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ABSTRACT 

Recent advances in solid-state batteries (SSBs) have triggered both the challenges and 

opportunities on studying the materials and interfaces in batteries. Here, we review the 

recent developments and employments of soft X-ray spectroscopy for studying the 

interfaces and electrode materials. The focus of this review is on the recently realized 

mapping of resonant inelastic X-ray scattering (mRIXS), which is demonstrated to be a 

powerful probe of battery chemistry with superior sensitivity. Six different channels of soft 

X-ray absorption spectroscopy (sXAS) are introduced and summarized for different 

purposes. Although conventional sXAS remains an effective tool for quantitative analysis 

of the transition-metal states and surface chemistry, we elaborate the limitations of sXAS 

with experimental results and conclude that sXAS is unreliable for studying oxygen redox 

reactions. We then present the mRIXS as the tool-of-choice for fingerprinting oxygen 

redox and summarize several crucial observations. We conclude that the interpretation of 

the mRIXS feature will reveal the true fundamental and universal nature of oxygen redox 

in various battery electrodes, a direction that the field should pay attention and follow. The 

combination of these advanced soft X-ray techniques will contribute unprecedented 

information for characterizing interfaces and high-performance electrodes with novel 

redox couples. 

 

Keywards: Soft X-ray Spectroscopy; Battery; Anionic Redox; Resonant Inelastic X-

ray Scattering; Soft X-ray Absorption Spectroscopy; Surface and Interface 
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1. Introduction 

Developing advanced battery systems for electric energy storage has been a pressing 

demand for today’s sustainable energy applications such as the electric vehicles and green 

power grid. However, the dilemma of the competing parameters in batteries, especially 

between the energy density and safety, has so far hindered the successful 

commercialization of many innovations on high-performance battery materials and 

concepts. Under this circumstance, all solid-state batteries (SSBs) have recently attracted 

much attention due to their inherent safety and stability in comparison with conventional 

liquid electrolyte [1-3], which could potentially enable the employments of high energy 

and power density battery electrodes, particularly Lithium metal anode [2, 4-6]. Although 

several industry entities have now been established based on SSBs, technical challenges 

remain formidable for further optimizing SSBs into a revolutionary energy storage system 

to truly replace batteries based on conventional liquid electrolyte.    

Besides the optimization of the intrinsic ion conductivity of solid-state electrolytes [7], 

SSBs often suffer unfavorable interface problems at the electrolyte domain boundaries and 

at the electrode-electrolyte interface [7-9]. Detecting and understanding the electrode-

electrolyte and intra-electrolyte interfaces are critical for the development of SSBs. For 

example, the interface has been recognized as one of the key challenges for the practical 

applications of metal anodes in various systems [2]. Unfortunately, the chemical 

environment at the interface is in the approximation to the bulk electrode/electrolyte 

materials. Other than the structural probes through microscopy [10], direct measurements 

of the chemical and physical properties at the interface require incisive tools with superior 
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chemical sensitivity, so that the subtle but crucial effect of the interface could be resolved 

in experiments. 

On the other hand, a high-performance positive electrode is also highly desirable to 

provide a balanced system in terms of energy and power density, which remains a 

bottleneck in typical battery systems.  Developments of high energy and power density 

cathodes have been progressing very slowly, but conceptual breakthroughs on introducing 

novel redox couples, especially oxygen redox in oxide electrodes, have recently revitalized 

the field [11]. Indeed, if anionic redox could be realized in a highly reversible way, it could 

provide the promised energy and power density in battery cathodes to enable the ultimate 

SSB system with balanced electrodes. Additionally, other unusual chemical states of 

transition metals (TMs) could also be produced through the electrochemical process in 

batteries, especially atypically high valence states, e.g., Fe4+, which also hold the promise 

to achieve improved capacity in cathodes. For such novel redox couples, a reliable 

detection is a nontrivial issue, which is partially the reason why such topics are often under 

active debate in both practical applications and fundamental understandings. For example, 

the anionic redox in oxide cathodes has been proposed to originate from peroxo-like 

oxygen dimers  [12-16], oxygen holes that are localized [17, 18], or enabled by some 

specific structural and chemical configurations [19-21]. In addition to the debates on the 

fundamental mechanism, there has been no reliable quantification of the oxygen redox in 

battery electrodes, which is directly related with the practical issue on reversibility. 

Although the seemingly elemental-sensitive soft X-ray spectroscopies, especially X-ray 

photoelectron spectroscopy (XPS) and sXAS have been extensively employed, they fail to 

deliver reliable information on the intrinsic bulk oxygen chemistry, as elaborated in the 
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discussions below. Again, incisive tools beyond conventional spectroscopy are keenly 

required for a reliable characterization of the novel redox couple involved in bulk 

electrodes. 

This review covers recent demonstrations of core-level photon-in-phonon-out (PIPO) 

soft X-ray spectroscopy (SXS) in the methodology, analysis, and technical innovations 

dedicated for studying battery materials. Because conventional sXAS for battery interface 

and electrode studies has been reviewed before [22-24], here we focus on the recent 

developments and demonstrations, especially the mapping of resonant inelastic X-ray 

scattering (mRIXS). We first introduce various kinds of PIPO SXS with emphasis on 

mRIXS. We then show representative examples on studying battery materials in i) surfaces 

and interfaces, ii) TM cationic redox couple, and iii) anionic redox couples. We show 

examples of both sXAS and RIXS examples for each section. Particularly for the oxygen 

redox studies, experimental data of O-K sXAS of olivine and spinel electrodes are 

presented to show that neither the intensity nor the lineshape of sXAS is a reliable probe 

of oxygen redox. We show that a specific mRIXS feature fingerprints the bulk oxygen 

redox. A universal mechanism is indicated for both 3d and 4d TM oxides by mRIXS results, 

and it is clear that the ultimate understanding of oxygen redox mechanism has to be 

associated with the specific mRIXS feature. At the end, we provide our perspectives on 

utilizing the advanced SXS for SSB researches. SSB naturally enable the in-situ/operando 

SXS experiments, which provides unique opportunities for studying the interfaces and the 

anionic/cationic redox couples in real-world batteries.  

 

2. PIPO SXS techniques and RIXS 
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2.1 Fundamental Excitation and Decay Channels in SXS  

 

Fig. 1 Schematic of PIPO SXS. (a) is the simplified atomic models of sXAS (left), XES (middle), 

and RIXS (right). (b) displays the different states involved in the RIXS process upon energy scale 

(vertical). 

 

The emission of photons through soft X-ray PIPO techniques is triggered by a core 

electron excitation by a tunable incident X-ray, i.e., the X-ray absorption process (Fig. 1a). 

Note “sXAS” is used in this work to differentiate it from hard X-ray “XAS”, which is 

significantly different in many aspects [22]. The excited states will then decay to fill the 

generated core hole, which leads to various features in this decay process: (i) If the excited 

state decays back to the same ground state by releasing the same amount of energy as the 

incident X-ray, it will generate an elastic (no change on energy) feature (Fig. 1a left). (ii) 

If the decay corresponds to filling up the core hole by a valence-band electron, the emitted 

photon energy will be pinned by the energy difference between the valence electron and 

the core hole, independent of the incident X-ray. This is called normal X-ray emission 
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spectroscopy (XES) or normal fluorescence (Fig. 1a middle). Experimentally, XES is 

typically collected by exciting the core electron to the high-energy continuum well above 

the absorption threshold. (iii) In order to maintain the excited state after the absorption 

process, the core hole of the intermediate state exerts a strong potential to the outer shell 

electrons to screen itself. Such an effect could lead to various other excitations at much 

lower energy scale, such as lattice vibrations (phonons), spin flips (spinons or magnons), 

and charge transfer excitations. When the core hole is eventually filled, these excitations 

are left in the system, leading to an energy loss of the emitted photon energy compared 

with the incident X-ray. Therefore, through the excitation (absorption) and decay process, 

the system may reach three different types of final states (Fig. 1b).  

2.2 sXAS and XES detect the unoccupied and occupied states 

Various information of the outer-shell electron states of a material could be obtained 

by detecting the emitted photons. The total count of the emitted photons is actually the 

fluorescence yield signal in sXAS experiments, which naively corresponds to the 

unoccupied conduction-band states with the core-hole existence. XES, on the other hand, 

corresponds to the occupied valence-band states because it mainly involves the decay from 

valence-band electrons to the core hole. Therefore, the combination of sXAS and XES 

probe both the unoccupied and occupied states in the vicinity of the Fermi level [25].  

The applications of sXAS and XES for studying battery interfaces and materials have 

been reviewed in more details with examples before [22-24]. Here, we only point out that 

the occupied/unoccupied states close to Fermi level in the discharged/charged states in 

electrodes are the most relevant electron states to batteries, because electrons are 

removed/added from/to these states during the electrochemical operations. Often the 
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concern of the safety in Li-ion batteries is on the oxygen stability because oxygen occupied 

state may stay too close to Fermi level and get oxidized during the deintercalation process 

[26]. As an example, the XES of LiFePO4 displays an interesting reshuffling of the Fe-3d 

occupied states due to specific spin configurations and el-el Coulomb interactions, 

resulting in an occupied Fe-3d state close to the Fermi level. This guarantees that the key 

electron states involved in the electrochemical charging are dominated by Fe-3d states in 

LiFePO4, which naturally provides the fundamental rationality on “Why LiFePO4 is a safe 

battery electrode” [27]. 

2.3 Technical comparison between mRIXS and sXAS 

As explained in Fig. 1, RIXS results contain the information of three types of decay 

processes and their associated excitations. In fact, RIXS has been used as a powerful 

technique for probing low-energy excitations in fundamental physics [28-30]. Because 

RIXS does not directly represent a static configuration of electron density of states, 

understanding RIXS often requires complicated theoretical approaches. However, through 

a direct comparison of RIXS results with conventional sXAS data (Fig. 2), one could easily 

understand the technical meaning of RIXS, and why it is an elemental and orbital sensitive 

tool with superior chemical sensitivity than conventional sXAS. 

 



 9

 

Fig. 2 (a) mRIXS collected from LiNi1/3Mn1/3Co1/3O2 with incident X-ray excitation energy at the 

Mn-L edge range (vertical axis). Horizontal axis is the energy of the emitted photons detected by a 

RIXS spectrometer. Color indicates the intensity distribution of the emitted photons, with light 

color represents high intensity [31]. (b) Integration of mRIXS intensity along horizontal direction 

leads to different types of sXAS spectra. The conventional sXAS from total electron yield (TEY) 

and total fluorescence yield (TFY) channels are plotted for comparison. TFY spectrum is severely 

distorted due to the competing contributions from both O and Mn (white arrows in (a)). Depending 

on which section the mRIXS intensity is integrated, partial fluorescence yield (PFY) and inverse 

partial fluorescence yield (iPFY) could be obtained by integrating the intensity in the Mn-L and O-

K emission range, respectively. Note iPFY is a bulk-probe PIPO channel without any lineshape 

distortion found in TFY sXAS.  

 

Fig. 2 presents a direct comparison between mRIXS and various sXAS spectra of a 

LiNi1/3Mn1/3Co1/3O2 electrodes with incident X-ray energy (vertical axis) at the Mn-L range. 

At each incident energy, the emitted photons from the sample are differentiated by a RIXS 

spectrometer upon their emission energies (horizontal axis). Therefore, if one integrates all 

the RIXS intensity with the same excitation energy (horizontal integration), it will generate 
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a single spectrum of Mn-L sXAS. Depending on the range of emission energy for such an 

integration, different channels of sXAS signals could be obtained simultaneously: 

Integration in the Mn-L emission energy range from 630 to 650 eV generates the partial 

fluorescence yield (PFY) sXAS. The inverse of the integrated intensity in the O-K range, 

520-530 eV, generates the inverse partial fluorescence yield (iPFY) sXAS. The integration 

of all the RIXS intensity is the total fluorescence yield (TFY) of sXAS. 

Several important messages emerge through the comparison in Fig. 2. First, with the 

same excitation energy, RIXS further resolves the single data point in sXAS into an energy 

distribution curve. RIXS therefore provides a new dimension of information along 

emission energy that is completely missing in sXAS. As shown throughout this review, 

this provides extra sensitivity to the chemical states in battery materials. Second, it is clear 

that the “elemental sensitive” of the sXAS does not necessarily mean all signals are from 

the same element in the material. Here, Mn-L sXAS contains significant contribution of 

emissions from oxygen. Such a mixing of emission signals in sXAS is the direct reason of 

the severe distortion of the TFY sXAS spectral lineshape, because the intensity change of 

the O and Mn contributions are exactly opposite (white arrows in Fig. 2a) due to the sudden 

change of the attenuation length at an absorption edge. Third, it is worth noting that, as 

shown by the seminal work of Achkar et al. with silicon-drift detector, iPFY is a bulk probe 

of sXAS without any lineshape distortion [32]. This makes iPFY particularly useful for 

quantitative analysis of the bulk TM states, and mRIXS enables iPFY of all edges through 

its much improved emission energy resolution. Fourth, resolving the emission energy in 

mRIXS enables a new dimension for differentiating critical RIXS features within a 

particular emission energy range, allowing a more detailed study of a particular chemical 
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state that could be completely buried in sXAS. If such an emission energy range is very 

small, e.g., in one or two eVs, the generated spectrum, dubbed super-partial fluorescence 

yield (sPFY), becomes intrinsically different from the conventional sXAS. While sPFY is 

actually RIXS signals plotted upon the same sXAS axis, it provides unique technical 

capabilities to quantify specific RIXS features for chemistry and material studies. Fifth, 

other unpopular decay channels could also be detected in such high-efficiency mRIXS. For 

example, decays from Mn 3s to 2p states (dipole allowed) are shown in the mRIXS around 

560 eV emission energy (Fig. 2a). Such a core-core partial fluorescence yield (ccPFY) 

provides another channel for obtaining non-distorted sXAS bulk signal [33], especially 

when iPFY cannot be implemented due to the lack or low-energy edges.  

RIXS is a photon-hungry technique, due to the low branching ratio of the particular 

core hole decay channel involved. This is the reason why XES, discovered in 1934 since 

the early days of quantum mechanics[34], was largely replaced by x-ray photoelectron 

spectroscopy (XPS) until the third generation synchrotron light source was developed. 

RIXS has made remarkable progress and provided invaluable contributions to the fields of 

highly correlated physics in the last two decades [28-30]. Today’s mRIXS was made 

possible through the recent developments of ultra-high efficiency spectrographs in the soft 

X-ray range [31, 35, 36]. Other than the superior chemical sensitivity of mRIXS, the many 

new sXAS channels beyond conventional TEY, TFY and PFY signals, e.g., iPFY, sPFY, 

ccPFY as explained above, are simply byproducts of mRIXS, and they open up new 

opportunities for studying both the surface and bulk chemistry of energy materials through 

soft X-rays, as demonstrated by the examples below.  
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3. SXS for Surfaces and Interfaces 

3.1 Surfaces and interfaces probed by sXAS 

Interfaces play critical roles in all the battery operation. Decades of fundamental studies 

and practical tests have been performed to understand and optimize the battery interfaces 

in both academia and industry. In conventional batteries with liquid electrolyte, the so-

called solid-electrolyte interphase (SEI) on the anode surface is formed through electrolyte 

decomposition during the early cycles. The SEI behaves as a passivation layer to stabilize 

the battery operation by preventing electron transportation but allowing efficient ion 

diffusion and depletion [37]. For the cathode, especially high voltage compounds, the 

surface reconstruction and surface layer formation have also attracted much research 

attention. Surface treatments and modifications have been implemented for most 

commercial cathodes, but the control and optimization of the electrode surface for a stable 

high-voltage operation remain a major technical challenge [38].   For SSBs, understanding 

and optimizing the electrode-electrolyte interface (EEI) becomes critical due to the inherent 

challenge from a relatively poor solid-solid mechanical contact [7-9].  

Due to the shallow escape depth of electrons, the total electron yield (TEY) channel of 

sXAS is a surface sensitive probe with probe depth of about 10 nm. The contrast between 

TEY and TFY (probe depth of about 100 nm) often provides valuable information on the 

surface and interface chemistry in batteries [23, 24]. Such experiments are based on the 

sensitivity of sXAS to the relevant chemical species and chemical bonds. For example, 

sXAS directly reveals the distinct chemical composition of the SEIs formed on Sn anodes 

with different surface orientation, with carbonates and fluorides on the Sn (100) and (001) 

surfaces from different decomposition reactions of the solvent and salt, respectively [39]. 
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sXAS analysis also shows that the formation process of SEI could be much more complex 

than a continuous deposition of the electrolyte decomposition products. The SEI could 

evolve upon electrochemical potentials during the formation process and displays an 

oscillating growth pattern in both the chemical compositions and thickness [40]. Benefiting 

from the shallow probe depth, sXAS also allows the investigation of the chemical contrast 

of the different electrode surfaces facing electrolyte and current collector at high voltages 

[41], and specific molecular configurations on electrode surfaces [42].  

sXAS in TEY and TFY channels have also been used to study the surface behavior of 

solid electrolyte particles used for SSBs [43, 44]. For example, an counterintuitive air-

exposure effect was found on Al-substituted Li7La3Zr2O12 (LLZO) particle surface through 

the sXAS studies by Cheng et al. [43]. By evaluating the contribution ratio of the O-K 

features from the LLZO and carbonates, sXAS suggests that much less carbonates are 

formed on the small-grain sample than on the large-grain samples. This is interesting 

because small-size particles with large specific surface area are typically more prone to the 

surface reaction upon air exposure than large particles. Further experimental and 

theoretical analysis reveals that the surface of the small LLZO particles contains less 

lithium and more aluminum than that of the large particles, leading to a less air-sensitive 

surface. Additionally, considering the 10 nm probe depth of the TEY channel of sXAS, the 

thickness of the carbonate coating could be roughly estimated to be couple nm for the 

LLZO solid electrolyte particles [44]. 

3.2 RIXS for detecting subtle chemical changes 

While sXAS remains a sensitive tool for detecting the surface chemistry of many 

systems, we would like to emphasize that, often the chemistry at the interface of two 
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chemical species only shows subtle but critical difference compared with the bulk materials 

involved. It could be technically challenging to detect such weak contrast through 

conventional sXAS. One of the extreme case is to detect the ion-solvation shell in liquid 

electrolyte, where the molecules in the solvation shell (the “interface” of ions and liquid) 

are essentially the same as in the bulk electrolyte. The ion-solvation shell is a critical 

configuration in conventional battery systems, and is directly involved in the charge 

transfer process throughout the electrochemical operations [37, 45]. Unfortunately, 

experimental detection of the solvation shell remains one of the grand challenges. Fig. 3 

displays the sXAS and RIXS spectra of a model aqueous system with different KCl salt 

concentrations [46]. As expected, the sXAS spectral lineshape does not change much for 

different salt concentrations, and shows characteristic pre- (~534 eV), main- (~536 eV), 

and post-edge (~540 eV) features that are typical for water. This is expected because the 

O-K sXAS measured here are from the solvent molecule, water, which is the same for pure 

water and the water in the ion solvation shells. In contrast, a significant change could be 

observed in the RIXS spectra collected at the 534.2 eV excitation energy (one horizontal 

cut in mRIXS as explained in Fig. 2). The strong evolution of the RIXS spectral weight 

towards 534.2 eV emission energy (elastic peak) suggests that low-energy excitations of 

vibrational modes (phonons) in RIXS are greatly suppressed in the ion-solvation shell, and 

higher resolution analysis of the phonon excitations in RIXS could shed light on the details 

of the molecular configuration in the solvation shell [46]. Such strong spectral changes, 

however, are completely missing in the sXAS data because, technically, the integrated area 

of the RIXS spectra are roughly the same after normalization. This example is thus a typical 
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demonstration of the superior chemical sensitivity of RIXS for interface studies due to the 

new dimension of emission energy distributions in RIXS. 

 

Fig. 3 In situ sXAS and RIXS of a model aqueous salt solution with different KCl salt 

concentrations. (a) The sXAS displays more or less the same lineshape with different salt 

concentrations. (b) The RIXS cuts at 534.2 eV excitation energy (dotted line in sXAS) show a 

dramatic lineshape change along the emission energy due to the ion-solvation effect [46]. 

 

4. SXS for Probing Cationic Redox 

4.1 Quantitative analysis of TM redox through sXAS 

Compared with hard X-ray XAS, one of the inherent advantages of TM L-edge SXS is 

the strong dipole-allowed TM 2p-3d excitations, leading to arguably the most direct probe 

of the oxidation state of 3d TMs in battery compounds [22]. The TM L-edge spectral 

lineshapes are defined largely by atomic multiplet effects [47] and therefore sharp and well-

defined features can be observed via sXAS. The high sensitivity and well-defined features 

of TM sXAS enable various kinds of in-situ/operando and microscopic studies of the TM 

oxidation states [48-50]. Additionally, lineshape analysis of the sharp multiplet features in 
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TM-L sXAS provides so far the most reliable quantification of the 3d TM oxidation state 

distributions in battery materials at different electrochemical stages [51]. 

Fig. 4 is a summary of three selected examples of quantitative soft sXAS studies of Mn, 

Fe, and Ni cations in battery cathodes. A perfect quantitative fitting of all the high-

resolution sXAS experimental features could be achieved through a simple linear 

combination of multiple reference spectra (for Mn, Fig. 4a) [41, 52, 53], two end-members 

for two-phase systems (for Fe, Fig. 4b) [54], or theoretical calculations of the TFY spectra 

(For Ni TFY, Fig. 4c) [55]. Even for the more complicated Co system that is of more solid-

solution type, quasi-quantitative analysis could be achieved by the main peak position [51, 

56, 57]. Such quantitative analysis could reveal some key TM species on the surface of the 

electrodes [58], and define unambiguously the TM redox involved in electrode cycling, as 

specifically reviewed before for most 3d TMs in battery materials [51].  

However, although powerful as a surface sensitive probe, technical challenges remain 

for a reliable detection of the bulk TM redox, due to the inherent lineshape distortion in the 

bulk-sensitive sXAS TFY channel. As directly shown in Fig. 2, the distortion is particular 

severe for TMs with other edges close by, e.g., Mn [32], and developments of iPFY and 

ccPFY become critical for a non-distorted bulk sXAS detection channel [32, 33, 59]. We 

note again that, with the high resolution of the emission energy, mRIXS naturally includes 

both iPFY and ccPFY signals of all TM-L sXAS. The quantitative sXAS analysis 

demonstrated here could thus be extended to bulk TM analysis in exactly the same way but 

based on iPFY and/or ccPFY experimental data from mRIXS.  
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Fig. 4 (a) Quantitative definition of TM oxidation states of (a) Mn, (b) Fe, and (c) Ni in battery 

electrodes at different electrochemical stages. All fittings are based on simple linear combinations 

of reference spectra from either experiments or theory. All fittings show perfect agreement with 

experimental sXAS data, indicating a precise and reliable quantification of TM states in battery 

materials [22, 54, 58, 60]. It is important to note that such a simple approach could be extended to 

the quantitative analysis of iPFY and ccPFY directly for studying TMs in bulk materials.  

 

4.2 mRIXS of unusual TM redox 

Compared with sXAS, the new information by introducing the emission energy into 

mRIXS naturally provides another dimension to resolve the entangled states in sXAS. This 

becomes particularly important for determining the novel redox couples of both TMs and 

oxygen. Such an advantage of mRIXS is directly shown in Fig. 5, where a 90-year 

speculation of Mn1+ state in coordinated compound is clearly revealed in a charged battery 

electrode through mRIXS, but not sXAS [61]. 

The sXAS and mRIXS collected on a charged and discharged anode with a Prussian 

Blue Analogue material, Na1.24Mn[Mn(CN)6]•2.1H2O, are shown in Fig. 5. An intriguing 
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low-voltage plateau is found through the Na-ion intercalation with an excellent rate 

performance, which suggests that this material could be used as a high-rate Na-ion battery 

anode with very low production cost [61]. Further reduction of the pristine Mn2+ to Mn1+ 

through the ion intercalation is very unusual because Mn typically takes only zero or 

bivalence states. In fact, Mn1+ was proposed in such coordinated compounds since 1928 

[62], but was not verified experimentally through conventional spectroscopy including 

XPS and sXAS. Because the spin states of the TMs in such material could be well defined 

depending on their coordination sites, such material displays distinct signatures of the 

typical TM states in sXAS [63-65]. However, for such novel chemical state, the contrast 

on the sXAS is very weak for the cycled electrodes (Fig. 5). Only a hint of difference 

around 643.5 eV could be seen, although the lineshape change does correspond to the 

Mn2+/1+ states expected by multiplet theory [61]. In sharp contrast, the mRIXS reveals 

distinct features of the charged electrode that corresponds to the d-d excitations (excitation 

of an occupied TM 3d electron to an unoccupied state within the 3d orbitals) of a low-spin 

Mn1+ system, thus providing the ultimate experimental verification of the Mn1+/2+ redox in 

the anode [61]. This demonstration not only showcase the power of mRIXS for revealing 

novel chemistry, more importantly, it directly confirms that chemical states in battery 

environment could be well beyond what we would expect in conventional systems. 
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Fig. 5 The SXS contrast between a discharged and charged anode based on a Prussian Blue 

Analogue material, Na1.24Mn[Mn(CN)6]. A small contrast in sXAS could be seen around 643.5 eV 

photon energy (vertical axis), but mRIXS shows a significant intensity redistribution, indicating a 

novel Mn1+/2+ redox in this anode material [61]. 

 

5. mRIXS fingerprints Anionic Redox   

Anionic redox, i.e., oxygen redox in oxide cathodes, holds a promise of delivering 

much higher capacity and power compared with the conventional TM redox based batteries 

[11], provided the oxygen redox could be maintained to be stable and reversible. In general, 

the evolution of oxygen has long been a critical topic in battery field ever since the first-

generation Li-ion battery with LiCoO2 cathode, however, has typically been considered 

detrimental to the stability of battery materials. Reversibility is the most critical parameter 

on whether the intensive effort on studying oxygen redox in batteries is meaningful at all. 

A crucial question associated with this concern is whether the oxygen redox mechanism 

naturally triggers the unfavorable oxygen evolution and gas release in batteries. Therefore, 

detecting and understanding the fundamental mechanism of the oxygen redox involved in 

battery electrodes have recently become one of the most pursued topics in the battery field. 
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At this time, several controversy models based on structural change and chemical 

configurations have been proposed [12-21]. 

5.1 Why O-K sXAS is not a reliable probe of oxygen redox? 

Due to the inherent elemental sensitivity, O-K spectroscopy including XPS and sXAS 

have quickly become popular tools to tackle oxygen redox issues in many high-profile 

publications. Here, we first clarify the inherent problems with such conventional 

spectroscopy and we believe the controversy on understanding oxygen redox is partially 

due to the fact that these techniques, although popular in the battery field, are not reliable 

probes for studying bulk oxygen redox.  

Discussions on oxygen redox based on O-K sXAS have focused on either the intensity 

or the lineshape of the so-called “pre-edge” features below 535 eV. Firstly, the seminal 

1989 work by Frank de Groot et al. concluded that these features are “related to the metal 

3d states” [66]. Decades of spectroscopic studies have confirmed that these features are 

from TM-3d states hybridized to O-2p states, which is then involved in the O-K sXAS. The 

intensity (area) of the pre-edge features is dominated by the strength of the hybridization, 

which is naturally enhanced in charged states because the high valence state of the TMs 

results in stronger hybridizations with O. This is most clearly shown by the contrast of 

charged and discharged LiFePO4, where obvious pre-edge features including two peaks is 

shown in O-K sXAS of charged electrodes, in sharp contrast with the negligible pre-edge 

intensity of the discharged state (Fig. 6a) [27, 67]. Such a pre-edge area enhancement due 

to strengthened hybridization during the charging process has been found almost 

universally for electrodes with or without oxygen redox, e.g., olivine, spinel, and non-Li-

rich layered compounds [27, 55, 67-70]. Quantitatively, the area analysis of these features 
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shows that the intensity increases even before the oxygen redox voltage is reached [17, 18], 

also indicating it is merely from the enhanced hybridization from the increasing TM 

valence, not a signature of oxygen redox. 

Secondly, the lineshape change of the O-K pre-edge features upon cycling are due to 

two factors. One is the overall broadening of the spectral features due to the enhanced 

hybridization and covalency in charged states as described above. The other is that the 

changed TM valence upon cycling also changes the O-K pre-edge peak positions, leading 

to different lineshapes. A typical example of such lineshape changes could be seen in Fig. 

6b collected on spinel LiNi0.5Mn1.5O4 electrodes. Besides the overall intensity 

enhancement, an extra feature emerges at a low energy in charged state due to the highly 

oxidized Ni4+ (Fig. 6b) [55, 70, 71]. Therefore, the overall broadening and lineshape 

changes are also predominantly from TM changes, not signatures of oxygen redox. 

 

Fig. 6 O-K sXAS spectra collected from charged (Ch.) and discharged (Dis.) electrodes of (a) 

olivine LiFePO4 [27], and (b) spinel LixNi0.5Mn1.5O4 [55]. Strong variation in the area intensity and 

lineshape could be observed for the pre-edge features below 535 eV without involving oxygen 
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redox. In fact, such changes are almost universal in battery electrodes, stemming from the 

increasing TM valence and thus the TM-O hybridization upon charge. 

 

While we show that neither the intensity nor the lineshape of the O-K pre-edge features 

is a reliable probe of oxygen redox, there is an important point to clarify. The sXAS feature 

of oxidized oxygen in reference compounds, e.g., Li2O2 and O2, was indeed found to be 

around 531 eV within the same energy range as the pre-edge features [72-74]. In fact, 

arguments based on possible Li2O2 feature contribution have been used for some 

meaningful discussions on oxygen redox [75-77]. Unfortunately, the possible peroxide 

contribution cannot be conclusive due to the dominating effects on both the peak broadness 

and position changes, as explained above, and it cannot differentiate the specific oxidized 

oxygen state either [72-74]. In another word, the oxygen redox feature is indeed concealed 

in the O-K pre-edge regime, but unfortunately cannot be distinguished through sXAS due 

to the dominating effects from TM states in both the intensity and lineshape. The critical 

challenge is thus to differentiate the intrinsic oxygen redox feature from the strong 

hybridization features. 

5.2 mRIXS to fingerprint the oxygen redox 

As elaborated by Fig. 2, mRIXS is a technique that further deciphers the single data 

spot of a particle counting number in sXAS into a full spectrum upon a new dimension of 

the emission energy. This provides the superior chemical sensitivity to distinguish specific 

chemical states that cannot be clearly defined in sXAS (Fig. 3 and 5). Such an improvement 

is exactly what we need to tackle the entangled oxygen redox and TM-O hybridization 

features in sXAS pre-edge regime. Additionally, mRIXS is a PIPO technique with probe 

depth of about 100 nm in the O-K range. Compared with PIPO sXAS, the bulk sensitivity 
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of mRIXS could be further enhanced if the bulk signal is differentiated from surface signal 

on the emission energy, which is fortunately the case for oxygen redox features, as 

discussed in this section. Therefore, mRIXS is technically an ideal tool to reveal the true 

nature of the oxygen redox in battery electrodes. 

 

Fig. 7 (a) spatially resolved STXM spectra measured from the surface to the bulk of a charged Li1.17 

Ni0.21Co0.08Mn0.54O2 particle. A 531 eV peak shows up in the bulk signal (red arrow). (b) and (c) 

show the contrast in mRIXS of the discharged and charged electrodes on a sharp feature at 531 eV 

excitation and 523.8 eV emission energy, corresponding directly to the bulk oxygen feature [78]. 

(d) and (e) show the mRIXS of charged Li1.2Ni0.2Mn0.6O2 and Li1.2Ni0.2Mn0.6O2 electrodes, one with 

and one without the specific oxygen redox feature, respectively [79]. Arrows indicate the 

disappearance (black) and appearance (red) of the oxygen redox mRIXS feature. 

 

In Fig. 7a-c, we compare the spatially resolved scanning transmission X-ray 

microscopy (STXM) with mRIXS of Li1.17Ni0.21Co0.08Mn0.54O2 [78]. STXM shows that a 
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531 eV feature emerges when the probe switches from the surface of a charged particle to 

the bulk area (Fig. 7a). However, such feature is completely buried in the conventional 

sXAS data in either TFY and TEY mode. More strikingly, mRIXS shows a sharp feature 

with the corresponding excitation energy, only when the electrode is charged to the high 

voltage (Fig. 7c), below which, no such feature could be observed (Fig. 7b). Systematic 

mRIXS experiments at different electrochemical stages confirm that this particular feature 

fingerprints precisely the oxygen redox behavior in electrochemical cycling upon voltages 

and in charge/discharge states for extended cycles [78]. The comparison with STXM is a 

direct proof that, although RIXS has nominally the same probe depth as TFY sXAS, the 

specific oxygen redox feature observed in mRIXS corresponds to only the bulk oxygen 

signal. The fact that no corresponding signal from this mRIXS feature could be seen in the 

STXM collected on the particle surface also shows that surface behavior, e.g., contributions 

in XPS, of the battery electrode is irrelevant to the bulk oxygen redox.  

The mRIXS observations are consistent with the single-energy cut of RIXS at 531 eV 

excitation energy [17, 18]. However, mRIXS provides the full profile of the oxygen redox 

feature along both excitation and emission energy, which is critical for its theoretical 

interpretation to reveal the fundamental mechanism of the oxygen redox. Compared with 

STXM, RIXS experiments could be performed directly on any battery electrodes at 

different electrochemical stages, instead of the TEM-style samples for STXM. At this time, 

among all O-K core level spectroscopy techniques, mRIXS provides the only direct 

elemental and bulk sensitive probe of the oxygen redox that could be employed to all 

battery electrodes. 

There are several crucial mRIXS observations on the oxygen redox feature:  
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1. Regardless of the types of TMs (3d or 4d) that are involved in the oxide 

electrodes, e.g., Li1.2Ni0.2Mn0.6O2 and Li2RuO3, once the oxygen redox is activated 

in the electrode, the different systems display the same mRIXS feature. This 

strongly indicates a universal mechanism that fundamentally drives the oxygen 

redox in all the electrode systems. Theoretical simulation that could directly 

reproduce the mRIXS feature is the key to reveal this fundamental mechanism.  

2. On the other hand, the activation of oxygen redox strongly depends on the 

TM compositions. However, this TM dependence does not simply reflect a TM-O 

hybridization model. For example, changing Mn to Ru in Li1.2Ni0.2M0.6O2 (M=Mn, 

Ru) completely suppresses the oxygen redox as revealed by mRIXS (Fig. 7d,e). 

mRIXS confirms that Li1.2Ni0.2Mn0.6O2 is oxygen redox active; however, Ru is the 

active cationic redox in the Li1.2Ni0.2Ru0.6O2 without oxygen redox [79].  

3. The intrinsic oxygen redox feature in mRIXS is a sharp feature at 523.8 eV 

emission energy, which is clearly separated from the broad TM-O hybridization 

features typically found at 525 eV for oxide RIXS, as extensively reported in 

fundamental physics field [80]. The highly localized nature of the RIXS feature, in 

both incident (excitation) and scattered (emission) photon energies, indicates that 

hybridization effects may only be tangentially related to the feature, as 

corroborating by the relative insensitivity of the feature across 3d and 4d TM 

elements.  

4. Conventional wisdom often associates the oxygen redox with the high-

voltage plateau, especially in Li-rich compounds. However, mRIXS results over 

extended cycles clearly reveal that oxygen redox remains in the system even 



 26 

without the high-voltage plateau [78]. The dissociation of the oxygen redox from 

the high-voltage plateau is a critical finding for opening up new opportunities for 

further material explorations and optimization.  

5. The independence of TMs on the oxygen-redox feature (#1) and the 

dependence of TMs on the activation of oxygen redox (#2) imply that the 

mechanism is more complex than what has been proposed so far. At this time, the 

universal and fundamental mechanism is yet to be revealed, so the effects from 

structure, TM compositions, and local chemical configurations are individually 

discussed in different proposals, leading to the controversy. A fundamental 

foundation of a strategically architectural mechanism is the key to take the mystery 

out of the oxygen redox, and to explore the possibilities on its practical potential.  

Although the theoretical interpretation of the mRIXS feature remains a nontrivial issue, 

and as mentioned before, even the sPFY/STXM 531 eV signal originates from a RIXS 

feature that is intrinsically different from sXAS, the precise correlation between the mRIXS 

feature and the electrochemical cycling strongly suggests that mRIXS is the tool-of-choice 

for detecting the bulk anionic redox in battery electrodes. While mRIXS observations 

imply a complex mechanism than just a single model, the optimism lies in the clear and 

reliable observation through mRIXS. A direct simulation of the mRIXS oxygen-redox 

feature holds the promise to reveal the true fundamental nature of oxygen redox, which 

will lead to the ultimate understanding of oxygen redox by further incorporating other 

factors like structure and specific chemical configurations.  

 

6. Opportunities and Perspectives on SXS of SSB 
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While most examples shown in this review are not directly on SSB systems, all these 

demonstrations could be extended to SSB systems directly. In addition, because of the 

inherent requirement of ultra-high vacuum for most soft X-ray detection channels, solid 

electrolyte is naturally a blessing for in-situ/operando SXS experiments on real-world 

SSBs. Today’s SXS techniques have greatly advanced, and experiments of liquid and 

gaseous phases could be measured with sophisticated in-situ cells, as extensively reported 

and reviewed previously [81-86]. However, due to the shallow penetration length of soft 

X-rays, cells built on very thin (typically 100 nm thickness) membrane window is typically 

required for liquid/gas experiments. With solid-state electrolyte, such a complication could 

be avoided and SXS experiments could be performed directly on a real-world battery by 

designing the top layer in the schematic of Fig. 8. For example, controlled micrometer sized 

detection windows could be fabricated on a typical metal foil current collector for 

measuring the electrode materials. In order to avoid the relaxation effect inside the open 

windows for some materials [50], A thin film top-layer of metal, e.g., Al, or Au, could also 

serve as the current collector while allowing most soft X-ray photons passing through. In 

particular, if the electrode deposition is also controlled to achieve an electrode thickness of 

less than 100 nm, in-situ/operando PIPO SXS could reach the electrode-electrolyte 

interface directly. With the superior chemical sensitivity of mRIXS, we expect 

unprecedented information will be uncovered on both the bulk electrodes and interfaces in 

SSB systems. 
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Fig. 8 Schematic of a typical in-situ/operando SXS experiment based on SSB cells. Top layer could 

either be conventional current collector with detection windows, mesh current collector, or a thin 

film of Al or Au. Controlled thickness of the electrode will allow the probe depth to reach the 

electrode-electrolyte interface.  

 

7. Conclusions 

This review provides a comprehensive summary in both the techniques and analysis of 

the state-of-art SXS for revealing the critical chemistry in batteries. Through a direct 

comparison with sXAS, mRIXS is introduced for battery researches and is explicated as 

further resolved sXAS signals along a new energy dimension, the emission energy. In 

addition to the conventional TEY and TFY channels of sXAS, mRIXS simultaneously 

contains four more types of PIPO signals, i.e., PFY, iPFY, sPFY and ccPFY. The 

combination of these signal channels provides complete and powerful characterizations of 

both the surface/interface and the bulk properties of battery materials.  

We discuss several recent demonstrations in three aspects. On the surface and interfaces, 

we show that sXAS is sensitive to particular chemical bonds on the material surface, and 

RIXS could distinguish even the subtle chemical contrast between the ion-solvation shell 

and bulk electrolyte. On the cationic redox reactions, we show that quantitative definitions 
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of the TM states at different electrochemical states could be achieved through a simple 

linear-combination fitting, which is made possible by the high sensitivity of the sharp 

features in TM-L sXAS to the TM oxidation states. However, some novel TM states, e.g., 

Mn1+, cannot be clearly identified by sXAS, but could be revealed by mRIXS along the 

new dimension of emission energy. On the anionic oxygen redox reactions, we first clarify 

explicitly that neither the intensity nor the lineshape of the O-K sXAS pre-edge features 

should be used as evidence of oxygen redox, which is currently a popular approach found 

in many high-profile publications. The only reliable spectroscopic probe of oxygen redox 

we found so far is a specific feature in mRIXS. We discuss some important observations 

through mRIXS on understanding the oxygen redox, and provide our perspectives. The 

interpretation of the mRIXS feature is the key to uncover the fundamental and universal 

nature of oxygen redox in various electrode systems, only after which, the ultimate 

understanding of the oxygen redox could be achieved by further considerations of other 

factors like the structure and chemical configurations. Nonetheless, mRIXS is the tool-of-

choice for tackling both the material’s oxygen activities and points to a clear direction on 

the fundamental understanding of oxygen redox. 

Because SSB systems allow in-situ/operando SXS experiments performed without the 

typical membrane windows, they provide unique opportunities for studying real-world 

electrode materials and the interfaces in SSBs. We foresee that applications of advanced 

SXS techniques reviewed in this work will lead to significant contributions to chemical 

characterizations, fundamental understandings and material explorations for a broad range 

of topics in advanced battery technologies.   
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