## UC Irvine UC Irvine Previously Published Works

## Title

Preoperative hypoalbuminemia and dialysis increase morbidity/mortality after spine surgery for primary pyogenic spinal infections (ACS-NSQIP Study).

## Permalink

https://escholarship.org/uc/item/7147264v

## Authors

Camino-Willhuber, Gaston Franklin, Austin Rosecrance, Katherine <u>et al.</u>

## **Publication Date**

2022

## DOI

10.25259/sni\_330\_2022

Peer reviewed

www.surgicalneurologyint.com

## ScientificScholar<sup>®</sup> Knowledge is power Publisher of Scientific Journals

Surgical Neurology International

Editor-in-Chief: Nancy E. Epstein, MD, Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook. Editor

SNI: Spine

**Open Access** 

Nancy E. Epstein, MD Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook

# **Original** Article Preoperative hypoalbuminemia and dialysis increase morbidity/mortality after spine surgery for primary pyogenic spinal infections (ACS-NSQIP Study)

Gaston Camino-Willhuber 10, Austin Franklin<sup>2</sup>, Katherine Rosecrance<sup>2</sup>, Sarah Oyadomari<sup>2</sup>, Justin Chan<sup>3</sup>, Fernando Holc<sup>1</sup>, Sohaib Hashmi<sup>3</sup>, Michael Oh<sup>4</sup>, Nitin Bhatia<sup>3</sup>, Juan Emmerich<sup>5</sup>, Yu-Po Lee<sup>3</sup>

<sup>1</sup>Department of Orthopedics, Institute of Orthopedics "Carlos E. Ottolenghi," Hospital Italiano de Buenos Aires, Buenos Aires, Argentina, <sup>2</sup>School of Medicine, University of California Irvine, Departments of <sup>3</sup>Orthopaedics and <sup>4</sup>Neurosurgery, University of California Irvine, Orange, California, United States, <sup>5</sup>Department of Neurological Surgery, Children's Hospital La Plata, La Plata, Argentina.

E-mail: \*Gaston Camino-Willhuber - gaston.camino@hospitalitaliano.org.ar; Austin Franklin - ajfrankl@hs.uci.edu; Katherine Rosecrance - krosecra@ hs.uci.edu; Sarah Oyadomari - soyadoma@hs.uci.edu; Justin Chan - jprchan@hs.uci.edu; Fernando Holc - fernando.holc@hospitalitaliano.org.ar; Sohaib Hashmi - szhashmi@hs.uci.edu; Michael Oh - ohm2@hs.uci.edu; Nitin Bhatia - bhatian@hs.uci.edu; Juan Emmerich - dremmerich@hotmail.com; Yu-Po Lee - yupol1@hs.uci.edu



#### \*Corresponding author:

Gaston Camino-Willhuber, Institute of Orthopedics "Carlos E. Ottolenghi," Hospital Italiano de Buenos Aires, Buenos Aires, Argentina.

gaston.camino@ hospitalitaliano.org.ar

Received : 08 April 2022 Accepted : 20 April 2022 Published: 06 May 2022

DOI 10.25259/SNI\_330\_2022

Quick Response Code:



### ABSTRACT

Background: We analyzed the role of hypoalbuminemia, dialysis, and other risk factors that increase morbidity/ mortality following surgery for primary pyogenic spinal infections (PSIs). The American College of Surgeons' National Surgical Quality Improvement Program (ACS-NSQIP) that included 627 patients was utilized as our database.

Methods: Primary spinal surgery for spondylodiscitis was evaluated in a ACS-NSQIP database involving 627 patients between 2010 and 2019. Outcome assessment included evaluation of 30-day postoperative morbidity, and mortality rates.

Results: Within 30 postoperative days, complications occurred in 14.6% (92/627) of patients; 59 (9.4%) required readmission, and 39 (6.2%) required additional surgery. The most common complications were: wound infections, pneumonia, septic shock, and death (1.8%). Hypoalbuminemia (i.e., significantly associated with unplanned readmission and reoperation), and dialysis were the two major risk factors contributing to increased perioperative morbidity and mortality.

Conclusion: Among 627 ACS-NSQIP patients undergoing primary surgery for PSIs, hypoalbuminemia and dialysis were associated with higher risks of major perioperative morbidity (i.e., within 30 postoperative days - mostly readmissions and reoperations) and mortality.

Keywords: Dialysis, Hypoalbuminemia, Readmission, Reoperation, Spondylodiscitis

### **INTRODUCTION**

Pyogenic spinal infections (PSI) occur in between 0.5 and 2.4/100,000 patient/year.<sup>[9]</sup> This incidence will likely increase given the rising prevalence of spine operations performed in an aging population with increased comorbidities including diabetes, renal failure, and intravenous drug use.<sup>[6,7]</sup> Here, we explored the correlation between hypoalbuminemia and/or dialysis

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, transform, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. ©2022 Published by Scientific Scholar on behalf of Surgical Neurology International

with the incidence of perioperative (i.e., defined as <30 postoperative days) morbidity and mortality in patients undergoing primary surgery for PSIs.

#### MATERIALS AND METHODS

#### Study design and criteria

Institutional Review Board exemption was obtained from our institution. We utilized the American College of Surgeons' National Surgical Quality Improvement Program (ACS-NSQIP) database looking at 627 patients undergoing primary spine surgery for spondylodiscitis between 2010 and 2019. We looked at a variety of demographics including comorbidities (i.e., diabetes, hypertension, chronic obstructive pulmonary disease (COPD), congestive heart failure, smoking, chronic steroid use, and dialysis), and 30-day outcomes (i.e., postoperative morbidity and mortality rates using major vs. minor Glassman classification) based on Classification of Diseases 9<sup>th</sup> and 10<sup>th</sup> codes and Current Procedural Terminology (CPT) codes [Table 1].<sup>[5]</sup>

#### Surgical data

Spine operations were defined as cervical if performed between C0 and C7-T1, thoracic if from T1 to T12-L1, and lumbar if from L1 to the sacrum. Primary outcomes were assessed at 30 postoperative days and included; the evaluation of; 1) major complication rates, 2) wound-complications, 3) mortality rates, 4) unplanned readmissions, 5) reoperations, 6) operative times, and 7) fusion rates.

#### Preoperative laboratory studies

Preoperative laboratory data included albumin levels, with hypoalbuminemia being defined as <3.5 g/dl.

#### Statistical analysis

Outcomes were analyzed utilizing univariate analysis based on the demographics, preoperative comorbidities, and other

| Table 1: Classification of diseases $9^{th}$ and $10^{th}$ codes and current |  |
|------------------------------------------------------------------------------|--|
| procedural terminology codes.                                                |  |

| Codes and procedural                         | Definition                                                                 |
|----------------------------------------------|----------------------------------------------------------------------------|
| ICD-9: 722.90, 722.91,<br>722.93, and 722.94 | Discitis, spondylodiscitis, and epidural abscess                           |
| 22551, 22552, and 22554                      | Anterior cervical, anterior<br>thoracic, and anterior<br>lumbar surgery    |
| 22590, 22595, and 22600                      | Posterior cervical, posterior<br>thoracic, and posterior<br>lumbar surgery |

surgical variables. Comparisons were performed using Chi-square tests, Fisher's exact test, or Student's *t*-tests.

#### RESULTS

The most common comorbidities for 627 patients from the NSQIP database undergoing predominant lumbar followed by cervical spinal surgery included diabetes (27.6%) and COPD (6.5%: smokers 28.4%); [Table 2].

#### Minor and major postoperative complications

A total of 71 (11.3%) patients sustained 92 complications within 30 postoperative days; 28 (30.4%) were minor, and

| Table 2: Baseline demographic features.    |                             |  |  |
|--------------------------------------------|-----------------------------|--|--|
| Characteristics                            | Value                       |  |  |
| Age (mean/SD)                              | 59.6±13.6                   |  |  |
| Sex (F/M)                                  | 252/375                     |  |  |
| BMI (median/IQR)*                          | 28.2 (IQR 24.2-33.7)        |  |  |
| Cervical region involvement $(n/\%)$       | 148/23.6                    |  |  |
| Thoracic region involvement ( <i>n</i> /%) | 157/12.1                    |  |  |
| Lumbar region involvement ( $n/\%$ )       | 740/57.1                    |  |  |
| Multilevel involvement $(n/\%)$            | 24/1.9                      |  |  |
| Diabetes $(n/\%)$                          | 174/27.6                    |  |  |
| COPD ( <i>n</i> /%)                        | 41/6.5                      |  |  |
| Tobacco use $(n/\%)$                       | 178/28.4                    |  |  |
| Congestive heart failure $(n/\%)$          | 15/2.4                      |  |  |
| Renal failure ( $n$ /%)                    | 9/1.4                       |  |  |
| Dialysis (n/%)                             | 50/8                        |  |  |
| ASA III/IV (n/%)                           | 470/75                      |  |  |
| Operative time (minutes)*                  | 131 (IQR 81-216)            |  |  |
| *Non-parametric values. COPD: Chronic ob   | structive pulmonary disease |  |  |

 Table 3: Multivariate analysis of risk factors for major complications.

|                                 |            |              | -       |
|---------------------------------|------------|--------------|---------|
| Variable                        | OR         | 95% CI       | P-value |
| Age                             | 0.99       | 0.96-1.02    | 0.23    |
| Operative time (min)            | 1          | 0.99-1       | 0.88    |
| Smoking                         | 1.14       | 0.50-2.60    | 0.73    |
| BMI                             | 0.96       | 0.91-1.01    | 0.14    |
| Diabetes                        | 1.5        | 1.71-3.13    | 0.28    |
| Dialysis                        | 2          | 0.83-5.11    | 0.11    |
| Hypoalbuminemia                 | 3.95       | 1.55-10.05   | 0.004*  |
| ASA III-IV                      | 2.05       | 0.56 - 7.46  | 0.27    |
| Fusion surgery                  | 0.67       | 0.29-1.29    | 0.20    |
| Multivariate analysis of risk f | actors for | mortality    |         |
| Age                             | 0.98       | 0.92-1.03    | 0.53    |
| Sex                             | 2.93       | 0.57 - 14.84 | 0.19    |
| BMI                             | 0.97       | 0.88 - 1.08  | 0.65    |
| Smoking                         | 0.63       | 0.11-3.45    | 0.59    |
| Diabetes                        | 0.95       | 0.22 - 4.05  | 0.95    |
| Dialysis                        | 12.01      | 3-48.03      | 0.0001* |
| Hypoalbuminemia                 | 6.14       | 0.73-51.46   | 0.10    |
| Operative time (min)            | 0.99       | 0.99 - 1.04  | 0.57    |

**Table 4:** Multivariate analysis of risk factors for unplannedreadmission.

| Variable                     | OR           | 95% CI         | Р     |
|------------------------------|--------------|----------------|-------|
| Age                          | 1.01         | 0.99-1.04      | 0.14  |
| Operative time (min)         | 1            | 0.99-1         | 0.95  |
| BMI                          | 0.98         | 0.94-1.03      | 0.60  |
| Smoking                      | 1.86         | 0.92-3.75      | 0.08  |
| Diabetes                     | 1.58         | 0.84-2.95      | 0.14  |
| Dialysis                     | 1.28         | 0.53-3.07      | 0.57  |
| Hypoalbuminemia              | 2.26         | 1.12-4.55      | 0.02* |
| ASA III-IV                   | 3.08         | 0.89-10.66     | 0.07  |
| Fusion                       | 0.60         | 0.32-1.12      | 0.11  |
| Multivariate analysis of ris | k factors fo | or Reoperation |       |
| Sex                          | 1.53         | 0.71-3.27      | 0.26  |
| BMI                          | 0.95         | 0.89-1         | 0.07  |
| Smoking                      | 2.35         | 1.11-4.94      | 0.02* |
| Diabetes                     | 1.77         | 0.81-3.84      | 0.14  |
| Dialysis                     | 0.61         | 0.17-2.20      | 0.45  |
| Hypoalbuminemia              | 2.37         | 1.02-5.51      | 0.04* |
| Operative time               | 1            | 0.99-1         | 0.73  |
| ASA III/IV                   | 3.54         | 0.79-15.8      | 0.09  |
| *Significant value           |              |                |       |

64 (69.5%) were major. The most common complications in descending order were wound infections (n = 23 [3.7%] largely attributed to hypoalbuminemia), pneumonia (n = 20), septic shock (n = 13), cardiac arrest (n = 11), mortality (n-11 (1.7%): highly correlated with dialysis), deep vein thrombosis (n = 10), and urinary tract infection (n = 5) [Table 3].

#### **Unplanned readmissions**

Various factors were associated with readmissions observed in 59 patients (9.4%) within 30 postoperative days. These included hypoalbuminemia, dialysis, smoking, and an ASA of III-IV [Table 4]. Of interest, a median of 14 days (IQR 10–23.5) intervened between surgery and readmission.

#### **Unplanned reoperations**

There were 39 (6.2%) patients who required spinal reoperations within 30 postoperative days. Patients who were smokers or had hypoalbuminemia were the most likely to require secondary surgery [Table 4].

| Author (year)                                   | Retrospective versus<br>Prospective Study design/<br>Number of patients | Risk Factors'<br>Hypoalbuminemia<br>or Dialysis | Other Complications                                                | Outcomes                                            |
|-------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|
| Adogwa <i>et al.</i> (2014) <sup>[1]</sup>      | R 136                                                                   | Hypoalbuminemia                                 |                                                                    | Increased<br>Complications                          |
| Bohl <i>et al</i> . (2016) <sup>[2]</sup>       | R4310                                                                   | Hypoalbuminemia                                 | Wound Dehiscence<br>UTI                                            | Unplanned<br>Readmission                            |
| He et al. (2020) <sup>[6]</sup>                 | R 554                                                                   | Hypoalbuminemia                                 | Wound Dehiscence<br>Higher Hospital costs                          | Increased LOS                                       |
| Phan <i>et al.</i> (2019) <sup>[11]</sup>       | R 2410                                                                  | Hypoalbuminemia                                 | Perioperative<br>Complications<br>Readmission                      | Increased LOS                                       |
| Schoenfeld <i>et al.</i> (2013) <sup>[12]</sup> | R 5887                                                                  | Hypoalbuminemia                                 | Wound Infection<br>Thromboembolic<br>Complications                 | Higher Mortality                                    |
| Cervan <i>et al.</i> (2012) <sup>[3]</sup>      | P 23                                                                    | Dialysis                                        | New LBP                                                            | Spondylodiskitis                                    |
| Chikuda <i>et al</i> .(2012) <sup>[4]</sup>     | R 51648                                                                 | Dialysis                                        | Greater Risk of<br>Cardiac Arrest<br>Sepsis<br>Respiratory Failure | Mortality                                           |
| Hori <i>et al.</i> (2018) <sup>[7]</sup>        | R 86                                                                    | Dialysis                                        | Lumbar Spine Surgery                                               | Poorer Outcome<br>Higher Mortality                  |
| Madhavan <i>et al.</i> (2019) <sup>[8]</sup>    | R 34                                                                    | Dialysis                                        | Spondylodiskitis                                                   | More<br>Neurological<br>Compromise                  |
| Ottesen <i>et al.</i> (2018) <sup>[10]</sup>    | R 173778                                                                | Dialysis                                        | Elective Spine Surgery<br>Higher Risk                              | Higher Risk<br>Reoperation<br>Readmissions<br>Death |

Surgical Neurology International • 2022 • 13(193) 3

#### DISCUSSION

In this study, we analyzed morbidity and mortality rates for 627 patients from the ACS-NSQIP database undergoing surgery for PSI.<sup>[8,9]</sup> Hypoalbuminemia was significantly associated with a higher risk of total, major, and wound-related complications, whereas dialysis was associated with a higher mortality risk. Prior studies have demonstrated albumin's role in the healing process and how hypoalbuminemia highly correlates with greater risks for wound-related complications [Table 5].<sup>[1,2,6,11,12]</sup> Specifically, Schoenfeld *et al.* analyzed 5887 patients who underwent spinal fusion surgery through a NSIQP database and found that patients' age, ASA more than 2, high BMI, and poor nutritional status increased the risk of complications and mortality. Other studies also showed a positive correlation between patients on dialysis and higher mortality rates with spine surgery.<sup>[3,4,7,8,10]</sup>

# Postoperative complication leading to higher reoperation rates

Postoperative complications and adverse events in spine surgery are associated with higher morbidity, reoperation rates, and greater health-care costs.<sup>[5]</sup> We found that smoking was significantly associated with higher reoperation rates, a finding consistent with the previous literature.<sup>[1,2]</sup> There was also a significant association between hypoalbuminemia and both reoperations and unplanned readmissions; again, a finding w consistent with prior studies.<sup>[1,6]</sup> Phan *et al.*,<sup>[11]</sup> in an ACS-NSIQP study of 2410 patients undergoing elective posterior lumbar fusion, found significantly higher unplanned readmission rates, hospital length of stay, and perioperative complications for patients with hypoalbuminemia.

#### CONCLUSION

Hypoalbuminemia was associated with a higher risk of major and wound-related complications whereas dialysis was associated with a higher mortality rate for patients undergoing primary spine surgery for spondylodiscitis.

#### **Declaration of patient consent**

Institutional Review Board (IRB) permission obtained for the study.

#### Financial support and sponsorship

Nil.

#### **Conflicts of interest**

There are no conflicts of interest.

#### REFERENCES

- 1. Adogwa O, Martin JR, Huang K, Verla T, Fatemi P, Thompson P, *et al.* Preoperative serum albumin level as a predictor of postoperative complication after spine fusion. Spine (Phila Pa 1976) 2014;39:1513-9.
- 2. Bohl DD, Shen MR, Mayo BC, Massel DH, Long WW, Modi KD, *et al.* Malnutrition predicts infectious and wound complications following posterior lumbar spinal fusion. Spine (Phila Pa 1976) 2016;41:1693-9.
- Cervan AM, Colmenero Jde D, Del Arco A, Villanueva F, Guerado E. Spondylodiscitis in patients under haemodyalisis. Int Orthop 2012;36:421-6.
- 4. Chikuda H, Yasunaga H, Horiguchi H, Takeshita K, Kawaguchi H, Matsuda S, *et al.* Mortality and morbidity in dialysis-dependent patients undergoing spinal surgery: Analysis of a national administrative database in Japan. J Bone Joint Surg Am 2012;94:433-8.
- Glassman SD, Hamill CL, Bridwell KH, Schwab FJ, Dimar JR, Lowe TG. The impact of perioperative complications on clinical outcome in adult deformity surgery. Spine (Phila Pa 1976) 2007;32:2764-70.
- He Z, Zhou K, Tang K, Quan Z, Liu S, Su B. Perioperative hypoalbuminemia is a risk factor for wound complications following posterior lumbar interbody fusion. J Orthop Surg Res 2020;15:538.
- Hori Y, Takahashi S, Terai H, Hoshino M, Toyoda H, Suzuki A, et al. Impact of hemodialysis on surgical outcomes and mortality rate after lumbar spine surgery: A matched cohort study. Spine Surg Relat Res 2018;3:151-6.
- Madhavan K, Chieng LO, Armstrong VL, Wang MY. Spondylodiscitis in end-stage renal disease: A systematic review. J Neurosurg Spine 2019;1-9.
- Mylona E, Samarkos M, Kakalou E, Fanourgiakis P, Skoutelis A. Pyogenic vertebral osteomyelitis: A systematic review of clinical characteristics. Semin Arthritis Rheum 2009;39:10-7.
- Ottesen TD, McLynn RP, Zogg CK, Shultz BN, Ondeck NT, Bovonratwet P, *et al.* Dialysis is an independent risk factor for perioperative adverse events, readmission, reoperation, and mortality for patients undergoing elective spine surgery. Spine J 2018;18:2033-42.
- 11. Phan K, Ranson W, White SJ, Cheung ZB, Kim J, Shin JI, *et al.* Thirty-day perioperative complications, prolonged length of stay, and readmission following elective posterior lumbar fusion associated with poor nutritional status. Glob Spine J 2019;9:417-23.
- Schoenfeld AJ, Carey PA, Cleveland AW 3<sup>rd</sup>, Bader JO, Bono CM. Patient factors, comorbidities, and surgical characteristics that increase mortality and complication risk after spinal arthrodesis: A prognostic study based on 5,887 patients. Spine J 2013;13:1171-9.

**How to cite this article:** Camino-Willhuber G, Franklin A, Rosecrance K, Oyadomari S, Chan J, Holc F, *et al.* Preoperative hypoalbuminemia and dialysis increase morbidity/mortality after spine surgery for primary pyogenic spinal infections (ACS-NSQIP Study). Surg Neurol Int 2022;13:193.