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Comparative genomic analysis of
thermophilic fungi reveals convergent
evolutionary adaptations and gene losses

Check for updates

Andrei S. Steindorff 1, Maria Victoria Aguilar-Pontes 2,16, Aaron J. Robinson 3, Bill Andreopoulos1,
Kurt LaButti 1, Alan Kuo 1, Stephen Mondo 1, Robert Riley 1, Robert Otillar1, Sajeet Haridas 1,
Anna Lipzen 1, Jane Grimwood 1,4, Jeremy Schmutz 1,4, Alicia Clum1,5, Ian D. Reid2,
Marie-Claude Moisan2, Gregory Butler2, Thi Truc Minh Nguyen2, Ken Dewar6, Gavin Conant 7,
Elodie Drula8, Bernard Henrissat 9, Colleen Hansel 10, Steven Singer11, Miriam I. Hutchinson12,
Ronald P. de Vries 13, Donald O. Natvig12, Amy J. Powell14, Adrian Tsang2 & Igor V. Grigoriev 1,15

Thermophily is a trait scattered across the fungal tree of life, with its highest prevalence within three
fungal families (Chaetomiaceae, Thermoascaceae, and Trichocomaceae), as well as some members
of the phylum Mucoromycota. We examined 37 thermophilic and thermotolerant species and 42
mesophilic species for this study and identified thermophily as the ancestral state of all three
prominent families of thermophilic fungi. Thermophilic fungal genomes were found to encode various
thermostable enzymes, including carbohydrate-active enzymes such as endoxylanases, which are
useful for many industrial applications. At the same time, the overall gene counts, especially in gene
families responsible for microbial defense such as secondary metabolism, are reduced in
thermophiles compared to mesophiles. We also found a reduction in the core genome size of
thermophiles in both the Chaetomiaceae family and the Eurotiomycetes class. The Gene Ontology
terms lost in thermophilic fungi include primary metabolism, transporters, UV response, and
O-methyltransferases. Comparative genomics analysis also revealed higher GC content in the third
base of codons (GC3) and a lower effective number of codons in fungal thermophiles than in both
thermotolerant and mesophilic fungi. Furthermore, using the Support Vector Machine classifier, we
identified several Pfam domains capable of discriminating between genomes of thermophiles and
mesophiles with 94% accuracy. Using AlphaFold2 to predict protein structures of endoxylanases
(GH10), we built a similarity network based on the structures. We found that the number of disulfide
bonds appears important for protein structure, and the network clusters based on protein structures
correlate with the optimal activity temperature. Thus, comparative genomics offers new insights into
the biology, adaptation, and evolutionary history of thermophilic fungi while providing a parts list for
bioengineering applications.

Thermophilic fungi have adapted to thrive in high-temperature environ-
ments. Despite a debate in the literature on how to classify thermophilic
fungi, they can be categorized based on their temperature requirements for
growth and survival: thermophilic fungi thrive in high-temperature envir-
onments (>45 °C), mesophilic fungi prefer lower temperatures (20–34 °C),
and thermotolerant fungi can survive at high temperatures (<45 °C) but do

not necessarily grow optimally in these conditions1,2. The adaptations to
survive high temperatures include slowermetabolic rates, a high proportion
of saturated fatty acids in their phospholipids, rapid turnover of enzymes,
synthesis of heat shock proteins, and uniquemechanisms for lipid storage3,4.
These adaptations allow thermophilic fungi to endure temperatures lethal to
most other organisms. The impressive resilience and enzymatic abilities of
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thermophilic fungi therefore offer vast potential for applications in bio-
technology, biofuel production, bioremediation, paper production, and
therapeutic biomolecule production5.

The heat shock response is a fundamental adaptation to elevated
temperatures that plays a pivotal role in the survival of thermophilic fungi4.
These fungi have evolved mechanisms of persistent thermotolerance,
including membrane lipid composition alterations. They have a high pro-
portion of phosphatidic acids in their membrane lipids and, in response to
heat shock, exhibit a dynamic shift with a decrease in the levels of phos-
phatidylcholine and phosphatidylethanolamine. Additionally, trehalose, a
key player in thermotolerance, experiences a decrease in concentration
upon heat exposure4,6. These molecular adaptations form the foundation of
their remarkable ability to withstand elevated temperatures.

Thebiotechnological allure of thermophilic fungi is further illuminated
through genomic investigations. Berka and collaborators7 conducted a
comparative analysis of the genomes of two thermophilic fungi, unveiling
their remarkable capacity to hydrolyze all major polysaccharides present in
biomass. Maheshwari and collaborators8 highlighted the profound cap-
ability of these fungi todegradepolysaccharide constituentsof biomass,with
their extracellular enzymes exhibiting temperature optima for activity that
aligns closely with or surpassing the organism’s optimum growth tem-
perature. Such findings underscore the promise of thermophilic fungi in
biomass utilization and bioenergy production. Furthermore, a deeper

understanding of the evolutionary context of thermophilic fungi has been
provided by Morgenstern2, revealing that known thermophilic fungi are
primarily concentrated in the Sordariales, Eurotiales, and Onygenales
orders within the Ascomycota phylum, with the Mucorales order possibly
harboring additional thermophilic species at the basal lineage of fungi.

To harness the biotechnological potential of thermophilic fungi, we
aimed to understand better their mechanisms of thermotolerance and
enzymatic potential through comparative genomics. This study explores 29
thermophilic fungal genomes from three different orders (Sordariales,
Eurotiales, andMucorales), with a focus on genetic adaptations, such as the
increase in the third base of codon (GC3), reduction in the effective number
of codon (ENC) and core genes content. In addition, we used a machine
learning approach to classify thermophilic/mesophilic fungi based on four
gene families with high accuracy. We also suggest that protein structure
prediction using AlphaFold29 can be used to find patterns in biotechnolo-
gically important features, such as the optimal temperature of enzymes.

Results
Phylogeny and genomic features
Thedatasetweused for this analysis comprises genomesof 29 thermophiles,
8 thermotolerant fungi, and 42 mesophiles, totaling 79 species from Asco-
mycota, Basidiomycota, and Mucoromycota phyla (Fig. 1a and Supple-
mentary Data 1). We used Mesquite (http://www.mesquiteproject.org) to

Fig. 1 | Phylogeny and genome features of thermophilic, mesophilic, and
thermotolerant fungi. aMaximum likelihood tree of 79 fungi. The branch colors
represent the ancestral ecological character states reconstructed withMesquite using
the Mk1 likelihood reconstruction model. b Assembly size in Mbp shows the dis-
tribution of repeats, gaps, and non-repeat content. cNormalized counts of CAZymes

(Carbohydrate Active Enzymes) split into the classes AA (Auxiliary Activities),
CBM Carbohydrate Binding Modules, CE (Carbohydrate Esterases), EXPN
(Expansins), GH (Glycoside Hydrolases), GT (Glycoside Transferases, Myosin
(Myosin Motor), and PL (Pectate Lyases). d Normalized counts of secondary
metabolite clusters according to SMURF predictions.
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reconstruct the ancestral state of the clades to find the common ancestor of
Chaetomiaceae, Thermoascaceae, and Trichocomaceae families all to be
thermophilic. Interestingly, only the Chaetiomiaceae revealed two or more
thermophilic-mesophilic transitions, with ancestral clades within the
families being thermophiles. Similar results were found by Hensen and
colleagues10, where variation in genome features stems primarily from
within-family evolution.

We observed that the genome sizes in thermophilic fungi are smaller
overall (p = 3.3 × 10−5 – two-tailed Wilcoxon rank sum test [WT]) and
when compared with their mesophilic counterparts (most phylogenetically
close in ourdataset). The pairAcremonium thermophillum (28.89Mbp) and
Coniochaeta lignaria (42.38 Mbp) is a good example, with the genome of
thermophile 13.49Mbp shorter than its counterpart. (Fig. 1b). Similar
trends can be observed in Talaromyces and Thermomyces, with average
thermophilic genomes reduced by 38.12%. The pattern is less clear in cases
likeRasamsonia, which have genomes closer in size toTalaromyces, and the
Mucoromycota phylum (Fig. 2b).

Thermophilic fungi are known to secrete a wide range of thermostable
enzymes, in particular CAZymes7 (Fig. 1c, and Supplementary Data 2).
Among the classes of CAZymes within Chaetomiaceae, the auxiliary
activities (AA) (p = 0.047 - WT), carbohydrate esterases (CE) (p = 0.042),
and pectate lyases (PL) (p = 0.001 - WT) were significantly contracted in
thermophiles. In Eurotiomycetes, in contrast, carbohydrate binding mod-
ules (CBM -WT) and expansins (EXPN -WT) (both with p = 0.039) were
significantly reduced. When the human pathogens (Triru1, Hisca1, and
Cocim1) were excluded from the analysis, glycoside hydrolases (GH) were
shown to be significantly reduced in thermophiles aswell (p = 0.0015 -WT).

This is because human pathogen genomes encode a reduced number of GH
compared to other mesophilic fungi (p = 0.023 - WT) (Fig. 1c).

Thermophiles have a reduced core genome content
To further investigate the reduced genome size and, consequently, gene
content in thermophilic fungi, we performed a pan-genome analysis with
species belonging to the Chaetomiaceae family and Eurotiomycetes class in
parallel. Interestingly, the rarefaction curve of unique and shell genes has a
similar distribution in thermophiles and mesophiles. However, the core
gene set of thermophiles is strikingly reduced in both clades, revealing this
conserved pattern even in distantly related groups (Fig. 2a, b). Next, we
investigated the GO terms significantly reduced in thermophiles from both
clades (Fig. 2c). The most significant term reduced in thermophiles was
O-methyltransferase activity, followed by phospholipase activity and
phospholipid catabolic process. Several terms involved in primary meta-
bolism (i.e., hydrolase activity, acyl-CoA metabolic process, and glucose
catabolic process) and defense mechanisms were also contracted (i.e.,
xenobiotic transmembrane transporter activity, response to UV (Ultra-
Violet)).

In addition, we investigated the expansion and contraction of gene
families (HOGs) using the program CAFE v4.2.111. In this analysis (Sup-
plementary Data 3A), we found that most gene losses happened more
recently, in phylogenetic tree nodes closer to the leaves instead of older
nodes. For example, in the nodes representing the last common ancestor of
the families Chaetomiaceae, Thermoascaceae, andThichocomaceae, the net
gain of gene families is negative, but close to zero. The overall average gene
gains and losses show a clear trend of fewer genes gained by thermophilic

Fig. 2 | Pangenome of Chaetomiaceae and Eurotiomycetes. a Rarefaction curve of
Chaetomiaceae pangenome split by Core/Shell/Unique and Mesophilic and Ther-
mophilic. The bands represent the standard deviation of each average point.
b Rarefaction curve of Eurotiomycetes pangenome split by Core/Shell/Unique in
Mesophilic and Thermophilic. The bands represent the standard deviation of each

average point in (a, b). c Enrichment analysis of GO terms lost in both thermophilic
Chaetomiaceae and Eurotiomycetes core pangenomes compared to Mesophilic in
the same clade. The X-axis represents the log10(corrected p-value) using the
Benjamini-Hochberg procedure.
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fungi (2.23 times fewer genes gained than mesophilic, p = 0.00091 - [WT]),
andmore genes lost (1.06 timesmore genes lost thanmesophilic, p = 0.6361
- [WT]); and the opposite trend in mesophilic fungi. Interestingly, on
average, thermotolerant fungi have a high number of gene gains and losses
(Supplementary Data 3A).

The effective number of codons and GC3 are altered in
thermophilic fungi
Berka and collaborators7 found an increase in GC3 in Myceliophthora
thermophila and Thileavia terrestris transcripts, which to this day has not
been confirmed to be true in other thermophilic fungi. In this study, we
evaluated the coding sequences of 29 thermophiles (Fig. 3a) to show that
even though GC3 was not increased for all of them, it is significant in the
overall distribution (Fig. 3c). We also measured the degree of codon usage
bias by computing the effective number of codons (ENC) for each species12.
ENCranges from20 to61,where20 represents an extremebias of usingonly
one codon per amino acid, whereas 61 represents uniform synonymous
codonusage, i.e., nobias13. ThemeanENCvalues in thermophileswere 47.9,
compared to 50.48 formesophiles and49.78 for thermotolerant.We found a
higher fluctuation in ENC and GC3 along the Mucoromycota and

Basidiomycota branches (R2 = 0.11, p = 0.284 versus R2 = 0.94, p < 1 × 10−5

for Ascomycota) (Fig. 3d).
On the other hand, species in Ascomycota, in general, exhibit less

variation in their codon bias than within clades such as Chaetomiaceae and
Eurotiomycetes, where thermophilic fungi show significant biases com-
pared to mesophilic counterparts (p = 0.033 and p = 0.007, respectively
[WT]). Variations in the GC3 and ENC are anti-correlated (R2 = 0.72,
p < 1 × 10−5), with thermophilic fungi skewed toward the first quadrant
(17 out of 29–58.6%) of the scatter plot (Fig. 3d), Basidiomycota split
between first and fourth quadrant (2 and 3 species, respectively), and
Mucoromycota all present in the fourth quadrant. In addition, early-
diverging fungi exhibit, on average, less variation in ENC, but higher var-
iation in GC3.Wint and collaborators13 made a similar observation in their
study with 450 fungal species.

Machine learning can classify thermophilic andmesophilic fungi
We used Support Vector Machines (SVM) to identify hidden correlations
between lifestyle and gene content, as described by Haridas and
collaborators14. Large data sets are critical to machine learning, and only
thermophilic and mesophilic rather than thermotolerant fungi had a

Fig. 3 | GC content of third base of the codon (GC3) and Effective number of
codons (ENC) in thermophilic fungi. aGC3distribution across 79 genomes.bENC
distribution across 79 genomes. c Violin plot of GC3 distribution in thermophilic,
mesophilic, and thermotolerant genomes showing a significant difference between
thermophilic and mesophilic using Moods median test (MT) and Wilcoxon rank

sum test (WT). Horizontal lines show the median extended across the plot.
d Scatterplots of average GC3 and ENC (gray dashed lines represent standard
deviation) show a high correlation (R2 =−0.72) between them. The black dashed
lines represent the average GC3 and ENC of all genomes used in this study.
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sufficient number of genomes in our dataset to be adequately separated
using thesemethods.We selected a subset for training (20 thermophilic and
30 mesophilic fungi - Supplementary Data 3B) across the tree to identify
genes that could discriminate between these two lifestyles. Using the HOGs
dataset (ignoringunassignedgenes), 100orthogroupsproducedanaccuracy
of 70% each in their ability to distinguish between thermophilic and
mesophilic lifestyles. The best discriminator among the HOGs with an
average prediction accuracy of 0.81 was HOG0006878 (Supplementary
Data 3C), found in 36% of the thermophiles and 83% of mesophiles and
containing Cytochrome c/c1 heme lyases (PF16815). We used all 100
clusters in all possible combinations to improve prediction accuracy. Our
results suggest that combining eight clusters increased accuracy to 94%
(Supplementary Data 3C and Fig. 4). We did not include thermotolerant in
the training set, only in the test set. We found that all thermotolerant
species were classified as mesophilic, suggesting their genomic adaptations
resemble mesophilic species.

These eight HOGs comprise the following Pfam domains: Two ABC
transporters (PF00005 and PF12848), a critical component in response to
environmental stresses15; Two short-chain dehydrogenases (PF00106),
involved in the metabolism of a wide range of compounds and stresses15,16;
Protein HRI1 (PF16815), a protein of unknown function in Saccharomyces
cerevisiae15–17; Adenosine deaminase (PF00962) - plays an important role in
nitrogen metabolism and may have a critical function in the regulation of
fatty acid synthesis18; SAD/SRA domain (PF02182) - involved in 5mC
methylation19; and a Calcineurin-like phosphoesterase (PF00149), enzymes
potentially involved in DNA repair, stress response, and other cellular
functions20. It is important to note that all HOGs seem to be reduced in
thermophilic genomes, except the ABC transporter (PF12848), which
interacts with ribosomes andmodulates translation elongation in bacteria21.

Protein structures embed optima temperature in endoxylanases
Enzymes are the workhorses of biotechnological processes, and their
performance is linked to their three-dimensional structure. By deciphering
the structural intricacies of enzymes involved in biomass degradation (i.e.,
cellulases and xylanases), researchers can strategically engineer or select
enzymes that are stable and highly active at elevated temperatures, a key
requirement for efficient biomass conversion in industrial applications2,7.
The AlphaFold2 protein structure prediction technology22 has emerged as a
transformative tool with profound biotechnological significance in biomass
degradation. By providing highly accurate predictions of protein structures,
AlphaFold2 empowers researchers to unlock a deeper understanding of the
intricate molecular machinery involved in enzymatic processes. This
newfound precision is invaluable when identifying the optimal tempera-
ture, pH, and enzymatic activity conditions for biomass degradation23. We
used AlphaFold2 to predict the GH10 endoxylanase protein structures.
Since this family is highly sampled in the Protein Data Bank (PDB)24, the
predicted structures had predicted template modeling (pTM) > 0.59
(Supplementary Data 4).

We built a protein structure similarity network using 318 GH10
endoxylanases with Foldseek25 from the 79 genomes used in this study
(Fig. 5). It is important to note that all GH10 proteins fell into two
orthogroups (N0.HOG0000305 and N0.HOG0011586 - Supplementary
Data 3B) based on the OrthoFinder26 clustering results, one large cluster
with 307 proteins, and a small one with 10 proteins (cluster 9 – Fig. 5a, b).
It suggests that this family is highly conserved sequence-wise, so differences
might be present at the structural level. We found that the number of
disulfide bonds was the same within each cluster and different between
them (Fig. 5), modulating their stability and constraining their con-
formational dynamics27. In addition, proteins from both mesophilic and
thermophilic fungi were clustered together, with clusters with three pro-
teins scattered along the phylogenetic tree, and with two proteins sur-
rounding cluster 8 (Figure a). Also, we found some examples of proteins
with long branch lengths (high evolutionary rate) losing structural simi-
larity with closely related proteins (i.e. 38518_Stalo1, 654_Theste1, and
6258_Chathe1 - Fig. 5a).

We mapped available data on the optimal temperature of 31 proteins
(9.7% - Supplementary Data 4), onto the obtained structural network
(Fig. 5). Most sequences with optima between 55–60 °C (77%) fell in the
same structural cluster (Fig. 5). On the other hand, there was no clear
distribution pattern for enzymeswith optima <55 °C.One hypothesis is that
enzyme activity at higher temperatures requires a tight structural con-
formation, reflected by the high structural similarity. It is important to note
that different labs and hosts used for heterologous expression can generate
divergent enzymatic optimal temperatures28,29.

Discussion
In this study, we conducted a comprehensive analysis of 79 fungal gen-
omes from three phyla, Ascomycota, Basidiomycota, andMucoromycota,
to identify genomic features of thermophilic fungi. There is a long evo-
lutionary history between these three clades, dating to 769 MYA (CI:
605.2–1049.0 MYA)30, so finding patterns covering such diversity is a
significant challenge. Regarding the phylogeny of thermophilic fungi, we
expanded the analysis performed by Morgenstern2 to include 29 ther-
mophilic fungi, and reconstructed genome-level phylogenetic relation-
ships. In addition, we pinpoint that the families Chaetomiaceae
(Sordariomycetes), Thermoascaceae, and Trichocomaceae (Euro-
tiomycetes) showed twoormore thermophilic species. On the other hand,
in the families Cephalothecaceae (Sordariomycetes), Malbrancheaceae
(Eurotiomycetes), Lichtheimiaceae, and Calcarisporiellaceae (Mucor-
omycota), we found only one thermophilic species (Fig. 1a). We found
that the ancestral state in these families with two or more thermophilic
fungi is thermophilic, similar to prokaryotes31.

It has been reported that specialization can lead to a reduction in
genome size and gene content, maintaining genes critical for survival and
losing genes no longer necessary outside their constrained lifestyle32,33. Two
studies, including thermophilic bacteria and archaea, have shown that
isolates with high optimum growth temperatures often have small
genomes34,35. We found such a reduction in thermophilic fungi, more spe-
cifically, a loss of a large number of core genes involved mainly in primary/
secondary metabolism and defense mechanisms (Fig. 2). We hypothesize
that adaptation to high temperatures (>45 °C) represents a type of specia-
lization involving a narrowing of niche space such that thermophiles have a
reduced range of substrates as well as a less complex environment with
respect to competing fungi, bacteria, and micro-invertebrates, resulting in
reduced competition for nutrients and reduced predation. Another reduced
function in our analyses involved “response to UV”, which might indicate
that thermophilic fungi evolved within local environments with protective
barriers against solar radiation - including natural compost, herbivore
droppings, and below the surface of sun-heated decomposing organic
matter.

Interestingly, our machine learning approach to distinguish between
thermophilic/mesophilic lifestyles revealed eight gene clustersmainly lost in
thermophilic fungi, except the ABC transporter (PF12848). This domain is
not involved in transmembrane transport as other ABC domains, but are
specialized translation factors that interact with ribosomes, contributing to
diverse cellular processes21. The other domains are often related to envir-
onmental stress (PF00005, PF00106, PF00149), regulation of fatty acids
biosynthesis (PF00962), methylation (PF02182), and DNA repair
(PF00149), similar to the genome reduction analysis. This shows that spe-
cific losses are more relevant for the thermophilic lifestyle and were carried
out over almost 800 million years of fungal evolution.

Another important feature in thermophilic fungi is the increased GC3
and a biased ENC. It is known that adaptive mechanisms are the driver of
interspecies codon usage patterns in fungi, with adaptive codon usage evi-
dent at the genome-level13. A similar pattern of GC3 was found for pyr-
ophilous genomes, known fire-responsive fungal colonizers of post-fire
soil36, compared to mesophilic fungi. Since proteins produced by thermo-
philic fungi are known to be more thermostable7,8, this difference in GC3
and ENC might confer an adaptation to higher temperatures, enhancing
translation efficiency and protein stability.
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Fig. 4 | Informative gene clusters to thermophilic lifestyle identified using sup-
port vector machine (SVM) classifier. a Biplot PCA using the eight most infor-
mative clusters showing the separation between thermophiles and mesophiles.
b Heatmap of the eight most informative HOGs showing prevalent gene loss in
thermophiles. c Scatterplot of probabilities of a genome being a thermophile or

mesophile based on these eight gene clusters containing the following Pfam
domains: PF00005 and PF12848: ABC transporters; PF00106: short chain dehy-
drogenase; PF00962: Adenosine deaminase; PF02182: SAD/SRA domain (involved
in 5mC methylation); PF16815: Protein HRI1; PF00149: Calcineurin-like
phosphoesterase.
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The biotechnological utility of thermophilic fungi has been recog-
nized for many years5,7, and they are potential sources of enzymes with
scientific and commercial interests, especially enzymes acting in lig-
nocellulosic biomass. Optimal temperature, pH, and specific activity are
the most important features of enzymes. With this in mind, we used a
similarity network based on the AlphaFold2-based protein structure
predictions for GH10 endoxylanases to find relevant information
embedded in these structures (Fig. 5). We were able to show that within
clusters of protein structures, the number of disulfide bonds may help
define the optimal temperature. We found that proteins from both
mesophilic and thermophilic fungi were present in the same clusters
(Fig. 5b), which given the thermophilic lifestyle as the ancestral state of
the fungal families used in this study (Fig. 1a), suggests that mesophilic
fungi retained those thermophilic genes throughout their evolution. We
also found that smaller structural clusters were scattered along the
phylogenetic endoxylanase tree (cluster with three proteins), or close to
each other (cluster with two proteins) suggesting phylogenetically close
proteins can have relevant differences in the three-dimensional structure.

Since both mesophilic and thermophilic fungi can produce thermophilic
enzymes, the protein structure combined with disulfide bonds can be
used to predict the potential optimal temperature and other enzyme
capacities based on their structural clustering. This approach not only
enhances our understanding of the intricate relationships within ther-
mophilic/mesophilic enzymes but also opens avenues for predictive tools
in enzyme selection for heterologous expression experiments, thereby
solidifying the pivotal role of thermophilic fungi in biotechnological
applications.

The findings of this study provide valuable insights into the genomic
features of thermophilic fungi and their specialized lifestyles. By identi-
fying the genes that determine thermophiles using a machine learning
approach, we can gain a better understanding of the factors that drive
their evolution and ecological adaptations, as well as insights into the
optimization of fungal-based industrial processes. Furthermore, the
reduced genome and specialized lifestyle of these fungi make them
excellent candidates for the study of stress responses, providing an
opportunity to unravel the mechanisms underlying stress adaptation in

Fig. 5 | Phylogeny and structural similarity network of GH10 endoxylanases
using AlphaFold2. a Phylogeny of GH10 endoxylanase built with iqtree [-m MFP
-bb 10000 -safe]. The branches are colored based on the bootstrap value; the leaves’
colors (green –mesophilic, orange – thermotolerant, red - thermophilic) represent
the organism of origin; the color stripe in the outer circle represents the structural
clusters shown in (b) (plus duplets - two protein clusters; and triplets - three protein
clusters), and the bar chart (black) shows the number of disulfide bonds. b GH10
endoxylanase network clustered based on structural similarity using Foldseek. Edge

thickness represents the percentage identity between protein structures. The clusters
were separated based on percent identity (>0.7) and TMscore (>0.8) on a pairwise
comparison of all endoxylanases using Foldseek. Colors (green –mesophilic, orange
– thermotolerant, red - thermophilic) represent the organism of origin, and the size
shows the number of disulfide bonds. Edges for pairs with percent identity <0.7 and
TMscore < 0.8 were removed. c One structure from each cluster was randomly
selected to show the prediction quality based on the AlphaFold2 pLDDT - a per-
residue measure of local confidence scaled from 0 to 100.
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eukaryotic organisms. Overall, this study represents an important step
toward the exploration of fungal diversity and genomic features and
provides a solid foundation for future comparative genomics studies of
thermophilic fungi.

Methods
Genome sequencing, assembly, and annotation
As described byMorgenstern and collaborators2, the growth characteristics
of 37 reported thermophilic or thermotolerant fungi, together with 42
mesophilic species, were examined at four temperatures: 22 °C, 34 °C, 45 °C,
and 55 °C. Based on the relative growth performances, species with a faster
growth rate at 45–55 °C than at 34 °C were classified as thermophilic, and
species with better or equally good growth at 34 °C compared to 45 °C as
thermotolerant2. All the genomes used in this study were collected from the
MycoCosm37 web portal. All metadata and GenBank/NCBI accessions are
present in Supplementary Data 1. The 23 newly sequenced thermophilic
strains in this study (Origin = CSFG (Centre for Structural and Functional
Genomics – Concordia University) on Supplementary Data 1) were
sequenced using Roche 454 pyrosequencing, Illumina, or Pacific Bios-
ciences sequencing technologies.The Illumina assembliesweredrafted from
2 x 150 bp, and 2 x 250 bp paired-end reads using SOAPdenovo38. PacBio
sequence data were assembled withMasurca39. Pilon40 was used to improve
assemblies with a large number of contigs. CSFGGenomes were annotated
with SnowyOwl41 using transcriptomes downloaded from NCBI when
available. Functional annotation for all 23 genomeswasperformedusing the
MycoCosm annotation pipeline37. For CAZy annotation (Supplementary
Data 2), module composition and family assignment of all carbohydrate-
active enzymes (CAZy) were performed just as for the daily updates of the
CAZy database (http://www.cazy.org)42. The genome completeness was
assessed with BUSCO43 v5.2.2 [-m prot] using fungi_odb10 database
(Supplementary Data 1).

Phylogenetic analysis
The phylogenetic tree is based on 371 single-copy orthologs identified in
all 79 genomes using OrthoFinder26 v. 2.5.4. The genes were aligned using
Mafft44 v. 7.427 [--localpair --maxiterate 1000], concatenated, and filtered
using TrimAL45 v. 1.2 using -automated1 option. To determine the
optimal substitution model and tree building, we used iqtree v. 1.6.1246

[-mMFP -bb 1000 -alrt 1000 -safe]. For all downstream analyses, we used
the Phylogenetic Hierarchical Orthogroups (HOGs) gene counts (Sup-
plementary Data 3D) inferred on the root node of the species tree (N0),
according to OrthoFinder guidelines (https://github.com/davidemms/
OrthoFinder).

To infer ancestral ecological character states, each examined fungal
lineage was assigned a character state based on their maximal/optimal
growth rate: Thermophilic (≥45 °C), Thermotolerant (34 °C to 45 °C), and
Mesophilic (≤34 °C). Ancestral ecological character states were recon-
structed in Mesquite (http://www.mesquiteproject.org). The three ecologi-
cal character states were analyzed using an unordered parsimony model,
while binary ecological character states were analyzed using the Mk1
(Markov k-state 1 parameter model) likelihood reconstruction model
(Supplementary Data 5).

We used Computational Analysis of Gene Family Evolution (CAFE)11

v. 4.2.1 to study the gene expansions of the HOGs along with the evolu-
tionary history. The Viterbi method was applied to them to compute
branch-specificP-values to detect rapid expansions and contractions at each
node. Only the gene families for which the Viterbi P < 0.01 were considered
for further analysis.

The enrichment of Gene Ontology (GO)47 terms was performed
using a two-tailed Fisher’s exact test (FET) and corrected for multiple
testing using the Benjamini–Hochberg method in Python v.3.6 using the
modules pandas v.1.1.5, numpy v.1.20.2 and scipy v.1.5.2. Mood’s
median nonparametric test48 and Wilcoxon rank sum tests were used to
evaluate the significance of GC3 differences between thermophilic,
thermotolerant, and mesophilic fungi.

Pangenome and codon usage analysis
We identified core, shell (common to two or more genomes), and unique
genes based on OrthoFinder output (HOGs) for the pangenome analysis.
The error bands (Fig. 2a, b) represent the standard deviation of 100 random
subsamples from the study group. The Effective Number of Codons (ENC)
and the third base of codon (GC3), which measures the degree of synon-
ymous codon bias of gene or genome, were computed from coding
sequences using CodonW v. 1.4.412.

Machine learning to distinguish between thermophilic and
mesophilic lifestyles
We used the Support Vector Machine method as implemented in Python’s
scikit-learn library (http://scikit-learn.org) to identify the most informative
HOGs from OrthoFinder output for differentiating between thermophilic
and thermophilic genomes, the same approach used by Haridas and
collaborators14. The datasetwas cleaned by removingHOGswith variance <
0.1 (Supplementary Data 3B). We used five subsets of thermophiles and
mesophiles (20 and 30, respectively) (Supplementary Data 3B) to train and
identify features (HOGs) that were differentially distributed between the
pathogens and saprobes. Featureswere ranked on the ability to predictusing
C-Support Vector Classificationwithin scikit-learn (sklearn.svm.SVC). The
prediction strength was validated with five different training sets (Supple-
mentaryData 3B) using sklearn.cross_validation and jackknife, and the best
features were selected using sklearn.feature_selection.SelectKBest. Features
highly correlated to lifestyle (>0.75, the top 10 HOGs in this analysis) were
used in all combinations (“Combo” in Supplementary Data 3C) to improve
predictionaccuracyon the training set. The z-score for theheatmap (Fig. 4b)
was calculated using the formula z = (x-μ)/σ, the average and standard
deviation calculated per HOGs.

Protein structure prediction and clustering
The protein sequences fromGH10 endoxylanases of the species used in this
study were downloaded fromMycoCosm37, and signal peptide analysis was
performed using signalP v. 4.149. When detected, the signal peptide was
removed from the amino acid sequence and then used for structural
modeling. The structures of 318 endoxylanase sequences (Supplementary
Data 4) were predicted by AlphaFold29 using collab-fold implementation22.
Fivemodels were generated for each protein, andwe selected the bestmodel
(ranked_0.pdb) determined by the best average pLDDT score. Since the
endoxylanase family shows high protein sequence similarity, we built a
similarity network based on the structural similarity with all-vs-all com-
parison using FoldSeek25 tmalign function with all PDB structure files
predicted by AlphaFold2.We removed pairs with percent identity <0.7 and
TMscore < 0.8 to obtain the structural-based clusters. Thenetworkwas built
and visualized using Prefuse ForcedDirected Layout onCytoscape v. 3.9.150.

To reconstruct the GH10 endoxylanase phylogeny, we used the amino
acid sequences (same from AlphaFold2 predictions). The sequences were
aligned using Mafft44 v. 7.427 [--auto], concatenated, and filtered using
TrimAL45 v. 1.2 using -automated1 option.We used iqtree46 v. 1.6.1218 [-m
MFP -bb 10000 -safe] to determine the optimal substitutionmodel and tree
building (Supplementary Data 5).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Genome assemblies and annotations are available at MycoCosm (https://
mycocosm.jgi.doe.gov) and deposited at DDBJ/ENA/GenBank
under the following accessions: Sodiomyces alcalophilus JCM
7366 (JBBPEK000000000), Thermothelomyces heterothallicus CBS
203.75 (JBBPEJ000000000), Thermothelomyces heterothallicus CBS
202.75 (JBBPEI000000000), Humicola hyalothermophila CBS
454.80 (JBBEXK000000000), Chaetomium olivicolor CBS 102434
(JBBEXI000000000), Corynascus sepedonium ATCC 9787
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(JBBEXH000000000), Mycothermus thermophilus CBS 625.91
(JBAGCS000000000), Thermomyces stellatus CBS 241.64
(JBAGCR000000000), Phialemonium thermophilum ATCC 24622
(JAZHXJ000000000), Oculimacula yallundae CBS 494.80
(JAZHXI000000000), Thermothelomyces hinnuleus ATCC 52474 (JAZ-
GUK000000000), Thermothelomyces myriococcoides CBS 389.93 (JAZ-
GUJ000000000), Remersonia thermophila ATCC 22073
(JAZGUE000000000), Thermoascus aurantiacus ATCC 26904 (JAZ-
GUB000000000), Thermomyces dupontii NRRL 2155
(JAZGTC000000000), Rasamsonia byssochlamydoides NRRL 3658
(JAZGTB000000000), Malbranchea cinnamomea CBS 343.55
(JAZGTA000000000), Thermothelomyces fergusii CBS 405.69
(JAZGSZ000000000), Mycothermus thermophilus CBS 620.91
(JAZGSY000000000), Corynascus similis CBS 632.67
(JAZGRQ000000000), Thermoascus thermophilus ATCC 26413
(JAZGRP000000000), Thermomyces lanuginosus ATCC 200065 (JAZ-
GRO000000000), Rasamsonia emersonii NRRL 3221
(JAZGRN000000000), Sarocladium strictum DS1bioAY4a
(JAZGRM000000000), Trametes versicolor ATCC 20869
(JAZGQW000000000), Rhizomucor pusillus CBS 183.67
(JAZGQV000000000), Calcarisporiella thermophila CBS 279.70
(JAZGQU000000000), Aureobasidium pullulans ATCC 62921
(JAZBRX000000000), Thermocarpiscus australiensis ATCC 28236
(JAZBRW000000000), Thermoascus crustaceus CBS 181.67
(JAZBRV000000000). All GH10 protein structures in PDB format are
available on OSF51 - https://osf.io/cf569/.
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