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Although livestock production accounts for a sizeable share of global greenhouse gas emissions, numerous technical options
have been identified to mitigate these emissions. In this review, a subset of these options, which have proven to be effective, are
discussed. These include measures to reduce CH4 emissions from enteric fermentation by ruminants, the largest single emission
source from the global livestock sector, and for reducing CH4 and N2O emissions from manure. A unique feature of this review is
the high level of attention given to interactions between mitigation options and productivity. Among the feed supplement options
for lowering enteric emissions, dietary lipids, nitrates and ionophores are identified as the most effective. Forage quality, feed
processing and precision feeding have the best prospects among the various available feed and feed management measures.
With regard to manure, dietary measures that reduce the amount of N excreted (e.g. better matching of dietary protein to animal
needs), shift N excretion from urine to faeces (e.g. tannin inclusion at low levels) and reduce the amount of fermentable organic
matter excreted are recommended. Among the many ‘end-of-pipe’ measures available for manure management, approaches that
capture and/or process CH4 emissions during storage (e.g. anaerobic digestion, biofiltration, composting), as well as subsurface
injection of manure, are among the most encouraging options flagged in this section of the review. The importance of a multiple
gas perspective is critical when assessing mitigation potentials, because most of the options reviewed show strong interactions
among sources of greenhouse gas (GHG) emissions. The paper reviews current knowledge on potential pollution swapping,
whereby the reduction of one GHG or emission source leads to unintended increases in another.

Keywords: greenhouse gases, climate change, animal production, animal feeding, manure management

Implications

The paper reports on technical options for the mitigation of
livestock sector’s contribution to climate change. On the
basis of a comprehensive review of in vivo studies, it pro-
vides the researcher and the livestock sector stakeholder
with concise information on exiting mitigation practices,
their effectiveness and interactions. Uncertainties and areas
for further research are also highlighted. It is hoped that the
paper will contribute to the identification of lower green-
house gas -emission pathways for livestock production.

Introduction

In view of livestock’s sizeable contribution to global warming,
this review assesses the veracity, efficacy and feasibility of
the many mitigation options that have been put forward by
practitioners and researchers over the past few decades. This
review spans the breadth of the literature on mitigation,
drawing primarily on a recent comprehensive review of miti-
gation measures for livestock by Hristov et al. (2013), which
incorporates information from over 900 references. This review
also benefitted from an expert consultation, which assembled
leading global scientists to peer-review and improve the
review by Hristov et al. (2013). Much of the discussion on- E-mail: pierre.gerber@fao.org
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interactions between mitigation practices and greenhouse
gases (GHGs) in this paper is derived from the workshop.

Livestock production plays a crucial role in food security,
rural livelihoods and development at large (Herrero et al.,
2013). It also accounts for a substantial share of global
anthropogenic GHG. If all emissions along the livestock
supply chain are considered, this contribution amounts to
7.1 Gt CO2-eq, for the 2005 reference period (FAO, 2013a
and 2013b). When considering only the direct CH4 and N2O
emissions from enteric fermentation and manure (including
its application), livestock are estimated to contribute 5.4 Gt
CO2-eq to global emissions (FAO, 2013a and 2013b).

Large differences in emission intensities and/or quantities
are observed between species, regions and production sys-
tems. When considering total supply chain emissions, cattle
(beef and dairy) production generates 4.6 Gt, the largest
share of global livestock emissions by some margin. This figure
drops to a still significant 3.3 Gt when only the direct CH4 and
N2O emissions from enteric fermentation and manure are
considered (FAO, 2013b). This massive contribution stems from
cattle’s dominant global share of live animal biomass and, like
all ruminant animals, from their fermentative digestive system.

Other livestock species have much lower and similar levels
of emissions, even when considering the full lifecycle of
emissions: pigs (0.7 Gt CO2-eq), poultry (0.7 Gt CO2-eq),
buffalo (0.6 Gt CO2-eq) and small ruminants (0.5 Gt CO2-eq)
(FAO, 2013a and 2013b).

Of the 3.3 Gt of direct cattle GHG emissions, CH4 from
enteric fermentation is the largest source, accounting for a
71% share. Manure N2O, particularly from deposition on
pasture, accounts for the next largest share (25%), whereas
the remaining 4% is from manure CH4 (FAO, 2013b).

Direct emissions typically account for 15% and 35% in
poultry and pig production, respectively. Emissions related to
manure storage and processing are important for pig supply
chains with 27% of emissions (FAO, 2013a).

In addition to direct emissions, livestock supply chains
release GHG through animal feed production and post-harvest
activities. Feed production is the main source of indirect emis-
sions and is particularly important for the monogastric sector.
Emissions (primarily N2O) from feed production are almost
equal in size to direct emissions. They represent 36% of cattle
supply chain emissions, 60% of pork supply chains emissions
and 75% for chicken and egg supply chains. A lifecycle frame-
work can be used to account for these feed emissions, as well
as those from off-farm emission sources (e.g. from processing,
transport and land-use change) (FAO, 2013a and 2013b).

Emissions related to land-use change for pasture or feed
crop expansion are insignificant. They represent almost 15%
of emissions for beef, 13% for pigs and 18% for chicken.
Broiler rations include a higher share of soy sourced from
areas where land-use conversion is taking place, whereas
land-use change emissions are of little importance for the
dairy sector. Energy consumption along the supply chain
contribute a significant share of emissions, especially in
monogastric production where they can represent up to 40%
of emissions in chicken production (FAO, 2013a).

The emission intensity (Ei) of a commodity, measured as
the quantity of GHG emissions generated per unit of output,
is a useful metric for several reasons. It allows for mean-
ingful comparison of emissions especially within, but also
between, commodities. It is also very closely linked to the
productivity of the system, measured in terms of output per
animal, or on a whole herd basis. Moreover, as productivity
improvements can increase profits at the same time as
lowering Ei, they may also present opportunities to profitably
invest in mitigation. The Ei metric can also accommodate
emission reductions (or emissions stabilization) alongside
expanding output, which is important, given that livestock
commodity production is projected to grow at a steady pace
until at least the middle of this century. Mitigation measures
that improve productivity also have the best prospects for
minimizing the trade-offs between mitigation, food security
and producer welfare. At the same time, profitable pro-
ductivity improvements will, in many cases, encourage the
sector to expand; therefore, from a policy perspective they
are necessary options, which can only be sufficient for
mitigation if coupled with policies to restrict the sector’s
total quantity of emissions.

This review focuses on mitigation options for direct emis-
sions: enteric CH4 mitigation practices for ruminant animals
(only in vivo studies were considered in the original review by
Hristov et al., 2013) and manure mitigation practices for both
ruminant and monogastric species. Mitigation options that
reduce Ei only by increasing herd productivity (e.g. animal
husbandry, genetics and health management) while keeping
herd GHG output constant (or increasing it proportionally
less than productivity) are not included in this review, despite
their great relevance among low-intensity ruminant systems
(Gerber et al., 2011; FAO, 2013a and 2013b).

In the following section, mitigation options for reducing
enteric CH4 production are reviewed. These options fall into
two broad categories of feed supplements and feeds/feeding
management. Following this, mitigation options for manure
management are reviewed. These include dietary manage-
ment options, but the focus is mainly on a range of ‘end-of-
pipe’ options for the storage, handling and application phases
of manure management.

After this, the role of interactions between mitigation
options, productivity and emission sources is explored for
both ruminant and monogastric animals. Particular attention
is given to the risks of pollution swapping, as well as other
possible unintended impacts of mitigation.

Mitigation options for enteric methane emissions

Methane and CO2 are the major by-products of microbial fer-
mentation of carbohydrates in the rumen and both are GHGs.
Methane is produced in the anaerobic conditions of the rumen
by archaea. In ruminants, the vast majority of enteric CH4

production occurs in the reticulo-rumen. Rectal emissions
account for a marginal share of emissions (Murray et al., 1976;
Muñoz et al., 2012). A number of approaches, evaluated for
mitigation of enteric CH4, are presented in Table 1.

Mitigation of GHG emissions from livestock
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Table 1 Technical options for the mitigation of enteric methane emissions and their interactions with other categories of emissions

Mitigation option for enteric methane emissions Interactions and overall effectiveness

Mitigation technique Effectiveness1 Domain of relevance

Estimated emissions in
domain of relevance

(Mt CO2-eq)2 Interactions with other categories of emissions
Overall effectiveness,

including interactions
Ei reduction through

productivity enhancement

Feed supplements
Dietary lipids Medium Confined and mixed ruminant

systems of all regions
2319 Can reduce feed digestibility and this increases CH4

from stored manure.
Yes Yes, in the case of baseline diet

with low energy content
Dairy cattle in grazing systems of

North America, Europe, East
Asia, Latin America and
Oceania

If source is from oil seeds (e.g. cotton), then it can
increase N content of feed, and thus of
excreata. Not recommended if base feed has
high protein content.

Oil supplementation should not exceed 6% and is
not recommended if diet is of low quality
(digestibility , 50%).

Nitrate (electron
receptor)

High All ruminant systems, in all
regions

2710 Potential toxicity. Variable None
Potential increased N2O emissions from urine and

manure, including deposition and application

Ionophores Low Confined beef production, outside
EU27

124 Potential increase in N2O emissions from urine and
manure, including through manure deposition
and application

Yes Yes

Tannins Low All ruminant systems, in all
regions

2710 Decrease in urine-N and potential lower emission
of N2O

Yes None or Ei increase

Feeds and feeding
management
Concentrate
inclusion in diet

Low to medium (if
inclusion levels .

35%)

All ruminant confined and mixed
systems, in all regions

2249 Fibre digestibility of the ration can decrease if the
ration contains more than 40% of starchy
concentrates.

Yes, if .35 to 40%) Yes, even at low levels of
inclusion

Can lead to higher volatile solids excretion in
manure and to higher CH4 emissions during
storage.

Higher-feed digestibility leads to lower
replenishment of soil C through manure
deposition and application.

Improving forage
quality

Low to medium All ruminant systems, in all
regions

2710 If CP content of diet exceeds protein requirement of
animal, N2O emissions may increase

Variable Yes

Increased digestibility can reduce CH4 from stored
manure.

Can increase overall intake and thus increase
enteric CH4 emissions in grazing systems.

Legume introduction in pasture can reduce
emissions related to fertilizer use.

Effect on soil C is variable, depending on
agronomic practices and plant physiology.
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Table 1 Continued

Mitigation option for enteric methane emissions Interactions and overall effectiveness

Mitigation technique Effectiveness1 Domain of relevance

Estimated emissions in
domain of relevance

(Mt CO2-eq)2 Interactions with other categories of emissions
Overall effectiveness,

including interactions
Ei reduction through

productivity enhancement

Grazing
management

Low to medium All ruminant grazing and mixed
systems, in all regions

2434 Optimize productivity per ha, by maximizing
digestible dry matter intake

Variable Yes

Stocking rates may not be optimal for soil C.
If CP content of diet exceeds protein requirement of

animal, N2O emissions may increase
Feed processing
(grains)

Low All ruminant confined and mixed
systems, in all regions

2249 May have mitigation effect on N2O emissions from
manure application, and on CH4 emissions from
stored manure

Yes Yes

Alkaline treatment Low All ruminant in mixed systems, in
all regions

2132 Can increase NH3 emissions if urea is used. Can
increase in feed intake

No, emissions can
increase

Yes

Confined ruminant systems of
Asia, Latin America, Sub
Saharan Africa and Middle
East/North Africa.

Precision feeding Low All ruminant confined systems, in
all regions

276 Contributes to the reduction of manure CH4 and
N2O emissions

Yes Yes

Strategic
supplementation

Medium All ruminant grazing systems, in
all regions

2220 Can increase feed intake (leading to higher
absolute enteric CH4)

No, emissions can
increase

Yes, can be substantial

Increases N and volatile solids in manure, thus
manure CH4 and N2O emissions

Mixed systems in Eastern Europe,
Asia, Latin America, Sub
saharan Africa and Middle
East/North Africa.

1Low 5 < 10% mitigating effect; medium 5 10 to 30% mitigating effect; high 5 > 30% mitigating effect. Mitigating effects refer to percent change over a ‘standard practice’, that is, study control that was used for
comparison and are based on combination of study data and judgement by the authors of this document. For a detailed discussion, see Hristov et al. (2013).
2Estimates based on FAO (2013a and 2013b).
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Mitigation options assessed but not recommended by
Hristov et al. (2013), such as rumen archaea inhibitors (e.g.
bromochloromethane), exogenous enzymes, rumen defauna-
tion and yeast-based probiotics are not included in this review.

Vaccines against archaea have been successful in vitro
(Wedlock et al., 2010) and are a very promising option that
could be applied to all ruminants, even in grazing situations
with little human contact. As there are currently no vaccines
that are ready for practical application (Clark et al., 2004;
Wright et al., 2004) and they are also discussed in another
review at this meeting (Wedlock et al., 2013), they are
excluded from this review.

Feed supplements
Dietary lipids. On the basis of several studies (Eugene et al.,
2008; Grainger and Beauchemin 2011; Rabiee et al., 2012),
Hristov et al. (2013) conclude that lipids are effective in
reducing enteric CH4 emission, but the feasibility of this
mitigation practice depends on affordability of oil products
and potential negative effects on animal productivity, for
example, reduction in fibre digestibility. Although Eugène
et al. (2011) reported that the combination of CH4 reductions
and reduced dry matter intake (DMI) resulted in no differ-
ence in CH4 per unit of DMI, Rabiee et al. (2012) reported
consistent reductions in CH4 production per unit of DMI, or Ei
for dairy cows. Grainger and Beauchemin (2011) concluded
that with up to 8% fat in the diet, a 10 g/kg increase in
dietary fat would decrease CH4 yield by 1 g/kg DMI in cattle
and 2.6 g/kg in sheep. However, the effect of these treat-
ments on animal production over a longer time period was
not reported. The important question of persistence of the
effect of lipids on CH4 production has not been adequately
addressed (Woodward et al., 2006). Some studies do report
long-term effects of dietary lipids, but data are inconsistent
(Holter et al., 1992; Grainger et al., 2008 and 2010b;
Grainger and Beauchemin, 2011).

Electron receptors. Recent research on sheep (Sar et al.,
2004; Nolan et al., 2010; van Zijderveld et al., 2010) and
cattle (van Zijderveld et al., 2011a and 2011b; Hulshof et al.,
2012) has shown promising results with nitrates decreasing
enteric CH4 production by up to 50%. Nitrates may be parti-
cularly attractive in developing countries where forages
contain negligible levels of nitrate and insufficient CP for
maintaining animal production. When nitrates are used, it is
critical that the animals are properly adapted to avoid nitrite
toxicity (Hristov et al., 2013). Adding sulfate to the diet of
sheep reduced CH4 production, but their potential effects on
animal health are unclear. Other electron acceptors such as
fumaric and malic acids may reduce CH4 production when
applied in large quantities, but most results indicate no
mitigating effect and their costs are likely to be prohibitive
(Hristov et al., 2013).

Ionophores. A meta-analysis of 22 controlled studies con-
cluded that monensin had stronger anti-methanogenic effect
in beef steers than dairy cows, but the effects in dairy cows

can potentially be improved by dietary modifications and
increasing monensin dose (E. Kebreab, 2012, University
of California—Davis, USA, personal communication). Other
meta-analyses have shown monensin to improve feed effi-
ciency in beef cattle in feedlots (by 7.5%; Goodrich et al.,
1984) and on pasture (by 15%; Potter et al., 1986), and
for dairy cows (by 2.5%; Duffield et al., 2008), which can
lower enteric CH4 Ei. However, ionophores are banned in the
European Union, and therefore not applicable everywhere.
On the basis of the available information, it is surmised that
ionophores, through their effect on feed efficiency, would
likely have a moderate CH4-mitigating effect in ruminants
fed high-grain or grain-forage diets. This effect is less con-
sistent in ruminants fed pasture (Hristov et al., 2013).

Tannins and saponins. Tannins as feed supplements or as
tanniferous plants have often, but not always (Beauchemin
et al., 2007a), shown potential for reducing enteric CH4

emissions, in some cases by up to 20% (Sliwinski et al.,
2002; Zhou et al., 2011a; Staerfl et al., 2012).

However, the effects of tannins on animal digestion and
productivity are variable between studies. Some of the variation
may be explained by the type, concentration and protein-
binding capacity of the tannins, the type of technique used to
measure the tannin concentration and failure to distinguish
between condensed and hydrolyzable tannins (Makkar, 2003).
In an extensive review of the effect of saponins and tannins on
CH4 production in ruminants, mostly on the basis of in vivo
studies, Goel and Makkar (2012) concluded that the risk of
impaired rumen function and animal productivity is greater with
tannins than with saponins.

Hydrolyzable and condensed tannins may thus offer an
opportunity to reduce enteric CH4 production, although intake
and animal production may be compromised. Tea saponins
seem to have shown some potential, but more and long-term
studies are required before they could be recommended for
use (Hristov et al., 2013).

Feeds and feeding management
Feed intake. Feed intake is an important variable in pre-
dicting CH4 emissions. Johnson and Johnson (1995) stated
that CH4 loss as a percentage of gross energy intake (Ym)
decreases by 1.6% units per each level of intake above
maintenance. For growing lambs on pasture, Hegarty et al.
(2010) predicted both a linear increase in average daily gain
(ADG) and an increase in CH4 production, with increased
DMI, with the rate of ADG being greater for feeds of greater
digestibility. Further, as the amount of CH4 released per
unit of additional intake is greater for lower-digestibility
feeds, the Ei of growth at any given DMI is less for high-
digestibility feeds than for low-digestibility feeds. Moreover,
small changes in energy intake result in small changes in CH4

output, but in large changes in animal performance (Hegarty
et al., 2010).

Concentrate inclusion in the diet. Hristov et al. (2013) con-
cluded that the inclusion of concentrate feeds in the diet of

Gerber, Hristov, Henderson, Makkar, Oh, Lee, Meinen, Montes, Ott, Firkins, Rotz, Dell, Adesogan, Yang, Tricarico, Kebreab, Waghorn, Dijkstra and Oosting
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ruminants will likely decrease enteric CH4, particularly when
inclusion is above 35% to 40% of DMI (based on a meta-
analysis by Sauvant and Giger-Reverdin, 2009). However, the
effect will depend on inclusion level, type of grain and grain
processing, fibre digestibility, rumen function and production
responses. Although supplementation with small amounts of
concentrate feeds will increase animal productivity and thus
decrease GHG Ei, if the emissions from concentrate feed
production are included, absolute GHG emissions may not
always decrease (FAO, 2013b). Furthermore, concentrate
inclusion may not be an economically feasible and socially
acceptable mitigation option in many parts of the world
(Hristov et al., 2013).

Forage quality and management. Harvesting forage at an
earlier stage of maturity increases its soluble carbohydrate
content and reduces lignification of plant cell walls, thereby
increasing its digestibility (Van Soest, 1994), and decreasing
enteric CH4 production per unit of digestible dry matter
(Tyrrell et al., 1992; Boadi and Wittenberg, 2002). However,
effects of forage quality on methane production are often
contradictory (Hart et al., 2009).

High-sugar grasses (i.e. grasses with elevated concentra-
tions of water-soluble carbohydrates) have been investigated as
a tool for mitigating the environmental impact of livestock.
These forages may have some mitigation effect on N losses, but
the prospect for reducing enteric CH4 emissions is uncertain
(Parsons et al., 2011). No effect of high-sugar grasses on CH4

emissions in dairy cows was reported by Staerfl et al. (2012).
In a meta-analysis of data generated with grasses and

legumes, Archimède et al. (2011) showed that C4 grasses
produce greater amount of enteric CH4 than C3 grasses, and
recommended the use of legumes in warm climates as a
mitigation option, as animals fed warm climate legumes
produced 20% less CH4 than animals fed C4 grasses. How-
ever, low persistence and a need for long establishment
periods are important agronomic constraints for this option
(Hristov et al., 2013). Pasture management can also be an
important CH4-mitigation practice. DeRamus et al. (2003)
demonstrated that management-intensive grazing offered a
more efficient use of grazed forage crops and more efficient
conversion of forage into meat and milk, which resulted
in a 22% reduction of projected CH4 annual emissions from
beef cattle. A study from Canada (McCaughey et al., 1999)
reported lower enteric CH4 losses in beef cattle grazing
alfalfa grass pastures than in cows grazing grass-only pas-
tures. Studies by Waghorn et al. (2002) showed sheep fed
white clover, Lotus pedunculatus, and other legumes had
much lower CH4 yields compared with sheep fed ryegrass.

Feed processing. In ruminants, forage particle size reduction
through mechanical processing or chewing is an important
component of enhancing forage digestibility, providing
greater microbial access to the substrate, reducing energy
expenditures and increasing passage rate, feed intake and
animal productivity (Hristov et al., 2013). A recent study by
Hales et al. (2012b) with steers compared dry-rolled v.

steam-flaked corn and reported increased digestibility and
about 17% less CH4 emissions (per unit of DMI) with the
latter treatment. Although processing of grain is likely to
reduce enteric CH4 production per unit of animal product,
caution should be exercised so that this does not result in
decreased fibre digestibility (Hristov et al., 2013). In low-
input production systems, more minimal approaches to grain
processing will be more economically feasible.

Precision feeding. Precision feeding would likely have an
indirect effect on enteric CH4 emissions through maintaining a
healthy rumen and maximizing microbial protein synthesis,
which is important for maximizing feed efficiency and
decreasing CH4 Ei (Hristov et al., 2013). Precision feeding
requires specific feed resources, equipment and management
discipline. For subsistence and extensive farmers, lack of data
on the nutrient requirements of native animal breeds and on
the quality feed resources will hamper precision feeding
(Hristov et al., 2013). Nevertheless, there are examples of
the positive effects of proper diet formulation on animal pro-
ductivity and enteric CH4 mitigation in developing countries.
In experiments with lactating cattle and buffalo in India, Garg
et al. (2012) showed that balancing feed rations significantly
improved milk yield by 2% to 14% and increased milk fat by
0.2% to 15%, and also improved feed-conversion efficiency,
milk N efficiency and net daily income.

Mitigation options for manure management

Manure management includes the accumulation of manure
in animal houses, its collection, storage, processing and
application, as well as the direct deposition of manure on
pasture. Throughout these management activities, CH4, N2O
and NH3 are emitted, with the latter not being a GHG but
potentially leading to indirect N2O emissions.

Most of the CH4 emissions resulting from manure are
produced under anaerobic conditions during storage, with very
little coming from land application. Nitrous oxide is directly
produced through microbial nitrification under aerobic condi-
tions and partial denitrification under anaerobic conditions
(USEPA, 2010). Nitrous oxide can also be produced indirectly
when manure N is lost through volatilization as NH3, nitric oxide
and nitrogen dioxide (NOx), or run-off and leaching is nitrified
and denitrified in soil following redeposition (USEPA, 2010).

A broad range of technical options to mitigate GHG
emissions during manure management have been evaluated
by Hristov et al. (2013). The recommended options are
introduced below and summarized in Table 2.

Diet manipulation
Diet can have a profound effect on manure emissions, as it
drives the volume and composition of manure. In particular,
diet affects the amount, form and partition of N excretion
between urine and faeces, and the amount of fermentable
organic matter (OM) excreted (Hristov et al., 2013).

Reducing dietary CP and ruminally degradable protein
concentration can reduce NH3 emissions from manure,

Mitigation of GHG emissions from livestock
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Table 2 Technical options for the mitigation of manure methane and nitrous oxide emissions, and their interactions with other categories of emissions

Mitigation option
Effectiveness and

targeted gas1 Domain of relevance

Estimated manure
CH4emissions in domain

of relevance (Mt CO2-eq)2

Estimated manure N2O
emissions in domain of
relevance (Mt CO2-eq)23

Main interactions with other
categories of emission

Overall mitigation effect,
including interactions

Diet manipulation
Balanced dietary
protein

Medium (N2O) All animals in all systems, except for
monogastrics in backyard systems
and ruminants in grazing systems
of Asia, SubSaharan Africa and
NorthAfrica/Middle East

264 1222 Can increase overall intake and thus increase
enteric CH4 emissions in grazing and
mixed systems

Yes

Tannins Low (N2O) All ruminant systems in all regions 144 1237 Can lead to lower intake in high tannin
browsers

None, emissions may
increase

Housing system High (CH4 and N2O) All animals in all systems, except for
grazing ruminants, all regions

275 335 None observed Yes

Biofiltration Low (CH4) All animals in confined systems in all
regions

133 80 Strong decrease of NH3 emissions, leading to
reduced indirect N2O emissions.

Variable

N2O emissions can take place at disposal/
maintenance of biofilter.

Manure storage
Decreased storage
time

High (CH4 and N2O) All animals in all systems, except for
grazing ruminants, all regions

275 335 May displace emissions at level of manure
application.

Shorter storage time means more frequent
application, which has both, positive and
negative effects depending on season.

Variable

Natural or induced
crust

High (CH4) All animals in confined and mixed
systems, except for monogastrics
in backyard systems, all regions

232 290 May also reduce NH3 emissions Yes if NH4 is captured by
plant, thus limiting
N2O emission at time
of application

May increase N2O emission

Sealed storage
with flare

High (CH4 and N2O) Ruminant in confined systems and
monogastrics in intensive and
intermediate systems, all regions

133 80

May increase NH3 emissions (thus increase
in indirect N2O emissions) during
application Variable

Forced aeration Medium to high
(CH4)

Monogastrics in intensive and semi-
intensive systems North America,
Latin America, Europe, East and
South East Asia, Oceania

102 44

May increase N2O emissions, including
increase in indirect emissions from
NH3 losses Yes

High energy consumption can result in
increase in CO2 emissions

Manure acidification Low (N2O) Ruminant in confined and mixed
systems and monogastrics in
intensive and semi-intensive
systems. North America, Latin
America, Europe, East and South
East Asia, Oceania

165 145

Reduces indirect N2O emissions from NH3

losses but may cause increase in direct
N2O emissions. Yes

Composting High (CH4) All animals in all systems, except for
grazing ruminants, all regions

275 335 Increases NH3 and N2O emissions Yes
May contribute to increase in soil C through

stabilization of organic matter

Mechanized systems can be energy
intensive, resulting in increased CO2

emissions
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Table 2 Continued

Mitigation option
Effectiveness and

targeted gas1 Domain of relevance

Estimated manure
CH4emissions in domain

of relevance (Mt CO2-eq)2

Estimated manure N2O
emissions in domain of
relevance (Mt CO2-eq)23

Main interactions with other
categories of emission

Overall mitigation effect,
including interactions

Anaerobic digestion High (CH4) All animals in all systems, except for
grazing ruminants, all regions

275 335 May increase NH3 during storage and
application of liquor

Yes

Biogas generated can substitute fossil
energy consumption.

Manure application
Manure
incorporation in
soil

Low (N2O) Ruminant in confined and mixed
systems and monogastrics in
intensive and semi-intensive
systems North America, Latin
America, Europe, East and South
East Asia, Oceania

not calculated (marginal) 256 Reduces indirect N2O emissions from NH3

losses but may cause increase in direct
N2O and CH4 emissions.

Variable

May reduce N-fertilizer consumption (and
related emissions) through better use of
manure N

Time of
application

Low (CH4) to High
(N2O)

All animals in all systems, except for
grazing ruminants, all regions

not calculated (marginal) 435 May result in increase in NH3 losses Yes
May reduce N-fertilizer consumption (and

related emissions) through better use of
manure N

Standoff pads
(Kraals)

Medium to high
(N2O)

Ruminants in mixed and grazing
systems, all regions

not calculated (marginal) 559 Can increase CH4 if manure in areas of
concentration is stored in anaerobic
conditions

Variable

May reduce N-fertilizer consumption (and
related emissions) through better use of
manure N

Nitrification inhibitor
applied to
pastures

High (N2O) Ruminants in mixed and grazing
systems. North America, Latin
America, Europe, East and South
East Asia, Oceania

not calculated (marginal) 318 Can result in higher NH3 emissions,
depending on storage conditions and
time prior to application

Yes

Can increase pasture productivity and/or
displace N fertilizer

Urease inhibitors
applied at time of
excretion/
urination

Medium (N2O) Ruminant in confined and mixed
systems and monogastrics in
intensive and intermediate
systems, all regions

not calculated (marginal) 691 Reduces indirect N2O emissions from NH3

losses but may increase direct N2O and
CH4 emissions

Unclear, emissions may
increase

1Low 5 <10% mitigating effect; medium 5 10 to 30% mitigating effect; High5> 30% mitigatin g effect. Mitigating effects refer to percent change over a ‘standard practice’, that is, study control that was used for
comparison and are based on combination of study data and judgement by the authors of this document. For a detailed discussion, see Hristov et al. (2013).
2Estimates based on FAO (2013a and 2013b).
3Includes emissions from manure application and deposition when addressed by the mitigation option.
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through a marked reduction of urinary urea excretion, NH3

concentration and potentially N2O emissions from dairy
manure (Külling et al., 2001; Agle et al., 2010a; Luo et al.,
2010; Lee et al., 2012; Schils et al., 2013).

However, feed intake depression with protein- and amino
acid-deficient diets has been demonstrated with pigs and
poultry (Henry, 1985; Picard et al., 1993) and must be avoided
to maintain production efficiency. Amino acid supplements can
be combined with dietary protein reductions to maintain feed
conversion efficiency and prevent production losses (Ball and
Mohn, 2003; Mosnier et al., 2011; Osada et al., 2011). For
example, Cromwell and Coffey (1993) reported a 17% to 23%
decrease in N excretion when dietary protein was reduced by
2% units and the diet was supplemented with synthetic lysine.

Shifting N excretions from urine to faeces is expected to
reduce N2O emissions from manure application because of
the lower concentration of available N in manure, depending
on manure storage time and conditions (Hristov et al., 2013).
Tannin supplements and tanniferous forages can be used
for this purpose and have been shown to reduce urinary N
as proportion of total N losses by 9.3% (Carulla et al.,
2005) and 25% (Misselbrook et al., 2005a). Tannin use can
also decrease N-release rate from manure, and thus affect
manure-N availability for plant growth (Hristov et al., 2013).

Feed additives can also reduce CH4 emissions from pig
and poultry manure. For example, the addition of thymol to
sow diets reduced CH4 emissions from sow manure by up to
93% (Varel and Wells, 2007).

In general, feeding protein close to animal requirements,
including varying protein concentration with stage of lactation,
laying or growth, is recommended as an effective manure NH3

and N2O-emission mitigation practice (Hristov et al., 2013).
Low-protein diets for ruminants should be balanced for
ruminally degradable protein in order not to impair microbial
protein synthesis and fibre degradability in the rumen. Further,
diets for all animals should be balanced for amino acids
to avoid feed-intake depression and decreased production
(Hristov et al., 2013).

Housing
Structures used to house livestock animals do not directly
affect the processes resulting in N2O and CH4 emissions;
however, they determine the method used to store and
process manure and eventual litter. Housing systems with
solid floors that use hay or straw for bedding accumulate
manure that has higher dry matter and is commonly stored in
piles, creating conditions conducive for N2O emissions. In
general, manure systems in which manure is stored for
prolonged periods of time produce greater NH3 and CH4

emissions compared with systems in which manure is
removed daily. For example, Philippe et al. (2007) found that
GHG emissions from fattening pigs raised on straw-based
deep litter released nearly 20% more GHG emissions than
when raised on a concrete slatted floor.

Hristov et al. (2012) assessed the effect of manure man-
agement on emissions from dairy farms in Pennsylvania and
found that NH3, and particularly CH4, emissions from manure

were much higher in dairy barns where manure was stored
for prolonged periods of time (e.g. gravity-flow systems)
than where manure was removed frequently (e.g. flush
systems). Nitrous oxide emissions were negligible in all
systems. In ruminant production, however, the effect of
housing on CH4 emissions is relatively marginal because the
animal is the main source of CH4 emission through eructa-
tion; N2O emissions from ruminant housing are also usually
negligible. Housing and manure systems, however, have
a greater impact on NH3 emission from cattle operations
(Hristov et al., 2013).

Biofiltration
Biofiltration can be performed on ventilated air from animal
buildings. It uses biological filters to remove undesired
elements (Hristov et al., 2013). Melse and Ogink (2005)
found NH3 removal efficiencies in swine and poultry houses
from acid scrubbers and biotrickling filters of 96% and 70%,
respectively. However, recent reports (Maia et al., 2012a and
2012b) have shown that biofilters used to scrub NH3 from
exhaust streams generate N2O as a result of nitrification and
denitrification processes in the biofiltration media. A few
researchers have investigated CH4 mitigation by passing
contaminated air from above swine manure storage or from
swine housing through a biofiltration system. A Canadian
Pork Council (2006) study reported reductions of 50% to
60%, and Girard et al. (2011) reported a maximum reduction
of up to 40%. High residence time is necessary in these
systems because the low solubility and biodegradability of
CH4 hinder effectiveness (Melse and Verdoes, 2005).

Manure storage
Greenhouse gas emissions during manure storage, in the
form of CH4 (in anaerobic conditions), but also NH3 and N2O,
can be significant. One simple way to avoid cumulative GHG
emissions is to reduce the time manure is stored (Philippe
et al., 2007; Costa et al., 2012). Covering manure stores is
another common option to reduce losses. The effectiveness
of the manure storage cover depends on many factors,
including permeability, cover thickness, degradability, poro-
sity and management (Hristov et al., 2013).

Semi-permeable covers are valuable for reducing NH3,
CH4 and odour (Sommer et al., 2000; Guarino et al., 2006;
VanderZaag et al., 2008); however, the net GHG effective-
ness of semi-permeable manure storage covers is not clear,
because they can provide conditions for nitrification, denitri-
fication and subsequent release of N2O emissions (Hansen
et al., 2009; Nielsen et al., 2010). Conversely, impermeable
covers are an effective mitigation practice, if the CH4 cap-
tured under the cover is burned using a flare system or
engine-generator to produce electricity (Hristov et al., 2013).

Mechanical or intermittent aeration of manure during sto-
rage can also reduce CH4 emissions (Osada, 2000; Martinez
et al., 2003; Loyon et al., 2007), although mechanical aeration
may lead to increased CO2 emissions (Petersen and Sommer,
2011). Decreasing manure temperature to ,108C by removing
the manure from the building and storing it outside in cold
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climates can also mitigate CH4 emissions (Monteny et al.,
2006).

According to Petersen and Sommer (2011), manure acidi-
fication is an effective mitigation option for NH3 emissions,
but the effect on N2O is not well studied. Ndegwa et al.
(2011) listed 15 studies in which cattle, pig or poultry
manure NH3 emissions were successfully mitigated (from
14% to 100%) by lowering manure pH. Although strong
acids are cost-effective, weaker acids or acidifying salts are
less hazardous and may therefore be more suitable for
on-farm use (Hristov et al., 2013).

Composting
Composting has several benefits related to manure handling,
odour control, manure moisture and pathogen control, OM
stabilization and farm profitability (Hristov et al., 2013). The
primary benefit of composting is that it reduces CH4 emis-
sions compared with storage of manure under anaerobic
conditions (Brown et al., 2008). However, depending on the
intensity of composting, NH3 losses can be particularly high,
reaching up to 50% of the total manure N (Peigné and
Girardin, 2004). Similarly, the aeration of compost reduces
CH4 emissions (Thompson et al., 2004; Jiang et al., 2011b;
Park et al., 2011), but can increase NH3 and N2O losses
(Tao et al., 2011). However, the review by Brown et al.
(2008) concluded that, even in a worst-case scenario, the
increase in N emissions is minimal in comparison with the
benefits associated with the CH4 reductions.

Anaerobic digestion
Anaerobic digestion is the process of degradation of organic
material microorganisms in the absence of oxygen, produc-
ing CH4, CO2 and other gases as by-products, and is one of
the most promising practices for mitigating GHG emissions
from collected manure (Hristov et al., 2013). Anaerobic
digesters are also a source of renewable energy in the
form of biogas, which is 60% to 80% CH4, depending on
the substrate and operation conditions (Roos et al., 2004).
However, NH3 volatilization may be higher in digested
manure (Petersen and Sommer, 2011). In contrast, reduction
of manure OM content is generally expected to reduce N2O
emissions from manure-amended soils (Petersen, 1999;
Bertora et al., 2008), although there have been contradictory
results (Thomsen et al., 2010).

Digester designs vary widely in size, function and opera-
tional parameters. For a review of digester types and their
comparative advantages in different production contexts
(Hristov et al., 2013). When CH4 is collected and used as an
energy source, it can substitute for combusted fossil fuels
reducing the emissions of GHG, NOx, hydrocarbons and
particulate matter (Börjesson and Berglund, 2006). However,
CH4 losses have been reported from stored manure gas leak-
ages (Bjurling and Svärd, 1998; Sommer et al., 2001). Typical
losses from systems storing digested manure were reported to
range from 5% to 20% of total biogas produced.

Overall, the use of anaerobic manure digesters is a
strongly recommended CH4-mitigation strategy, but careful

management is necessary, so that they do not become net
emitters of CH4 (Hristov et al., 2013). The adoption of this
type of technology on farms of all sizes may not be widely
applicable and will heavily depend on financial and technical
capacity, climatic conditions and availability of alternative
sources of energy.

Manure application
Results on CH4 and N2O emissions following manure appli-
cation are highly variable, and many variables including
manure composition, application technique, soil type and
management, soil moisture and climate can affect emissions
(Hristov et al., 2013).

Subsurface injection of manure slurries into the soil can
result in localized anaerobic conditions surrounding the
buried liquid manure, which, together with an increased
degradable C pool, may result in higher CH4 emissions than
with surface applied manure (Külling et al., 2003; Amon
et al., 2006; Clemens et al., 2006). Diluting the manure or
reducing the degradable C flux through solid separation
or anaerobic degradation pre-treatments are options to
reduce CH4 emissions from injected manure (Amon et al.,
2006; Clemens et al., 2006). As this combination of treat-
ments reduces the availability of degradable C, it also tends
to decrease N2O emission (Amon et al., 2006; Clemens et al.,
2006; Velthof and Mosquera, 2011). However, both CH4 and
N2O emissions resulting from manure injection into soil are
generally low, and therefore should be weighed against
the benefits of reducing NH3 volatilization when manure is
surface applied (Hristov et al., 2013).

Unlike CH4, most of the N2O is produced after the manure
has been applied to the soil. Nitrous oxide-mitigation options
for manure application include controlling the amount of
N available for nitrification and denitrification in soil, as
well as the availability of degradable C and soil oxidation
reduction potential (Hristov et al., 2013). Wet soils tend
to promote N2O emissions, and therefore application timing
(e.g. avoiding application before a rain event) can be
important (Hernandez-Ramirez et al., 2009; Smith and
Owens, 2010; Meada et al., 2011).

Manure deposition on pasture
The effective N-application rate within a urine patch from a
dairy cow on pasture can be much greater than the utiliza-
tion capacity of the soil–plant system (Eckard et al., 2010).
Nitrous oxide emissions from these systems can be reduced
by creating a more uniform distribution of urine throughout
the paddock.

Timing of grazing can also help, as De Klein et al. (2001)
showed a 40% to 57% reduction in N2O emissions when
grazing was restricted to 3 h/day in the late humid New
Zealand autumn. This reduction was attributed to diminished
N input during conditions most conducive to N2O emissions.
However, when de Klein et al. (2001) included N2O emis-
sions resulting from application of the effluent collected
during the restricted grazing periods, N2O emissions were
reduced by only 7% to 11%. It is also recognized that this
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practice results in much greater NH3 emissions (Luo et al.,
2010) because of urine and faeces being excreted and
allowed to mix in the stand-off/feed area.

Urease and nitrification inhibitors
Nitrification inhibitors were found to reduce the amount of
N2O emitted in intensive pasture-based systems in New
Zealand when applied over urine and faeces that had been
deposited on pastures and soil (de Klein et al., 2001 and
2011; Di and Cameron, 2003 and 2012). Luo et al. (2008)
reported up to 45% reduction in N2O emissions from dairy
cow urine applied to various soils in New Zealand by the
dicyandiamide nitrification inhibitor (DCD). The effective-
ness of the DCD nitrification inhibitors depends largely on
temperature, moisture and soil type (Kelliher et al., 2008;
de Klein and Monaghan, 2011; Schils et al., 2013). It
should be noted that nitrification inhibitors can increase
soil ammonium, and thus potentially increase NH3 losses
(Hristov et al., 2013).

In contrast, urease inhibitors preserve urea and reduce
NH3 volatilization but may result in increased N2O emissions
because of potential increase in ammonium and subse-
quently nitrate concentration in soil (Hristov et al., 2013).
Further, as they need to be applied to urine before it is mixed
with soil or faeces, its applicability is limited to systems
where faeces and urine are not separated or separated after
mixing (Varel et al., 1999). Results of the combined use of
nitrification and urease inhibitors have been inconclusive
(Khalil et al., 2009; Zaman and Blennerhassett, 2010).

Interactions and links with productivity

Interactions among individual components of livestock pro-
duction systems are very complex, but must be considered
when recommending GHG mitigation practices (Hristov et al.,
2013). One practice may successfully mitigate enteric CH4

emission, but increase fermentable substrate for increased CH4

emission from stored manure or N availability for increased
N2O emission from land application of manure. Some mitiga-
tion practices are synergistic and are expected to decrease
both enteric and manure GHG emissions. This section outlines
some of the main interactions that are reported in the litera-
ture. A summary of interactions to be considered for each
mitigation practice is also proposed in Tables 1 and 2.

Feed, enteric methane, manure content and productivity
Starting with feed-based strategies, the cascade of synergistic
and antagonistic effects that mitigation practices may trigger
are discussed.

Feed additives and dietary manipulation options targeting
enteric CH4 emissions are mostly studied in isolation, but can
have unexpected synergistic or antagonistic effects. It is
unlikely that mitigation practices reviewed under the enteric
CH4 section can have additive effects, but there is not much
evidence to support or refute this assumption (Hristov et al.,
2013). Nitrates can possibly increase N emissions as their
addition to the ration may lead to increased urea excreted in

urine. Dietary lipids too may increase manure emissions
either through reduced ration digestibility or increased
N content (if lipids are supplied from oil cakes rich in
CP; Hristov et al., 2013). Furthermore, if overadministered,
feed additives can reduce animal productivity and thereby
increase GHG Ei.

Dietary manipulation to increase nutrient digestibility is
expected to decrease enteric CH4 production and would
most likely decrease GHG emissions from stored manure,
because less-fermentable OM will be excreted with faeces
(Hristov et al., 2013). Feeding practices that stabilize rumen
fermentation (in terms of pH) might also improve animal
health and feed efficiency, and reduce GHG Ei by the animal
or from manure storage. However, increased feed quality
will generally result in an increased feed intake, which will in
turn increase enteric CH4 emissions (Hristov et al., 2013). In
addition, manure CH4 emissions may also increase because
of increased concentration of available substrate. This increase
of emissions is, however, generally compensated by a greater
increase in milk and meat output, resulting in a lower Ei
(Hristov et al., 2013). Yet, from a whole cycle perspective, this
effect at farm level may be partially or entirely offset by greater
emissions from the production of improved feed especially if
land-use change (e.g. conversion of forests/grasslands to
croplands) is involved. A side effect of increasing nutrient
digestibility may be the oversupply of N to animals (e.g. in the
case of pasture improvement/fertilization or urea treatment of
by-products), resulting in higher N2O emissions from manure
(Hristov et al., 2013). The overall effect will depend on initial
conditions and strategies used to improve feed digestibility.

Decreasing dietary protein concentration to address NH3

and N2O losses from stored manure or manure-amended soil
may increase enteric CH4 emissions, as shown by the model-
ling work of Dijkstra et al. (2011b). Low-protein diets for
ruminants should be balanced for ruminally degradable
protein in order to not impair microbial protein synthesis and
fibre degradability in the rumen. In general terms, reduction
of dietary protein should be accompanied by a careful balanc-
ing for all other nutrients, specifically energy and amino acids,
so that animal production is not negatively affected, which
would result in an increased Ei (Hristov et al., 2013).

Shifting N excretion from urine to faeces by supplement-
ing the diet with tannins or feeding tanniferous forages can
also decrease N release rate from manure, and thus affect
manure-N availability for plant growth (Hristov et al., 2013).

Manure storage, processing and application
The main interaction effects for manure management are
between manure ammonium (NH3) and soil N2O emissions. In
general, mitigation measures that reduce NH3 losses in manure
preserve ammonium N, and thereby increase potential soil N2O
emissions. Similarly, mitigation measures that aim to lower CH4

emissions can also increase NH3 or N2O emissions.
However, the interactions involving N2O and NH3 need to

be considered in light of the certainty with which the for-
mation of each gas can be controlled. Because the conditions
that support nitrification and denitrification processes are
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highly variable, N2O emissions are best treated as potential
emissions. By contrast, NH3 emission and consequent N
loss occur as a matter of course, though they also vary in
magnitude depending on environmental and management
factors (Hristov et al., 2013).

Furthermore, the efficiency of practices that restrict NH3

and N loss before (e.g. acidification and cooling) and during
(e.g. manure injection into soil) application to soil very much
depends on the degree of integration between crop and
livestock enterprises. By increasing the availability of N for
uptake by plants, these practices lower the need for external
inputs of N fertilizer and their associated GHG emissions
during their manufacture and following application to soil
(Hristov et al., 2013). Thus, the mitigation potential of such
practices needs to be evaluated at least from a whole farm,
or preferably a lifecycle, perspective.

Urease inhibitors can reduce NH3 emissions, whereas nitrifi-
cation inhibitors can reduce N2O emissions. However, the
timing of their use and impact of environmental conditions
greatly affect their effectiveness and length of inhibition, with
a delay rather than a reduction of NH3 or N2O emissions
occurring under some conditions (Hristov et al., 2013). In
addition, the use of nitrification inhibitors could result in
greater NH3 emission following land application of manure
because of greater accumulation of N as ammonium (Hristov
et al., 2013).

The fate of N2O and NH3 emissions is also affected by
measures that seek to lower CH4 emissions. For example,
owing to interactions between available C and N sources in
the correct oxidation form, semi-permeable manure storage
covers can enhance N2O formation (Hansen et al., 2009;
Nielsen et al., 2010.

Decreasing storage time effectively reduces CH4 emis-
sions, because little further CH4 emission occurs after land
application of manure. However, the more frequent need for
soil application may increase N2O emissions, if application
occurs during prolonged periods with warm temperature,
wet soil and low plant-N uptake. Therefore, a combination
of decreased storage time in warm weather and extended
winter storage is a viable option in many regions (Hristov
et al., 2013).

Also with regard to manure application, the incorporation of
manure into soil not only greatly reduces NH3 emissions and
N losses, but it also reduces CH4 emissions and at the same
time increases manure OM content. However, the increase in
OM accelerates soil metabolism, depleting oxygen, triggering
denitrification and N2O emissions (Hristov et al., 2013).

On the contrary, anaerobic digestion, or separation of
manure solids, lowers the organic content of manure, which
generally results in lower emissions of N2O (Clemens et al.,
2006; Velthof and Mosquera, 2011). However, the inhibi-
tion of nitrification under anaerobic conditions can lead to
greater ammonium N in digested manure, which, coupled
with the pH increase that is likely with digestion, can lead to
greater NH3 emissions (Hristov et al., 2013).

Composting is another measure where the mitigation conse-
quences are confounded by interactions. Although composting

tends to increase NH3 emissions, its effect on CH4 and N2O
emissions is more complex. However, the significant loss of NH3

may lead to reduced soil N2O emissions, and thus reduce total
non-CO2 GHG emissions from composted manure, compared
with other manure management systems (Hristov et al., 2013).

Conclusions

Many technical options exist for the mitigation of direct
emissions from livestock production.

Diet manipulation and feed additives have been identified
as main avenues for the mitigation of enteric CH4 produc-
tion. Their effectiveness is estimated to be generally low
to medium but can be substantially increased in terms of Ei,
when they also result in improved feed efficiency and pro-
ductivity gains.

Diets also affect manure emissions, as they alter the
content of manure: ration composition and additives have an
influence on the form and amount of N in urine and faeces,
as well as on the amount of fermentable OM in faeces.

Methane emissions from manure can be effectively
controlled by shortening storage duration, ensuring aerobic
conditions or capturing the biogas emitted in anaerobic
conditions. Direct and indirect N2O emissions are, however,
much more difficult to prevent once N is excreted. Techniques
that prevent emissions during initial stages of management
preserve N in manure are often emitted at later stages. Thus,
effective mitigation of N losses in one form (e.g. NH3) is often
offset by N losses in other forms (e.g. N2O or NO3). These
induced effects must be understood when mitigation practices
are designed. Numerous interactions were also highlighted
between mitigation techniques for CH4 and N2O emissions
from manure.

More research work is needed to develop practical and
economically viable techniques that can be widely put into
practice. Efforts should target single practices with high
potential (e.g. vaccination against rumen methanogens) but
also the interactions between practices, towards the develop-
ment of suites of mitigation practices for specific production
systems, based on the assessment of their overall effectiveness.
In addition, research is required to quantify the economics of
mitigation as well as the impact mitigation practices may have
on other environmental objectives and broad development
goals, such as poverty reduction and food security.
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