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Abstract: Background/Objective: Intestinal fibrosis, a prominent consequence of inflammatory bowel
disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies.
This review assesses the therapeutic potential of phytochemicals as alternate methods for control‑
ling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit poten‑
tial antifibrotic, anti‑inflammatory, and antioxidant activities, targeting pathways associated with
inflammation and fibrosis. Compounds such as Asperuloside, Berberine, and olive phenols have
demonstrated potential in preclinical models by regulating critical signaling pathways, including
TGF‑β/Smad and NFκB, which are integral to advancing fibrosis. Results: The main findings sug‑
gest that these phytochemicals significantly reduce fibrotic markers, collagen deposition, and inflam‑
mation in various experimental models of IBD. These phytochemicals may function as supplemen‑
tary medicines to standard treatments, perhaps enhancing patient outcomes while mitigating the
adverse effects of prolonged immunosuppressive usage. Nonetheless, additional clinical trials are
necessary to validate their safety, effectiveness, and bioavailability in human subjects. Conclusions:
Therefore, investigating phytochemicals may lead to crucial advances in the formulation of innova‑
tive treatment approaches for fibrosis associated with IBD, offering a promising avenue for future
therapeutic development.

Keywords: intestinal fibrosis; IBD; TGF‑beta; phytochemicals and health; polyphenols

1. Introduction
Intestinal fibrosis is a chronic and progressive disease that starts as a complication

of the persistent and long‑lasting inflammation associated with inflammatory bowel dis‑
ease (IBD). It affects more than one‑third of IBD patients within ten years of disease onset,
and it accelerates morbidity and mortality, resulting in the need for hospitalization and
surgery [1]. Intestinal fibrosis is considered a multifactorial disease caused by a cascade
of events due to the interplay between molecular and cellular mechanisms that induce
the process of fibrogenesis, including pro‑inflammatory and profibrotic cytokines, partic‑
ularly the profibrotic protein transforming growth factor β (TGF‑β), gut microbiota, and
mesenchymal cells, especially fibroblasts and myofibroblasts [2,3]. Although the patho‑
physiology behind intestinal fibrosis is complex, the underlying cause of the progression
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of IBD into fibrosis is hypothesized to be a protracted, unresolved chronic inflammation
that causes a defective repair due to persistent intestinal tissue injury [4,5]. To repair the re‑
current mucosal damage, extracellular matrix (ECM) is produced extensively; therefore, in‑
testinal fibrosis is characterized by fibrotic strictures of ECM, particularly collagen, which
is accumulated and deposited transmurally, resulting in a narrowing of the lumen [6].

In ulcerative colitis (UC), the mucosal and submucosal layers of the colon are the only
locations where ECM is deposited. In contrast, in Crohn’s disease (CD), the layers of mu‑
cosa, submucosa, muscularis mucosa, muscularis propria, and serosa of the whole intesti‑
nal wall can be affected by fibrosis [7].

TGF‑β is a pleiotropic protein that plays physiological and pathological roles. Phys‑
iologically, it is crucial for immune response regulation, tissue injury healing, and the
growth, proliferation, differentiation, and migration of cells [8,9]. Dysregulated TGF‑β
signaling has been identified as the key force of all signaling mechanisms and aberrant
pathological activities that drive fibrogenesis [10]. The overexpression of the TGF‑β1/Smad
signaling pathway is the underlying trigger of intestinal fibrosis, as several studies have
proven [4,11,12]. On the other hand, research findings indicate that the downregulation
of this TGF‑β1/Smad pathway limits the activation of the human intestinal fibroblasts
which serve as the precursor of myofibroblasts; the major collagen‑producing and alpha‑
smooth muscle actin (α‑SMA) expressing cells. Thus, this downregulation results in the
suppression of α‑SMA and ECM deposition via inhibition of the phosphorylated Smad2,
‑3, and ‑4 expressions while increasing that of Smad7, which serves as a negative regulator
of TGF‑β [13,14].

No therapies have been approved for intestinal fibrosis prevention or treatment that
adequately meet the high clinical demand. Anti‑inflammatory and immunosuppressive
medications, the standard of care for IBD, are administrated to attenuate the causative
inflammation and delay the fibrogenesis process. However, they do not relieve or reverse
fibrosis, making surgical intervention inevitable in IBD patients [15,16]. In the meantime,
more strictures can emerge in other locations of the bowel, ultimately leading to further
surgical intervention [17]. Therefore, further drug development expansion and different
therapeutic approaches are essential.

Medicinal plant products have been administered for thousands of years to treat dif‑
ferent diseases. They have fewer adverse effects, better availability, and are affordable.
They act as lead compounds with various biologically active ingredients, which can be
new drug candidates [18,19]. Interestingly, several phytochemical compounds, such as
calycosin, asperuloside and many others, have exhibited efficacy in managing multiple
health conditions, including IBD; therefore, they could also fill in the gaps in the treatment
of IBD‑associated fibrosis [20–22].

This review aims to summarize the possible mechanisms of intestinal fibrosis patho‑
genesis, emphasizing the master role of TGF‑β, the current therapeutic approaches, and
the promising phytochemical drug candidates.

2. Methodology
Electronic databases, including PubMed, Scopus, Google, and Google Scholar, were

searched using keywords such as “intestinal fibrosis”, “TGFβ”, “SMAD”, “microbiome”,
“phytochemical”, “plant”, “natural product”, “plant‑based nutraceuticals”, “bioactive
molecules”, and “therapies”. This review focuses on studies conducted between 1987 and
2024 using in vivo and in vitro experimental models of intestinal fibrosis. It also empha‑
sizes the potential benefits of phytochemicals and plant‑based medicines for treating in‑
testinal fibrosis. The sources of phytochemicals, experimental models, and reported ef‑
fects/mechanisms are summarized in tables.
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3. Pathophysiology of Intestinal Fibrosis (Cellular and Molecular Insight)
Several cellular and molecular pathways have been demonstrated to play an intri‑

cate role in regulating the cell signaling pathways and contributing to the development
of fibrosis.

3.1. The Interaction Between TGF‑β1 and the Other Pathways
The most recognized driver of fibrosis in both intestinal and extraintestinal organs is

the versatile cytokine TGF‑β, particularly its TGF‑β1 isoform [4,23,24].TGF‑β1 directly acti‑
vates Smad‑dependent and Smad‑independent signaling pathways to initiate fibrogenesis.

3.1.1. TGF‑β1 and Smad Pathway
TGF‑β1 triggers intracellular signals and phosphorylation of Smad2 and Smad3 pro‑

teins when it binds to its receptors, TGFβ‑receptor 1 (TGFβ‑R1) and TGFβ‑receptor 2
(TGFβ‑R2). These signals are further amplified and spread, however, they can be antag‑
onized by Smad6 or Smad7 which counter‑regulate the TGFβ signaling by impeding the
ligation of Smad 2/3 to the active receptor complex [25,26]. Afterwards, the phosphory‑
lated Smad2 and Smad3 form a complex with Smad4, followed by the translocation of
this complex into the nucleus, in turn inducing the expression of the target downstream
fibrotic genes, most importantly α‑SMA, collagen, connective tissue growth factor (CTGF)
and fibronectin (Figure 1) [27,28].

Figure 1. Activation of the components of the TGFβ/Smad canonical signaling pathway initiates the
fibrosis process by inducing transcription of the downstream fibrotic genes. Abbreviations: α‑SMA—
alpha‑smooth muscle actin, TIMP—tissue inhibitors metalloproteinases, N‑Cad—Neural cadherin.

3.1.2. TGF‑β1 and NFκB Pathway
The activation of nuclear factor kappa B (NFκB) signaling is triggered by multiple

stimuli, including cytokines such as tumor necrosis factor‑α (TNF‑α), interleukin‑1β (IL‑
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1β), and TGF‑β. TGF‑β can stimulate NFκB through both the canonical Smad and the non‑
canonical Smad pathways. Smad3 can interact directly with the NFκB basic proteins. How‑
ever, TGF‑β can stimulate NFκB through transforming growth factor‑β‑activated kinase‑1
(TAK1) in the non‑canonical Smad pathway. On the other hand, a study has revealed that
TGF‑β promotes the overexpression of IL‑1β and TNF‑α cytokines, which in turn activates
the transcription of NFκB and its target genes. Furthermore, it has been shown that TGF‑
β/NFκB signaling pathway activation promotes collagen gene expression and epithelial–
mesenchymal transition (EMT) [29,30].

3.1.3. TGF‑β and MAPK Pathway
Through the Smad independent pathway, TGF‑β activates the mitogen‑activated pro‑

tein kinase (MAPK), and the downstream factors, including extracellular signal‑regulated
kinases (ERK), p38, c‑JunN‑terminal kinases (JNK) kinases, and NFκB which are driven by
MEK 1/2, MKK 3/6, MKK 4/7 and IKK, respectively. The cascade of these intracellular sig‑
naling molecules induces EMT, myofibroblast formation, and ECM
buildup (Figure 2) [31–33].

Figure 2. Activation of TGF‑β stimulates NFκB and MAPK signaling pathways with the subsequent
activation of the Wnt/β‑catenin pathway. Abbreviations: TRAF—TNF receptor associated factor,
TAK1—transforming growth factor‑β activated kinase 1, MEKK1—mitogen‑activated protein kinase
kinase1, IKK—inhibitor of nuclear factor‑κB (IκB) kinase, MKK—mitogen‑activated protein kinase
kinase, IKβ—I‑kappaB kinase, ECM—extracellular matrix, EMT—epithelial–mesenchymal transi‑
tion (↑—increased).

3.1.4. TGF‑β1 and TAK 1
TAK1, which is part of the MAPK kinase family mediates the TGF‑β activation of

the p38 MAPK pathway. The p38 MAPK signaling is responsible for the collagen gene
expression triggered by TGF‑β [34,35].

3.1.5. TGF‑β1 and Wnt/β‑Catenin Pathway
There is crosstalk between the wingless‑related integration site (Wnt) and the TGF‑

β‑Smad pathways that drives the fibrogenesis process [36]. NFκB signaling is a central
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mediator of inflammation, and its dysregulation is associated with a wide range of inflam‑
matory responses [37–40]. Many studies have demonstrated an interaction between the
NFκB signaling and the Wnt/β‑catenin pathways, whereas this interaction modulates im‑
mune and inflammatory responses [41]. The canonical Wnt/β‑catenin pathway can be acti‑
vated by NFκB signaling, which results in the stimulation of TCF/LEF complex expression,
which is the pivotal downstream mediator of the Wnt signaling, and hence the upregula‑
tion of the Wnt/β‑catenin pathway [42–47]. Furthermore, the inflammatory reactions are
triggered by the activation of β‑catenin target genes mediated by Wnt/β‑catenin pathway
overexpression [48,49].

On the other hand, previous studies have indicated that TGF‑β modulates Wnt sig‑
naling, which can be both β‑catenin‑dependent and independent when inducing fibrosis,
proving that intestinal fibrotic tissues have elevated levels of β‑catenin [50,51]. TGF‑β trig‑
gers noncanonical Wnt/TGF‑β signaling, which is mediated by Wnt5B and FZD8, which
in turn are the Wnt signaling pathway components that are elevated in intestinal stric‑
tures. On the other hand, TGF‑β can directly upregulate FZD8, which in turn facilitates the
TGF‑β‑induced collagen deposition [36]. Activation of the non‑canonical Wnt/TGF‑β path‑
way promotes Wnt pathway stimulation by inhibiting the dickkopf‑related protein (DKK),
which is a primary suppressor of the Wnt pathway, resulting in the increase of β‑catenin
levels followed by the transcription of downstream fibrotic genes [52,53]. Meanwhile, Wnt
ligands bind to seven‑pass transmembrane receptor frizzled (FZD) receptors, resulting in
the canonical Wnt signaling activation, including suppression of the β‑catenin destruction
complex and elevation of the dephosphorylated active form of β‑catenin. Then, β‑catenin
is translocated into the nucleus, leading to the activation of T cell factor/lymphoid enhancer
factor (TCF/LEF) TCF/LEF‑dependent gene transcription and upregulation of collagen‑I
expression (Figure 3) [36].

Figure 3. Activation and interaction of both canonical Wnt signaling and non‑canonical Wnt/TGF‑
β. Abbreviations: LPR5/6—low density lipoprotein receptor‑related proteins 5/6, FZD—seven‑
pass transmembrane receptor frizzled, CK1—casein kinase 1, APC—adenomatosis polyposis coli,
GSK3β—glycogen synthase kinase 3β, DKK1—Dickkopf WNT signaling pathway inhibitor1, β‑
Cat—β‑catenin, TCF/LEF—T cell factor/lymphoid enhancer factor, N‑Cad—neural cadherin, E‑
Cad—Epithelial cadherin (↑—increased; ↓—decreased).
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When TGF‑β and Wnt are stimulated, axis inhibition protein (Axin) induces Smad 2/3
binding to the TGFβ‑R1 and allows its phosphorylation [54]. Then, the canonical Wnt lig‑
ands, particularly Wnt3a, activate Smad2 in aβ‑catenin‑dependent mechanism to promote
TGF‑β1 expression and Smad2/3 phosphorylation, resulting in EMT and the transforma‑
tion of fibroblasts into myofibroblasts [55,56]. Additionally, Axin boosts Smad7 degra‑
dation in response to Wnt activation and, as previously indicated, Smad7 is essential to
antagonize the TGF‑β signaling (Figure 4) [57].

Figure 4. Interaction between non‑canonical Wnt/β‑catenin and TGFβ/Smad signaling pathways
to stimulate the fibrogenesis process and transcription of the downstream fibrotic genes. Abbrevia‑
tions: DKK1—Dickkopf WNT signaling pathway inhibitor 1, β‑Cat—β‑catenin, EMT—epithelial–
mesenchymal transition, N‑Cad—neural cadherin, E‑Cad—epithelial cadherin. (↑—increased;
↓—decreased).

3.1.6. TGF‑β and PAI‑1
Plasminogen activator inhibitor‑1 (PAI‑1) is regulated by TGF‑β and is one of its down‑

stream targets during signal transmission [58]. Under normal physiological conditions,
PAI‑1 acts in a manner that controls fibrinolysis to maintain a balance between ECM pro‑
duction and degradation. It inhibits the tissue plasminogen activator (tPA) which catalyzes
the conversion of plasminogen into plasmin, leading to the activation of the matrix metal‑
loproteinases (MMPs) which degrade the ECM, preventing its accumulation [59,60].

On the other hand, it has been reported that PAI‑1 is overexpressed in the inflamed
lesions and fibrotic tissues of IBD patients [61]. During chronic inflammation, TGF‑β up‑
regulates the levels of PAI‑1 via Smad protein activation, resulting in the inactivation of tPA
which in turn blocks the enzymatic conversion of plasminogen to plasmin. Consequently,
the suppression of matrix metalloproteinases‑9 (MMP‑9) occurs leading to a dramatic in‑
hibition in the ECM degradation, and hence accumulation of collagen [62,63]. These find‑
ings suggest that PAI‑1 is a promising and potential therapeutic target in the treatment
of fibrosis [63].

3.2. AXL
The AXL (from the Greek “anexelekto”, meaning uncontrolled) is one of the tyrosine

kinase receptors known as TAM (TYRO 3, AXL, and MER). AXL signaling contributes
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to the endo–MT, and is involved in the activation of the myofibroblasts [64,65]. It has
been found that TGF‑β and its signaling mediate expression of AXL and promote liver
and kidney fibrosis. A study has investigated the implication of AXL in intestinal fibrosis
and demonstrated that the blocking of AXL expression by a specific inhibitor known as
BGB324 leads to the downregulation of the fibrogenic genes. Additionally, the inhibition
of AXL was found to be associated with the induction of fibroblast apoptosis by Fas ligand
(FasL). Thus, developing antifibrotic agents targeting AXL is promising for preventing and
treating fibrosis [66].

3.3. MMPs and TIMPs
The level of ECM is controlled by two groups of enzymes or proteins known as the

matrix metalloproteinases (MMPs) and the tissue inhibitors metalloproteinases (TIMPs).
MMPs maintain the level of ECM by balancing between ECM degradation and formation.
Meanwhile, MMP is regulated and suppressed by TIMP to maintain that balance [67–69].
The dysregulation of the equilibrium between MMPs and TIMPs leads to incessant colla‑
gen deposition and the progression into fibrosis [70].

3.4. Cells Involved in the Initiation and Progression of Intestinal Fibrosis
3.4.1. Mesenchymal Cells, Fibroblasts and Myofibroblasts

Mesenchymal cells, including fibroblasts and myofibroblasts, are the key cells impli‑
cated in the onset of the fibrosis process. During normal tissue repair response, inflamma‑
tion triggers a series of events involving mesenchymal cell activation, particularly intesti‑
nal myofibroblasts, for wound healing and tissue repair mediated by these myofibroblasts
to restore normal physiological homeostasis. This response is strictly controlled, limiting
the myofibroblasts’ migration, proliferation, and ECM formation, followed by the inflam‑
mation resolution [68,69]. However, during the pathological tissue remodeling that is due
to sustained inflammation and colonic tissue injury, failure of tissue healing occurs, which
results in excessive ECM deposition, particularly collagen I and collagen III; thickening of
the intestinal wall; bowel stricture; and obstruction [71,72]. Over‑synthesis and produc‑
tion of ECM are driven by the differentiation of fibroblasts into myofibroblasts, with an
increase in the expression of α‑SMA, the myofibroblasts’ specific biomarker. Afterwards,
theα‑SMA‑expressing myofibroblasts migrate and expand in number, accumulating more
ECM [70,72–74]. Meanwhile, chronic inflammation and the released cytokines induce EMT
and endothelial–mesenchymal transition (endo–MT). Upon initiating the fibrosis process,
these epithelial and endothelial cells lose their characteristics and functions and acquire
the fibroblasts’ phenotype [75,76].

Moreover, stimulation by cytokines or growth factors, particularly by TGF‑β, acti‑
vates fibroblasts which become more proliferative and migratory and differentiate rapidly
into myofibroblasts which overexpress the α‑SMA, indicating a dramatic differentiation
of fibroblasts into myofibroblasts. Hence, myofibroblasts resist apoptosis and start a rapid
proliferation, migration, and expansion [77]. Myofibroblasts are the major source of ECM,
and they start to expand in number, driving the accumulation of ECM proteins, especially
collagen, and resulting in an increase in the thickness of the intestinal wall and tissue fi‑
brogenesis [70,72,73]. Myofibroblasts’ phenotype is manifested by the expression of α‑
SMA marker, which is usually measured and quantified to reflect the presence of myofi‑
broblasts. The higher expression of α‑SMA indicates that more myofibroblasts are being
produced [78].

3.4.2. Immune Cells
Intestinal tissue injury is induced by environmental factors and antigens that cross

the intestinal epithelium, activating the antigen‑presenting cells and driving the transfor‑
mation of naïve T cells to natural killer T cells, Th1, Th2, and Th7, which release different
proinflammatory cytokines. Th2 cells, for example, release IL‑4, IL‑5, and IL‑13. MMP
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production can be inhibited by IL‑13, leading to increased ECM deposition and elevated
TGF‑β activity [79].

The prolonged inflammation and infiltration of immune cells damage the mucosal
architecture, which aggravates tissue injury and promotes the fibrogenesis process [80].
In addition, chronic inflammation and the release of inflammatory mediators that is pro‑
moted by continuous epithelial and endothelial damage boost the activation of cells pro‑
ducing ECM, particularly fibroblasts and myofibroblasts [68,81]. On the other hand, im‑
mune cells maintain myofibroblasts’ continual activation and proliferation by the secretion
of more cytokines [82].

3.5. Role of Microbiota in Intestinal Fibrosis
Inflammation and fibrosis can result from host–microbiome interplays, which are dis‑

rupted by changes in the intestinal barrier function, gut microbiota, or immune system [83].
Most studies that have revealed the pathophysiological mechanisms of IBD have reported
that disruption of the gut microbiota is a driving factor of those mechanisms [84–86]. Gut
microbiota contributes to the pathological process of fibrosis by promoting adhesion, mi‑
gration, and differentiation of fibroblasts into myofibroblasts [87]. For instance, gut bac‑
teria known as adherent‑invasive Escherichia coli (AIEC) have been linked to IBD, particu‑
larly CD [88,89]. According to one research study, acute inflammation is accompanied by
AIEC intestinal colonization, resulting in fibrosis via the upregulation of ST2 expression,
the IL‑33 receptor, with the help of flagellin [90]. Furthermore, fibrosis is associated with
the existence of Salmonella enterica, Streptococcus, Lactobacillus, Mucispirillum schaedleri, and
Ruminococcus in the cecum as well as ileum [87,91].

In addition, inflammation and dysbiosis disrupt the integrity of the intestinal epithe‑
lial barrier, which allows the exposure of gut microbiota to immune and mesenchymal
cells [92]. As a result, toll‑like receptors (TLR), particularly TLR‑4, that are expressed by
the intestinal immune and non‑immune cells worsen inflammation and activate signals
that promote collagen deposition and fibrosis [93]. Additionally, two decades ago, a study
reported that injection of the rat colonic wall with bacteria from the gut flora stimulated
TGF‑β1 release and collagen deposition [94].

Lipopolysaccharide (LPS) is a component of the outer membrane of gram‑negative
bacteria that was found to be fibrogenic. Upon exposure of fibroblasts to LPS, the TLR‑
4 located on the fibroblasts’ membrane recognizes LPS and recruits MyD88, an adaptor
protein for TLR signaling, to its toll‑interleukin‑1 receptor, leading to the phosphorylation
and activation of NF‑κB [95–97]. Ultimately, this results in the suppression of Smad7, the
TGF‑β1 negative regulator, allowing the overexpression of TGF‑β1 and the subsequent in‑
crease of ECM‑producing collagen [98,99]. On the other hand, direct exposure of fibrocytes
to LPS can induce the development of fibrosis independently of TGF‑β1 stimulation [100].

Through similar mechanisms, a study found that peptidoglycan, a polysaccharide
in the bacterial cell wall, can upregulate TGF‑β1 and induce collagen overproduction by
stimulating myofibroblasts [101].

In contrast, according to several studies, the administration of oral probiotics, such
as lactic acid bacteria, also known as LAB, and Bifidobacterium species, may promote the
restoration of the gut microbiome’s composition and preserve the integrity of the intestinal
mucosa [102–105]. Several Lactiplantibacillus plantarum, which are strains of LAB, have been
demonstrated to have therapeutic effects on animal models as well as in patients with IBD,
particularly colitis [106–110].

3.6. Role of microRNAs in Intestinal Fibrosis
MicroRNAs (miRNAs) are a group of non‑coding RNAs consisting of 18–25 small nu‑

cleotides that are responsible for the regulation of gene expression by degrading mRNA
or repressing the translation [111–113]. Aberrant expression of miRNAs contributes to
the pathogenesis of multiple pathological conditions in cancer, inflammation, and autoim‑
mune diseases [114–116].
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Several research outcomes have demonstrated that dysregulated miRNAs are impli‑
cated in colitis‑associated fibrosis [2]. For example, when pre‑miRNA‑29b was transfected
into intestinal fibroblasts, it induced the elevation of mRNA and protein expression of
IL‑6 and IL‑8. Furthermore, it promotes the upregulation of collagen in the mucosa of
CD patients [117]. MiRNA‑155 is upregulated by TGF‑β1 [118]. It has proven to dis‑
play proinflammatory activity by increasing the levels of TNF‑α, IL‑6, IL‑1β, and CCL2
cytokines [119]. Furthermore, another study has shown that miRNA‑155 levels are ele‑
vated in the fibroblasts, where it promotes ECM deposition [120]. An interplay between
miRNA‑155 and the Wnt/β‑catenin pathway has been revealed [121]. Under homeostatic
conditions, activation of the Wnt signaling pathway by phosphorylation of GSK3β results
in the accumulation of β‑catenin, which promotes cells’ proliferation and collagen produc‑
tion [122]. Meanwhile, this process is controlled by the HBP‑1 gene, which is a negative
regulator of the Wnt/β‑catenin pathway, through the suppression of the TCF–β‑catenin
complex which eventually allows control over the level of collagen production so as to
prevent the development of fibrosis. However, when the human colonic CCD‑18Co my‑
ofibroblast cells were transfected with miR‑155, HBP‑1 expression was significantly atten‑
uated. Accordingly, the HBP‑1 gene has been reported to be the direct target of miR‑155.
Therefore, overexpression of miRNA‑155 downregulates the expression of HBP‑1, leading
to upregulation of the Wnt/β‑catenin pathway, including its genes, such as phosphory‑
lated GSK3β, TCF4, LEF, LGR5, and Myc, and followed by overexpression of the fibrosis
markers α‑SMA and collagen I, III and IV. To this end, the activation of the Wnt/β‑catenin
signaling pathway is associated with miRNA155‑induced intestinal fibrosis [123].

Likewise, miRNA‑21 is considered a profibrogenic molecule. TGF‑β plays an impor‑
tant role in driving the maturation and the action of miR‑21. When the TGF‑β/Smad signal‑
ing pathway is activated, the translocation of the p‑Smad2/3 and Smad4 complex into the
nucleus promotes the pri‑miR‑21 conversion into pre‑miRNA‑21, which is then released
as mature miR‑21. This miR‑21 suppresses Smad7, resulting in the TGF‑β/Smad signaling
pathway activation that initiates the fibrogenesis process [124]. Additionally, the upregula‑
tion of miR‑21 results in the downregulation of PTEN, which serves as a negative regulator
of the PI3K/AKT/mTOR pathway. Consequently, the mTOR pathway will be activated un‑
controllably so as to enhance the EMT process and fibrosis [125].

MiR‑130 contributes to the fibrosis process by the activation of the TGF‑β/Smad path‑
way [126]. Similarly, miR‑132 plays an important role in promoting myofibroblasts’ prolif‑
eration and collagen accumulation [127].

Other miRNAs, including miR‑27, miR‑29, and miR‑30, show antifibrotic activities by
inhibiting TGF‑β/Smad signaling and the downstream fibrosis genes. Additionally, they
attenuate the EMT and the ECM deposition [128–132].

4. Diagnosis
Currently, no accurate or definite biomarkers and imaging methods are available to

quantitatively determine the degree of fibrosis. However, clinical studies rely only on the
ECM alterations as the clinical endpoints [133].

The mainstay for diagnosing gastrointestinal conditions marked by mucosal changes
is the gastrointestinal endoscopy or ileocolonoscopy. Stenosis is a constriction of the in‑
testinal lumen due to the deposition of fibrous tissue, which prevents the endoscope from
passing through. Thus, its role in assessing the extent of the stricture and the fibrosis com‑
ponents is restricted. Hence, biopsy samples can be collected for histological analysis and
exclusion of malignancies [134,135].

Diagnosis of intestinal fibrosis can be clinically achieved after strictures are formed.
Stenoses can be identified using a variety of cross‑sectional imaging methods as alterna‑
tives to ileocolonoscopy, such as magnetic resonance imaging (MRI), computer tomogra‑
phy enterography (CTE), and ultrasound (US). These cross‑sectional imaging methods can
accurately identify intestinal strictures and can detect inflammation but not the degree of
fibrosis [133]. Imaging techniques are non‑invasive and allow the visualization of the en‑
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tire colon to determine thickness of the bowel wall, fibrotic tissue, and any other possi‑
ble complications [135]. For example, the MRI outcomes enable the investigation of the
increase in intestinal wall thickness, with values between 3 and 5 mm classified as mild,
>5 to 9 mm as moderate, and ≥10 mm as severe. In the meantime, imaging methods allow
assessment of disease activity and follow‑up on patients’ therapeutic responses [136].

5. In‑Vivo Models of Intestinal Fibrosis
Intestinal fibrosis can be induced by several methods or chemicals. Chemically, both

dextran sulfate sodium (DSS) and trinitrobenzene sulfonic acid (TNBS) can induce the fi‑
brogenesis process. DSS at a concentration of 1.5–2% is administered to mice in drinking
water in one to three repeated cycles. Firstly, animals are exposed to DSS for 7 days, and
then switched to regular water for two weeks as a recovery period [137]. Another study
followed the same experimental design using C57BL/6J mice, administered with 2.5% DSS
in 3 repeated cycles [138]. C57BL/6J and BALB/c mice are the most appropriate strains to be
used to induce fibrosis [139,140]. TNBS is usually diluted in ethanol and administered via
intrarectal instillation. TNBS is thought to alter colonic proteins and induce a delayed‑type
hypersensitivity reaction, while ethanol disrupts the epithelial barrier. Intestinal fibrosis
is induced by the repeated administration of escalating doses of TNBS over 6 weeks [141].
SAMP1/Yit mouse is a spontaneous model of intestinal fibrosis that inherently expresses in‑
flammation and fibrosis. The knocking out of IL‑10 also induces chronic inflammation and
the deposition of ECM [141,142]. The injection of microbial fragments into the gut, such
as the peptidoglycan polysaccharide of the bacterial wall, induces persistent bowel inflam‑
mation, resulting in fibrosis [143–145]. When the colon is exposed to doses of therapeutic
radiation, intestinal inflammation is produced, which is eventually followed by intestinal
fibrosis. Live bacterial infection through the administration of Salmonella Typhimurium
via oral gavage, 24 h post treatment with streptomycin, triggers colon inflammation and
the fibrogenesis process [146].

6. Treatment of Intestinal Fibrosis
Current treatments for IBD involve the use of 5‑aminosalicylic acid, antibiotics, steroids,

probiotics, and immunosuppressive agents or biologics such as monoclonal antibodies.
These therapies can effectively suppress acute and chronic intestinal inflammation but can‑
not cease or prevent the progression into intestinal fibrosis [147,148]. On the other hand,
some anti‑inflammatory medications have been found to mitigate, to an extent, the steno‑
sis of fibrosis and to have delayed surgical intervention. Currently, due to the lack of ef‑
fective antifibrotic medications, the only interventional therapeutic approach for colonic
fibrostenosis is still surgical resection or endoscopic balloon dilation [74,149]. In order to
prevent intestinal fibrosis as a complication of IBD, it is crucial to identify new preventive
drugs and strategies. Nowadays, phytochemical compounds or therapies as alternative
and safer approaches are emerging to fulfill the unmet demands in the treatment of fibro‑
sis [27,150–153]. SAMP1/Yit mouse is a spontaneous model of intestinal fibrosis that inher‑
ently expresses inflammation as well as fibrosis. The knocking out of IL‑10 also induces
chronic inflammation and the deposition of ECM [142].

6.1. Pharmacological Interventions
6.1.1. Anti‑Inflammatory Drugs

Aminosalicylates, corticosteroids, and antimetabolites primarily targeting inflamma‑
tory pathways have been in clinical practice for a decade. Among aminosalicylates, sul‑
fasalazine is a prototype that has been followed by the many congeres, including mesalaz‑
ine, olsalazide, and balsalazide, which constitute the first‑line therapy for IBD—mainly by
inhibiting proinflammatory mediators. Aminosalicylates are usually used in combination
with other medications, corticosteroids or immunosuppressants because alone they cannot
maintain the remission phase of the disease and delay the surgical
intervention [154–156]. One immunosuppressive agent, azathioprine, which is a thiop‑
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urine, has been demonstrated to be effective in limiting persistent inflammation, which en‑
ables the healing of inflammatory lesions prior to the development of irreversible fibrotic
tissue and intestinal wall thickening [157]. These further target immune–inflammatory
cascades by mitigating inflammation and regulating the proliferation of immune cells, in‑
cluding T lymphocytes [158].

6.1.2. Biologics
In recent years, biological agents, including the monoclonal antibodies infliximab and

adalimumab, have been used to primarily target inflammatory cytokines. Additionally, in‑
tegrin inhibitors, such as natalizumab and vedolizumab, have garnered attention due to
their potential benefits to those who are non‑responders to a conventional treatment agent.
Infliximab and adalimumab are TNF‑α inhibitors, while vedolizumab particularly targets
the α4β7 heterodimer, which is expressed on the surface of gut‑specific lymphocytes, re‑
ducing the migration of lymphocytes to the intestine. Generally, anti‑TNF therapies are
recommended for patients with stricture and bad prognosis as they inhibit the develop‑
ment of new bowel strictures. In most cases, when biologics are administrated, add‑on
therapy using steroids, immunomodulators or other biological agents is unnecessary.

Outcomes of several clinical studies have demonstrated that the early introduction of
those medications improves patients’ quality of life, prevents the need for hospitalization
and delays surgical intervention and the progression into fibrostenosis [159–165].

6.1.3. Antifibrotic Drugs
Pirfenidone and nintedanib are FDA‑approved antifibrotic drugs for the treatment of

pulmonary fibrosis, but their application is limited due to various side effects [166,167]. In
terms of therapeutic efficacy, they could be promising in the treatment of intestinal fibro‑
sis, but further studies are required to investigate and validate this promise. In contrast,
pirfenidone has antioxidant, anti‑inflammatory, and antifibrotic actions and attenuates
fibrogenesis growth factors. This inhibits the fibroblasts’ differentiation and myofibrob‑
lasts’ proliferation, which leads to the suppression of collagen synthesis and ECM deposi‑
tion [168,169]. Nintedanib downregulates the fibroblasts’ growth factors, platelet‑derived
growth factors, vascular endothelial growth factors, and the signaling pathways respon‑
sible for the fibroblasts’ differentiation and migration [169]. In addition, it inhibits the
TGF‑β and the downstream genes, including collagen I and III [170]. Another study has
proved that both pirfenidone and nintedanib perform antifibrotic activity by attenuating
the formation of collagen‑I fibrils [171].

6.2. Non‑Pharmacological Approaches
6.2.1. Surgical Resection

This is an invasive method of removing the part of the colon that has strictures. It is
an effective therapeutic procedure; however, it is associated with a high rate of recurrence,
approximately 70% [74]. Moreover, there is a risk of bleeding or bowel wall
perforation [17,172].

6.2.2. Endoscopic Stricturotomy
This is a technique that provides a safe and effective way of cutting the stricture using

an endoscope and without surgical resection. This method decreases the morbidity com‑
pared with the surgical excision, but the risk of bleeding and postoperative infection is also
there [17,173].

6.2.3. Stenting
This approach is beneficial in preventing relapse of the strictures. However, a risk

of movement or adherence of the stent to the inner mucosal layer and perforation may
occur [17].
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6.2.4. Endoscopic Balloon Dilation
The success of dilation is measured by the ability to pass the endoscope through the

stricture location. It is less invasive, maintains the bowel length intact, and limits the need
for surgical resection. However, there is a risk of bowel perforation and patients may need
to do the re‑dilation procedure several times when new strictures develop [17,174].

7. Promising Phytochemicals for Future Intestinal Fibrosis Therapies
The pathogenesis and management of IBD has a link with the nutrition and dietary

components. There are dietary and nutritional perspectives for the management of IBD.
Considering the critical role of inflammation and immune–inflammatory cascades, in ad‑
dition to oxidative stress, the focus of these perspectives is to target the associated intri‑
cate and perplexing pathways using agents of natural origin which are themselves also of
value for use in dietary interventions. Many of the plants and their constituents, termed
phytochemicals, have received attention due to their medicinal benefits in terms of phar‑
maceutical or nutraceutical development. In recent years, a convincing number of plants
and phytochemicals have been evaluated in experimental models, including the in silico,
in vitro, and in vivo mimicking of ulcerative colitis. The present review comprehensively
presents the evidence on the therapeutic and preventive potential of phytochemicals eval‑
uated to date in preclinical studies, as seen in the synoptic tables (Table 1) and illustrated
figures presented below.

7.1. Asperuloside
Asperuloside (ASP) is an iridoid glycoside extracted from Hedyotis diffusa, a well‑

known folk herb in several Asian countries [175,176]. It has diverse pharmacological ac‑
tivities, such as anti‑inflammatory, antioxidant, anticancer, and anti‑obesity [177–179]. As‑
peruloside has been shown to ameliorate gut dysbiosis and regulate the gut microbiota.
Additionally, it has restorative effects on the metabolic signaling in high‑fat‑diet‑induced
obesity and type 2 diabetes. It achieves these benefits by changing the gut‑derived sec‑
ondary metabolites and by interfering with the metabolic signaling [180]. Additionally, it
has been found to mitigate ulcerative colitis in colonic tissues, indicated by a reduction in
weight loss, improved disease activity index, inhibition of oxidative stress and subsequent
inflammation, and maintenance of histological architecture. The benefits of ASP in IBD
have been attributed to the activation of Nrf2/HO‑1 signaling, which induces antioxidant
responses, and the suppression of the NFκB signaling pathway [22,181,182].

It has been demonstrated that ASP can downregulate the Smad3 mRNA in IEC‑6
cells with a knocked down NFκB, and can inhibit LPS‑induced p‑p65 levels. Studies have
demonstrated that ASP prevents the transformation of the epithelial phenotype into the
motile mesenchymal phenotype. In addition, the suppression of Smad3 mRNA results in
the downregulation of the levels of EMT markers [179]. In the case of cancer associated
with colitis, it has been shown to inhibit EMT via activation of the vitamin D receptor [183].
Moreover, ASP has been found to alleviate symptoms and inhibit tumor size by reducing
α‑SMA expression [179]. Other studies have also revealed that ASP has an inhibitory ef‑
fect on inflammatory mediators, such as nitric oxide and prostaglandin E2, as well as other
cytokines, such as IL‑1, IL‑6, and TNF‑α [184,185]. These inhibitory actions of ASP, particu‑
larly in chronic colitis, are mediated by the downregulation of NFκB and MAPK signaling
pathways [184,186]. Accordingly, the available proofs demonstrate that ASP has the po‑
tential to reduce fibrosis in the colon. However, further studies are needed to determine
the effect of ASP on fibrogenesis in the intestine.

7.2. Berberine
Berberine is an isoquinoline alkaloid compound derived from the traditional Chinese

medicine Coptis chinensis [187–189]. Research has demonstrated that berberine undergoes
a wide range of pharmacological activities. Most importantly, it shows anti‑inflammatory
and antioxidant actions, where inflammation and oxidative stress are the primary driv‑
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ing factors of fibrosis. Additionally, it boosts PPARγ activities [167] and mitigates tissue
fibrosis by inhibiting TGF‑β1/Smad3 signaling and by downregulating α‑SMA [190]. Fur‑
thermore, it has therapeutic activities for metabolic disorders, including the inhibition of
blood glucose levels [191], improvement of insulin resistance [192], and reduction of hy‑
perlipidemia [193]. In addition, it protects from mild cognitive impairment and has other
antitumor [194] and immunomodulatory biological activities [195,196].

Berberine has been investigated in many studies, revealing its capability to restrain the
intestinal mucosal damage caused by chronic stress and downregulate the expression of
inflammatory mediators during severe abdominal infection or sepsis. Thereby, it mitigates
intestinal mucosa barrier damage and minimizes intestinal wall permeability [197,198]. A
rat model of UC has shown that pretreatment with berberine suppresses the levels of TNF‑
α, IL‑1β, IL‑6, IL‑12, and IFN‑γ, which are major proinflammatory cytokines. In addition,
these findings illustrate that berberine downregulates the phosphorylation of STAT3 as
well as NFκB p65, suggesting that it could effectively repress the IL‑6/STAT3/NFκB path‑
way implicated in UC pathogenesis [198]. The main factors affecting the berberine effect
are the treatment period and dose, thus extending the treatment period by more than
3 months and significantly potentiating the therapeutic effect [199]. Taken together, these
results suggest that berberine could be a promising treatment for UC patients.

7.3. Calycosin
Calycosin (CA), is a flavonoid known as a phytoestrogen which is derived from the

root ofAstragalus membranaceus [200–202]. CA has anti‑inflammatory, anti‑oxidative stress,
anti‑hyperglycemic, neurological, and hepatoprotective effects [203–207]. Fortunately,
studies have shown that CA has significant antifibrosis potential; hence, it is deemed a
promising antifibrotic drug for treating organ fibrosis. CA alleviates renal and pulmonary
fibrosis by limiting inflammation and oxidative stress [202,208]. Moreover, it has been re‑
ported that CA was able to successfully attenuate the severity of lung tissue damage in a
fibrosis mouse model. By downregulating the AKT/GSK3β/β‑catenin signaling pathway,
CA suppresses TGFβ‑1‑induced epithelial–mesenchymal transition in alveolar epithelial
cells [209]. This mechanism is also a major contributor to the development of intestinal
fibrosis, by increasing collagen production and elevating the levels of extracellular matrix
proteins [210].

CA has been shown to improve renal glomerulosclerosis and interstitial fibrosis in
diabetes by modulating oxidative stress via IL‑33/ST2 signaling [202]. CA also attenuates
liver fibrosis by limiting hepatic stellate cells’ proliferation and migration, inhibiting the
expression of collagen I and α‑SMA in the activated hepatic stellate cells that are induced
by TGF‑β1. These actions are mediated by the downregulation of estrogen receptorβ [211].

CA has shown some cardioprotective effects, which are mediated by PI3K/AKT path‑
way upregulation. It significantly downregulates the expression of α‑SMA as well as the
expression and deposition of collagen I and collagen III in cardiac fibrosis [21,211]. Re‑
gardless of the proven antifibrotic actions of CA, more research is required to identify the
biological mechanisms underlying the protective role of CA, particularly in
intestinal fibrosis.

7.4. Nobiletin
Nobiletin, or NOB (5,6,7,8,3′,4′‑hexamethoxyflavone), is a nontoxic dietary poly

methoxyflavone (PMF) that is extracted from citrus fruits [212]. It is mostly found in
the peel of Citrus sinensis (sweet orange), Citrus aurantum L. (sour orange) and Citrus par‑
adise (grapefruit). Furthermore, citrus fruit juice contains measurable levels of nobiletin
(1–10 mg/g) [213]. NOB has lipophilic properties due to the significant presence of hy‑
drophobic groups, which allows for high bioavailability [214]. Nobiletin has neuroprotec‑
tive [215] anti‑inflammatory [216,217], anti‑cancer [218] and anti‑oxidative properties [219].
Its anti‑inflammatory effects are helpful in the treatment of IBD.
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NOB and its primary metabolite, 4′‑demethylnobiletin, suppress the production of
inflammatory cytokines such as interleukin‑1β (IL‑1β), interleukin‑6 (IL‑6), prostaglandin
E2, inducible nitric oxide synthase (iNOS) and cyclooxygenase‑2 (COX‑2) [193,220]. These
pharmacological activities are achieved by NOB’s potential to inhibit the NFκB and ERK
signaling pathways involved in the production of pro‑inflammatory cytokines like
TNFα [221].

In several studies, NOB has demonstrated a reduction of degranulation and pro‑
inflammatory mediator expression in human intestinal mast cells by functioning as an
ERK inhibitor [221]. Additionally, NOB has a dual action, in alleviating both the inflam‑
mation and fibrosis associated with colitis. Firstly, it promotes the expression of the per‑
oxisome proliferator‑activated receptors (PPARγ) which serve as anti‑inflammatory and
antifibrotic molecules in IBD [222,223]. Secondly, it downregulates iNOS and COX‑2
expression, which in turn enhances intestinal barrier function and attenuates inflamma‑
tion [222,224]. On the other hand, NOB activates the IL‑6/STAT3/FOXO3a signal pathway
by upregulating FOXO3a phosphorylation in the cell nucleus and downregulating IL‑6
and STAT3 phosphorylation, which results in induction of macrophage autophagy [225].
Furthermore, research has shown that autophagy is crucial in controlling inflammatory
reactions [226,227]. NOB inhibits the inflammatory response by promoting autophagy as
well as by stimulating the macrophages’ IL‑6/STAT3/FOXO3a pathway [225].

7.5. Troxerutin
Troxerutin is a trihydroxyethylated derivative of rutin which is a natural flavonoid

glycoside [228]. Troxerutin is extracted from Saphora japonica and is identified by its free
radical antioxidant activity, which accounts for the cytoprotective effect exhibited across
several cell types [229]. It has a variety of pharmacological and biological activities and
shows anti‑inflammatory, anticancer, antiviral, antiapoptotic, and antifibrinolytic
effects [230–232]. Troxerutin can significantly dampen the level of oxidative stress and in‑
flammation in the tissue of the ulcerative colon, maintaining the function of the intestinal
barrier [233]. In regard to intestinal fibrosis, troxerutin administration markedly down‑
regulates TGFβ‑1 and α‑SMA expression, reflecting a decrease in the formation of fibrosis.
One of the research studies has proven that troxerutin is a potent candidate in the treatment
of UC and intestinal fibrosis as it can relieve colonic damage and all pathological changes
associated with the disease which was induced in vivo by DSS [234].

7.6. Olive Phenols
Major and minor components of the extra virgin olive oil are extracted by either

squeezing the olives directly or by centrifuging them. More than 98% of the total weight
of the oil is made up of glycerides, whereas 80% of the overall lipidic content accounts for
the monounsaturated oleic acid. Over 230 chemical substances, including aliphatic and
triterpenic alcohols, hydrocarbons, sterols, volatile chemicals, flavonoids, phenolic acids
and antioxidants, known as polyphenols, represent the minority, with approximately 2%
of the total weight of the oil [235].

These phenolic compounds modulate a number of pathways associated with inflam‑
mation, restrict the expression of pro‑inflammatory molecules, and inhibit oxidative stress
via counteracting the action of oxidizing enzymes and free radicals. Studies carried out
both in vivo and in vitro have shown that olive oil’s polyphenols can alleviate the clinical
and histological symptoms of colitis [236–242].

A study has been conducted recently that found that the combination of probiotics,
particularly Lactiplantibacillus plantarum, and of fermented olives in one’s diet alleviates
DSS‑induced colitis by decreasing the expression of the proinflammatory cytokines, in‑
cluding TNF‑α, IL‑6, IL‑1β, and PI3K signaling, and the profibrotic factors, such as TGF‑β,
p‑Smad3,α‑SMA, p‑Akt, PI3K and collagens I–III. Thus, according to these outcomes, olive
phenols can be used as dietary supplements in IBD to slow down disease progression and
complications [243].
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Hydroxytyrosol is one of the most therapeutically powerful olive phenols and has ef‑
fective anti‑inflammatory and antioxidant actions through the inhibition of the myeloper‑
oxidase enzyme. This phenol decreases the expression of COX‑2 and iNOS in the intestinal
mucosa, mediated by the suppression of the p38 MAPK pathway [236,239]. Another study
has stated that attenuating the activation of the NLRP3 inflammasome is one of the mech‑
anisms of action of hydroxytyrosol [244]. On the other hand, other studies have found
that hydroxytyrosol potentiates the NRF2 signaling pathway, which in turn promotes the
activation and transcription of the antioxidants and detoxification genes [245,246].

Taken together, olive phenols are promising in terms of providing an alternative di‑
etary and therapeutic approach to protect from IBD and its complications, most impor‑
tantly fibrosis [239].

7.7. Total Flavones of Abelmoschus Manihot (TFA)
Total flavone of Abelmoschus (TFA) Manihot is the key flavonoid component de‑

rived from Abelmoschus Manihot. Clinical studies have found that TFA extract has anti‑
inflammatory, antioxidant, and gastrointestinal protection effects [247]. TFA has dual ac‑
tions, as an anti‑inflammatory and an antifibrotic agent. It has shown inhibition of NFκB
and MAPK signaling in colitis. In addition, it suppresses the expressions of α‑SMA and
EMT in vivo which are induced by TGF‑β1 in fibrosis. In vitro, TFA has been shown to
downregulate Smad2/3 phosphorylation in the intestinal epithelial cells, which is the key
trigger of the EMT and the fibrosis process [248]. A study has found that TFA can improve
the microscopic and macroscopic features of fibrosis in terms of colon length and weight,
stenosis, ulcerations and histological architecture. Moreover, it can diminish the disease
activity index and prevent body weight loss [249]. It has been reported several times that
the imbalance between MMPs and TIMPs induces the deposition of ECM, resulting in the
development of fibrosis. TFA has been found to not only decrease the expression of IL‑6,
IL‑17, TGFβ‑1, collagen and α‑SMA but to elevate the expression of MMP‑2 and MMP‑9
and downregulate that of TIMP‑1, restoring the homeostasis of the ECM production and
degradation [249].

Table 1. A summary of phytochemicals, their dose, action and mechanism of action in different
experimental models. (↑—increased; ↓—decreased)

Phytochemical Compound Experimental Model
(In Vivo)

Dose and Route of
Administration Pharmacological and Molecular Mechanisms Ref.

1. Asperuloside (ASP)

KM mice + 2.5% DSS
125 and 500 µg/kg/day, for

45 days
Oral

↓ DAI, MPO, NF‑κB p65, TNF‑α and IL‑6
↑ Nrf2, HO‑1, NQO‑1, IL‑10, GSH‑Px, SOD [22]

BALB/C mice + azoxymethane
(10 mg/kg, i.p.) + 2% DSS

2 mg/kg/day
Oral

↓ TGF‑β1/Smad3, EMT, p‑p65, TNF‑α and
IL‑1β, α‑SMA, N‑cadherin and vimentin

↑ IL‑10 and E‑cadherin
[179]

BALB/C male mice + unilateral
ureteral obstruction (UUO)

model to induce renal fibrosis

14 and 28 mg/kg for 2 weeks
Oral

↓ NF‑κB, MAPK, TGF‑β1/Smad2/3, α‑SMA,
collagen‑III and fibronectin [250]

2. Berberine Wistar rats + 5% DSS to the
drinking water for 7 days.

10, 30, 50 mg/kg once a day
for 7 weeks

Oral

↓ IL‑1β, IL‑6, IL‑12, TNF‑α and IFN‑γ levels,
p‑STAT3, p‑NF‑κB p65, activation of

IL‑6/STAT3/NF‑κB, iNOS, MPO, MDA
↑ IL‑4 and IL‑10

[198]

3. Calycosin

C57BL/6J mice + bleomycin
administered (5 mg/kg/2 U/kg)
via intratracheal instillation to

induce pulmonary fibrosis

7, 14 mg/kg once a day for
3 weeks

Oral

↓ Akt/GSK3β/β‑catenin pathway and
TGF‑β1‑induced

epithelial–mesenchymal transition
[209]

14 mg/kg, once a day for
21 days
Oral

↓ Oxidative stress, collagen deposition
↑ Autophagy via upregulating LC3, beclin1, and

PINK1 and by reducing p62.
↑ Nrf2/HO‑1, SOD and expression of LAMP1

and TFEB

[208]

BALB/C mice + cerulein
(50 µg/kg) to induce
acute pancreatitis

25, 50 mg/kg BW
Intraperitoneal

↓ TNF‑α, IL‑1β, IL‑6, NF‑κB/p65 and
phosphorylation of IκBα and p38 MAPK [206]

Sprague Dawley rats + STZ
(30 mg/kg) i.p. + HFD for

4 weeks
5 mg/kg, for 8 weeks ↓ TGF‑β, IL‑33 and ST2 mRNA, NF‑κB

activation and pro‑inflammatory cytokines [202]
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Table 1. Cont.

Phytochemical Compound Experimental Model
(In Vivo)

Dose and Route of
Administration Pharmacological and Molecular Mechanisms Ref.

C57BL/6J mice + methionine
choline‑deficient diet

2.5, 25, 50 mg/kg, once a day
for 4 weeks

Oral

↓ Hepatic stellate cell activation, fibrogenic
gene TIMP‑1

↑ Fatty acid β‑oxidation, PPARα and CPT1
protein expression

[204]

4. Nobiletin (NOB)

IL‑10 knockout BALB/c mice
(IL‑10−/−), received 2% ethanol

in drinking water

50 mg/kg/day in drinking
water for 11 weeks

↓ TNF‑α, IL‑6, CCL2, collagen 3A1, intestinal
wall thickness, clinical colitis, tissue damage
score, rectal inflammation and bleeding score,
mast cell number, and degranulation in the

proximal colon.

[251]

C57BL/6J mice, received 10%
CCl4 i.p. to induce liver fibrosis

50, 100 mg/kg for 3 weeks
Oral

↓ TGF‑β1, α‑SMA, fibronectin 1, collagen 1A1,
TNF‑α, IL‑6, IL‑1β, NLRP3, IL‑18, and

ROS generation
↑ Beclin1 and LC3 expression

(autophagy proteins)

[252]

C57BL/6J mice, unilateral
ureteral obstructive (UUO) to
induce chronic kidney injury

and fibrosis

50 mg/kg, for 14 daysOral

↓ TGF‑β1, fibronectin, α‑SMA, collagen I,
NOX4, TFR1, GPx4, SLC7A11/xCT, Bax,

phosphorylated NFκB−p65, TNF‑α, IL‑6
mRNA and COX‑2

↑ Catalase, SOD, E‑cadherin, Bcl−2, procaspase
3 and TrxR1

[253]

Sprague–Dawley male
rats—single‑pass intestinal

perfusion (SPIP) regions of the
small intestine (i.e., duodenum,

jejunum, ileum and colon)

15, 30 and 60 µg/mL at a flow
rate of 0.2 mL/min.

↓ NO, iNOS, COX‑2, IL‑6, STAT3 and FOXO3a
phosphorylation, LC3II and p62 proteins [225]

5. Troxerutin C57BL/6J mice, 2.5% DSS added
to the drinking water for 8 days

100 and 200 mg/kg
Oral

↓ Keap, NOX2, MMP‑2, MMP‑9, TNF‑α, IL‑1β,
IL‑17A, IL‑6, IFN‑γ, α‑SMA, and COL3A1; the
phosphorylation of JNK, Akt, p38 and ERK1/2;
cleaved PARP, caspase‑1, caspase‑3 and Bax

↑ Nrf2, HO‑1, IL‑10, E‑cadherin, ZO‑1, Mucin‑2,
occludin and Bcl‑2

[233]

6. Olive Phenols

C57BL/6J wild‑type male mice,
2.5% DSS was added to the
drinking water to induce

chronic colitis for 3 cycles of
5 days each, followed by a week

of normal water

10% olive cream‑enriched diet ↓ IL‑1β, IL‑6, TNF‑α, TGF‑β1, p‑Smad3, PI3K,
p‑Akt, α‑SMA, and collagen I and III [243]

C57BL/6J mice, 3% DSS in the
drinking water for 5 days

A diet enriched with extra
virgin olive oil, given for

21 days

↓ TNF‑α, IL‑1β, COX, iNOS and p38 MAPK
↑ IL‑10 [236]

7. Total flavone of
Abelmoschus Manihot (TFA)

BALB/C mice, TNBS (50 mg/kg)
to induce colitis via colon

instillation through a catheter
for 4 weeks

250 mg/kg daily for 4 weeks
Intragastric instillation

↓ TGF‑β, α‑SMA, collagen 1A2 & 3A2,
vimentin, IL‑6, IL‑17, TNF‑α, IFN‑γ, IGF‑1,

hydroxyproline, and TIMP‑1
↑ IL‑10, MMP‑2 and MMP‑9

[249]

Phytochemical Compound Experimental Model
(In Vitro)

Dose and Route of
Administration Findings Ref.

1. Asperuloside (ASP)

RAW264.7cells + ASP for 24 h,
then stimulated with 1 µg/mL

LPS for another 6 h
5, 10, 20 µM for 24 h ↓ NF‑κB, TNF‑α and IL‑6

↑ Nrf2/HO‑1, NQO‑1 [22]

Cultured intestinal epithelial
cells—6 were stimulated with

1 µg/mL LPS for 24 h, and
parallelly, cells were treated

with ASP

40 µM
↓ TGF‑β1/Smad3, EMT, p‑p65, TNF‑α, IL‑1β,

α‑SMA, N‑cadherin and vimentin
↑ IL‑10 and E‑cadherin

[179]

2. Calycosin
CCD‑18Co cells were treated

with CA for 24 h after
stimulation with TGF‑β1

12.5, 25, 50, 100, 200, 400,
800 µM

↓ TGF‑β1/Smad signaling pathway
↓ mRNA expression levels of TGF‑β1, Smad2, ‑3,

‑4, α‑SMA and collagen I↑ Smad7
[13]

3. Troxerutin

H9C2 cells were transfected
with HIF‑1α‑siRNA (50 nM), 48

h later, cells were incubated
with 10 µM troxerutin for 1 h

10 µM for 1 h
↓ PI3K/Akt/HIF‑1α, NO, iNOS, COX‑2, IL‑6,

STAT3 and FOXO3a phosphorylation, LC3II and
p62 proteins

[228]

4. Total flavone of
Abelmoschus Manihot (TFA)

Rats’ intestinal epithelial cells
(IEC‑6), induced with 10 ng/mL

TGF‑β1 for 48 hr
0, 5, 10 and 15 µg/mL

↓ Mesenchymal proteins (vimentin and
N‑cadherin), TGF‑β1‑induced EMT, and

migration of the cells; p‑Smad2/3, p38, JNK and
ERK1/2 and their phosphorylated forms.

↑ Epithelial markers (E‑cadherin and ZO‑1)

[248]
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8. Herbal Extracts
In addition to phytochemicals, numerous plant extracts have been evaluated in dif‑

ferent experimental models of IBD. These are presented in the tables (Table 2) and are
elaborated on further.

8.1. Boswellia and Scutellaria Extracts
Boswellia serrata is known for its gum resin, which has been used to treat inflamma‑

tory and arthritic conditions for a long time [254]. The main active constituents of Boswellia
extracts are the boswellic acids (BA) which belong to ursane, a type of pentacyclic triter‑
pene. It has been reported that the gum resin extracts of Boswellia exhibit immunomod‑
ulatory and anti‑inflammatory properties [255,256]. The therapeutic effect of BA in atten‑
uating tissue injury and the associated inflammatory responses facilitates its antifibrotic
activity [257].

BA has shown an inhibition of TNF‑α and the degree of arachidonate 5‑lipoxygenase
(5‑LOX) enzyme activity. Leukotrienes (LT) are significant mediators of inflammation
and 5‑LOX has been identified as a target for BA. Therefore, the inhibition of LT synthe‑
sis by BA may be the underlying mechanism of BA’s anti‑inflammatory actions [258,259].
Additionally, BA could significantly dampen the TGF‑β1‑induced fibrosis, where it has
been reported that BA may directly exert its antifibrotic effect by the downregulation of
TGF‑β1 [260–263].

Scutellaria baicalensis Georg and its dried root, Scutellariae radix, are traditional herbs
that have been used as antioxidants and anti‑inflammatories, particularly in the treatment
of gastroenteritis [264]. Baicalein, baicalin, wogonin, wogonoside, oroxyloside and the
methanolic extract of Scutellariae radix are the major active flavonoid components of the
Scutellaria baicalensis and these prevent the accumulation of collagen and display potent an‑
tifibrotic activities [264–267]. This herb quenches inflammation through the PI3K/Akt/NF‑
κB pathway and inhibits both TGF‑β, the main driver of fibrosis, and TIMPs, which are
responsible for degrading the excessive ECM to maintain the balance between ECM for‑
mation and degradation; hence, protecting from the progression into fibrosis [268,269].

8.2. Gentianopsis paludosa
Gentianopsis paludosa is an annually growing herb in the family of Gentianaceae gen‑

tianopsis [270]. Among traditional medicine, this entire plant is used to cure gastroenteritis,
nephritis, hepatitis, conjunctivitis, dyspepsia, fever, influenza, and bloody diarrhea, which
is one of the main features of fibrosis associated with UC [271,272]. It has been reported
that Gentianopsis paludosa could significantly downregulate the expression of α‑SMA, col‑
lagen I, and collagen III, which are overexpressed in UC‑associated fibrosis. On the other
hand, it can replenish the levels of E‑cadherin, which is crucial for the maintenance of gut
homeostasis and the integrity of the epithelial lining and intestinal wall barrier [273,274].

8.3. Flavonoid‑Rich Citrus Extracts
Citrus flavonoids (CFs) are a class of dietary flavonoids that includes diverse polyphe‑

nolic compounds obtained from the citrus plants [275]. The pure total flavonoids of citrus
(PTFC) have been extracted and purified from the dry, ripe peels of the citrus species. In
citrus plants, over 80 natural flavonoids have been determined, with the major identified
flavonoids being nobiletin, naringin, neohesperidin, narirutin, and hesperidin, which to‑
gether compose the PTFC [276,277]. CFs have received attention recently due to their an‑
tioxidant and anti‑inflammatory attributes [278]. They promote the inhibition of oxidative
stress and inflammation in the gut lumen, regulate the intestinal barrier permeability and
the favorable alteration of the gut microbiota, and immunomodulation [279]. For exam‑
ple, nobiletin has been shown to protect against body weight loss and damage of the in‑
testinal barrier permeability and to decrease disease activity index score after induction of
colitis with barrier disruption in mice and rats by DSS and TNBS, respectively. Addition‑
ally, naringenin has been found to prevent body weight loss and a shortening of the colon
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length. Furthermore, it suppresses the proinflammatory cytokines and oxidative stress in
mice colitis models [280].

8.4. Cinnamon Extract (CE)
Cinnamon extract (CE) is extracted from the cinnamon bark of Cinnamomum ceylan‑

icum. It exhibits antioxidative, anti‑inflammatory, anti‑allergic, antineoplastic, and antidi‑
abetic actions [281–285]. Cinnamaldehyde (CA) is the major active constituent of CE and
it inhibits the proinflammatory mediators and cytokines when taken orally as a treatment.
CE and its active ingredient, CA, have shown a notable suppression in the activation and
phosphorylation of NF‑κB and downregulation of the proinflammatory cytokines, includ‑
ing IL‑6, IL‑1β, CCL2, and chemokine (C‑X‑C motif) ligand‑ 8 (CXCL8), stimulated by LPS
in the fibroblasts.

Regarding fibrosis, a study has illustrated that the expression of MMP‑1 is upreg‑
ulated in the colon of IBD patients; however, with the administration of CE, the levels
of MMP 3, 9, and 13 were suppressed, resulting in a decrease of collagen‑I production
and ECM deposition. Accordingly, this suggests that CE has the potential to be an antifi‑
brotic [153].

Table 2. A summary of plant extracts, their dose, duration, action and molecular mechanisms in dif‑
ferent experimental models. Abbreviations: connective tissue growth factor—CTGF, alpha‑smooth
muscle actin—α‑SMA, aspartate transaminase—AST, alanine aminotransferase—ALT, interferon
gamma—IFNγ, chemokine (C‑X‑C motif) ligand‑8—CXCL8, C‑C motif ligand‑2—CCL2, chronic ob‑
structive pulmonary disease—COPD (↑—increased; ↓—decreased).

Experimental Model
(In Vivo)

Dose and Route of
Administration Findings Ref.

Boswellia and
Scutellaria

Boswellia and Scutellaria:
Sprague–Dawley rats + TNBS‑induced

colitis/fibrosis given by intrarectal
instillation (15 mg/mL)

50 (Boswellia) and 150
(Scutellaria) mg/kg/day

Oral

↓ TGF‑1β/Smad3 pathway, α‑SMA,
collagen types I‑III and CTGF

↑ Smad7
[249]

Boswellia:
Swiss albino rats exposed to γ irradiation
(IR). Bleomycin (BL) was injected (0.15 U in

25 µL 0.9% normal saline) to induce
lung fibrosis

1 g/kg body weight/day
dissolved in distilled water for

21 days after 7 days of BL
induction of lung fibrosis

↓ TGFβ‑1, TNF‑α,
5‑hydroxyproline, 5‑lipoxygenase

enzyme, fibrotic lesions, and
inflammatory cells

↑ Glutathione, SOD, and catalase.

[263]

Scutellaria:
(A) Sprague–Dawley rats + bile duct

ligation or by oral CCl4 (1 mg/kg) which
was given twice a week for 28 days

(B) Sprague–Dawley rats + COPD, induced
by exposure to tobacco smoke

Methanol extract of Scutellaria
150 mg/kg once a day orally by

gavage for 28 days
1.5, 3, 6 mg/kg/day, for

6 daysIntragastric

↓ AST, ALT, hydroxyproline (↓
collagen accumulation), expression
of α‑SMA and malondialdehyde

(MDA) (↓ lipid peroxidation)
↓ TNF‑α, IL‑6, IL‑8, TGF‑β1,

MMP‑2, MMP‑9, TIMP‑1, p‑AKT
and p‑NF‑κB

↑ IL‑10

[264,269]

Gentianopsis
paludosa

Wistar rats + TNBS (150 mg/kg) to induce
intestinal fibrosis

11.2, 27.0, 89.0, 119.2, 140 mg/kg
for 28 days Intragastric

↓ α‑SMA, collagen I & III
↑ E‑cadherin [274]

Flavonoids‑rich
citrus extracts

Nobiletin:
C57BL/6J mice + 3% DSS

Given in diet, 0.01% or 0.25
mmol in 1 kg of diet wt/wt) for

1 week

↓ Colon shortening, body weight
loss, and DAI score.

↑ Claudin‑7
[286]

Naringenin:
BALB/c mice + 2% DSS

Given in diet, 0.3% or 0.3 g/100 g
of diet wt/wt for 9 days

↓ IFNγ, IL‑6, IL‑17A, MIP‑2, body
weight loss, and colon shortening.
↑ intestinal TJ barrier protection

[287]

Cinnamon extract
(CE)

In vivo: IL‑10−/− Balbc/J
In vitro: Patients’ intestinal fibroblasts
were cultured in a media containing

CE or CA

In vivo: 4.5 mL/kg/day of
CE prepared in 70% ethanol and
added to the drinking water for

11 weeks.
In vitro: 0.1–10 µL/mL

overnight

↓ Collagen deposition, MMP,
p‑NFκB, IL‑6, CXCL8, and CCL2 [153]

9. Traditional Herbal Medicine
In addition to phytochemicals, and plant extracts, various plant‑based agents popular

in traditional Chinese and Indian medicines have been evaluated in different experimental
models of IBD. These are presented in the tables (Table 3) and elaborated further.
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9.1. Ankaferd
Ankaferd blood stopper (ABS) is a hemostatic compound which was originally used

in Turkish conventional medicine [288]. It is a distinctive medicinal product composed
of a mixture of various plant extracts isolated from Thymus vulgaris (5 mg/100 mL), Urtica
dioica (6 mg/100 mL),Alpinia officinarum (7 mg/100 mL),Vitis vinifera (8 mg/100 mL) andGly‑
cyrrhiza glabra (9 mg/100 mL) [289]. Studies have shown that ABS has anti‑inflammatory
actions, modulating the inflammatory response through effects on the endothelium, an‑
giogenesis, and cytokines [290]. The major mechanism underlying this action of ABS is
the formation of an encapsulated protein network and the increase of the aggregation of
erythrocytes [291].

Besides the hemostatic effect, a previously conducted study has observed that ABS
has an antimicrobial effect against different pathogens [292]. Although the anti‑infective
activity of ABS remains to be elucidated, it may be associated with its hemostatic func‑
tions, which target the protease‑activated receptor‑1 (PAR‑1), endothelial protein C recep‑
tor (EPCR), and plasminogen activator inhibitor‑1 (PAI‑1), affecting coagulation as well as
vascular endothelium [293,294].

Moreover, ABS induces the mediators associated with wound healing to increase vas‑
cular and cellular proliferation via the reduction of tissue necrosis [295–297]. Colitis treated
with ABS exhibits lower microscopic and macroscopic scores of colonic inflammations,
with an enhancement of mucosal healing upon administration of a sufficient dose [293].
To this end, further studies are required to discover the broad anti‑inflammatory actions
of ABS.

9.2. Daikenchuto (DKT)
Daikenchuto is a traditional Japanese and Chinese herbal medicine frequently pre‑

scribed for the relief of intestinal inflammation, and constipation, and to improve post‑
intestinal surgery, adhesion, and gastrointestinal motility. It is made up of several crude
substances including ginger (Zingiberis rhizoma), ginseng (Panax ginseng), dried Japanese
pepper or jalapeno pepper (Zanthoxyli fructus), and malt sugar [298,299].

DKT dramatically diminishes mucosal damage, inflammatory adhesions of the colon,
and the levels of the pro‑inflammatory cytokines including TNF‑α and IFN‑γ [298]. DKT
undertakes its antifibrotic actions via activating the transient receptor potential ankyrin 1
(TRPA1) of intestinal myofibroblasts resulting in the downregulation of the fibrotic path‑
way induced by TGF‑β1 and other fibrosis factors, such as collagen‑1A1 andα‑SMA. Addi‑
tionally, the upregulation of myofibroblasts’ TRPA1 by DKT is associated with the negative
regulation of collagen synthesis [299–302].

9.3. Danhong Injection (DHI)
Danhong injection (DHI) is a traditional medicine extracted from Carthami tinctorii

Flos and Salviae miltiorrhizae Radix. Salvianic acid A, salvianic acid B, rosmarinic acid, and
protocatechuic aldehyde are the major active constituents of DHI [303]. One study has
found that DHI has anti‑inflammatory and antioxidant effects [304,305]. Another subse‑
quent study has demonstrated that DHI could protect from postoperative intestinal adhe‑
sion by attenuating inflammation, oxidative stress, and collagen accumulation by inhibit‑
ing α‑SMA and fibrin networking and promoting fibrinogenesis [306]. The mechanism
behind its therapeutic actions results from its capability to increase MMP‑9 and
tissue‑type plasminogen activator (t‑PA) levels. Both enzymes act to maintain the bal‑
ance between ECM synthesis and degradation, preventing excessive ECM deposition and
fibrinogenesis [306,307].

9.4. Huangqi Decoction
Huang‑lian‑Jie‑du Decoction (HQD) is a widely described traditional medicine that

is well known for its anti‑inflammatory and antioxidant effects, allowing its application in
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the treatment of UC [308]. HQD consists of a 3:3:2:2 ratio of Coptidis Rhizoma, Gardeniae
Fructus, Scutellariae Radix, and Phellodendri Chinensis Cortex, respectively [309].

HQD performs its anti‑inflammatory and antioxidant actions by modulation of the
PPARγ and inhibition of NF‑κB signaling pathways [310]. In a liver fibrosis study in‑
duced in rats, HQD has been shown to significantly alleviate fibrosis by suppressing the
expression of TGF‑β1; hence, inhibiting myofibroblast activation and proliferation. These
findings suggest that HQD might be an effective antifibrotic agent by targeting the TGF‑
β1/Smad3 and the ERK1/2 signaling pathways [311]. Additionally, many other studies
have confirmed that HQD is effective at relieving liver fibrosis via inhibition of fibro‑
genesis proteins and downregulation of both the TGF‑β/Smad and Wnt/β‑catenin
pathways [312–315]. Another recent study has revealed that HQD could inhibit the ac‑
tivation and proliferation of the hepatic stellate cells driven by TGF‑β1 in hepatic fibrosis,
together with the downregulation of the expression of α‑SMA and collagen‑1A2. After‑
wards, the authors concluded that HQD modulates the long noncoding RNA‑C18orf26‑
1/miR‑663a/TGF‑β1/TGF‑βRI/p‑Smad2 pathway to achieve these activities [316].

Similarly, in the case of renal fibrosis, HQD could ameliorate the ipsilateral kidney
fibrosis in a dose‑dependent manner by downregulation of TGF‑β1, TGF‑β receptor I and
II, Smad2, P‑Smad2, Smad4, α‑SMA, and collagen I, III, and IV expression. However, it
was able to upregulate that of Smad7 [313].

Table 3. A summary of traditional herbal medicines, dose, duration, action and molecular mech‑
anisms in different experimental models. Abbreviations: nitric oxide—NO, heat shock protein‑
47—HSP47, nuclear factor erythroid 2‑related factor 2—Nrf2, Kelch‑like ECH‑associated protein‑1—
Keap1. (↑—increased; ↓—decreased).

Traditional Herbal
Medicine

Experimental Model
(In Vivo) Dose & Route of Administration Findings Ref.

1. Ankaferd blood
stopper (ABS)
(Turkish/Asian

herbal medicine)

Wistar albino rats + 2 mL 4%
acetic acid to induce colitis

2 mL/day, for a week
Rectal injection

↓ MDA, NO in the colonic tissue
↑ SOD [293]

Wistar albino rats +
end‑to‑end colonic

anastomosis

0.1 mL
Topical (wiped on the

anastomosis line)

↑ colon anastomosis healing by ↑ collagen formation
and neovascularization [317]

2. Daikenchuto
(Japanese/Chinese
herbal medicine)

Wistar rats + 0.25 mL of TNBS
(120 mg/mL) dissolved in 50%
ethanol delivered to the colon

lumen for a week

900 mg/kg/day for a week,
composed of (20 mg/kg) of

Japanese pepper, (50 mg/kg) of
processed ginger, (30 mg/kg) of

ginseng radix, and (800 mg/kg) of
maltose powder

Gastric intubation

↓ TGF‑β1, collagen‑I, α‑SMA, and intestinal HSP47 [298]

Mice + TNBS, prepared in
30% ethanol/PBS (10 mg/mL;
50 µL), was delivered weekly

for 6 weeks

5 mg/kg/day for a week
Enema

↓ TGF‑β1, α‑SMA, collagen‑I, Smad2/3, p‑Smad2,
and p38‑MAPK

↑ mRNA and protein expression levels of transient
receptor potential ankyrin 1 (TRPA1) channel

in myofibroblasts

[299]

3. Danhong
injection (DHI)
(Chinese herbal

medicine)

Sprague–Dawley (SD) rats +
cecal abrasion surgery

0.8 mL of 3 different doses of DHI
(1 mL/kg, 2 mL/kg and 4 mL/kg)
DHI was injected I.V daily in the

tail for a week

↓ TNF‑α, TGF‑β1, α‑SMA and
plasminogen‑activating inhibitor (PAI), NF‑κB

phosphorylation, ROS,
↑ MMP‑9, Nrf2, and tissue‑type plasminogen

activator (t‑PA) in the adhesion tissues.

[306]

4. Huangqi
decoction

(Chinese herbal
medicine)

Sprague–Dawley rats + bile
duct ligation (BDL) to induce

liver fibrosis

17.276 mg/100 g for 4 weeks
Oral

↓ Albumin, ALT, AST, TGF‑β1, α‑SMA, collagen in
tissue, Smad3, ERK1/2, p‑Smad3 and p‑ERK1/2 [311]

BABL/C mice + 3.5% DSS in
the drinking water for 7 days

9.2, 4.6, 2.3 g/kg
Oral

↓ TNF‑α, IL‑1β, MPO, NO, MDA, and NF‑κB p65.
↑ IL‑10, Nrf2/Keap1, GSH, ZO‑1, SOD and occludin [308]

Hepatic stellate cells 0, 5, 10, 25, 50 and 100 mg/mL for
24–72 h.

↓ Col 1A2, α‑SMA, p‑Smad2, TGFβ‑RI, activation
and proliferation of hepatic stellate cells induced by

TGFβ‑1 by ↑ expression of miR‑663a and ↓
expression of noncoding RNA‑C18orf26‑1

[316]

10. Discussion
Intestinal fibrosis is one of the end‑stage complications of IBD. It is characterized by

recurrent intestinal tissue injury, due to chronic inflammation, accompanied by failure
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of repair, resulting in excessive production and accumulation of ECM‑promoting fibrosis
with the formation of strictures and narrowing of the intestinal lumen [318,319].

The key target in the treatment of fibrotic IBD is the inhibition of the chronic inflam‑
mation that drives the development of stenosis and fibrosis [320]. Despite the noteworthy
advances in the management of IBD, no apparent decrease in the prevalence of intestinal
fibrosis has been noticed [321]. Diverse classes of therapy, with different modes of ac‑
tion, have been developed to diminish the risk of fibrosis, including anti‑adhesion agents,
sphingosine‑1‑phosphate modulators and inhibitors of the IL‑12/23 pathways, the IL‑36,
JAK/STAT signaling pathway, the TNF‑like ligand 1A (TL1A) and phosphodiesterases
(PDEs) [322]. Currently, no drug has been approved as a particular intestinal antifibrotic
agent. In the clinical settings, anti‑inflammatory medications, such as corticosteroids and
mesalazine, immunosuppressive drugs, such as methotrexate and azathioprine, and bio‑
logics are considered for the control of fibrostenosis as inflammation is the primary cause
of fibrosis [320,321]. However, approximately 80% of IBD patients with strictures are re‑
fractory to those medications, so they eventually undergo endoscopic balloon dilation or
surgery [323]. Furthermore, myelosuppression, infections, liver toxicity, hypersensitivity
reactions, and malignancy are among the adverse effects of these drugs. On the other
hand, biologics, particularly anti‑TNFα drugs, are associated with infusion reactions and
a gradual loss of response due to the formation of anti‑drug antibodies [324,325]. Thus,
the emergence of other alternative treatment options is necessary [321].

TGF‑β is the master driver of intestinal fibrosis (Figure 5) by activating either Smad‑
dependent or Smad‑independent signaling pathways. In the Smad‑dependent pathway,
Smad2 and 3 are immediately phosphorylated by the TGF‑β receptor complex, which
then combines with Smad4, producing a complex that crosses the nucleus and induces
the transcription of the fibrosis genes, EMT process, and ECM deposition. Smad6 and
Smad7 can negatively regulate this stimulatory signaling by hindering the Smad2/3 phos‑
phorylation and promoting the degradation of the TGF‑β receptor. On the other hand, the
NF‑κβ, MAPK, and PI3K pathways, EMT, and the fibroblasts’ phenotype transformation
into myofibroblasts are activated by TGF‑β to induce fibrosis, independent of the Smad
pathway [326]. Additionally, the elevated pro‑inflammatory cytokine levels (TNF‑α, IL‑6,
IL‑1β, IL‑17, and interferon gamma ‑(IFNγ)) accompanied by the chronic inflammation
contribute to the induction of the NF‑κβ and MAPK pathways, myofibroblasts, collagen
synthesis, and MMPs and TIMPs imbalance [78].

The TGF‑β/Smad pathway and the downstream fibrostenosis can be targeted and at‑
tenuated by ASP, Calycosin, Troxerutin, Olive phenols, TFA, Boswellia and Scutellaria ex‑
tracts, Daikenchuto and Huangqi decoction. In particular, α‑SMA and ECM deposition, in‑
cluding collagen I and III, can be inhibited byGentianopsis paludosa, CE, Daikenchuto, Dan‑
hong injection, and Huangqi decoction. Regarding cytokines, ASP, Berberine, Nobiletin,
Olive phenols, TFA, Boswellia and Scutellaria extracts, CE, Ankaferd, and Daikenchuto
can markedly suppress their expression. ASP, Berberine, Nobiletin, TFA, Boswellia and
Scutellaria extracts, CE, and Huangqi decoction negatively regulate NF‑κβ signaling.

While Calycosin, Troxerutin, Olive phenols, and Scutellaria extracts can impede the
PI3K/Akt pathway, ASP, Calycosin, Troxerutin, Olive phenols, and Danhong injection
modulate the Nrf2/HO‑1 signaling, which is essential in quenching oxidative stress and
allowing for the tissue repair that is mediated by promoting the synthesis of antioxidant
genes [327]. In addition, Nobiletin enhances the expression of PPAR‑γ which has po‑
tent anti‑inflammatory and antifibrotic effects [223]. See Table 4 for all compounds and
their targets.
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Figure 5. An overview of role of TGFβ in the pathogenesis of intestinal fibrosis. Additionally,
ASP, Nobiletin, Olive phenols, TFA, and Huangqi decoction have an inhibitory effect on the MAPK
pathway. Abbreviations: Rat sarcoma‑small GTP‑ase—Ras, Raf‑1 proto‑oncogene—Raf, mitogen‑
activated protein kinase kinase‑1/2—MEK, extracellular signal‑regulated kinases—ERK, phos‑
phoinositide 3‑kinase—PI3K, mammalian target of rapamycin—mTOR, epithelial–mesenchymal
transition—EMT, phosphatase and tensin homolog—PTEN, tissue inhibitors metalloproteinases—
TIMP, matrix metalloproteinases—MMP, collagen typeI alpha1/2—Col1A1/2 (↑—increased;
↓—decreased).

The conductance of further clinical trials and the emergence of more drugs are im‑
perative with the increase in the number of cases worldwide [322]. We have shed light
on the clinical research trials registered in the ClinicalTrials.gov database over the last
5 years, including the inactive, ongoing and completed studies, as well as studies of un‑
known status. Most of the studies have focused on the diagnosis and the identification
of biomarkers implicated in the disease which, in turn, and from their perspective, push
further research towards the discovery of novel therapeutic targets and drugs. One of the
studies hypothesized that intestinal fibrosis can be triggered independently of inflamma‑
tion by microbiota dysbiosis. With respect to diagnosis, MRI, and PET using radioactive
tracers that inhibit fibroblast activation proteins are suggested to be the most advanced and
secure non‑invasive techniques with which to diagnose intestinal fibrosis. One study has
postulated that sirolimus, also known as rapamycin, a macrocyclic antibiotic with immuno‑
suppressive and antineoplastic characteristics, might serve as a promising rescue drug for
refractory CD patients with strictures or stenosis.
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Table 4. Overview of molecular targets modulated by phytochemicals. (↑—increased; ↓—decreased)

↓ TGF‑β/Smad ↓ NFκB/Cytokines ↓MARK ↓ PI3K/Akt ↓ β‑Catenin ↓ Collagen ↓ Vimentin

1. Asperuloside
2. Calycosin
3. Troxerutin
4. Nobiletin
5. Olive phenols
6. Total flavone of
Abelmoschus Manihot
7. Boswellia and
Scutellaria extracts
8. Daikenchuto
9. Huangqi decoction

1. Asperuloside
2. Berberine
3. Calycosin
4. Nobiletin
5. Troxerutin
6. Olive phenols
7. Total flavone of
Abelmoschus Manihot
8. Boswellia and
Scutellaria extracts
9. Flavonoid‑rich citrus extracts
10. Cinnamon extract

1. Asperuloside
2. Calycosin
3. Troxerutin
4. Olive phenols
5. Total flavone of
Abelmoschus Manihot

1. Calycosin
2. Troxerutin
3. Olive phenols

1. Calycosin

1. Asperuloside
2. Calycosin
3. Nobiletin
4. Troxerutin
5. Olive phenols
6. Total flavone of
Abelmoschus Manihot
7. Boswellia and
Scutellaria extracts
8. Gentianopsis paludosa
9. Cinnamon extract
10. Daikenchuto

1. Asperuloside
2. Total flavone of
Abelmoschus Manihot

↓ N‑Cadherin ↑ E‑Cadherin ↑ Smad7 ↓ TIMP ↑MMP ↑ IL‑10 ↑ Nrf2/HO‑1

1. Asperuloside
2. Total flavone of
Abelmoschus Manihot

1. Asperuloside
2. Total flavone of
Abelmoschus Manihot
3. Troxerutin
4. Nobiletin
5. Gentianopsis paludosa

1. Calycosin
2. Boswellia and
Scutellaria extracts

1. Calycosin
2. Total flavone of
Abelmoschus Manihot

1. Asperuloside

1. Asperuloside
2. Berberine
3. Troxerutin
4. Olive phenols
5. Total flavone of
Abelmoschus Manihot
6. Boswellia and
Scutellaria extracts

1. Asperuloside
2. Calycosin
3. Troxerutin
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To this end, clinical studies on intestinal fibrosis therapy are notably insufficient. In
addition to the adverse effects and resistance to the standard drugs, all of the studies note
that the identification of other therapeutic options is inevitable. In this context, research
studies on phytochemicals displaying antioxidant, anti‑inflammatory, and anti‑fibrotic
properties may address the lack of effective treatments and potentially provide an alter‑
native therapeutic approach to the development of effective and safe intestinal fibrosis
drugs that can be administered as adjunctive therapy to existing medications so as to syn‑
ergize their actions and overcome the loss of response. For clinical practice, still further
in‑depth studies about phytochemical drug candidates are essential to clinically validate
safety and efficacy, standardize effective therapeutic doses, and enhance bioavailability
and pharmaceutical formulations. Meanwhile, reliable biomarkers are required to diag‑
nose and detect patients’ responses to treatment. On a cautionary note, while phytochemi‑
cals are often regarded as safer alternatives to conventional treatments due to their natural
origins, herb‑induced liver injury (HILI) remains a significant concern, particularly when
exploring their therapeutic potential in conditions such as intestinal fibrosis. The liver, as
the primary site for metabolizing these compounds, is especially susceptible to toxicity, es‑
pecially when the mechanisms of action or interactions with other medications are not fully
understood. A recent systematic review and meta‑analysis provides a detailed discussion
of the various phytochemicals linked to HILI [328]. In the context of intestinal fibrosis,
the anti‑inflammatory and antioxidant properties of some phytochemicals hold promise.
However, the risk of HILI must be carefully monitored to ensure that the benefits of using
herbal remedies do not outweigh the potential for liver damage.

11. Conclusions
In conclusion, intestinal fibrosis is a common and severe complication of inflamma‑

tory bowel disease (IBD), characterized by excessive fibrous tissue accumulation that leads
to bowel obstruction, strictures, and often necessitates surgical intervention. Despite ad‑
vances in understanding the complex pathogenesis of fibrosis, which involves fibroblast
activation, immune cell infiltration, and dysregulation of signaling pathways such as TGF‑
β and Wnt, no antifibrotic therapies have been approved, leaving patients with limited
treatment options that focus on symptom management rather than halting disease pro‑
gression. The exploration of phytochemicals, bioactive compounds derived from plants,
has emerged as a promising avenue for addressing this therapeutic gap. These compounds
have demonstrated potential in modulating fibrosis‑related pathways, such as inflamma‑
tion and oxidative stress, with potentially fewer side effects than synthetic drugs. Al‑
though still in early research stages, phytochemical‑based therapies hold promise for more
effective and safer treatment options, and further research to validate their efficacy in
clinical settings could lead to innovative approaches for managing intestinal fibrosis in
IBD patients.

12. Future Perspectives
The future perspectives highlighted in this review on phytochemicals as potential

treatments for intestinal fibrosis in inflammatory bowel disease (IBD) reveal several promis‑
ing avenues. Phytochemicals, like Asperuloside, Berberine, and Calycosin, have demon‑
strated anti‑inflammatory, antioxidant, and antifibrotic effects in preclinical models, of‑
fering potential alternatives or supplements to traditional therapies. Moving forward, re‑
search should focus on translating these findings into clinical trials to evaluate the safety,
efficacy, and therapeutic potential of these compounds in human IBD patients. Addition‑
ally, a deeper understanding of the molecular mechanisms by which these phytochemicals
influence fibrosis pathways, such as the TGF‑β/Smad and NFκB signaling, could uncover
new therapeutic targets. Integrating phytochemicals into the management of fibrosis may
help address the unmet clinical need for effective antifibrotic treatments.
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