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Abstract
Cardiovascular (CV)- and lifestyle-associated risk factors (RFs) are increasingly recognized as important for Alzheimer’s 
disease (AD) pathogenesis. Beyond the ε4 allele of apolipoprotein E (APOE), comparatively little is known about whether 
CV-associated genes also increase risk for AD. Using large genome-wide association studies and validated tools to quantify 
genetic overlap, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with AD and one 
or more CV-associated RFs, namely body mass index (BMI), type 2 diabetes (T2D), coronary artery disease (CAD), waist 
hip ratio (WHR), total cholesterol (TC), triglycerides (TG), low-density (LDL) and high-density lipoprotein (HDL). In fold 
enrichment plots, we observed robust genetic enrichment in AD as a function of plasma lipids (TG, TC, LDL, and HDL); 
we found minimal AD genetic enrichment conditional on BMI, T2D, CAD, and WHR. Beyond APOE, at conjunction 
FDR < 0.05 we identified 90 SNPs on 19 different chromosomes that were jointly associated with AD and CV-associated 
outcomes. In meta-analyses across three independent cohorts, we found four novel loci within MBLAC1 (chromosome 7, 
meta-p = 1.44 × 10−9), MINK1 (chromosome 17, meta-p = 1.98 × 10−7) and two chromosome 11 SNPs within the MTCH2/
SPI1 region (closest gene = DDB2, meta-p = 7.01 × 10−7 and closest gene = MYBPC3, meta-p = 5.62 × 10−8). In a large ‘AD-
by-proxy’ cohort from the UK Biobank, we replicated three of the four novel AD/CV pleiotropic SNPs, namely variants 
within MINK1, MBLAC1, and DDB2. Expression of MBLAC1, SPI1, MINK1 and DDB2 was differentially altered within 
postmortem AD brains. Beyond APOE, we show that the polygenic component of AD is enriched for lipid-associated RFs. 
We pinpoint a subset of cardiovascular-associated genes that strongly increase the risk for AD. Our collective findings sup-
port a disease model in which cardiovascular biology is integral to the development of clinical AD in a subset of individuals.

Keywords Lipids · Polygenic enrichment · Cardiovascular · Alzheimer’s disease · Genetic pleiotropy

Introduction

There is mounting evidence that cardiovascular (CV) disease 
impacts Alzheimer’s disease (AD) pathogenesis. Co-occur-
rence of CV and AD pathology is the most common cause of 
dementia among the elderly [6] and imaging manifestations 
of vascular pathology are routinely observed in the brain on 
MRI scans of AD patients [41]. Observational epidemiology 
studies have found that cardiovascular-/lifestyle-related risk 
factors (RFs) are associated with dementia risk and target-
ing these modifiable RFs may represent a viable dementia 
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prevention strategy [7, 32]. Recently, the National Academy 
of Medicine [30] and the Lancet [26] commissioned inde-
pendent reports on strategies for dementia prevention. Both 
reports found encouraging evidence for targeting cardio-
vascular RFs with the Lancet commission concluding that 
35% of dementia could be prevented by modifying several 
RFs including diabetes, hypertension, obesity, and physical 
inactivity.

Genetic studies have found CV-associated loci that also 
increase risk for late-onset AD. The ε4 allele of apolipo-
protein E (APOE) is the biggest genetic risk factor for AD 
and encodes a lipid transport protein involved in cholesterol 
metabolism [29]. Genome-wide association studies (GWAS) 
in late-onset AD have identified single nucleotide polymor-
phisms (SNPs) implicated in lipid processes, such as CLU 
and ABCA7 [24, 37], and enrichment in cholesterol metabo-
lism pathways [9]. Considered together, these findings sug-
gest ‘pleiotropy’, where variations in a single gene can affect 
multiple, seemingly unrelated phenotypes [42].

We have previously shown that genetic enrichment in car-
diovascular-/lifestyle-associated RFs and diseases (hereafter 
referred to as CV-associated RFs) results in improved statis-
tical power for discovery of novel AD genes [13]. Building 
on this work, in the present study, we systematically evalu-
ated shared genetic risk between AD and cardiovascular-/
lifestyle-associated RFs and diseases. We focused on pub-
licly available genetic data from cardiovascular outcomes 
and a combination of traits and diseases that have been epi-
demiologically associated with increased AD risk. Using 
large GWAS and validated tools to estimate pleiotropy, we 
sought to identify SNPs jointly associated with AD and one 
or more CV-associated RF, namely body mass index (BMI), 
type 2 diabetes (T2D), coronary artery disease (CAD), waist 
hip ratio (WHR), total cholesterol (TC), triglycerides (TG), 
low-density (LDL) and high-density lipoprotein (HDL). We 
additionally assessed whether the AD/CV genes showed 
independent replication within a large ‘AD-by-proxy’ phe-
notype sample that relies upon parental AD status to identify 
proxy cases and proxy controls [52]. Finally, we examined 
whether the AD/CV pleiotropic genes are differentially 
expressed within AD brains.

Methods

Participant samples

We evaluated complete GWAS results in the form of sum-
mary statistics (p values and odds ratios) for clinically 
diagnosed AD dementia [24] and eight CV-associated RFs, 
including BMI [47], T2D [28], CAD [31], WHR [18], and 
plasma lipid levels (TC, TG, LDL, and HDL [44]). We 
obtained publicly available AD GWAS summary statistic 

data from the International Genomics of Alzheimer’s Dis-
ease Project (IGAP Stages 1 and 2; for additional details, 
see Supplemental Information and [24]; Table 1). As our 
primary cohort, we used IGAP Stage 1 which consists of 
17,008 AD cases (mean age = 74.7 ± 7.7  years; 59.4% 
female) and 37,154 controls (mean age = 76.3 ± 8.1 years; 
58.6% female) drawn from four different consortia across 
North America and Europe with genotyped or imputed data 
at 7,055,881 SNPs (for a description of the AD dementia 
cases and controls within the IGAP Stage 1 sub-studies, 
please see Ref. [24]). To confirm our findings from IGAP 
Stage 1, we assessed the p values of pleiotropic SNPs (con-
junction FDR < 0.05; see statistical analysis below) from 
two independent AD cohorts, namely the IGAP Stage 2 [24] 
sample, and a cohort of AD cases and controls drawn from 
the population of the United States and part of phase 2 of the 
Alzheimer’s Disease Genetics Consortium (ADGC2). The 
IGAP Stage 2 sample consisted of 8,572 AD cases (mean 
age = 72.5 ± 8.1 years; 61% female) and 11,312 controls 
(mean age = 65.5 ± 8.0 years; 43.3% female) of European 
ancestry with genotyped data at 11,632 SNPs (for addi-
tional details, see Ref. [24]). The ADGC2 sample consisted 
of 2,122 AD cases and 3,213 controls of European ancestry 
(for additional details, see Ref. [21]).

We further assessed the p values of our AD/CV pleio-
tropic SNPs in an AD-by-proxy cohort that is based on indi-
viduals of European ancestry in the UK Biobank (UKB) 
for whom parental AD status was available (N proxy 
cases = 47,793; N proxy controls = 328,320) (for additional 
details, see Ref. [52]). Individuals with one or two parents 
with AD were defined as proxy cases, while putting more 
weight on the proxy cases with two parents. Similarly, indi-
viduals with two parents without AD were defined as proxy 
controls, where older cognitively normal parents were up-
weighted as proxy controls to account for the higher like-
lihood that younger parents may still develop AD. As the 
proxy phenotype is not equivalent to a clinical diagnosis 
of AD and may include individuals that never develop AD, 
we evaluated the UKB by-proxy sample separately from the 
IGAP and ADGC2 case control samples.

Details of the summary data and available URLs from 
all GWAS used in the current study are listed in Table 1. 
The relevant institutional review boards or ethics commit-
tees approved the research protocol of all individual GWAS 
used in the current analysis, and all human participants gave 
written informed consent.

Genetic enrichment and conjunction false discovery 
rates (FDR)

A brief summary of these methods follows. For details, see 
Supplementary methods and previous publications [2, 3, 5, 
8, 12, 13, 19, 48].
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We evaluated whether there is pleiotropic genetic enrich-
ment in AD as a function of each of the eight CV-associated 
RFs. To do this, we compare the association with a primary 
trait (e.g., AD) across all SNPs and within SNP strata deter-
mined by their association with a secondary trait (e.g., BMI), 
and provide a visual pattern of overlap in SNP associations. 
For given associated phenotypes A (e.g., AD) and B (e.g., 
BMI), pleiotropic ‘enrichment’ of phenotype A with phe-
notype B exists if the proportion of SNPs or genes associ-
ated with phenotype A increases as a function of increased 
association with phenotype B (see Supplementary Methods). 
To assess for enrichment, we constructed fold-enrichment 
plots of nominal − log10(p) values for all AD SNPs and for 
subsets of SNPs determined by the significance of their 
association with each of the eight CV-associated RFs (e.g., 
− log10(p) > 1, > 2, and > 3 in CV-associated RFs). In fold-
enrichment plots, the presence of enrichment is reflected 
as an upward deflection of the curve for phenotype A if the 
degree of deflection from the expected null line is depend-
ent on the degree of association with phenotype B. More 
specifically, fold enrichment is computed as follows: first, we 
compute the empirical cumulative distribution of − log10(p) 
values for SNP association with a given phenotype (e.g., 
AD) for all SNPs, and then the cumulative − log10(p) val-
ues for each SNP stratum, which is determined by the p 
value of these SNPs in the conditioning phenotype (e.g., 
BMI). We then calculate the fold enrichment of each stra-
tum as the ratio between the − log10(p) cumulative distri-
bution for that stratum and the cumulative distribution for 
all SNPs. The x-axis shows nominal p values (− log10(p)); 
the y-axis shows fold enrichment. To assess for polygenic 
effects below the standard GWAS significance threshold, 
we focused the fold-enrichment plots on SNPs with nomi-
nal − log10(p) < 7.3 (corresponding to p > 5 × 10−8). The 
enrichment seen can be directly interpreted in terms of true 
discovery rate [TDR = 1 − false discovery rate (FDR)] (for 
additional details, see Supplemental Information).

To account for large blocks of linkage disequilibrium 
(LD) that may result in spurious genetic enrichment, we 
applied a random pruning approach, where one random SNP 
per LD block (defined by an r2 of 0.8) was used and aver-
aged over 200 random pruning runs. Given prior evidence 
that several genetic variants within the human leukocyte 
antigen (HLA) region on chromosome 6 [43, 49], microtu-
bule-associated tau protein (MAPT) region on chromosome 
17 [12] and the APOE region on chromosome 19 [13] are 
associated with increased AD risk, one concern is that ran-
dom pruning may not sufficiently account for these large 
LD blocks, resulting in artificially inflated genetic enrich-
ment [8]. To better account for these large LD blocks, in our 
genetic enrichment analyses, we removed all SNPs in LD 
with r2 > 0.2 within 1 Mb of HLA, MAPT and APOE variants 
(based on 1000 Genomes Project LD structure).

To identify specific loci jointly involved with AD and the 
eight CV-associated risk factors, we computed conjunction 
false discovery rates (FDRs), a statistical framework that is 
well suited to a genetic epidemiology approach to investigate 
genetic pleiotropy. The standard FDR framework is based 
on Bayesian statistics and follows the assumption that SNPs 
are either associated with the phenotype (non-null) or are not 
associated with the phenotype (null SNPs). Within a Bayes-
ian statistical framework, the FDR is then the probability of 
the SNP being null given its p value is as small as or smaller 
than the observed one. An extension of the standard FDR is 
the conjunction FDR, defined as the probability that a SNP 
is null for either phenotype or for both phenotypes simul-
taneously given its p value in both phenotypes are as small 
or smaller as the observed ones. The conjunction is a con-
servative approach requiring that loci exceed a conjunction 
FDR significance threshold for two traits jointly. Conjunc-
tion FDR, therefore, is more conservative and specifically 
pinpoints pleiotropic loci between the traits of interest. We 
used an overall FDR threshold of < 0.05, which means five 
expected false discoveries per hundred reported. Manhattan 
plots were constructed based on the ranking of conjunction 
FDR to illustrate the genomic location of the pleiotropic 
loci. In all analyses, we controlled for the effects of genomic 
inflation using intergenic SNPs (see Supplemental and previ-
ous reports for additional details [2, 5, 8, 12, 13, 19]).

For loci with conjunction FDR < 0.05, we performed 
a fixed-effect, inverse variance-weighted meta-analy-
sis [46] using independent AD cohorts: IGAP Stages 1 
and 2 (cases = 25,580, controls = 48,466) and ADGC2 
(cases = 2122, controls = 3213). As the separate IGAP 
Stage 2 summary statistics are not publically available, in 
our meta-analysis, we used the combined IGAP Stage 1 and 
2 sample which was available publically. The meta-analyses 
were conducted using the R package meta (http://CRAN.R-
proje ct.org/packa ge=meta). Briefly, the fixed effects, inverse 
variance-weighted meta-analysis summarizes the com-
bined statistical support across independent studies under 
the assumption of homogeneity of effects. Individual study 
estimates (log odds ratios) are averaged, weighted by the 
estimated standard error [23].

Functional evaluation of shared risk loci

To assess whether SNPs that are shared between AD and 
CV-associated RFs modify gene expression, we identified 
cis-expression quantitative loci (eQTLs, defined as variants 
within 1 Mb of a gene’s transcription start site) and regional 
brain expression of AD/CV SNPs in a publicly available 
dataset of normal control brains (UKBEC, http://brain eac.
org [36]). Given the evaluation of CV-associated RFs, we 
also evaluated eQTLs using a blood-based dataset [45].

http://CRAN.R-project.org/package%3dmeta
http://CRAN.R-project.org/package%3dmeta
http://braineac.org
http://braineac.org
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Gene expression alterations in AD brains

To determine whether the AD/CV pleiotropic genes are dif-
ferentially expressed in AD brains, we analyzed gene expres-
sion of overlapping genes in a publicly available dataset. We 
accessed the Mayo Clinic Brain Bank (Mayo) RNAseq study 
from the Accelerating Medicines Partnership-Alzheimer’s 
Disease (AMP-AD) portal (syn3163039; accessed April 
2017). We examined gene expression in the temporal cortex 
of brains with neuropathologic diagnosis of AD dementia 
(N = 82) and elderly control brains that lacked a diagnosis of 
neurodegenerative disease (N = 80) [1]. Multi-variable linear 
regression analyses were conducted using CQN normalized 
gene expression measures and including age at death, gen-
der, RNA integrity number (RIN), brain tissue source, and 
flow cell as biological and technical covariates.

Results

Pleiotropic enrichment in AD conditional on plasma 
lipid levels

For progressively stringent p value thresholds for AD SNPs 
[i.e., increasing values of nominal − log10(p)], we found 
approximately 100-fold enrichment using LDL, 75-fold 
enrichment using TC, 65-fold enrichment using TG, and 
25-fold enrichment using HDL (Fig. 1). In comparison, we 
found minimal to no enrichment with BMI, T2D, CAD, and 
WHR. Together, these findings suggest selective genetic 
overlap between plasma lipids and AD. We note that these 
results reflect genetic enrichment in AD as a function of 
CV-associated RFs after the exclusion of SNPs in LD with 
HLA, MAPT, and APOE (see “Methods”).

Given the long-range LD associated with the APOE/
TOMM40 region [49], we focused our pleiotropy analyses 
on genetic variants outside chromosome 19. At a conjunc-
tion FDR< 0.05, we identified 90 SNPs, in total, across 19 
chromosomes jointly associated with AD and the CV-asso-
ciated RFs (Fig. 2; Table 2). After accounting for LD, we 

Fig. 1  Fold enrichment plots of nominal − log10 p values (cor-
rected for inflation and excluding APOE, MAPT, and HLA regions) 
in Alzheimer’s disease (AD) below the standard GWAS threshold 
of p < 5 × 10−8 as a function of significance of association with body 
mass index (BMI), type 2 diabetes (T2D), coronary artery disease 

(CAD), waist hip ratio (WHR), total cholesterol (TC), triglycerides 
(TG), low-density lipoprotein (LDL), and high-density lipoprotein 
(HDL) at the level of p ≤ 1, p ≤ 0.1, p ≤ 0.01, respectively. Blue line 
indicates all SNPs
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identified several AD-/CV-associated loci involved in cho-
lesterol/lipid function including variants within ABCG5, 
ABCA1, and APOA4.

For the 90 pleiotropic SNPs, we conducted a meta-
analysis across IGAP Stages 1 and 2 and ADGC2. We 
focused on SNPs found in all three cohorts and identi-
fied six variants with p < 5.0 × 10−8 (Table 3; Fig. 3a–f): 
(1) rs6733839 (chromosome 2, closest gene = BIN1, con-
ditioning trait = HDL, reference allele = T, OR = 1.210, 
95% CI 1.18–1.1.25, p = 1.44 × 10−45), (2) rs1534576 
(chromosome 11, closest gene = SLC39A13, condition-
ing trait = BMI, reference allele = T, OR = 1.080, 95% CI 
1.05–1.11, p = 1.49 × 10−9), (3) rs3844143 (chromosome 
11, closest gene = PICALM, conditioning trait = LDL, 
reference allele = T, OR = 0.899, 95% CI 0.877–0.922, 
p = 6.52 × 10−17), (4) rs17125924 (chromosome 14, clos-
est gene = FERMT2, conditioning trait = BMI, reference 
allele = G, OR = 1.130, 95% CI 1.08–1.18, p = 2.62 × 10−8), 
(5) rs35991721 (chromosome 7, closest gene = MBLAC1/
GATS, conditioning trait = CAD, reference allele = T, 
OR = 0.921, 95% CI 0.896–0.947, p = 1.44 × 10−9), (6) 
rs536810 (chromosome 6, closest gene = HLA-DRB5, con-
ditioning trait = WHR, reference allele = T, OR = 0.924, 
95% CI 0.899–0.95, p = 1.14 × 10−8).

We also identified three AD susceptibility loci at 
p < 1.0 × 10−6 (Table  3; Supplemental Figure  1): (1) 
rs11039131 (chromosome 11, closest gene = DDB2, con-
ditioning trait = TG, reference allele = T, OR = 0.934, 95% 
CI 0.91–0.96, p = 7.01 × 10−7), 2) rs8070572 (chromo-
some 17, closest gene = MINK1, conditioning trait = BMI, 
reference allele = C, OR = 1.120, 95% CI 1.07–1.17, 
p = 1.98 × 10−7), and (3) rs2071305 (chromosome 11, 
closest gene = MYBPC3, conditioning trait = HDL, ref-
erence allele = C, OR = 0.928, 95% CI 0.903–0.953, 
p = 5.62 × 10−8).

These meta-analyses point to novel AD-associated 
susceptibility loci. On chromosome 7, we found that the 
genome-wide significant rs35991721 was not in LD with 
the previously reported SNP rs1476679 ([24], r2 = 0.28, 
D′ = 0.56) and may be tagging genetic signal within GATS, 
STAG3 or PVRIG (Fig. 4). On chromosome 11 within the 
CELF1 region, we detected independent signal within 
rs1534576, rs11039131 and rs2071305 (Fig.  5). The 
genome-wide significant rs1534576 was in LD with the pre-
viously reported rs10838725 (r2 = 0.64, D′ = 0.99) indicating 
that these two SNPs may be tagging signal within CELF1 
[24]. In contrast, rs11039131 and rs2071305 were not in 
LD with rs10838725 suggesting independent signal from 

Fig. 2  Conjunction Manhattan plot of conjunction − log10 (FDR) val-
ues for Alzheimer’s disease (AD) alone (black) and AD given body 
mass index (BMI; AD&BMI, red), type 2 diabetes (T2D; AD&T2D, 
blue), coronary artery disease (CAD; AD&CAD, pink), waist hip 
ratio (WHR; AD&WHR, magenta), total cholesterol (TC; AD&TC, 
green), triglycerides (TG; AD&TG, teal), low-density lipoprotein 

(LDL; &LDL, purple) and high-density lipoprotein (HDL, AD|HDL, 
maroon). SNPs with conjunction − log10 FDR > 1.3 (i.e., FDR < 0.05) 
are shown with large points. A black line around the large points indi-
cates the most significant SNP in each LD block and this SNP was 
annotated with the closest gene, which is listed above
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Table 2  Overlapping loci 
between AD and CV RFs at a 
conjunction FDR < 0.05

SNP Chr Closest gene A1 Reference trait Min ConjFDR AD p value Reference 
trait p value

1 rs61779841 1 TRIT1 A HDL 3.75E−02 5.44E−04 7.37E−04
2 rs78363635 1 C4BPA C LDL 2.02E−02 8.30E−04 5.46E−05
3 rs1759499 1 USP24 G LDL 2.50E−02 1.05E−03 1.57E−09
4 rs6587723 1 OTUD7B C TC 2.89E−02 3.26E−04 1.50E−03
5 rs1431985 1 AK092251 A TG 3.78E−02 6.63E−04 4.20E−04
6 rs858952 2 NRXN1 C BMI 1.11E−02 9.45E−06 2.22E−04
7 rs6733839 2 BIN1 T HDL 4.38E−02 7.11E−26 8.94E−04
8 rs72796734 2 ABCG5 T LDL 2.02E−02 8.29E−04 2.33E−05
9 rs55819441 2 AK097952 T LDL 2.30E−02 9.56E−04 1.40E−04
10 rs7421448 2 INPP5D T LDL 2.58E−02 5.84E−04 1.45E−03
11 rs12994639 2 SERTAD2 G TC 4.35E−02 1.60E−03 9.53E−05
12 rs61208496 2 C2ORF56 T WHR 3.22E−02 5.73E−05 1.88E−04
13 rs6805910 3 ARHGEF3 C HDL 3.78E−02 6.10E−04 6.93E−04
14 rs28670348 4 INPP4B G HDL 4.79E−02 1.81E−04 1.01E−03
15 rs13114818 4 UBA6 C TC 1.88E−02 6.28E−04 8.96E−04
16 rs6852075 4 ART3 G TG 2.80E−02 4.02E−04 5.17E−04
17 rs2074613 5 HBEGF C BMI 1.30E−03 9.29E−07 1.36E−05
18 rs4912851 5 SPRY4 G WHR 1.99E−02 3.39E−05 2.32E−05
19 rs12188460 5 FBXL17 G HDL 4.20E−02 6.23E−04 8.49E−04
20 rs5744712 5 POLK C LDL 3.15E−02 1.35E−03 1.29E−17
21 rs6883056 5 PRLR C LDL 3.96E−02 8.48E−05 2.30E−03
22 rs62383992 5 FGF18 A TC 3.64E−02 1.30E−03 9.12E−04
23 rs2176298 5 LOC285629 T TG 2.52E−02 1.50E−04 4.56E−04
24 rs141129230 6 HLA-B G HDL 4.15E−02 6.73E−04 1.75E−04
25 rs145749015 6 HLA-DQB1 T HDL 2.11E−03 2.71E−05 6.54E−06
26 rs115785781 6 HCG18 C LDL 3.17E−02 1.35E−03 1.81E−05
27 rs9272561 6 HLA-DQA1 G TC 2.17E−05 5.37E−09 7.23E−07
28 rs115795926 6 HLA-DQA2 C LDL 5.84E−05 1.94E−06 1.28E−06
29 rs115674098 6 HLA-DRA T LDL 2.85E−05 9.28E−07 2.21E−08
30 rs116715716 6 HLA-DRB1 T TC 2.57E−03 7.87E−05 2.25E−05
31 rs7774782 6 PRIM2 C TC 9.25E−03 2.93E−04 1.83E−04
32 rs3103351 6 SLC22A2 G LDL 4.06E−02 1.78E−03 4.04E−06
33 rs115802139 6 BTNL2 G T2D 8.23E−04 4.39E−06 2.35E−07
34 rs114465688 6 C6ORF10 G T2D 1.66E−02 9.45E−05 1.23E−04
35 rs536810 6 HLA-DRB5 T WHR 4.51E−03 7.18E−06 4.33E−14
36 rs12194027 6 ELOVL5 C TG 1.03E−02 1.39E−04 1.53E−04
37 rs115813375 6 HLA-C A TG 3.27E−02 5.67E−04 1.05E−06
38 rs1048365 7 AP1S1 T BMI 2.18E−02 7.84E−05 2.22E−04
39 rs2597283 7 BC043356 C BMI 1.53E−02 4.20E−05 3.46E−04
40 rs35991721 7 MBLAC1 T CAD 1.03E−02 5.77E−05 3.22E−06
41 rs702483 7 RAC1 T HDL 3.82E−02 6.18E−04 3.11E−04
42 rs12056620 8 PTK2B T BMI 2.12E−02 7.56E−05 3.35E−04
43 rs2011566 8 C8ORF38 G CAD 4.47E−02 2.78E−04 3.83E−04
44 rs7014168 8 SOX7 A LDL 1.09E−02 4.28E−04 4.01E−04
45 rs16895579 8 TSPYL5 A LDL 1.27E−03 8.90E−06 5.77E−05
46 rs117922969 8 AK055863 T TC 3.97E−02 1.43E−03 5.31E−04
47 rs13277568 8 TRPS1 G TC 3.67E−02 1.19E−03 1.17E−03
48 rs10991386 9 ABCA1 G TC 2.80E−03 8.54E−05 6.19E−07
49 rs12339683 9 IDNK T LDL 3.08E−02 1.31E−03 3.11E−04
50 rs11144711 9 PCSK5 G LDL 4.23E−02 5.65E−04 2.49E−03
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CELF1 (Fig. 5). Of interest, rs2071305 (but not rs11039131) 
was in LD with rs1057233 (r2 = 0.65, D′ = 0.99), a SNP that 
has been associated with AD age of onset in a survival anal-
ysis [20]. Collectively, these results suggest several different 
AD-associated genetic variants within chromosome 11.

We also assessed whether the AD/CV pleiotropic SNPs 
listed in Table 2 replicated in an AD-by-proxy cohort. Of 
the 90 IGAP pleiotropic SNPs, 68 SNPs were available in 
the UKB AD-by-proxy cohort. We identified 20 significant 
SNPs at p < 0.05 (Table 4). The replicated variants include 

Table 2  (continued) SNP Chr Closest gene A1 Reference trait Min ConjFDR AD p value Reference 
trait p value

51 rs145301439 10 ARMC3 A HDL 1.61E−02 2.42E−04 1.57E−04
52 rs12784561 10 CR595071 A LDL 2.55E−02 3.80E−04 1.43E−03
53 rs12783314 10 LOC219347 A LDL 2.72E−02 2.60E−04 1.53E−03
54 rs10906257 10 CCDC3 G TC 1.36E−02 4.39E−04 4.72E−04
55 rs7098392 10 CHST15 A TC 3.81E−02 1.37E−03 9.00E−04
56 rs6597951 11 AP2A2 C BMI 1.03E−02 2.94E−05 1.38E−04
57 rs7928842 11 CELF1 C BMI 2.37E−02 8.75E−05 3.19E−24
58 rs1893306 11 GUCY2EP G BMI 4.26E−02 4.25E−05 1.46E−03
59 rs1534576 11 SLC39A13 T BMI 1.79E−03 3.21E−06 6.62E−08
60 rs11039131 11 DDB2 T TG 6.47E−03 4.08E−05 8.55E−05
61 rs2071305 11 MYBPC3 C HDL 2.58E−04 3.01E−06 2.53E−07
62 rs3844143 11 PICALM T LDL 1.44E−02 1.94E−08 7.79E−04
63 rs1263170 11 APOA4 T TG 3.73E−02 6.55E−04 4.33E−09
64 rs11039297 11 PTPMT1 A WHR 8.51E−03 1.24E−05 5.15E−05
65 rs7972529 12 RPL6 G LDL 9.05E−03 3.52E−04 4.49E−04
66 rs77451327 12 SOAT2 C TC 4.58E−02 9.06E−04 2.56E−03
67 rs1635142 12 OAS2 A WHR 3.01E−02 5.32E−05 2.28E−04
68 rs7331792 13 BC038529 A LDL 2.93E−02 1.25E−03 4.69E−04
69 rs61963560 13 BC035340 A TC 3.61E−02 5.92E−04 1.94E−03
70 rs7981577 13 RASA3 C TC 4.16E−02 1.37E−04 2.28E−03
71 rs17125924 14 FERMT2 G BMI 3.65E−02 1.48E−05 1.17E−03
72 rs650366 15 FAM63B G TC 1.96E−02 6.54E−04 6.86E−04
73 rs3131575 15 USP8 G TC 1.42E−02 4.59E−04 4.34E−04
74 rs16953089 16 FTO C BMI 3.32E−02 1.36E−04 8.62E−04
75 rs9941245 16 GPRC5B G BMI 4.96E−02 2.29E−04 5.27E−16
76 rs4985557 16 MTSS1L T BMI 1.02E−02 2.87E−05 1.19E−04
77 rs9931998 16 BC040927 A LDL 3.45E−02 5.23E−04 1.99E−03
78 rs12595955 16 CDH5 G LDL 3.98E−02 1.74E−03 4.69E−04
79 rs246174 16 MKL2 T LDL 1.93E−02 7.89E−04 5.91E−04
80 rs79161472 16 ZNF668 A TC 1.78E−02 5.87E−04 6.23E−04
81 rs4985556 16 IL34 A T2D 3.42E−02 2.11E−04 4.10E−04
82 rs8062895 16 DHODH G TC 4.27E−02 1.56E−03 4.12E−04
83 rs8070572 17 MINK1 C BMI 2.33E−02 4.92E−06 6.24E−04
84 rs2960171 17 ZNF652 C CAD 2.33E−02 1.37E−04 8.72E−05
85 rs7221196 17 ITGB3 G LDL 4.67E−03 1.78E−04 1.57E−07
86 rs8071250 17 PRKCA C LDL 2.18E−02 7.56E−04 1.21E−03
87 rs850520 17 AK097513 A TG 7.79E−03 1.25E−04 1.08E−04
88 rs9954848 18 LIPG A TC 2.19E−02 4.58E−04 1.09E−03
89 rs2298428 22 YDJC T HDL 6.45E−03 9.00E−05 1.58E−08
90 rs4821116 22 UBE2L3 T TC 1.50E−02 4.02E−04 7.10E−04

Chromosome 19 SNPs are excluded
SNP single nucleotide polymorphism, Chr chromosome, Min ConjFDR minimum conjunction false discov-
ery rate, AD Alzheimer’s disease
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three of the four novel AD/CV pleiotropic SNPs, namely 
variants within MINK1, MBLAC1, and DDB2. 

Shared genetic risk between CV‑associated RFs

To evaluate whether the AD susceptibility loci listed in 
Table 2 are associated with a single CV-associated RF or 
with multiple associated RFs, we constructed a matrix plot. 
For each of the eight CV-associated RFs, we plotted the min-
imum conjunction FDR for all AD/CV closest genes (Fig. 6; 
Supplemental Table 1). We found that some common genetic 
variants influencing AD risk are associated with multiple 
CV-associated RFs. For minimum conjunction FDR < 0.05, 
variants within (1) ABCA1 were associated with CAD, lipid 
fractions, and WHR, (2) C6ORF10 with T2D and lipid frac-
tions and (3) SPRY4 with BMI, lipid fractions, and WHR 
(Fig. 6).

cis‑eQTLs

We focused on the four novel genetic variants (one genome-
wide significant and three suggestive SNPs, see above) and 
found significant cis-associations in either brain or blood tis-
sue types (Supplemental Table 2). None of the associations 
replicated in both tissue types. Within blood, rs8070572 
showed a significant cis-eQTLs with PLD2 (Supplemental 
Table 2).

Gene expression in brains from AD patients 
and healthy controls

To investigate whether the AD/CV pleiotropic genes are 
differentially expressed in AD brains, we compared gene 
expression in AD brains with neuropathologically normal 
control brains. We focused on differential expression of 
the closest genes from the four novel genetic variants (one 
genome-wide significant and three suggestive SNPs, see 
above) and SPI1 based on LD within chromosome 11 (see 
above). We used a Bonferroni-corrected p value of < 0.01 
and found significant effects for differential expression of 
MINK1, SPI1, DDB2 and MBLAC1 (Supplemental Table 3).

Discussion

Beyond APOE, we identified 90 SNPs on 19 different chro-
mosomes that jointly conferred increased risk for AD and 
cardiovascular outcomes. In meta-analyses across three 
independent cohorts, we found four novel genetic variants 
that increased risk for AD. Three of these new susceptibil-
ity loci independently replicated in an AD-by-proxy cohort. 
Expression of three of these AD/CV pleiotropic genes was 
differentially altered within AD brains. Collectively, our Ta
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Fig. 3  Forest plots for a rs6733839 on chromosome 2, b rs1534576 on chromosome 11, c rs3844143 on chromosome 11, d rs17125924 on chro-
mosome 14, e rs35991721 on chromosome 7, and f rs536810 on chromosome 6
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findings suggest that the polygenic component of AD is 
highly enriched for cardiovascular RFs.

In their genetic association with AD, not all cardiovas-
cular RFs are created equal. We found minimal genetic 
enrichment in AD as a function of T2D, BMI, WHR, and 
CAD suggesting that the known comorbidity [27, 34, 40] 
between these CV-associated RFs and Alzheimer’s etiol-
ogy are likely not genetic. In contrast, genetic enrichment 
in AD was predominantly localized to plasma lipids. Each of 
the four plasma lipid RFs resulted in a comparable level of 
enrichment suggesting a tight correlation between the lipid 
fractions. Building on our prior work leveraging statistical 
power from large CV GWASs for AD gene discovery [13], 
we found genetic variants jointly associated with AD and 
CV-associated RFs, many with known cholesterol/lipid func-
tion. By conditioning on plasma TC, TG, LDL, and HDL 
levels, we identified AD susceptibility loci within genes 
encoding apolipoproteins, such as APOA4, ATP-binding 
cassette transporters, such as ABCA1 and ABCG5, and phos-
pholipases, such as ATP8B4 and LIPG (for a discussion on 
lipid genes and AD, see Ref. [14]).

Cholesterol in the brain involves metabolic pathways 
that work independently from those in peripheral tissue. 
The blood–brain barrier (BBB) prevents peripheral choles-
terol from entering and leaving the brain. In the adult brain, 
cholesterol is synthesized predominately in astrocytes and 
oligodendrocytes; minimal cholesterol is synthesized in neu-
rons. Within glial cells, cholesterol is transported by apoE 

and secreted into the extracellular matrix via ABCA1- and 
ABCG1-associated mechanisms [50]. The cholesterol then 
binds to the low-density receptors (LDLR) on neuronal cells. 
This cholesterol is critical for synapse development, synapse 
formation, dendrite differentiation, and synaptic transmis-
sion [50]. In the periphery, cholesterol is produced in the 
liver or obtained through diet. Mounting epidemiological, 
clinical, and animal research indicates that high plasma lipid 
levels (i.e., hypercholesterolemia) act as a risk factor for AD 
[51]. Hypercholesterolemia is thought to possibly damage 
the BBB, resulting in pathological cholesterol metabolism 
in the brain [51]. Collectively, our findings demonstrate 
a shared genetic basis for plasma lipids and AD. Further, 
we pinpoint specific genes that may be driving this genetic 
association.

By combining several GWASs, our results provide impor-
tant insights into shared genetic risk. Conceptually similar to 
stepwise gatekeeper hypothesis testing [12] and a proxy phe-
notype approach [38], conjunction FDR identifies loci asso-
ciated with two traits. These two-stage methods do not lower 
the statistical ‘bar’ for gene detection and maintain a con-
stant Type I error rate. Unlike stepwise gatekeeper hypoth-
esis testing [12] and proxy phenotype [38], which have 
predominantly been used in a genome-wide framework, con-
junction FDR focuses on ‘hidden’ SNPs with p < 5 × 10−8, 
which directly translates into an effective increase in sample 
size [4]. Here, we used independent samples to confirm our 
conjunction FDR results, thereby pinpointing a subset of 
cardiovascular-associated genes strongly associated with 
AD. Our findings reinforce that specific Alzheimer’s genes, 
such as BIN1 and PICALM, also increase risk for cardiovas-
cular outcomes. Importantly, using this pleiotropy informed 
approach, and across three independent cohorts, we found 
four new susceptibility loci associated with elevated Alz-
heimer’s risk.

In meta-analyses, we identified novel AD-associated 
genetic signal in one genome-wide SNP and three SNPs 
at p < 1 × 10−6. By conditioning on cardiovascular RFs, 
we detected a genetic variant within the MBLAC1/GATS/
STAG3 region on chromosome 7 and with a meta-p value 
of 1.44 × 10−9. MBLAC1 encodes a metallo-β-lactamase 
domain-containing protein and shows ubiquitous expression 
in the brain [16]. Building on this, we found that expres-
sion of MBLAC1 was differentially altered in AD brains. We 
also identified a variant within MINK1 on chromosome 17. 
Interestingly, MINK1 expression was altered in AD brains 
supporting the hypothesis that phosphorylated kinases, like 
MINK1, are abnormal in AD [10].

On chromosome 11, our results point to AD-asso-
ciated genetic signal within the MTCH2/SPI1 region 
that is independent of CELF1/CUGB1. We identified 
rs2071305 and rs11039131 that were tagging variants 
within MYBPC3 and DDB2, within the MTCH2 and SPI1 

Fig. 5  The pair-wise linkage disequilibrium patterns between 
rs1534576, rs11039131 rs2071305, rs10838725, and rs1057233 on 
chromosome 11
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Table 4  Replication of AD/
CVD pleiotropic SNPs in a 
UKB AD-by-proxy cohort

SNP Chr Closest Gene BP A1 NMISS P OR CIs

1 rs1431985 1 AK092251 214148246 A 362011 8.04E−01 1 1–1
2 rs61779841 1 TRIT1 40324666 A 364772 8.12E−01 1 1–1
3 rs78363635 1 C4BPA 207324781 C 364859 2.05E−01 1.002 0.999–1.01
4 rs12994639 2 SERTAD2 64959331 G 364859 2.34E−01 1.002 0.999–1.01
5 rs55819441 2 AK097952 65082415 T 364859 6.27E−01 0.9992 0.996–1
6 rs61208496 2 C2ORF56 37464230 T 363628 8.04E−03 1.004 1–1.01
7 rs72796734 2 ABCG5 44063731 T 364005 6.24E−01 1.001 0.997–1.01
8 rs7421448 2 INPP5D 233982205 T 364859 1.52E−05 0.9929 0.99–0.996
9 rs858952 2 NRXN1 50875879 C 353852 2.34E−01 1.002 0.999–1.01
10 rs6805910 3 ARHGEF3 56739923 C 364232 7.18E−01 0.9994 0.996–1
11 rs13114818 4 UBA6 68550295 C 361934 4.40E−01 0.9987 0.995–1
12 rs28670348 4 INPP4B 143625388 G 362077 9.18E−01 1 1–1
13 rs12188460 5 FBXL17 107172269 G 357888 4.58E−01 0.9988 0.996–1
14 rs2074613 5 HBEGF 139714564 C 364859 1.57E−01 1.002 0.999–1
15 rs2176298 5 LOC285629 160388643 T 364192 1.86E−01 1.002 0.999–1
16 rs4912851 5 SPRY4 141815488 G 359562 9.38E−01 1 1–1
17 rs5744712 5 POLK 74892002 C 364232 9.67E−01 0.9999 0.995–1
18 rs62383992 5 FGF18 170866296 A 356784 1.50E−01 0.9976 0.994–1
19 rs6883056 5 PRLR 35080145 C 363845 4.71E−01 1.001 0.998–1
20 rs12194027 6 ELOVL5 53255776 C 364000 1.47E−01 0.9976 0.994–1
21 rs3103351 6 SLC22A2 160716066 G 363577 4.52E−02 0.9967 0.993–1
22 rs536810 6 HLA-DRB5 32577497 T 363853 2.03E−04 0.9939 0.991–0.997
23 rs7774782 6 PRIM2 57618491 C 362322 5.06E−01 1.001 0.998–1
24 rs1048365 7 AP1S1 100804430 T 363555 9.45E−01 0.9999 0.997–1
25 rs2597283 7 BC043356 37690507 C 363815 6.48E−02 0.997 0.994–1
26 rs35991721 7 MBLAC1 99728790 T 364144 2.34E−04 0.9939 0.991–0.997
27 rs702483 7 RAC1 6426941 T 362242 1.05E−01 0.9973 0.994–1
28 rs117922969 8 AK055863 9257853 T 364639 5.98E−01 0.9991 0.996–1
29 rs12056620 8 PTK2B 27291749 T 364405 1.27E−01 1.003 0.999–1.01
30 rs13277568 8 TRPS1 116679547 G 364859 2.61E−01 1.002 0.999–1.01
31 rs16895579 8 TSPYL5 98364076 A 363783 1.08E−01 1.003 0.999–1.01
32 rs2011566 8 C8ORF38 95971921 G 363930 3.35E−03 0.9952 0.992–0.998
33 rs7014168 8 SOX7 10641965 A 363086 5.65E−02 0.9968 0.994–1
34 rs10991386 9 ABCA1 107630433 G 348514 2.33E−02 1.004 1–1.01
35 rs11144711 9 PCSK5 78614020 G 362976 8.55E−01 1 1–1
36 rs12339683 9 IDNK 86214149 T 358092 3.06E−03 1.005 1–1.01
37 rs12784561 10 CR595071 11712965 A 364859 1.82E−01 0.9978 0.995–1
38 rs145301439 10 ARMC3 23146430 A 357876 1.27E−01 0.9975 0.994–1
39 rs11039131 11 DDB2 47232038 T 360088 3.34E−02 0.9965 0.993–1
40 rs11039297 11 PTPMT1 47581443 A 364264 2.80E−02 1.004 1–1.01
41 rs1263170 11 APOA4 116678413 T 359973 4.42E−01 1.001 0.998–1
42 rs1534576 11 SLC39A13 47419663 T 363313 7.46E−04 1.006 1–1.01
43 rs1893306 11 GUCY2EP 76434820 G 361099 5.58E−01 0.999 0.996–1
44 rs3844143 11 PICALM 85850243 C 364859 5.31E−11 0.9892 0.986–0.992
45 rs6597951 11 AP2A2 991530 C 363427 1.70E−01 0.9977 0.994–1
46 rs7928842 11 CELF1 47566352 C 364616 8.25E−01 0.9996 0.996–1
47 rs1635142 12 OAS2 113434518 A 360076 3.06E−01 0.9983 0.995–1
48 rs77451327 12 SOAT2 53524259 C 364824 7.26E−01 1.001 0.995–1.01
49 rs61963560 13 BC035340 113605534 A 359151 8.67E−01 0.9997 0.996–1
50 rs7981577 13 RASA3 114835802 C 364119 3.44E−01 0.9984 0.995–1
51 rs17125924 14 FERMT2 53391680 G 363118 1.47E−03 1.005 1–1.01
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regions. Furthermore, rs2071305 was in LD with an AD 
age of onset SNP that was associated with lower expres-
sion of SPI1 in monocytes and macrophages [20, 22]. We 
found that SPI1 expression was altered in AD brains. SPI1 
encodes a transcription factor, PU.1, that is essential for 
myeloid cell development and a major regulator of cellular 
communication in the immune system [29]. Coupled with 
our HLA findings, these results implicate genes expressed 
in microglia, astrocytes or other myeloid cell types in AD 
pathogenesis [39].

We identified enrichment for our novel AD/CV genetic 
variants within an AD-by-proxy cohort. Of the four new 
SNPs that strongly influenced Alzheimer’s risk, we found 
that MBLAC, DDB2 and MINK1 were associated with 
proxy AD status in the UKB sample. Importantly, five of 
the six IGAP/ADGC2 SNPs replicated in UKB consistent 
with prior work highlighting the usefulness of the by-proxy 
phenotype approach for AD [52]. Although a proxy pheno-
type is not equivalent to a clinical diagnosis of dementia, 
our findings illustrate that a subset of cardiovascular genes 

influences disease risk even in people with a genetic predis-
position for developing AD.

Our pleiotropy findings suggest that complex diseases 
and traits have a complex genetic architecture. Although 
we did not evaluate causal associations using a Mendelian 
Randomization (MR) framework, our results have implica-
tions for the relationship between common genetic variants, 
CV-associated RFs and AD as an outcome. To date, MR 
studies have typically evaluated a single CV risk factor at a 
time, which is valid only if the genetic variants used for the 
MR influence AD exclusively via the selected CV-associated 
risk factor [25, 33]. For some variants, we found pleiotropy 
challenging the conventional MR approach for genes such 
as ABCA1 [17]. Instead of a single causal link [15], these 
results suggest two possible scenarios for genetic variants 
associated with multiple traits: (1) genetic variants influence 
cardiovascular RFs and AD independently, or (2) genetic 
variants influence AD through multiple cardiovascular RFs.

Several studies have explored the overall genetic relation-
ship between CV-associated risk factors and Alzheimer’s 

Table 4  (continued) SNP Chr Closest Gene BP A1 NMISS P OR CIs

52 rs3131575 15 USP8 50731154 G 364208 3.79E−02 0.9966 0.993–1
53 rs650366 15 FAM63B 59061142 G 361213 4.48E−07 0.9917 0.988–0.995
54 rs12595955 16 CDH5 66144173 G 364594 9.66E−01 0.9999 0.995–1
55 rs16953089 16 FTO 54155742 C 353751 6.54E−01 0.9992 0.996–1
56 rs246174 16 MKL2 14379931 T 357267 8.80E−01 0.9997 0.996–1
57 rs4985556 16 IL34 70694000 A 364859 3.55E−03 1.005 1–1.01
58 rs4985557 16 MTSS1L 70704974 T 347131 6.93E−01 1.001 0.996–1.01
59 rs8062895 16 DHODH 72048632 G 361194 1.81E−01 0.9978 0.995–1
60 rs9941245 16 GPRC5B 19916895 G 360821 8.54E−01 0.9997 0.997–1
61 rs2960171 17 ZNF652 47378771 C 364076 9.80E−05 1.006 1–1.01
62 rs7221196 17 ITGB3 45374994 G 359882 3.70E−01 1.001 0.999–1
63 rs8070572 17 MINK1 4766937 C 364784 6.38E−03 1.005 1–1.01
64 rs8071250 17 PRKCA 64321567 C 364511 2.11E−02 0.9962 0.993–0.999
65 rs850520 17 AK097513 47333067 A 364105 2.40E−04 1.006 1–1.01
66 rs9954848 18 LIPG 47131781 A 364682 1.23E−01 0.9975 0.994–1
67 rs2298428 22 YDJC 21982892 T 364859 1.90E−01 0.9978 0.995–1
68 rs4821116 22 UBE2L3 21973319 T 364630 1.10E−01 0.9974 0.994–1

Bold values indicate p < 0.05
SNP single nucleotide polymorphism, Chr chromosome

Fig. 6  Matrix plot mapping minimum conjunction FDR for the non-APOE AD/CV pleiotropic genes for each CV-associated RF. Asterisk indi-
cates the conditioning RF used to identify the most significant SNP (see Table 2 and Fig. 2)
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disease. In line with our results, studies have reported sig-
nificant genetic overlap between AD and plasma lipids [13, 
53]. However, others have found weak casual evidence for 
plasma lipids and AD using MR [54] or no association 
between these traits using LD score regression [55]. The 
methods used in these studies may help explain differences 
from our results to some extent. As discussed above, MR 
analyses do not account for pleiotropic effects, which we 
specifically focus on in the current manuscript. Further, our 
pleiotropic approach allows for allelic heterogeneity and 
might consequently find shared genetic effects missed by 
the LD score regression method. Moreover, similar to our 
findings, others have shown minimal to no genetic overlap 
between CAD and T2D and AD [53]. Using MR, some have 
explored the causal relationship between CAD and AD risk 
[56] and found a lack of causal relevance of CAD for risk of 
late-onset AD after exclusion of APOE. Also, although CAD 
and AD show minimal genetic overlap, a genetic risk score 
for CAD has been shown to modify the association between 
CVD and AD [53]. Further, our understanding of the genetic 
relationship between BMI and AD is not well understood. 
We found minimal genetic overlap between BMI and AD. 
Others have found strong genetic overlap between BMI and 
AD [53], and yet others found no casual evidence between 
these traits [57]. These findings suggest that the genetic rela-
tionship between AD and BMI and CAD is complex and 
other factors may be influencing the relationship.

Our findings have clinical implications. First, given the 
common co-occurrence of vascular and Alzheimer’s pathol-
ogy, it is highly likely that the clinically diagnosed AD indi-
viduals from our cohort have concomitant vascular brain 
disease, which may further contribute to their cognitive 
decline and dementia. As such, a plausible interpretation of 
our findings is that the susceptibility loci identified in this 
study may increase brain vulnerability to vascular and/or 
inflammatory insults, which in turn may exacerbate the clini-
cal consequences of AD pathological changes. Second, no 
single common variant detected in this study will be clini-
cally informative. Rather, integration of these pleiotropic 
variants into a cardiovascular pathway-specific, polygenic 
‘hazard’ framework for predicting AD age of onset may help 
identify older individuals jointly at risk for cardiovascular 
and Alzheimer’s disease [11]. Therapeutically targeting car-
diovascular RFs in these individuals may impact the Alzhei-
mer’s disease trajectory.

This study has limitations. First, our AD patients were 
diagnosed largely using clinical criteria without neuropa-
thology confirmation and this may result in misclassifica-
tion of case status. However, such misclassification should 
reduce statistical power and bias results toward the null. Sec-
ond, we focused on the closest genes as the eQTL analyses 
did not replicate in both brain and blood. Additional work 
will be required to determine the causal genes responsible 

for the association between these novel loci and AD. Finally, 
given evidence that phospholipids are proinflammatory [35], 
future work should evaluate whether LDL, HDL TG, or TC 
influence AD risk through inflammation or other mediator 
variables.

In summary, we show cardiovascular-associated poly-
genic enrichment in AD. Beyond APOE, our findings sup-
port a disease model in which lipid biology is integral to 
the development of clinical AD in a subset of individuals. 
Lastly, considerable clinical, pathological and epidemiologi-
cal evidence has shown overlap between Alzheimer’s and 
cardiovascular risk factors. Here, we provide genetic support 
for this association.
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