acts via generation of radicals having non-specific toxic effects [69]. 

 

D9 Para-aminosalicylic acid (PAS): Anti-metabolite that interferes with the synthesis of folic acid 

by binding to pteridinesynthetase. Since bacteria are unable to use external sources of folic 

acid, their cell growth and multiplication is affected. It may also inhibit the synthesis of 

mycobactin, an important cell wall component, reducing iron uptake by the bacteria [70, 75]. 

 

D10 Prothionamide (PRO): A N-propyl derivative of ethionamide. It is a pro-drug that requires 

activation by monooxygenase EthA. It inhibits the inhA gene product enoyl-ACP reductase, 

which is an essential enzyme in mycolic acid synthesis [69]. 

 

D11 Pyrazinamide (PZA): It is a nicotinamide analog that is converted to the active pyrazanoic 

acid (encoded by pncA) by pyrazinamidase in susceptible organisms. Pyrazanoic acid lowers 

pH in the immediate bacteria surroundings, making it unable to grow. It may also function as an 

antimetabolite of nicotinamide and interfere with the synthesis of NAD, inhibiting the synthesis of 

short-chain, fatty acid precursors [69]. 
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D12. Rifampicin (RIF): Inhibits bacterial RNA synthesis by binding to the β subunit of bacterial 

DNA-dependent RNA-polymerase (DDRP). Inhibition of DDRP leads to blocking of the initiation 

chain formation in RNA synthesis. It is one of the most effective antituberculosis agents 

available and is is effective for both intra- and extra-cellular bacteria [69]. 

 

D13 SQ109: A novel 1,2-ethylenediamine-based ethambutol (ETH) analog; it inhibits cell wall 

synthesis and acts on multiple cellular pathways, but no specific studies on mode of action are 

available. ETH is perceived as the weakest component of directly observed therapy [69, 76, 77]. 

 

D14 Bedaquiline (TMC-207): A first-in-class diarylquinoline that targets the c subunit of ATP 

synthase, inhibiting its proton pump action, causing a decrease in cellular ATP levels [69, 78]. 

 

 

II.IV. Controls 

 

 There are several controls to be tested: the 60’s regimen control (INH, RIF, ETH, 

Streptomycin), and the 80’s regimen control (INH, RIF, ETH, PZA), the uninfected cells with 

IPTG and no treatment, infected cells without IPTG and no treatment, and the infected cells with 

IPTG and no treatment.   
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II.V. Experimental setup 

 

The combinatorial experiments were performed using a Hamilton Starline Robot for 

liquid handling. A set of two different sequences were performed: drug dilutions preparation and 

drug combinations preparation. 

 

Fig. 8. View of Hamilton Robot setup. 

 

For the drug dilutions preparation, each drug was diluted from a stock 15-mL Falcon 

tube, into 2 to 5 dilutions located on a either a 48-well plate or 24-well plate (Fig.8). Then, on a 

second sequence each drug at its specific concentration is added to a 96-well plate well, where 
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each individual well is a 14 drug combination designed according to the selected design. These 

plates are called master plates, where each drug combination contains at least three times the 

volume required per data point. Then, each plate is manually replicated three times, aliquoting 

the contents of each well into three different cell culture wells. 

 

II.VI. Experimental design 

 

Among the wide array of possibilities of different experimental designs for factor 

screening and response surface modeling, the designs selected for this project are based on the 

new class of composite designs that possess both a two-level factorial design and a three-level 

orthogonal array proposed by Xu et. Al. These new composite designs have been proved to 

perform in-depth analyses, which can be used in either a single or a sequential experiment [63]. 

 

 

II.VII. Drug dosage selection 

 

Initial drug dosages were selected based on the individual drug achieved inhibitions. 

These measurements are found on Appendix X. 
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II.VIII. Data analysis 

 

All the data was analyzed and used for generating the linear regression models with 

MATLAB®. 

 

II.IX. FSC Iterations 

 

 A summary of the FSC Iterations is shown on table 1. A detailed explanation of the steps 

involved and the results obtained will be covered in the following section. 

 

 

Table 1. FSC iterations summary. Concentrations are expressed as the concentration that 

achieves a percentage of inhibition for each individual drug. 
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III. Results & discussion 

 

According to the design of experiments theory, the first FSC iteration is intended to be a 

screening test, that is, an experiment designed to study the factors involved with the intention of 

eliminating those that are insignificant; the objective is to reduce the candidate variables so that 

subsequent experiments will be more efficient [61]. In terms of our application, this means we 

are looking for those drugs that seem to have a strong positive impact over the inhibition of TB. 

 

II.I. Screening test: Iterations 1, 2 and 3 

 

Figure 9 shows the experimental results of the initial screening test. The results shown 

most of the combinations achieve a 100% inhibition. Since the system was saturated, this data 

would not be useful to construct a proper linear model. Thus, a second and third experiments 

where the dosage levels were reduced were needed to find enough variation between the 

results obtained for each run. 

The third screening test was used to derive a linear first order model through a stepwise 

regression function. A stepwise regression is a systematic method for adding or removing terms 

from a generalized linear model, where the criteria to do so is the statistical significance of each 

of these terms in explaining the response variable. 
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Fig. 9. FSC Iteration 1. Most of the runs tend to hit the 100% inhibition, thus the system is 

saturated. A propel model cannot be generated based on this information. 

 

 

Fig. 10. FSC Iteration 2. The inhibition rate achieved by the different runs varies in between 

~52% to ~96%. A bigger variation is needed to construct a proper linear regression model. 
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Fig. 11. FSC Iteration 3. The experiment runs are now varying in between ~11% and ~68%. This 

would give enough information to construct a linear regression model. 

 

The software used to do the fitting, MATLAB®, uses forward and backward stepwise 

regression to determine the terms included in the final model. For each step, the method looks 

into terms to be added or removed from the model based on the p-values of an F-statistic to test 

the model with and without the term being examined (Fig. 12). If a term is not currently in the 

model, then the null hypothesis to test is that the term would have a coefficient of zero if it were 

added to the model; if there is enough evidence to reject this null hypothesis, then the term is 

included in the model. On the other hand, if a term is already included in the model, then the null 

hypothesis to test is that the term has a coefficient different than zero; if there is enough 

evidence to reject this null hypothesis, then the term is removed from the model. These steps 

are performed as followed: 

1. A generalized linear model is fitted. 

2. If any terms that are not included in the model have a p-value smaller than an entrance 

tolerance (in other words, the probabilities of the term having a zero coefficient if added to 
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the model are too small), then the term with the smallest p-value is added to the model and 

step 2 is repeated; otherwise, the method advances to step 3. 

3. If there are any terms in the model that have a p-value larger than an exit tolerance (in other 

words, there is enough evidence to reject the hypothesis of a zero coefficient), then the term 

with the largest p-value  is removed and the model goes back to step 2; otherwise, end. 

The method terminates when no single step improves the model. 

 

Fig. 12. Stepwise removal of coefficients during iteration 3. 
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Once all the unnecessary coefficients are removed, we obtain the final model for our 

screening experiment. Figure 13 shows the results obtained. These include the estimated 

coefficients along with their standard errors, t-statistic values and their p-values. Notice the 

standard error is the same for all the coefficients, and that is a result of choosing an orthogonal 

array as mentioned previously. The display contains R-squared, adjusted R-squared, and F-

statistics. The fitting correlation is also reported.  

The p-value is the probability that a hypothesis is true, and it expresses the probability of 

rejecting the null hypothesis. 

The F-statistic is the test statistic for the analysis of variance approach to test the 

significance of the model. 

R-squared  is the proportion of the total sum of squares explained by the model; it 

measures the proportionate amount of variation in the output explained by the independent 

variables; An R-squared of 1.0 indicates that the regression line perfectly fits the data. The 

ordinary R-squares is calculated as: 

    
   

   
    

   

   
                                                        (9) 

where is     is the sum of squared error,     is the sum of squared regression,     is 

the sum of squared total. Since R-squared increases with added predictor variables in the 

regression model, an adjusted R-squared is calculated accounting for the number of coefficients 

that the model has:  

                                                          
     (

   

   
)
   

   
                                                     (10) 

where n  is the number of observations, and p  is the number of regression coefficients 

(including the intercept).  
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All these information is presented to verify the regression model obtained is acceptable. 

 

Fig. 13. Finalized model achieved after following a stepwise regression.  
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The model can also be graphically represented as shown in figure 14. 

 

Fig. 14. Final regression model achieved after following a stepwise regression, graphic 

representation.  

 

A more complete evaluation of the model can be done by studying the residuals obtained 

for the regression model, and there are several diagnostic plots that help identifying problems in 

the fitting. They can also help identify outliers. 

Outliers are observed data points that lie far from the regression line; this means that 

they have large "errors", where this "error" or residual is the vertical distance from the line to the 

point. Outliers must be examined closely; some of them can be the result of erroneous data, and 

thus they should be dismissed from the analysis to build a better model.  In some other cases, 
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these outliers may hold valuable information about the population under study, and must be 

included in the model.  

 The first one is the Plot of residuals vs. fitted values; it is a scatter plot of residuals on 

the y axis and fitted values, or estimated responses, on the x axis. This plot is commonly used to 

find any non-linearity is present, unequal error variances, and possible outliers. A desirable 

residual vs. fitted values plot have the following characteristics: a) The residuals randomly 

appear around the 0 line; this suggests that the relationship is linear; b) the residuals form a 

horizontal band without around the 0 line (no observable trends), which means that the 

variances of the error terms are equal; c) None of the residuals stands out from the random 

pattern of residuals, suggesting that there are no possible outliers. 

The next plot is the Cook’s distance plot, which is also helpful to identify outliers. The 

Cook’s distance is defined as the normalized change in the vectors of coefficients given a 

deletion of an observation, and it is calculated as:  

   
∑ (  ̂   ( ))

  
   

     
                                                          (11) 

Where    is the jth  fitted response value,   ( ) is the jth fitted response value, where the fit does 

not include observation i. MSE is the mean squared error, and p is the number of coefficients in 

the regression model. As a rule of thumb, any observation that possesses a Cook's distance that 

is larger than three times the mean Cook's distance might be an outlier. 

 The normal probability plot presents the theoretical percentiles of the normal distribution 

versus the observed sample percentiles. If the data is normally distributed with mean µ and 

variance σ2, then the plot should appear approximately linear. This also means that the error 

terms are normally distributed as well, which can also be shown with a histogram of residuals 

plot. 
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Fig.15. Antagonistic interactions between D12 and several other drugs. 

 

 We are also interested in comparing our results with the standard regimens from the 

1960s and 1980s. In this iteration, we compared the best inhibitions obtained in our 

experimental results to those achieved by the 1960s and 1980s combinations, as seen on table 

2. It is important to notice that, since the experimental design is defined as an orthogonal array, 

any given combination tested has at least six drugs. Thus, we present the best achieved result, 

in this case a nine drug combination, and the best inhibition achieved by the minimum number of 

drugs tested (six drugs). Both cases are superior compared to those of 1960s and 1980s 

regimens. These results do not reflect any optimized inhibition. 
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Table 2. Comparison of the inhibition obtained by the best nine drug and six drug combinations 

vs. 1960s and 1980s regimens. 

 

Fig. 16. Residuals analysis for iteration 3.   

 

Based on all these information from the first iteration, we conclude that the derived 

model has been validated and can be used to screen out the drugs that we will be using for the 

next iteration. From the list of estimated coefficients in figure 13, it is noted that D3, D5 and D11 

Comb/Drug D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 Inhibition

9 drug 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 69.44%

6 drug 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 61.07%

1980s 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 28.94%

1960s 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 27.40%
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can be dropped out based on the fact that they have a p-value larger than 0.05. At a level of 

significance of 0.01, D1, D6 and D7 would also be removed.  Also, it was noted that D12 seems 

to perform well as an individual drug, but it has negative interactions with D2, D5, D8, D11 and 

D14 (Fig. 15). Despite this information, both D11 and D12 were kept for the next iteration. 

 

II.II. Iteration 4 

For the next iteration, a pool of 9 drugs at three different concentrations was tested. 

Results are shown in figure 18. 

 

 

Fig. 17. Graphic representation of regression model for iteration 4. 
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Fig. 18. Regression model for iteration 4. 
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Fig. 19. Residuals analysis for iteration 4.   

 

The obtained model was validated as seen on figure 19. Based on these results, D9 has 

a small effect on the model and according to the level of significance it is also dropped out. D8 is 

a drug that seems to perform well, but it is also left out of the next iteration given the fact that it is 

still being tested as an experimental drug. D12 still shows several negative interactions, but it is 

kept for the next iteration. Moreover, plots of the different drug-drug interactions were created, 

and it was noticed that D4 and D13 seem to have very similar effects on the remaining drugs 

(Fig. 20). This suggests that these drugs could have a similar mechanism of action, and thus 

they are interchangeable. Since D13 is still being evaluated as an experimental drug, it was 

decided to leave it out on the next iteration. 
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Fig. 20. Similarities in between D4 and D13 interactions with other drugs. 
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The comparison between the best inhibitions obtained by the experimental results is 

summarized on table 3. Again, these results do not reflect any optimized inhibition. When 

optimized, the optimal drug ratios achieve 100% Inhibition. 

 

 

 

Table 3. Comparison of the inhibition obtained by the best nine drug and six drug combinations 

vs. 1960s and 1980s regimens. 

 

III.III. Iteration 5 

 

During iteration 5 a pool of 6 drugs at 5 different concentrations was tested. Results are 

shown in figure 21. The model was also statistically validated according to the residuals analysis 

shown in figure 23. 

 

 

 

Comb/Drug D2 D4 D5 D8 D9 D10 D11 D12 D13 D14 D15 Inhibition

Top Comb 1 1 -1 1 1 1 1 1 1 1 -1 96.9%

5 drug 1 1 -1 1 -1 -1 -1 -1 1 1 -1 96.5%

5 drug 1 1 -1 1 -1 1 -1 -1 -1 1 -1 95.6%

5 drug 1 1 -1 1 1 -1 -1 -1 -1 1 -1 95.4%

4 drug -1 -1 -1 -1 -1 1 1 -1 1 1 -1 92.9%

1980s -1 1 1 -1 -1 -1 1 1 -1 -1 -1 85.0%

1960s -1 1 1 -1 -1 -1 -1 1 -1 -1 1 88.1%
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Fig. 21. Regression model for iteration 5. The linear regression equation is expressed in 

Wilkinson notation. 
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Fig. 22. Graphic representation of regression model for iteration 5. 

 

Fig. 23. Residuals analysis for iteration 5.  
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The comparisons between the best inhibitions obtained by the experimental results are 

summarized on table 4. Again, these results do not reflect any optimized inhibition. Optimized 

combinations within the same drug concentrations reach a similar maximum inhibition. 

 

 

Table 4. Comparison of the inhibition obtained by the best four drug combinations vs. 1960s and 

1980s regimens. 

 

This iteration also showed ho D12 keeps having negative interactions with the remaining 

tested drugs; thus, it is decided that it should not be included in the next iteration. 

 

II.IV. Iteration 6 

II.IV.I. Overall results 

 

Iteration 6 is the last iteration performed for this optimization problem, where a pool of 5 

drugs at 5 different concentrations were tested. Results are summarized in figure 24.  

Comb/Drug D2 D4 D5 D10 D11 D12 D14 D15 Inhibition

Top 1 1 1 -1 1 -1 -1 1 -1 82.2%

Top 2 1 1 -1 1 1 1 1 -1 81.6%

1980s -1 1 1 -1 1 1 -1 -1 61.8%

1960s -1 1 1 -1 -1 1 -1 1 70.9%
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Fig. 24. Regression model for iteration 5 expressed in Wilkinson notation. 

 

Fig. 25. Graphic representation of regression model for iteration 6. 
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Fig. 26. Residuals analysis for iteration 6.   

 

The previous residuals analysis suggests that the residuals (and hence the error terms) 

may not be normally distributed in their entirety, since the distribution of residuals seems to be 

tailed. Thus, the selection of best combinations takes into consideration the overall performance 

of these drugs along the different iterations. 

For this last iteration, the heat maps of the drug-drug interactions were analyzed (fig. 27).  

The plots show that in all cases using the highest drug concentration possible always yields to 

the highest inhibition; this can be explained by the fact that the drug concentrations are too low 

to be toxic to the cells. Also, the plots show that despite having several good combinations that 

can achieve good results, drug-drug interactions show very low synergistic effects. 
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The comparison between the best inhibitions obtained by the experimental results are 

summarized in table 5. Again, these results do not reflect any optimized inhibition. When 

optimized, the optimal drug ratios achieve ~86% Inhibition. 

 

Table 5. Comparison of the inhibition obtained by the best five and four drug combinations vs. 

1960s and 1980s regimens. 

 

The following table summarizes the step by step elimination of drugs across the different 

iterations. 

 

Table 6. Drug selection through each FSC iteration. 

Comb/Drug D2 D4 D5 D10 D11 D12 D14 D15 Inhibition

Top 1 4 4 0 2 4 0 4 0 77.00%

Top 2 4 0 0 4 4 0 2 0 71.99%

1980s 2 2 0 0 2 2 0 0 32.52%

1960s 2 2 0 0 0 2 0 2 36.95%
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The list of drug combinations that yield the best results are listed on table 11, along with 

their projected inhibitions. 

 

II.IV.II. Drug ratio sensitivity analysis 

 

 An important lesson learnt from observation on the projected inhibitions calculated from 

the derived models is the effect of the ratio over the final outcome. We were interested to study 

these ratios on the top combinations found on our experiments; the results are shown on tables 

7, 8 and 9. Each table shows a drug combination for which there are several possible ratios, and 

each combination shows the drug concentration for every drug expressed as mg/ml. In table 7, 

combination 1 shows the maximum drug concentrations used. Combinations 2-4 take one of the 

drugs and reduce its concentration by 50%. Combinations 5-7 take two drugs and reduce their 

concentration by 50%.  

 

 

Table 7. Drug ratio analysis example. 
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 Combination 1 achieves the highest projected inhibition as expected. Surprisingly, 

reducing one drug down to 50% its original concentration (combination 2) would only reduce the 

projected inhibition by ~7.4%. If a different drug is reduced by 50% (combination 3), then the 

projected inhibition would be severely affected and dropping ~27.4%. Unexpectedly, it is 

possible to achieve a better projected inhibition by reducing two drugs concentrations by 50% 

(combination 6).  

 

 A similar situation can be found on table 8, this time for a 4 drug combination.  

 

Table 8. Drug ratio analysis example. 
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In this example, combination 1 achieves a 100% projected inhibition. When reducing a 

single drug by 50%, the projected inhibition varies between 94% and 72% (combinations 3 and 

5, respectively). Similarly to last example, it is possible to obtain a better projected inhibition if 

the concentration of two drugs are reduced by 50%, when compared to the projected inhibition 

achieved by reducing the drug concentration of a single drug (combinations 6, 10 and 8). 

A third example is provided on table 9. 

 

 

Table 9. Drug ratio analysis example. 

 

 Here, we compare the best achieved inhibition (100% in combination 1), against a range 

of ~95.1% to ~75.1% inhibition when reducing a single drug concentration by 50% 
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(combinations 3 and 4, respectively). When the concentration of two drugs are reduced (for 

example, combinations 6, 10 and 8), it is possible to achieve a better inhibition than when only a 

single drug concentration is reduced (combination 4). 

 

III.IV.III. Colony Forming Unit verification assay 

 

 Despite the exciting results obtained during the FSC process, it is important to recognize 

that the GFP essay performed to obtain the readings may only assess bacteria inhibition rates 

and not precisely bacteria killing rates.  Thus, a colony forming unit (CFU) assay was used to 

study the top combinations found during the FSC iterations. These combinations were tested at 

their optimal ratios found on previous iterations, and then these concentrations were tested at 

1x, 4x, and 16x. These combinations were evaluated 1 day and 3 day after drug exposure. 

Moreover, one combination was tested at different ratios (treatments M, L, X).  

Table 10 summarizes the results obtained. The results show that all combinations except 

for treatment Q outperform the 80’s regimen control (treatment V). It was also found that, for 

treatment M, the ratio of the drugs does affect the performance: according to the results 

obtained, reducing the concentration of two drugs by 50% (treatment L) yields a better killing 

rate than reducing one of them (treatment X). 

The two assays used to assess the drug cocktail performances were expected to have 

different results. Table 11 summarizes the projected inhibition achieved by the same 

combinations according to the GFP inhibition essay. The only noticeable difference is that 

treatment Q was expected to be one of the top combinations, whereas it performed worse than 

the 80’s regimen in the killing CFU assay (treatment V). 
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Table 10. Killing essay results 
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Table 11. Projected inhibition of top combinations according to the model generated during 

iteration 6. 
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IV. Future directions 

 

IV.I Understanding drug cocktail’s mechanism through phospho flow 

 

As mentioned before, FSC is a powerful tool to drive biological systems to achieve a 

desired phenotype. it does so by treating the system in question as a black box, ignoring its 

dynamics; however, in order to develop a trustworthy therapy, is it imperative to understand how 

the newly developed drug cocktails work. In this context, FSC is also a helpful scheme to 

debunk the complex cell dynamics: it is easier to try to understand drug combination kinetics 

once this combination is known. 

It is well known that cell response to a stimulus involves several actions, particularly 

protein modification through post-translational processes. These include protein cleavage, 

protein splicing, acetylation, and coupling to small peptides such as glutathione, and 

phosphorylation, this last one being a significantly important regulator of signal transduction 

pathways [79]. 

Phosphorylation is the addition of a phosphate group to a protein, a transient and 

reversible event that indicates activation status of signaling proteins. Therefore, by measuring 

the phosphorylation state of proteins, it is possible to determine which signaling cascades are 

used in response to specific stimuli, the elements such as cytokines or growth factors involved, 

the kinetics associated to this signaling activity, and the downstream targets that are 

transcribed. Furthermore, by comparing diseased cells to healthy samples, it is possible to 

identify aberrant signaling events, a useful trait to characterize cancers and immune disorders 

[80].  
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To measure phosphorylation events, antibodies that are specific to the phosphorylated 

form of the protein of interest must be raised; these phosphor specific antibodies are coupled to 

fluorophores that can be further detected and analyzed by flow cytometry. In general, a 

heterogeneous sample of cells is treated with two different stimuli, A and B, to induce distinct 

signaling cascades, resulting in phosphorylation of two target proteins. A third sample is treated 

with both stimuli. The three samples are then fixed, permeabilized and stained with the 

fluorophore-conjugated phospho-specific forms of the proteins. Then the samples are ready to 

be analyzed with flow cytometry, where an increase in fluorescence reading is correlated with an 

increase in phosphorylation [80]. 

Depending on the flow cytometer used, more than 13 parameters can be simultaneously 

analyzed in a single cell. These readings can also be performed in 96-well plates in parallel, 

making it a suitable option for high throughput experiments [81].  

Phospho flow has successfully been used to give new insights on the cell dynamics of 

diseased cells based on the results delivered by the FSC drug cocktail optimization method: 

new discoveries in the herpes virus infection mechanism were made after infected cells treated 

with an optimized drug cocktail were compared to an untreated control (Unpublished data). 

Following this example, we expect to do an important contribution regarding the understanding 

of drug resistance treatment. 

 

IV.II. Animal tests  

 

Translating drug cocktails, which are designed at the cellular level into clinical 

applications, is a challenging task. The discontinuities in the hierarchical complex system, 

spanning from the cell to the human body as a system, impede the direct application of these 
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drug combinations [82]; for example, some drugs used in the combinatorial experiments work at 

a systemic level rather than at the cell level. Once again, a top-down approach, such as the FSC 

platform, would serve as a good candidate to solve this problem. 

For this project, the results obtained in the inhibition and CFU enumeration essays can 

be used to guide a drug cocktail optimization search in animal tests; thus, the following step is to 

optimize a 3- and 4- drug combination, based on our previous top combinations, using a mice 

model. Since the FSC allows for dramatic reduction in the number of subjects needed to find 

these optimized combinations in animal tests, each experimental design will only require 10 

groups of mice. For these experiments, once mice are infected with MTB by aerosol, there are 

two weeks of waiting time for the bacteria to grow before starting a 5-day per week treatment 

that lasts for 4 weeks. At the end of the 4-week treatment period, mice are euthanized for CFU 

enumeration. Overall, this animal experiment takes 12 weeks. 

 

 

IV.III. Clinical Trials 

 

 

There are several factors contributing to the long duration of TB drug clinical 

development; some of them are the limited number of biomarkers available to track drug efficacy 

in early clinical development, the long doubling time of TB, the lengthy treatment periods, the 

requisite of long patient follow-up periods, and the need of a large number of patients [10]. 

In this regard, the FSC scheme can serve to minimize the required effort needed to 

achieve this endeavor. Once an optimal combination is found in cell culture, it serves as an 

initial cue to develop a tailored cocktail in clinical trials. Moreover, FSC can still guide an 

effective search of drug cocktails in clinical trials, and the cost function can also be adjusted to 
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include different considerable factors, such as secondary effects, or drug availability. A new 

FSC.III technique is currently being developed, a powerful tool that has the capacity to optimize 

drug combinations for single patients; it holds the potential of becoming a true personalized 

medicine tool. 

These clinical trials can be designed under the guidance of the adaptive design clinical 

trials for drugs and biologics FDA guidelines, which are intended to provide a reference when 

designing clinical trials with adaptive features that may make the studies more efficient, and 

more likely to demonstrate an the effects of the drugs used [83]. 

Moreover, the results obtained from this experiment align with the Qualified Infectious 

Disease Product (QIDP) program, an FDA program intended to facilitate and expedite 

development and review of new drugs to address unmet medical needs in the treatment of 

serious or life threating diseases: fast track designation, breakthrough therapy designation, 

accelerated approval, and priority review designation [84]. 

 

 

V. Concluding remarks 

 

In summary, this project aimed to identify drug combinations that could serve as a 

potential, more efficacious alternative treatment for TB. By using FSC.II, we identified eleven 

combinations that outperform the standard regimen, and these results were validated in two 

different cell culture based assays. 
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By achieving this, we accomplished our goals of reducing the labor, time and costs 

associated to drug cocktail design experiments, and reduce the potential side effects of the drug 

by penalizing the use of aggressive and/or highly concentrated drugs. 

With our findings, we expect to facilitate the design and execution of animal tests and the 

transition of these results into clinical trials.  

Overall, the outcome of this project has a potential impact on the drug development 

current procedures. An optimized drug cocktail developed using less resources, faster and 

cheaper than how is traditionally done means higher profits for pharmaceutical companies, and 

more importantly means access to better and more affordable drugs to patients in need. 

Furthermore, the development of optimized therapies that successfully avoid drug resistance is 

now feasible, as well as reduction of the total treatment time for TB. In conclusion, this project 

has an important relevance and will positively impact the field of translational medicine. 
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VI. Appendices 

VI.I. Appendix A. Dose-response curve for single drugs 
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 66 

VI.II. Appendix B. FSC experimental design tables 

Experimental design for iteration 3 

 

Run/Drug D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

2 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1

3 -1 -1 -1 -1 1 -1 1 -1 -1 1 -1 1 1 1

4 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1

5 -1 -1 -1 1 -1 -1 -1 -1 1 -1 1 1 1 1

6 -1 -1 -1 1 -1 1 1 1 -1 1 -1 -1 -1 1

7 -1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1

8 -1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 1 -1

9 -1 -1 1 -1 -1 -1 -1 1 -1 1 1 1 -1 1

10 -1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 1 1

11 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 -1 -1

12 -1 -1 1 -1 1 1 -1 -1 -1 -1 1 1 1 -1

13 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 1 -1

14 -1 -1 1 1 -1 1 -1 1 1 -1 -1 1 -1 -1

15 -1 -1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 1

16 -1 -1 1 1 1 1 1 -1 1 1 1 1 -1 1

17 -1 1 -1 -1 -1 -1 1 -1 1 1 1 -1 -1 1

18 -1 1 -1 -1 -1 1 -1 1 -1 -1 -1 1 1 1

19 -1 1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 -1

20 -1 1 -1 -1 1 1 1 -1 1 -1 -1 1 -1 -1

21 -1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 1 -1

22 -1 1 -1 1 -1 1 -1 -1 -1 1 1 1 -1 -1

23 -1 1 -1 1 1 -1 -1 1 1 1 -1 1 -1 1

24 -1 1 -1 1 1 1 1 -1 -1 -1 1 -1 1 1

25 -1 1 1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1

26 -1 1 1 -1 -1 1 1 1 -1 -1 1 -1 -1 -1

27 -1 1 1 -1 1 -1 1 1 1 -1 1 1 1 1

28 -1 1 1 -1 1 1 -1 -1 -1 1 -1 -1 -1 1

29 -1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1

30 -1 1 1 1 -1 1 -1 1 1 1 1 -1 1 1

31 -1 1 1 1 1 -1 -1 -1 1 -1 1 -1 -1 -1

32 -1 1 1 1 1 1 1 1 -1 1 -1 1 1 -1

33 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 1 1

34 1 -1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1

35 1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

36 1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 -1

37 1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1

38 1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1

39 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1

40 1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 1

41 1 -1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1

42 1 -1 1 -1 -1 1 -1 -1 1 1 1 -1 -1 -1

43 1 -1 1 -1 1 -1 -1 -1 1 -1 -1 1 -1 1

44 1 -1 1 -1 1 1 1 1 -1 1 1 -1 1 1

45 1 -1 1 1 -1 -1 1 1 1 -1 1 -1 -1 1

46 1 -1 1 1 -1 1 -1 -1 -1 1 -1 1 1 1

47 1 -1 1 1 1 -1 -1 1 1 1 1 1 1 -1

48 1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1

49 1 1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1

50 1 1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 -1

51 1 1 -1 -1 1 -1 1 1 -1 -1 -1 -1 -1 1

52 1 1 -1 -1 1 1 -1 -1 1 1 1 1 1 1

53 1 1 -1 1 -1 -1 1 1 -1 1 1 1 1 1

54 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 -1 1

55 1 1 -1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1

56 1 1 -1 1 1 1 1 1 1 1 1 -1 -1 -1

57 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1

58 1 1 1 -1 -1 1 1 1 1 1 -1 1 -1 1

59 1 1 1 -1 1 -1 1 -1 -1 1 1 1 -1 -1

60 1 1 1 -1 1 1 -1 1 1 -1 -1 -1 1 -1

61 1 1 1 1 -1 -1 -1 1 -1 1 -1 -1 -1 -1

62 1 1 1 1 -1 1 1 -1 1 -1 1 1 1 -1

63 1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1

64 1 1 1 1 1 1 -1 1 -1 -1 1 1 -1 1
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Experimental design for iteration 3 cont. 

 

 

Run/Drug D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

65 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 1 -1 1

66 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 -1 1 1

67 -1 -1 -1 -1 1 -1 -1 -1 1 1 1 1 -1 -1

68 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 -1

69 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 1 1 -1

70 -1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 -1

71 -1 -1 -1 1 1 -1 1 1 1 1 1 -1 1 1

72 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 1 -1 1

73 -1 -1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1

74 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1

75 -1 -1 1 -1 1 -1 1 -1 -1 -1 1 -1 -1 1

76 -1 -1 1 -1 1 1 -1 1 1 1 -1 1 1 1

77 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 1

78 -1 -1 1 1 -1 1 1 1 -1 -1 1 1 1 1

79 -1 -1 1 1 1 -1 1 -1 1 -1 -1 1 1 -1

80 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 -1

81 -1 1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1

82 -1 1 -1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1

83 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1

84 -1 1 -1 -1 1 1 1 1 -1 1 1 1 -1 1

85 -1 1 -1 1 -1 -1 -1 1 -1 -1 1 -1 -1 1

86 -1 1 -1 1 -1 1 1 -1 1 1 -1 1 1 1

87 -1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1

88 -1 1 -1 1 1 1 -1 1 1 -1 1 1 1 -1

89 -1 1 1 -1 -1 -1 1 1 -1 1 -1 -1 1 1

90 -1 1 1 -1 -1 1 -1 -1 1 -1 1 1 -1 1

91 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1

92 -1 1 1 -1 1 1 1 -1 1 1 1 -1 1 -1

93 -1 1 1 1 -1 -1 1 1 1 1 1 1 -1 -1

94 -1 1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1

95 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1

96 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1

97 1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1

98 1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 1 1 -1

99 1 -1 -1 -1 1 -1 -1 1 -1 -1 1 1 1 1

100 1 -1 -1 -1 1 1 1 -1 1 1 -1 -1 -1 1

101 1 -1 -1 1 -1 -1 1 -1 -1 -1 -1 -1 1 1

102 1 -1 -1 1 -1 1 -1 1 1 1 1 1 -1 1

103 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1

104 1 -1 -1 1 1 1 1 -1 -1 1 1 1 1 -1

105 1 -1 1 -1 -1 -1 1 -1 1 1 1 1 1 1

106 1 -1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1

107 1 -1 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 -1

108 1 -1 1 -1 1 1 1 1 1 -1 1 1 -1 -1

109 1 -1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1

110 1 -1 1 1 -1 1 1 1 1 1 -1 -1 1 -1

111 1 -1 1 1 1 -1 1 1 -1 1 -1 1 -1 1

112 1 -1 1 1 1 1 -1 -1 1 -1 1 -1 1 1

113 1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1

114 1 1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1

115 1 1 -1 -1 1 -1 1 1 1 1 -1 1 1 -1

116 1 1 -1 -1 1 1 -1 -1 -1 -1 1 -1 -1 -1

117 1 1 -1 1 -1 -1 -1 -1 1 1 1 -1 1 -1

118 1 1 -1 1 -1 1 1 1 -1 -1 -1 1 -1 -1

119 1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1

120 1 1 -1 1 1 1 -1 1 -1 1 -1 -1 1 1

121 1 1 1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1

122 1 1 1 -1 -1 1 -1 1 -1 1 1 1 1 -1

123 1 1 1 -1 1 -1 -1 1 1 1 1 -1 -1 1

124 1 1 1 -1 1 1 1 -1 -1 -1 -1 1 1 1

125 1 1 1 1 -1 -1 -1 1 1 -1 -1 1 1 1

126 1 1 1 1 -1 1 1 -1 -1 1 1 -1 -1 1

127 1 1 1 1 1 -1 1 1 -1 -1 1 -1 1 -1

128 1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 -1
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Experimental design for iteration 4 

 

 

 

 

 

Run/Drug D2 D4 D8 D9 D10 D11 D12 D13 D14

1 -1 -1 -1 -1 -1 -1 -1 -1 -1

2 -1 -1 -1 -1 -1 -1 1 -1 1

3 -1 -1 -1 -1 -1 1 -1 -1 1

4 -1 -1 -1 -1 -1 1 1 -1 -1

5 -1 -1 -1 -1 1 -1 -1 1 -1

6 -1 -1 -1 -1 1 -1 1 1 1

7 -1 -1 -1 -1 1 1 -1 1 1

8 -1 -1 -1 -1 1 1 1 1 -1

9 -1 -1 -1 1 -1 -1 -1 1 -1

10 -1 -1 -1 1 -1 -1 1 1 1

11 -1 -1 -1 1 -1 1 -1 1 1

12 -1 -1 -1 1 -1 1 1 1 -1

13 -1 -1 -1 1 1 -1 -1 -1 -1

14 -1 -1 -1 1 1 -1 1 -1 1

15 -1 -1 -1 1 1 1 -1 -1 1

16 -1 -1 -1 1 1 1 1 -1 -1

17 -1 -1 1 -1 -1 -1 -1 1 1

18 -1 -1 1 -1 -1 -1 1 1 -1

19 -1 -1 1 -1 -1 1 -1 1 -1

20 -1 -1 1 -1 -1 1 1 1 1

21 -1 -1 1 -1 1 -1 -1 -1 1

22 -1 -1 1 -1 1 -1 1 -1 -1

23 -1 -1 1 -1 1 1 -1 -1 -1

24 -1 -1 1 -1 1 1 1 -1 1

25 -1 -1 1 1 -1 -1 -1 -1 1

26 -1 -1 1 1 -1 -1 1 -1 -1

27 -1 -1 1 1 -1 1 -1 -1 -1

28 -1 -1 1 1 -1 1 1 -1 1

29 -1 -1 1 1 1 -1 -1 1 1

30 -1 -1 1 1 1 -1 1 1 -1

31 -1 -1 1 1 1 1 -1 1 -1

32 -1 -1 1 1 1 1 1 1 1

33 -1 1 -1 -1 -1 -1 -1 1 1

34 -1 1 -1 -1 -1 -1 1 1 -1

35 -1 1 -1 -1 -1 1 -1 1 -1

36 -1 1 -1 -1 -1 1 1 1 1

37 -1 1 -1 -1 1 -1 -1 -1 1

38 -1 1 -1 -1 1 -1 1 -1 -1

39 -1 1 -1 -1 1 1 -1 -1 -1

40 -1 1 -1 -1 1 1 1 -1 1

41 -1 1 -1 1 -1 -1 -1 -1 1

42 -1 1 -1 1 -1 -1 1 -1 -1

43 -1 1 -1 1 -1 1 -1 -1 -1

44 -1 1 -1 1 -1 1 1 -1 1

45 -1 1 -1 1 1 -1 -1 1 1

46 -1 1 -1 1 1 -1 1 1 -1

47 -1 1 -1 1 1 1 -1 1 -1

48 -1 1 -1 1 1 1 1 1 1

49 -1 1 1 -1 -1 -1 -1 -1 -1

50 -1 1 1 -1 -1 -1 1 -1 1

51 -1 1 1 -1 -1 1 -1 -1 1

52 -1 1 1 -1 -1 1 1 -1 -1
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Experimental design for iteration 4 cont. 

 

 

 

 

 

Run/Drug D2 D4 D8 D9 D10 D11 D12 D13 D14

53 -1 1 1 -1 1 -1 -1 1 -1

54 -1 1 1 -1 1 -1 1 1 1

55 -1 1 1 -1 1 1 -1 1 1

56 -1 1 1 -1 1 1 1 1 -1

57 -1 1 1 1 -1 -1 -1 1 -1

58 -1 1 1 1 -1 -1 1 1 1

59 -1 1 1 1 -1 1 -1 1 1

60 -1 1 1 1 -1 1 1 1 -1

61 -1 1 1 1 1 -1 -1 -1 -1

62 -1 1 1 1 1 -1 1 -1 1

63 -1 1 1 1 1 1 -1 -1 1

64 -1 1 1 1 1 1 1 -1 -1

65 1 -1 -1 -1 -1 -1 -1 1 1

66 1 -1 -1 -1 -1 -1 1 1 -1

67 1 -1 -1 -1 -1 1 -1 1 -1

68 1 -1 -1 -1 -1 1 1 1 1

69 1 -1 -1 -1 1 -1 -1 -1 1

70 1 -1 -1 -1 1 -1 1 -1 -1

71 1 -1 -1 -1 1 1 -1 -1 -1

72 1 -1 -1 -1 1 1 1 -1 1

73 1 -1 -1 1 -1 -1 -1 -1 1

74 1 -1 -1 1 -1 -1 1 -1 -1

75 1 -1 -1 1 -1 1 -1 -1 -1

76 1 -1 -1 1 -1 1 1 -1 1

77 1 -1 -1 1 1 -1 -1 1 1

78 1 -1 -1 1 1 -1 1 1 -1

79 1 -1 -1 1 1 1 -1 1 -1

80 1 -1 -1 1 1 1 1 1 1

81 1 -1 1 -1 -1 -1 -1 -1 -1

82 1 -1 1 -1 -1 -1 1 -1 1

83 1 -1 1 -1 -1 1 -1 -1 1

84 1 -1 1 -1 -1 1 1 -1 -1

85 1 -1 1 -1 1 -1 -1 1 -1

86 1 -1 1 -1 1 -1 1 1 1

87 1 -1 1 -1 1 1 -1 1 1

88 1 -1 1 -1 1 1 1 1 -1

89 1 -1 1 1 -1 -1 -1 1 -1

90 1 -1 1 1 -1 -1 1 1 1

91 1 -1 1 1 -1 1 -1 1 1

92 1 -1 1 1 -1 1 1 1 -1

93 1 -1 1 1 1 -1 -1 -1 -1

94 1 -1 1 1 1 -1 1 -1 1

95 1 -1 1 1 1 1 -1 -1 1

96 1 -1 1 1 1 1 1 -1 -1

97 1 1 -1 -1 -1 -1 -1 -1 -1

98 1 1 -1 -1 -1 -1 1 -1 1

99 1 1 -1 -1 -1 1 -1 -1 1

100 1 1 -1 -1 -1 1 1 -1 -1

101 1 1 -1 -1 1 -1 -1 1 -1

102 1 1 -1 -1 1 -1 1 1 1

103 1 1 -1 -1 1 1 -1 1 1

104 1 1 -1 -1 1 1 1 1 -1
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Experimental design for iteration 4 cont. 

 

 

 

 

 

Run/Drug D2 D4 D8 D9 D10 D11 D12 D13 D14

105 1 1 -1 1 -1 -1 -1 1 -1

106 1 1 -1 1 -1 -1 1 1 1

107 1 1 -1 1 -1 1 -1 1 1

108 1 1 -1 1 -1 1 1 1 -1

109 1 1 -1 1 1 -1 -1 -1 -1

110 1 1 -1 1 1 -1 1 -1 1

111 1 1 -1 1 1 1 -1 -1 1

112 1 1 -1 1 1 1 1 -1 -1

113 1 1 1 -1 -1 -1 -1 1 1

114 1 1 1 -1 -1 -1 1 1 -1

115 1 1 1 -1 -1 1 -1 1 -1

116 1 1 1 -1 -1 1 1 1 1

117 1 1 1 -1 1 -1 -1 -1 1

118 1 1 1 -1 1 -1 1 -1 -1

119 1 1 1 -1 1 1 -1 -1 -1

120 1 1 1 -1 1 1 1 -1 1

121 1 1 1 1 -1 -1 -1 -1 1

122 1 1 1 1 -1 -1 1 -1 -1

123 1 1 1 1 -1 1 -1 -1 -1

124 1 1 1 1 -1 1 1 -1 1

125 1 1 1 1 1 -1 -1 1 1

126 1 1 1 1 1 -1 1 1 -1

127 1 1 1 1 1 1 -1 1 -1

128 1 1 1 1 1 1 1 1 1

129 -1 -1 -1 -1 -1 -1 -1 -1 -1

130 -1 -1 0 0 -1 1 0 1 1

131 -1 -1 1 1 -1 0 1 0 0

132 -1 0 -1 0 1 0 -1 0 1

133 -1 0 0 1 1 -1 0 -1 0

134 -1 0 1 -1 1 1 1 1 -1

135 -1 1 -1 1 0 1 -1 1 0

136 -1 1 0 -1 0 0 0 0 -1

137 -1 1 1 0 0 -1 1 -1 1

138 0 -1 -1 0 0 0 0 -1 0

139 0 -1 0 1 0 -1 1 1 -1

140 0 -1 1 -1 0 1 -1 0 1

141 0 0 -1 1 -1 1 0 0 -1

142 0 0 0 -1 -1 0 1 -1 1

143 0 0 1 0 -1 -1 -1 1 0

144 0 1 -1 -1 1 -1 0 1 1

145 0 1 0 0 1 1 1 0 0

146 0 1 1 1 1 0 -1 -1 -1

147 1 -1 -1 1 1 1 1 -1 1

148 1 -1 0 -1 1 0 -1 1 0

149 1 -1 1 0 1 -1 0 0 -1

150 1 0 -1 -1 0 -1 1 0 0

151 1 0 0 0 0 1 -1 -1 -1

152 1 0 1 1 0 0 0 1 1

153 1 1 -1 0 -1 0 1 1 -1

154 1 1 0 1 -1 -1 -1 0 1

155 1 1 1 -1 -1 1 0 -1 0
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Experimental design for iteration 5 
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Experimental design for iteration 6 

 

 

 

 

 

 

Run/Drug D2 D4 D10 D11 D14

1 1 1 3 4 4

2 2 2 4 3 3

3 3 3 0 2 2

4 4 4 1 1 1

5 0 0 2 0 0

6 1 2 1 2 0

7 2 3 2 1 4

8 3 4 3 0 3

9 4 0 4 4 2

10 0 1 0 3 1

11 1 3 4 0 1

12 2 4 0 4 0

13 3 0 1 3 4

14 4 1 2 2 3

15 0 2 3 1 2

16 1 4 2 3 2

17 2 0 3 2 1

18 3 1 4 1 0

19 4 2 0 0 4

20 0 3 1 4 3

21 1 0 0 1 3

22 2 1 1 0 2

23 3 2 2 4 1

24 4 3 3 3 0

25 0 4 4 2 4

26 1 2 2 0 3

27 2 3 3 4 2

28 3 4 4 3 1

29 4 0 0 2 0

30 0 1 1 1 4

31 1 3 0 3 4

32 2 4 1 2 3

33 3 0 2 1 2

34 4 1 3 0 1

35 0 2 4 4 0

36 1 4 3 1 0

37 2 0 4 0 4

38 3 1 0 4 3

39 4 2 1 3 2

40 0 3 2 2 1

41 1 0 1 4 1

42 2 1 2 3 0

43 3 2 3 2 4

44 4 3 4 1 3

45 0 4 0 0 2

46 1 1 4 2 2

47 2 2 0 1 1

48 3 3 1 0 0

49 4 4 2 4 4

50 0 0 3 3 3
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VI.III. Appendix C. CFU Experimental data 
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