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Abstract 
Machine learning-based predictive models allow rapid and reliable prediction of material 
properties and facilitate innovative materials design. Base oils used in the formulation of lubricant 
products are complex hydrocarbons of varying size and structure. This study developed Gaussian 
process regression-based models to accurately predict the temperature-dependent density and 
dynamic viscosity of 305 complex hydrocarbons. In our approach, strongly correlated/collinear 
predictors were trimmed, important predictors were selected by least absolute shrinkage and 
selection operator (LASSO) regularization and prior domain knowledge, hyperparameters were 
systematically optimized by Bayesian optimization, and the models were interpreted. The 
approach provided versatile and quantitative structure−property relationship (QSPR) models with 
relatively simple predictors for determining the dynamic viscosity and density of complex 
hydrocarbons at any temperature. In addition, we developed molecular dynamics simulation-based 
descriptors and evaluated the feasibility and versatility of dynamic descriptors from simulations 
for predicting material properties. It was found that the models developed using a comparably 
smaller pool of dynamic descriptors performed similarly in predicting density and viscosity to 
models based on many more static descriptors. The best models were shown to predict density and 
dynamic viscosity with coefficient of determination (𝑅𝑅2) values of 99.6% and 97.7%, respectively, 
for all datasets, including a test dataset of 45 molecules. Finally, partial dependency plots (PDPs), 
individual conditional expectation (ICE) plots, local interpretable model-agnostic explanation 
(LIME) values, and trimmed model 𝑅𝑅2 values were used to identify the most important static and 
dynamic predictors of density and viscosity.  
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Introduction 
Lubricants play a crucial role in enhancing the performance of mechanical systems by 

improving their friction and wear characteristics. The properties of lubricants are determined by 
blending base oils with additives. The base oil, which constitutes up to 98% of a lubricant, can be 
derived from crude oil, biological sources, or produced synthetically [1,2]. It primarily consists of 
complex hydrocarbons, including paraffins, isoparaffins, aromatics, and naphthenic molecules 
with varying carbon numbers [3]. The molecular composition of the base oil directly influences its 
properties and, consequently, the performance of the lubricant [3].  

Viscosity and density are two crucial properties of base oils that significantly impact the 
hydrodynamics of lubrication [4]. These properties directly influence friction, wear, and the overall 
lifespan of mechanical systems [5,6]. Kinematic viscosity, ratio of dynamic viscosity (referred to 
as viscosity in the manuscript) and density at 40 and 100°C enable calculation of viscosity index 
[7] which is most an industrial standard parameter to quantify the broader temperature performance 
capability of lubricants. Therefore, selecting an appropriate base oil with viscosity and density that 
meet the specific requirements of an application is crucial [3,6]. However, the knowledge of 
physical, chemical, and thermodynamic properties is often unavailable for compounds that have 
not been characterized or synthesized yet. Additionally, experimental measurements for molecules 
generated in silico can be expensive and time-consuming [8,9]. To overcome these limitations, 
quantitative structure-property relationships (QSPR) models have been developed to establish 
quantitative relationships between molecular features of hydrocarbons and their density and 
viscosity under application conditions. QSPR is a molecular descriptor-based modeling approach 
that correlates measured physical or chemical properties with descriptor [11–15]. It has been 
extensively used to predict biological, toxicological, and physicochemical endpoints [16], 
especially in the pharmaceutical industry [9,16–20]. 

Previous studies have employed various multivariate statistical tools, such as multiple 
linear regression (MLR), polynomial regression (PR), cluster analysis, principal component 
analysis (PCA), and partial least-squares regression (PLS), to develop QSPR models [21–28]. 
These models have provided reasonably accurate predictions, but they often rely on experimentally 
determined values as descriptors, limiting their applicability for discovering new materials and 
predicting their properties. Recent advances in machine learning (ML) have significantly improved 
the accuracy of QSPR models for estimating lubricant properties [23,24,28-32]. Machine learning 
algorithms, such as artificial neural networks (ANN) and Gaussian process regression (GPR) have 
been utilized to develop robust models. These machine learning (ML)-based models have 
showcased enhanced and efficient predictive capacities compared to traditional experimental and 
molecular dynamics (MD) simulation methods [23,24,28-32]. This is primarily because, once an 
accurate model is formulated, it serves as a more time-efficient and cost-effective alternative. 

Several studies have employed machine learning to predict the viscosity of different 
systems, including biofuels, ionic liquids, alkanes, lubricants, Lennard-Jones fluids, and binary 
mixtures [33-39]. Notably, some of these studies [37,38] have also utilized MD simulations to 
generate viscosity data. For instance, the predictions of kinematic viscosity for alkanes achieved 
impressive 𝑅𝑅2 values of 0.998 and 0.899 using artificial neural network and free volume theory, 
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respectively [36]. However, this study developed a viscosity model for a relatively smaller number 
of alkanes with up to 20 carbon atoms. These studies demonstrate the efficacy of machine learning 
and molecular dynamics simulations in predicting viscosity for various systems.  

Most previous QSPR models of viscosity used static descriptors, those derived directly 
from chemical formulas. Most studies qualitatively correlated viscosity whereas only a few studies 
quantitively correlated viscosity with dynamics descriptors obtained from MD simulations [48-
55]. Although some recent examples demonstrate the power of molecular dynamics-based 
descriptors in predicting material properties, such as supramolecular gelation [56], no previous 
studies have combined static and dynamic descriptors in QSPR models and compared their 
performance side-by-side. 

 In this study, we propose a QSPR approach to develop temperature-dependent viscosity 
and density models for complex hydrocarbons. Our models utilize both static and dynamic 
molecular descriptors and employ GPR as a simple and interpretable machine learning algorithm. 
Various parameters are used to assess the model quality during training, validation, and testing, 
and the models’ predictive capabilities are evaluated on independent subsets of molecules. 
Additionally, we employ model-agnostic interpretation techniques to determine the impact of each 
descriptor on the model predictions. This detailed interpretation, along with the significance of 
model terms, can aid in the selection of existing hydrocarbons or the design of new molecules with 
desired viscosity and density. Furthermore, the approach presented in this study can be extended 
to predict other important material properties for a range of applications. 

Methods and Materials 

This section outlines the design and training process of the descriptor-based ML models. 
The flowchart in Figure 1 shows the overall workflow of the ML approach. Step 1 is the collection 
of experimental data used to train, validate, and test the models. Step 2 is calculation of a large set 
of molecular descriptors or model predictors (predictors = descriptors + operating conditions). 
Step 3 is selection of the significant predictors from the set of predictors using the least absolute 
shrinkage and selection operator (LASSO) regularization, F-test, and elimination of the strongly 
correlated predictors using correlation/collinearity analyses. Step 4 is development of models with 
all possible combinations of significant predictors using GPR. Step 5 is the optimization of 
hyperparameters and then selection of the best models using model assessment parameters: 
coefficient of determination (𝑅𝑅2), root mean squared error (RMSE), and the variance inflation 
factor (VIF) values. Step 6 is model-agnostic interpretation of the best models by partial 
dependency plots (PDP), individual conditional expectation (ICE) plots, average local-
interpretable model-agnostic explanations (LIME), and relative decrease in 𝑅𝑅2  values due to 
trimming a predictor. Lastly, Step 7 is evaluation of the final models using test data.  
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Figure 1: The overall workflow of the ML approach to design, train, and evaluate the models. 

 

Experimental Data 
The dynamic viscosity and density of 305 pure hydrocarbons (C8 to C50) at a wide range 

of temperatures were obtained from the American Petroleum Institute (API) Research Project 42 
[57]. These 305 hydrocarbons include n-paraffins, branched-paraffins, 1-olefin, branched-olefins, 
non-fused ring naphthene, fused ring naphthene, non-fused ring aromatic, and fused ring 
aromatics. Schematics of some of the hydrocarbons are shown in Figure 2 to illustrate the diversity 
of molecule structures. The molecular weights of the 305 hydrocarbons range from 110.20 to 
703.30 g/mol. The viscosities range from 0.29 cP to 2.00×104 cP, and the densities range from 
0.67 g/cc to 1.12 g/cc. The viscosities and densities of these molecules, along with their molecular 
formulas and simplified molecular input line entry system (SMILES) [58] codes can be found in 
the Supporting Information (Tables S1 and S2). In addition, schematics of all the molecules can 
be found in the Supporting Information. Viscosity and density data at atmospheric pressure and 
temperatures ranging from 0 °C to 135 °C were used to develop the models. The API Research 
Report provided both density and viscosity for most hydrocarbons. However, for some 
hydrocarbons or temperatures, only density or viscosity was reported. In total, 1292 viscosity data 
points and 1474 density data points were included in the model development. 

Due to the large dataset, we used the holdout cross-validation technique. Data were divided 
randomly into three partitions to develop and assess the models: training, validation, and test 
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datasets. First, 70% of the 305 molecules (215 molecules) were used to train the models, and then 
15% of the 305 molecules (45 molecules) were used to validate the models during development. 
Lastly, the remaining 15% of the 305 molecules (45 molecules) that were not in the training and 
validation datasets were selected to assess the accuracy of the predictions from the developed 
models. All molecules are listed in Table S1, each identified with a partition ID, either 1, 2, or 3, 
to indicate if it was in the training, validation, or test dataset. All the experimental data can be 
found in the Supporting Information. 

 
Figure 2: Structures of representative hydrocarbons used in the model training, validation, or test datasets. 

Model Predictors 
The model predictors used in this study were temperature and molecular descriptors. 

Temperature was included as an operating condition predictor since viscosity and density are both 
inversely related to temperature [59–62]. Molecular descriptors are mathematical representations 
of the physical and chemical properties of molecules [46]. In this study, we classified molecular 
descriptors into two categories based on the level of molecular representation required for 
calculating them, either static descriptors or dynamic descriptors. Static molecular descriptors are 
one-dimensional (1D) and two-dimensional (2D) descriptors that do not require three-dimensional 
(3D) coordinates of the atoms in a molecule for calculation. Dynamic molecular descriptors are 
3D descriptors, commonly known as geometric descriptors, that require the 3D coordinates of 
atoms for calculation. Dynamic descriptors are more robust and better able to capture the molecular 
conformations under different operating conditions such as temperature, pressure, and speed. 
However, dynamic descriptors require a higher computational cost to calculate. Since all 
predictors, except temperature, were molecular descriptors, the terms “predictors” and 
“descriptors” can be effectively used interchangeably. 
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A total of 1444 static descriptors were obtained using an open-source software, PaDEL 
[63] by providing SMILES codes [58] of the molecules in Table S1. The details of all 1444 static 
descriptors can be found in the Supporting Information. In addition, 156 dynamic descriptors were 
determined using MD simulations. Of these, 57 dynamic descriptors were directly obtained from 
the simulations and 99 dynamic descriptors were calculated by postprocessing the atomic 
trajectories from the simulations. The 57 dynamic descriptors obtained directly from MD 
simulations include stress tensor, energies, density, volume, and dipole moment. The remaining 
dynamic descriptors were calculated via our open-source Python package, PyL3dMD [51], which 
utilizes the 3D coordinates, connectivity, and charge of atoms obtained at each timestep of the MD 
simulation. As it is not possible to provide the physical and chemical significance of all descriptors 
used in this study, only the significance of highly correlated predictors is provided along with the 
model interpretation. The definition of each descriptor used in this study can be found in the 
Supporting Information. 

For each molecule, a cubic model system with periodic boundaries containing around 5000 
atoms and 5.0 nm3 was created using an open-source software called Packmol [64]. The model 
volume of the systems was large enough to minimize finite-size effects across the periodic 
boundary [65] and to reduce pressure and stress fluctuations [66], enabling accurate and reliable 
simulations. All atomic interactions were described using the All Atom Optimized Potentials for 
Liquid Simulations (OPLS) [67], which is one of the most popular and accurate potentials for 
calculating transport properties of hydrocarbons. The OPLS parameters for the hydrocarbons were 
obtained using the LigParGen [68] and BOSS [69] software packages, which are open-source. We 
used the CM1A-LBCC [70] charge model to assign charges to the hydrocarbon atoms. Finally, 
dynamic simulations were run using the Large-scale Atomic/Molecular Massively Parallel 
Simulator  (LAMMPS) software with a time step of 1.0 fs [71]. 

The following is the protocol for the MD simulations from which the dynamic descriptors 
were calculated. First, a previously developed, robust equilibration molecular dynamics (EMD) 
simulation approach was followed to optimize the geometries of the molecules at atmospheric 
pressure and the same temperatures as given in the API Research Report [72]. Energy 
minimization of the system was performed using the conjugate gradient algorithm. Second, the 
system was heated to 1000 K for 0.25 ns in the canonical (NVT) ensemble to achieve homogeneity. 
Third, the system density was equilibrated at 1.0 atm and a target temperature for 1.0 ns in the 
isothermal–isobaric (NPT) ensemble using the Nosé–Hoover thermostat and barostat [73,74], with 
damping coefficients of 100 and 25 fs, respectively. Fourth, while maintaining a constant 
temperature for 0.5 ns in the NVT ensemble, the simulation box was deformed until the density of 
the fluid reached the average density computed from the previous NPT simulations. Finally, the 
system was equilibrated using the final configuration from NVT as the initial configuration for 
0.25 ns in the microcanonical (NVE) ensemble.  

After equilibration, two independent production runs of 1.0 ns and 3.0 ns were carried out 
in the NPT and NVE ensembles, respectively, for calculating dynamic descriptors. The dynamic 
descriptors for the density models were calculated from the NPT ensemble, since models that allow 
volume fluctuation are commonly used to calculate density in MD. For the viscosity models, 
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dynamic descriptors were calculated from the NVE ensemble, to be consistent with typical 
simulation methods used to calculate viscosity from MD simulations with the Green-Kubo formula 
[48,55]. The density, rho, calculated from the NPT ensemble, was used as a descriptor for both the 
density and viscosity models. The trajectories of atoms were stored every 1000 fs in each 
production run. The dynamic descriptors were calculated based on each stored frame of the 
trajectories and averaged over the last 50% of time in the production simulation. The LAMMPS 
scripts and data files of all molecules and the calculated static and dynamic descriptors are 
provided in the Supporting Information. 

It is worth noting that a key difference between directly calculating density or viscosity 
from MD simulations and using simulations in the same ensembles for calculating descriptors is 
that the latter requires significantly less computational time. For example, here, we used only 3 ns 
of NVE simulation data to predict viscosity using molecular descriptors from the simulation 
whereas, in our previous studies [48,55], we had to run simulations for 400 ns, to accurately 
calculate the viscosity of a lubricant.  

Model Predictor Selection 
Developing models of all possible combinations of a large set of predictors is inefficient 

and only feasible using supercomputing resources. Predictor selection reduces the dimensionality 
of data by selecting only a subset of predictors to create a model that accurately predicts measured 
responses. The primary objectives of predictor selection techniques are to improve prediction 
performance, provide faster and more cost-effective predictors, and improve model interpretability 
[75]. Therefore, after gathering a large complex set of potential predictors, the next step was to 
remove redundant, unimportant, and strongly correlated predictors to avoid unreliable and unstable 
estimates from the regression models. Therefore, LASSO regularization [76,77], F-test [78], 
correlation/collinearity analysis [79,80], and prior domain knowledge were used to remove 
redundant and strongly correlated predictors and select the most important predictors of the 
response variable (density/viscosity).  

Here, we explain the predictor selection approach for static descriptors used to develop 
viscosity models. We started with 1444 static descriptors. After removing descriptors with any 
missing values, infinite values, or the identical values for all molecules, we were left with 944 
static descriptors. Next, a LASSO fit with 10-fold cross-validation was performed, and the 
descriptors in the sparsest model within one standard error of the minimum mean squared error 
(MSE) (LambdaMinMSE, as shown in Figure 3a were selected. In LASSO regularization, the 
coefficients of covariates that were strongly correlated with one another or were less relevant to 
the response variable (in this case, viscosity) were eliminated from the pool of predictors. After 
performing LASSO regularization, we were left with only 37 identified important predictors. 
Secondly, using an F-Test, we ranked the importance of all 944 static descriptors for the response 
variable, as shown in Figure 3b. The F-test is the statistic used for analysis of variance (ANOVA) 
to examine the importance of each predictor individually. The p-value, also known as probability 
value, is a statistical measurement used to validate a hypothesis against observed data. A small p-
value or a large negative log(p) value of the test statistic indicates the importance of the 
corresponding predictor. In this context, the negative logarithmic p-value serves as the predictor's 
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score, indicating its importance of the corresponding predictor. Using the scores of the F-tests and 
prior domain knowledge of important predictors, we included highly important predictors that 
LASSO regularization might have removed from the pool. Thirdly, a correlation matrix was used 
to assess the cross-correlation of the predictors and remove strongly correlated predictors, as 
shown in Figure 3c. The correlation matrix is a standard measure of the strength of pairwise linear 
relationships. Finally, predictors that were not eliminated at this modeling step were considered 
the most significant and were used for developing the viscosity models. The same predictor 
selection approach was used for the static descriptors of the density models and the dynamic 
descriptors of the density and viscosity models.  

 
(a) 

 
(b) 
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(c) 

Figure 3: (a) MSE of the LASSO fit using 10-fold cross-validation. The lambda that results in the lowest MSE is the 
green dotted line whereas the blue dotted line is the lambda that is within one standard error of the lowest MSE. (b) 
Score of all predictors using the F-test where, in this example, the most important predictor is given rank 1 and the 
least important predictor is given rank 944. (c) Pairwise linear correlation coefficients of the descriptors where the 
dark red and dark blue represent highly positively and negatively correlated predictors, respectively. 

 

Model Development and Assessment 
After selecting important predictors and randomly dividing the experimental data into three 

datasets for training, validation, and testing, ML algorithm-based models were developed. GPR 
was chosen for its flexibility and tractability. GPR models are nonparametric kernel-based 
probabilistic models [81]. GPR was combined with the best subset regression approach to develop 
GPR-based models using each possible combination of predictors from the pool of selected 
important predictors. In this approach, all possible models were developed with up to five 
predictors or until a significant increase of the 𝑅𝑅2 [82] was observed by increasing the number of 
predictors. The models generated at this stage were designated as the first set of models. As 
described in the workflow of the model development in Figure 4, the best subset regression 
approach was applied. The goal of this approach was to choose a subset that maximizes model 
performance while minimizing complexity, which could prevent overfitting by using the minimal 
number of predictors that is necessary for the model but no more [83]. 
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Figure 4: Workflow of the model development step. 

In this step of model development, a holdout cross-validation technique was implemented 
to validate the trained models, and the statistics of the training and validation sets were recorded 
to assess the quality of the models. These statistics include 𝑅𝑅2 and RMSE values for the training 
and validation datasets, as well as the VIF of each predictor. The predictive performance of the 
models was assessed based on the 𝑅𝑅2 and RMSE values. 𝑅𝑅2 is a statistical measure of fit that 
quantifies the variation of the response variable that can be predicted by the predictor(s) in a 
regression model. 𝑅𝑅2 was calculated using Equation 1.  

 𝑅𝑅2 =
∑ �𝑦𝑦𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑦𝑦��
2𝑁𝑁

𝑖𝑖=1 − ∑ �𝑦𝑦𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑦𝑦𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
2𝑁𝑁

𝑖𝑖=1

∑ �𝑦𝑦𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑦𝑦��

2𝑁𝑁
𝑖𝑖=1

 (1) 

 

where, 𝑁𝑁 is the total number of data points, 𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ data point, 𝑦𝑦𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 is the experimental value 

of the response variable, 𝑦𝑦𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the model predicted value of the response variable, and 𝑦𝑦� is the 

mean experimental value of the response variable. The RMSE, which is a measure of the difference 
between values predicted by a model and values observed by experiment, was calculated using 
Equation 2. 

 RMSE = �
1
𝑁𝑁
��𝑦𝑦𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑦𝑦𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2
𝑁𝑁

𝑖𝑖=1

 (2) 

 

VIF was used to evaluate the multicollinearity between three or more predictors with the response 
variable and with each other. VIF was calculated using Equation 3 [80]. 
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 VIF𝑗𝑗 =
1

1 − 𝑅𝑅𝑗𝑗2
= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐂𝐂−1) (3) 

 

where, 𝐂𝐂 is the correlation matrix or matrix of the correlation coefficient, and 𝑅𝑅𝑗𝑗2  is the 𝑅𝑅2  of 
predictor 𝑗𝑗 on the remaining predictors. When the variation/trend of a predictor 𝑗𝑗 is nearly a linear 
combination of the other predictors, then 𝑅𝑅𝑗𝑗2  is close to 1 and the VIF for that predictor is 
correspondingly large. If 𝑅𝑅𝑗𝑗2 is 0 (no collinearity), then VIF is 1, which is the lowest possible value 
of VIF. We used VIF > 5 as a benchmark for the presence of multicollinearity [84] and discarded 
models with VIFs higher than 5. 

The top 100 models with the highest 𝑅𝑅2 value, lowest RMSE value, and VIF values less 
than or equal to 5 for all predictors were selected as the second set of the models. These models 
exhibit sensitivity to the numerous hyperparameters in the GPR algorithm, impacting their 
predictive performance. Therefore, hyperparameters of the models in the second set were 
optimized using a 5-fold cross-validation technique. The hyperparameters were tuned by exploring 
the multidimensional combinatorial hyperparameter space using the Bayesian optimization 
algorithm [85,86]. Bayesian optimization was chosen because, unlike other optimization 
techniques, it utilizes information from past function evaluations and does not solely rely on local 
gradient and Hessian approximations [87]. This enables the optimization search to rapidly reach 
the minimum, even for nonconvex functions [88]. 

After retraining the top 100 models with optimized hyperparameters, we chose the best 
model for each response variable as the model with the highest 𝑅𝑅2 value, the lowest RMSE value, 
VIFs ≤ 5, and for which the trends of PDPs [89,90] were consistent with the expected physical 
behavior. For example, it is commonly known that the viscosity and density of liquids decrease as 
temperature increases.  If a model does not match the expected trend, it is not correct, even if it 
has a perfect 𝑅𝑅2 of 1.0 (i.e., 100% accurate). PDP depicts the marginal effect of a predictor on the 
outcome of a model, and the extent of change in the response variable to a change in a predictor 
indicates the global importance of that predictor. In addition, for two models with similar statistics, 
preference was given to models with simple descriptors that are easy to understand and calculate, 
when two models had similar statistics. 

Model Interpretation and Evaluation 
To better understand the predictions, we systematically interpreted our best models and 

their predictors. We conducted model-agnostic interpretation using PDPs [89,90], ICE [90], and 
LIME [91]. PDP is a tool to investigate global importance, which represents the contribution of a 
predictor to the overall prediction of data, whereas ICE and LIME are tools used to investigate 
local importance, which represents the contribution of a predictor to the prediction of each data 
point. The PDPs do not reveal hidden dependencies because they only show averaged relationships 
between a predictor and response variable. ICE plots can be used to identify interactions among 
model variables and detect unusual subgroups in the datasets [92]. Therefore, to investigate 
heterogeneities in partial dependence originating from different observations, ICE plots were 
generated for each predictor in the best models. As the name suggests, the LIME value or weight 
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represents local importance, however, the mean of the LIME values for all data points can be used 
as a global representation of predictor importance. A positive (negative) mean LIME value implies 
a positive (negative) relationship of the predictor with respect to the response variable. The 
importance of predictors was analyzed by trimming predictors one at a time from the best model 
and observing the performance (𝑅𝑅2) of the trimmed model. Finally, the best models for viscosity 
and density were evaluated with a new set of hydrocarbons (test dataset) to verify their predictive 
performance across a wide range of temperatures. 

Results and Discussion 
Density Models 

We were able to achieve good temperature-dependent density models with three or fewer 
predictors. The three best static descriptor-based models for temperature-dependent density with 
one, two, and three static predictors are Equations 4-6, called Model I, II, and III. Model I is only 
a function of Broto-Moreau autocorrelation-lag 2/weighted by Sanderson electronegativities 
( 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2𝑒𝑒 ). 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2𝑒𝑒  is a spatial autocorrelation calculated from molecular graph, that is 
connectivity of atoms of a molecule [93] where e in 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2𝑒𝑒 is the Sanderson electronegativity 
[94] of atoms in a molecule, whereas 2 in 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2𝑒𝑒 is the lag or the topical distance between two 
connected atoms in a molecule. Therefore, it is a measure of molecular connectivity and 
complexity. Example calculations of these static descriptors can be found elsewhere [46]. Model 
II is a function of temperature (𝑇𝑇) in °F and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2𝑒𝑒. Model III is a function of temperature, 
conventional bond order ID number of order 3 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3), and fraction of rotatable bonds, including 
terminal bonds (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅). The conventional bond order ID number is a molecular weighted 
path number calculated from weighting graph edges (bonds) with conventional bond order, which 
is defined as 1, 2, 3, or 1.5 for single, double, triple, or aromatic bonds, respectively. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3 is a 
conventional bond order weighted measure of molecular connectivity and complexity [46]. The 
conventional bond orders for single, double, triple, and aromatic bonds are 1, 2, 3, and 1.5 [46]. 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is the fraction of rotatable bonds over the total number of bonds in a molecule [46]. 
Rotatable bonds are bonds that meet the three following criteria: (a) single bond connected by 
heavy atoms with the heavy atoms connected to at least one atom (including hydrogen atom), (b) 
the external bond by which the heavy atom is connected must not a triple bond unless the triple 
bonded atom is connected to another atom, and (c) the bond must not be part of a ring [46].  

Model I: 𝜌𝜌(𝑇𝑇) = 𝑓𝑓(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2𝑒𝑒) (4) 

Model II: 𝜌𝜌(𝑇𝑇) = 𝑓𝑓(𝑇𝑇,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2𝑒𝑒) (5) 

Model III: 𝜌𝜌(𝑇𝑇) = 𝑓𝑓(𝑇𝑇,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) (6) 
 

The best three dynamic descriptor-based models for density with one, two, and three 
dynamic predictors are Equations 7-9. Model I is only a function of simulation-calculated density 
(𝑟𝑟ℎ𝑜𝑜) from the NPT ensemble. Model II is a function of 𝑟𝑟ℎ𝑜𝑜 and the radius of gyration (𝑅𝑅𝑔𝑔) of the 
molecule which quantifies molecular size. Model III is a function of  𝑟𝑟ℎ𝑜𝑜, 𝑅𝑅𝑔𝑔, and energy due to 
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van der Waals interactions (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒). Note that rho is different from 𝜌𝜌, although both are density: 
rho is a dynamic descriptor calculated from the simulations and 𝜌𝜌 is the experimentally measured 
fluid density predicted by the ML model. We include rho as a descriptor because it can be 
calculated from a very short simulation and is part of the PyL3dMD python package [51]. The 
density models with dynamic descriptors excluding the simulation-calculated density are also 
provided in the Supporting Information. 

Model I: 𝜌𝜌(𝑇𝑇) = 𝑓𝑓(𝑟𝑟ℎ𝑜𝑜) (7) 

Model II: 𝜌𝜌(𝑇𝑇) = 𝑓𝑓�𝑟𝑟ℎ𝑜𝑜,𝑅𝑅𝑔𝑔� (8) 

Model III: 𝜌𝜌(𝑇𝑇) = 𝑓𝑓�𝑟𝑟ℎ𝑜𝑜,𝑅𝑅𝑔𝑔, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� (9) 
 

Table 1: Model assessment parameters for the density models with static and dynamic descriptors. 

Parameter 
Static Descriptors Dynamic Descriptors 

Model I Model II Model III Model I Model II Model III 

Training 
𝑅𝑅2 0.893 0.989 0.999 0.983 0.994 1.000 

RMSE 0.025 0.008 0.003 0.010 0.006 0.001 

Validation 
𝑅𝑅2 0.910 0.993 1.000 0.985 0.994 1.000 

RMSE 0.024 0.007 0.001 0.010 0.006 0.000 

Test 
𝑅𝑅2 0.874 0.935 0.981 0.971 0.977 0.988 

RMSE 0.029 0.021 0.011 0.014 0.012 0.009 
Average 𝑅𝑅2 0.892 0.972 0.993 0.980 0.988 0.996 

Maximum VIF 1.000 1.003 1.316 1.000 1.203 4.113 
 

Table 1 lists the 𝑅𝑅2 and RMSE values for the density models with static and dynamic 
descriptors for the training, validation, and test datasets. The average 𝑅𝑅2 values for the training, 
validation, and test datasets are also reported to enable comparison of the models. The maximum 
VIF for each predictor is also given to indicate the degree of multicollinearity. Due to the single 
predictor in Model I with both static and dynamic descriptors, the VIF value is a perfect 1, but the 
VIF increased as the number of predictors increased in Models II and III. The statistics in Table 1 
show that the model (Equation 4) with a single static descriptor 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2𝑒𝑒 was able to reach an 
accuracy of 89.2% in predicting the density of the hydrocarbons. When a temperature term was 
added to the model, that is, in Model II (Equation 5), the 𝑅𝑅2 for the test dataset increased to 97.2%. 
The best model with the static descriptors, Model III (Equation 6), has 𝑅𝑅2  values of 99.9%, 
100.0%, and 98.1% for the training, validation, and test datasets.  

From the statistics in Table 1, the density model with a single dynamic descriptor (Equation 
7), 𝑟𝑟ℎ𝑜𝑜 calculated from only 1.0 ns of simulation time, was able to achieve an accuracy of 98.0% 
in predicting density. This is higher than any single static descriptor and any combination of two 
static descriptors. When other simulation-calculated descriptors were included, i.e., Models II and 
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III in Equations 8 and 9, the 𝑅𝑅2 values increased to around 99%. The best density model with 
dynamic descriptors, Model III (Equation 9), had 𝑅𝑅2 values of 100.0%, 100.0%, and 98.8% for the 
training, validation, and test datasets. The perfect 𝑅𝑅2 value on the training dataset indicates that 
the complexity of the model was able to describe the relationship between the descriptors and the 
densities.    

Figures 5a and 5b show experimental density and density predicted by the best model 
(Model III) with static and dynamic descriptors for all datasets over a wide temperature range. The 
blue dashed lines represent ideal predictions. The model-predicted density for the training, 
validation, and test datasets is shown as black circles, red squares, and green triangles, respectively. 
From the statistics in Table 1 and Figure 5, we can see both models performed exceptionally well 
with only three descriptors. Furthermore, the model with three dynamic descriptors performed 
slightly better than the model with three static descriptors. 

 
(a) 

 
(b) 

Figure 5: Experimental density vs. density predicted by the best models (Model III) with (a) static and (b) dynamic 
descriptors for the training (black circles), validation (red squares), and test data (green triangles) sets. The blue dashed 
lines represent the ideal prediction. 

 

We can visualize the relationships between each model predictor in a trained regression 
model and model-predicted responses using the PDPs and ICE plots. In Figure 6, the circle 
symbols show the predicted response for each data point. The PDP (red line) shows the averaged 
relationship, whereas ICE plots (gray lines) show an individual dependence for each observation 
[90], resulting in one line per observation. The PDPs are offset such that the 𝑦𝑦-axis starts at zero 
to illustrate cumulative effects and the importance of each predictor in the model. Figures 6a and 
6b show the relationship between the model-predicted density and each static predictor in Equation 
6 and each dynamic descriptor in Equation 9, respectively. 
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(a) 

 
(b) 

Figure 6: The partial dependence (red curve) and the individual conditional expectation (grey curves) of each predictor 
in the best density models (Model III) with (a) static and (b) dynamic descriptors. The scattered circular symbols 
represent the relationship between a predictor variable and density for each observation. The data are offset so that the 
density starts from zero to better illustrate the cumulative effect of a predictor on density. 

PDPs and ICE plots show that the density decreases with increasing temperature (𝑇𝑇) in °F 
and fraction of rotational bonds in the molecules (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) but increases with increasing 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3. A larger value of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 indicates greater ease of rotation of the backbone in the 
molecules (i.e., chain flexibility) [95]. In Figure 6b, it must be noted that the negative sign of 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 suggests that the interaction is driven by an attractive force. Therefore, a higher negative 
value of 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 means stronger van der Waals interactions. Figure 6b shows that the experimental 
density and rho are directly and strongly correlated, as expected. However, the trends for radius of 
gyration (𝑅𝑅𝑔𝑔) and van der Waals interaction energy (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) are not definitive from these plots. 
As a complementary analysis, Figure 7 shows the average LIME values over all observations for 
the models with static and dynamic descriptors. The sign of the LIME values reveals that, on 
average, the density of hydrocarbons decreases with increasing 𝑇𝑇, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑅𝑅𝑔𝑔, and 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 
but increases with increasing 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3 and 𝑟𝑟ℎ𝑜𝑜.  

 
(a) 

 
(b) 
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Figure 7: The average LIME value for each predictor in the best density models (Model III) with (a) static and (b) 
dynamic descriptors. The orange and blue colors represent negative and positive relationships between a predictor and 
the response variable. The size of a bar represents the overall importance of a predictor. 

To rank the importance of each predictor in the models, we removed each predictor one at 
a time and observed the performance of the model with a dropped predictor. Table 2 gives the 
average 𝑅𝑅2 of the training, validation, and test datasets for each predictor when it was trimmed 
from the best density model. For instance, when the 𝑇𝑇 term was dropped from the best density 
model with static descriptors, the average 𝑅𝑅2 value decreased from 99.3% to 90.0%, that is, by 
9.3%. A larger decrease in 𝑅𝑅2 indicates more importance. The decrease in performance of the best 
model was 9.3%, 18.3%, or 21.4% when the 𝑇𝑇, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, or 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3 term was dropped from the 
best density models. Therefore, the order of importance of the predictors in the best density model 
with static descriptors is 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3 > 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 > 𝑇𝑇. This is consistent with the magnitudes in the 
LIME plots in Fig. 7a. Similarly, for the best density model with dynamic descriptors, the order of 
predictor importance is 𝑟𝑟ℎ𝑜𝑜 > 𝑅𝑅𝑔𝑔 ≈ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. Both 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑅𝑅𝑔𝑔  had only small effects on the 
density model compared to the simulation-calculated density. Analysis of both static and dynamic 
models indicates that the most important predictors of density are 𝑇𝑇, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3, and 𝑟𝑟ℎ𝑜𝑜. 

Table 2: Performance of the best density models when a predictor was removed from the models. 

Static Descriptors (Equation 6) Dynamic Descriptors (Equation 9) 
Term Dropped Avg. 𝑅𝑅2 Drop in Avg. 𝑅𝑅2 Term Dropped Avg. 𝑅𝑅2 Drop in Avg. 𝑅𝑅2 

None 99.3% 0.0% None 99.6% 0.0% 
𝑇𝑇 90.0% 9.3% 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 98.8% 0.8% 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 81.0% 18.3% 𝑅𝑅𝑔𝑔 98.1% 1.5% 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3 77.9% 21.4% 𝑟𝑟ℎ𝑜𝑜 82.0% 17.6% 

 

We also developed density models with combined static and dynamic descriptors. The 
combined models performed slightly better (R2 of 0.997) than the models with only static (R2 of 
0.993) and only dynamic descriptors (R2 of 0.996). Therefore, they were not analyzed further but 
are provided in the Supporting Information. 

Viscosity Models 
Instead of training models directly for viscosity (𝜂𝜂), we trained the models for logarithmic 

viscosity (log 𝜂𝜂), based on the knowledge the viscosity decreases exponentially with temperature. 
Unlike density, we were not able to achieve good temperature-dependent viscosity models with 
one or two predictors. The best three models with two, three, and four static predictors for 
temperature-dependent viscosity are Equations 10-12. Model I is a function of temperature (𝑇𝑇) in 
°F and the first kappa shape index (𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾1) [96]. Model II is a function of 𝑇𝑇, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, and the 
molecular weight (𝑀𝑀𝑀𝑀).  Model III has the same terms as Model II plus the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
[43]. The terms 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 in Model II and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 in Model III are the fraction of rotatable 
bonds over the total number of bonds, including (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) and excluding (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) terminal 
bonds, respectively. 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾1  is a connectivity descriptor which quantifies the complexity in 
connectivity of the molecule. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is a topological anisometry descriptor which 
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quantifies the molecular shape [43]. It is calculated from the generalized radius and diameter of 
the molecule [43]. Example calculations of these static descriptors can be found elsewhere [43,46]. 

Model I: log 𝜂𝜂(𝑇𝑇) = 𝑓𝑓(𝑇𝑇,𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾1) (10) 

Model II: log 𝜂𝜂(𝑇𝑇) = 𝑓𝑓(𝑇𝑇,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑀𝑀𝑀𝑀) (11) 

Model III: log 𝜂𝜂(𝑇𝑇) = 𝑓𝑓(𝑇𝑇,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑀𝑀𝑀𝑀,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) (12) 
 

The best three models for viscosity with two, three, and four dynamic predictors are 
Equations 13-15. Model I is a function of 𝑟𝑟ℎ𝑜𝑜 and kinetic energy (𝑘𝑘𝑘𝑘). Model II is a function of 
𝑟𝑟ℎ𝑜𝑜 , energy due to improper interactions (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒), and acylindricity (𝑐𝑐). 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 quantifies the 
stiffness of the molecule, proportional to the inverse of rotatable bonds in the molecule. 𝑐𝑐 is a 
measure of cylindricity in the distribution of atoms in a molecule. c is zero when a molecule is 
cylindrically symmetric and increases as the molecule deviates from this shape [88]. Model III is 
a function of 𝑟𝑟ℎ𝑜𝑜,  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑇𝑇, and a diagonal component of the moment of inertia tensor (I, i.e., size 
or distribution of atomic mass from the center of mass of a molecule). It was found that any 
diagonal component (𝐼𝐼𝑥𝑥𝑥𝑥, 𝐼𝐼𝑦𝑦𝑦𝑦, 𝐼𝐼𝑧𝑧𝑧𝑧) of the moment of inertia tensor resulted in similar predicting 
performance when used in Equation 15, likely because the dynamic descriptors were calculated 
from equilibration MD simulations with a cubic simulation box.  

Model I:   log 𝜂𝜂(𝑇𝑇) = 𝑓𝑓(𝑟𝑟ℎ𝑜𝑜,𝑘𝑘𝑘𝑘) (13) 

Model II:  log 𝜂𝜂(𝑇𝑇) = 𝑓𝑓( 𝑟𝑟ℎ𝑜𝑜, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑐𝑐) (14) 

Model III:  log 𝜂𝜂(𝑇𝑇) = 𝑓𝑓(𝑇𝑇, 𝑟𝑟ℎ𝑜𝑜, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐼𝐼𝑧𝑧𝑧𝑧) (15) 
 

Table 3: Model assessment parameters for the dynamic viscosity models with static and dynamic descriptors. 

Parameter 
Static Descriptors Dynamic Descriptors 

Model I Model II Model III Model I Model II Model III 

Training 
𝑅𝑅2 0.949 0.989 0.991 0.942 0.994 0.999 

RMSE 0.161 0.076 0.070 0.173 0.010 0.020 

Validation 
𝑅𝑅2 0.970 0.988 0.989 0.95 0.987 0.998 

RMSE 0.129 0.082 0.078 0.167 0.003 0.031 

Test 
𝑅𝑅2 0.834 0.936 0.952 0.809 0.876 0.932 

RMSE 0.275 0.171 0.148 0.324 0.293 0.176 
Average 𝑅𝑅2 0.918 0.971 0.977 0.900 0.952 0.977 

Maximum VIF 1.007 1.229 1.409 1.021 1.115 1.874 
 

Table 3 gives the 𝑅𝑅2 and RMSE values of the viscosity models with static and dynamic 
descriptors for the training, validation, and test datasets. The statistics in Table 3 show that the 𝑅𝑅2 
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values for the best model with static descriptors are 99.1%, 98.9%, and 95.2% for training, 
validation, and test datasets. Similarly, the 𝑅𝑅2 values for the best model with dynamic descriptors 
are 99.9%, 99.8%, and 93.2% for training, validation, and test datasets. The average 𝑅𝑅2 value of 
97.7% is the same for the models with static or dynamic descriptors. The very high 𝑅𝑅2 value on 
the training dataset indicates that the complexity of the model was able to describe the relationship 
between the descriptors and the viscosities.    

 

 
(a) 

 
(b) 

Figure 8: Model predicted viscosity obtained from the best models (Model III) with (a) static (b) dynamic descriptors 
for the training (black circles), validation (red squares), and test data (green triangles) sets. The blue dashed lines 
represent the ideal predictions. 

Figure 8 shows experimental viscosity and viscosity predicted using the best models with 
static and dynamic descriptors for all datasets over a wide range of temperatures. Note that the y-
axis is log 𝜂𝜂(𝑇𝑇). From the statistics in Table 3 and Figure 9, we can see that both models performed 
exceptionally well with only three or four predictors, including temperature. The model with three 
static descriptors and the model with three dynamic descriptors performed the same, with an 
average 𝑅𝑅2 value of 97.7%. 
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(a) 

 
(b) 

Figure 9: The partial dependency (red curves) and the individual conditional expectation (grey curves) of each 
predictor in the best viscosity models (Model III) with (a) static (b) dynamic descriptors. The scattered circular 
symbols represent the relationship between a predictor variable and viscosity for each observation. The plots are offset 
so that the viscosity starts from zero better to illustrate the cumulative effect of each predictor. 

Like density, Figure 9 shows ICE plots (gray lines) and a PDP plot (red line) for each 
predictor. Figures 9a and 9b show the PDP and ICE plots of predictors in the best models with 
static (Equation 12) and dynamic (Equation 15) descriptors. The circle symbols are the predicted 
response by the predictor for each data point. PDPs of static descriptors show viscosity decreasing 
with increasing 𝑇𝑇 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, increasing with 𝑀𝑀𝑀𝑀. PDPs of dynamic descriptors show that 
viscosity decreases with increasing T and 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, but increases with the rho and 𝐼𝐼𝑧𝑧𝑧𝑧. Similar finding 
were reported in a recent QSPR study [30] where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, and 𝑀𝑀𝑀𝑀 were 
found to be correlated with viscosity. Many previous experimental and simulation studies reported 
a power-law relationship between 𝑀𝑀𝑀𝑀 and viscosity [55,98], consistent with the trend in Figure 
9b. Figure 10 shows the average LIME values over all observations for the viscosity models with 
static and dynamic descriptors. The direction of the bars in the LIME plots indicate the same trend 
of the predictor with viscosity as the PDPs and ICE plots in Figure 9, i.e., viscosity decreases with 
increasing 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 , 𝑇𝑇 , but increases with increasing 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  and 𝑀𝑀𝑀𝑀 . The 
consistency between all three interpretation tools validates the various methods used to interpret 
the developed GPR models for establishing predictors relationship and importance to the response 
variable (density/viscosity). 
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(a) 

 
(b) 

Figure 10: The average LIME value or coefficient for each predictor in best viscosity models (Model III) with the (a) 
static (b) dynamic descriptors. The orange and blue colors represent the negative and positive relationship between a 
predictor and the response variable. The size of a bar represents the overall importance of a predictor of a model. 

Table 4 gives the 𝑅𝑅2 values of viscosity models for the training, validation, and test datasets 
when a predictor was dropped from the best models with static and dynamic descriptors. The 𝑅𝑅2 
decreased by 0.6%, 12.3%, 29.1%, or 54.4% when 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑀𝑀𝑀𝑀, or 𝑇𝑇 
term was dropped from the best viscosity model with static descriptors. This indicates that the least 
important predictor is the 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, consistent with the results of the LIME analysis in 
Fig. 10a. Similarly, the last important dynamic descriptor is 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, again as shown by the LIME 
analysis. Therefore, the most important predictors of viscosity are 𝑇𝑇, 𝑀𝑀𝑀𝑀, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐼𝐼𝑧𝑧𝑧𝑧, 
and 𝑟𝑟ℎ𝑜𝑜. This finding contradicts a previous study where the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 was found to be 
highly correlated with viscosity [30,99], but may be explained by the fact that our models were 
developed for only pure hydrocarbons.  

Table 4: Performance of the best viscosity models when a predictor was removed from the models. 

Static Descriptors (Equation 12) Dynamic Descriptors (Equation 15) 
Term Dropped Avg. 𝑅𝑅2 Drop in Avg. 𝑅𝑅2 Term Dropped Avg. 𝑅𝑅2 Drop in Avg. 𝑅𝑅2 

None 97.7% 0.0% None 97.7% 0.0% 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 97.1% 0.6% 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 90.2% 7.5% 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 85.4% 12.3% 𝑇𝑇 77.7% 20.0% 
𝑀𝑀𝑀𝑀 68.6% 29.1% 𝐼𝐼𝑧𝑧𝑧𝑧 60.3% 37.4% 
𝑇𝑇 43.4% 54.4% 𝑟𝑟ℎ𝑜𝑜 53.7% 44.0% 

 

We developed viscosity models with combined both static and dynamic descriptors. The 
combined models performed only slightly better (R2 of 0.982) than the models with only static (R2 
of 0.977) or only dynamic (R2 of 0.977) descriptors. These models were not analyzed further but 
are provided in the Supporting Information. 
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The details of all models can be found in the Supporting Information. The MATLAB code 
for the best density and viscosity models with static and dynamic descriptors are also provided in 
the Supporting Information. 

Conclusions 
A GPR-based model was trained with Bayesian optimization to accurately predict the 

dynamic viscosity and density of complex hydrocarbons over a wide range of temperatures. We 
presented a top-down systematic approach to developing simple models using various robust ML 
algorithms. Our approach (1) removed redundant and strongly correlated predictor, (2) assessed 
the risk of overfitting and underfitting in models, (3) ensured that important predictors were 
included in the model, (4) assessed the quality of the model predictions, and (5) included model-
agnostic interpretation. The best subset regression approach evaluated all combinations of 
significant predictors, which ensured that the minimum number of predictors was used and 
prevented over fitting. Notably, although the developed models involved very few (less than or 
equal to five) and relatively simple predictors but showed high accuracy in the prediction of 
experimental dynamic viscosity and density as a function of temperature for a variety of 
hydrocarbons. Multiple model-agnostic interpretations methods consistently showed that the 𝑇𝑇, 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3, and 𝑟𝑟ℎ𝑜𝑜 of the molecules were the most important predictors for density, 
while 𝑇𝑇, 𝑀𝑀𝑀𝑀, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐼𝐼𝑧𝑧𝑧𝑧, and 𝑟𝑟ℎ𝑜𝑜 were the most important predictors for viscosity.  

We evaluated the feasibility and versatility of using dynamic and static molecular 
descriptors to predict density and viscosity of hydrocarbons. Since dynamic descriptor-based 
models involve the relative positions of the atoms in 3D space, it is commonly expected dynamic 
descriptors to provide more information and discrimination power for similar molecular structures 
and molecule conformations than static descriptors [100]. Further, sometimes the same SMILES 
string can represent different molecules; for example, the SMILES string CC(C)=O represents 
both Acetone and Dimethyl Ether, but their molecular structures and properties are different. 
However, static descriptors calculated based on their SMILES string will be indistinguishable 
between these two molecules. In addition, the relative positions of the atoms in a molecule change 
with the condition (e.g., temperature, pressure), which cannot be captured by static descriptors. 
Since dynamic descriptors are calculated based on the state of a molecule at a given condition, 
they contain more accurate information than static descriptors. Based on this, dynamic descriptors 
should have advantages over static descriptors for predicting viscosity and density, especially at 
different temperatures as done in this study. And, indeed, we found that models with dynamic 
descriptors performed as well as or better than models with static descriptors, even though the pool 
of dynamic descriptors (157) was significantly smaller than that of the static descriptors (1444). 
To further assess the benefit of using dynamic descriptors, models for viscosity, density, or other 
properties as a function of multiple operating conditions, such as temperature, pressure, and shear 
rate, should be developed. 

Importantly, the ML-based predictive models developed in this study, which can be used 
to quickly predict the viscosity and density of hydrocarbons at given temperatures, could enable 
the design of novel hydrocarbon molecules with tunable properties. Moreover, although our 
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models in this study were only trained for density and viscosity of hydrocarbons, it provides a 
method that can be extended to other properties of a wider range of materials. 

Associated Content 
Data Availability Statement 

The data underlying this study are openly available in the GitHub repository “panwarp” at 
https://github.com/panwarp/SupplementaryMaterials 

Supporting Information 

The Supporting Information is available free of charge on the GitHub at 
https://github.com/panwarp/SupplementaryMaterials 

• Schematics of all molecules. 
• Definition of the molecular descriptors. 
• All experimental data with the static and dynamic descriptors of all molecules. 
• LAMMPS data files of the molecules with forcefield parameters and initially built 

atomic positions. LAMMPS input files to run the MD simulations. 
• MATLAB files of the best models to predict temperature-dependent density and 

viscosity. 
• Density and viscosity models with combined static and dynamic descriptors. 
• Density models with dynamic descriptors excluding simulation-calculated density. 

 

Nomenclature/Abbreviations 
ANN artificial neural network 
ANOVA analysis of variance 
API American petroleum institute 
EMD equilibrium molecular dynamics 
GPR gaussian process regression 
ICE individual conditional expectation 
LAMMPS large-scale atomic/molecular massively parallel simulator   
LASSO least absolute shrinkage and selection operator 
LIME local interpretable model-agnostic explanation 
MD molecular dynamics 
ML machine learning 
MLR multiple linear regression 
NPT isothermal–isobaric ensemble 
NVE canonical ensemble 
NVT microcanonical ensemble 
OPLS optimized potentials for liquid simulations 
PCA principal component analysis 
PDP partial dependency plot 
PLS partial least-squares regression 
PyL3dMD python LAMMPS 3D molecular descriptors package 
QSPR quantitative structure-property relationships 
RMSE root mean squared error 
SMILES simplified molecular input line entry system 
VIF variance inflation factor 

https://github.com/panwarp/SupplementaryMaterials
https://github.com/panwarp/SupplementaryMaterials
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2𝑒𝑒 Broto-Moreau autocorrelation-lag 2/weighted by Sanderson electronegativities 
𝑐𝑐 acylindricity 
𝐂𝐂 correlation matrix or matrix of the correlation coefficient 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 energy due to improper interaction 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 energy due to van der Waals interactions 
𝑖𝑖 𝑖𝑖𝑡𝑡ℎ data point 
𝐼𝐼𝑧𝑧𝑧𝑧 diagonal component of moment of inertia tensor 
𝑘𝑘𝑘𝑘 kinetic energy 
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾1 first kappa shape index 
log 𝜂𝜂(𝑇𝑇) logarithmic of temperature-dependent dynamic viscosity 
𝑀𝑀𝑀𝑀 molecular weight of molecule 
𝑁𝑁 total number of data points 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Petitjean number 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3 conventional bond order ID number of order 3 
𝑟𝑟ℎ𝑜𝑜 MD simulation-calculated density from NPT ensemble 
𝑅𝑅𝑔𝑔 radius of gyration 
𝑅𝑅2 coefficient of determination or R-squared 
𝑅𝑅𝑗𝑗2 𝑅𝑅2 of predictor 𝑗𝑗 on the remaining predictors 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 fraction of rotatable bonds, excluding terminal bonds 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 fraction of rotatable bonds, including terminal bonds 
𝑇𝑇 temperature in °F 
𝑦𝑦� mean experimental value of the response variable 
𝑦𝑦𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 experimental value of the response variable 
𝑦𝑦𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  model predicted value of the response variable 
𝜂𝜂(𝑇𝑇) temperature-dependent dynamic viscosity 
𝜌𝜌(𝑇𝑇) temperature-dependent density 
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