
UC Davis
IDAV Publications

Title
Deploying Web-based Visual Exploration Tools on the Grid

Permalink
https://escholarship.org/uc/item/7158d9fj

Journal
IEEE Computer Graphics and Applications, 23

Authors
Jankun-Kelly, T. J.
Kreylos, Oliver
Shalf, John M.
et al.

Publication Date
2003
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7158d9fj
https://escholarship.org/uc/item/7158d9fj#author
https://escholarship.org
http://www.cdlib.org/


Deploying Web-based Visual Exploration Tools on the Grid

T.J. Jankun-Kelly∗ Oliver Kreylos∗ John Shalf† Kwan-Liu Ma∗

Bernd Hamann∗ Kenneth I. Joy∗ E. Wes Bethel†

Abstract

We discuss a web-based portal for the exploration, encapsulation,
and dissemination of visualization results over the Grid. This portal
integrates three components: an interface client for structured visu-
alization exploration, a visualization web application to manage the
generation and capture of the visualization results, and a centralized
portal application server to access and manage grid resources. Our
approach uses standard web technologies to make the system acces-
sible with minimal user setup. We demonstrate the usefulness of the
developed system using an example for Adaptive Mesh Refinement
(AMR) data visualization.

Keywords: scientific visualization, grid-based computing, world-
wide web, visualization interfaces, adaptive mesh refinement

Introduction

The easy access to low-cost, high-performance, network-aware
computers has had a great impact on the way scientists conduct their
research. Their productivity has improved but they are burdened by
the increasing size of data being generated. Visualization is an ef-
fective and economical means to explore and communicate with the
data and insight obtained in scientific studies. However, due to the
size of the generated data, the scientists, their data, and the visual-
ization software are often located on different machines—machines
potentially located at geographically distributed locations. Grid-
based computing solves some of these problems by managing ac-
cess and utilization of these different resources. This management,
however, is not centralized. Thus, to effectively use grid resources,
a central access point is needed. This access point manages the re-
sources, provides a visual means to explore the data, and records
these exploration for further investigation and dissemination. This
article describes such a system being developed jointly by the Uni-
versity of California, Davis, and the Lawrence Berkeley National
Laboratory (LBNL).

The centralized system acts as a “portal” into grid-enabled vi-
sualization systems. The portal presents a unified interface to the
distributed resources via a central application server. The applica-
tion server communicates with services on the Grid in response to
request made by users utilizing the portal. Thus, the portal hides the
complexity of grid security and job-launching mechanisms. Scien-
tists utilizing the portal focus on the important task of extracting
insight from their data via visualization instead of worrying about
the ancillary tasks of data and process management.

Scientists at LBNL and their collaborators require access to the
portal world-wide. The computing environments available to these
scientists run the gamut of hardware, operating systems, and in-
stalled software. To support uniform access to the portal, the por-
tal’s interface is entirely web-based. Authenticated users only need

∗Visualization and Graphics Research Group, Center for Im-
age Processing and Integrated Computing, Department of Computer
Science, University of California, Davis, CA 95616. E-mail:
{kelly,kreylos,ma,hamann,joy }@cs.ucdavis.edu

†Visualization Group, Lawrence Berkeley National Laboratory, Berke-
ley, CA 94720. E-mail:{jshalf,ewbethel }@lbl.gov

a standards-compliant web browser to visually explore their data
from anywhere in the world. The impetus for this design decision
and its consequences are discussed elsewhere in this article.

A central service the portal provides is a web-based interface for
the exploration and encapsulation of visualization data. A struc-
tured visualization interface provides an efficient means to inter-
act with scientific data. The encapsulation of the process allows a
user to reproduce the visualization results for validation or to ex-
tend those results by continuing data exploration. In this article,
we discuss the integration of the grid-enabled visualization por-
tal/application server, the visualization web application which per-
forms the visualization session management, and the web-based in-
terface, using an implementation for the visualization of Adaptive
Mesh Refinement data—the AMRWebSheet—as an example.

Grid-based Portals

A portal is a single point of presence (typically hosted on the web)
that provides centralized access to widely distributed collections of
information or services. The portal organizes this information in
such a way that its complexity and location are abstracted away
and hidden from the user. Another aspect of portal technology is
that it provides location-independent access to state-information. It
does not matter where you are, when you login to the URL of the
portal’s interface, you get access to the same view of your personal-
ized environment and data (e.g. your email). Yahoo! and HotMail
are typical consumer-oriented examples of this capability and are
in fact the originators of this new meaning for the term “portal”.

Grid portals extend the portal paradigm to organize and man-
age widely distributed computing resources, software components,
and services that support collaboration among the people that
form a Grid “virtual organization.” Many virtual collaboratory
and distributed application developers have turned to grid por-
tals as the primary way of hiding the complexity of distributed
applications under a single interface. Consequently, a number
of portal development toolkits have emerged including the SDSC
GridPort (http://gridport.npaci.edu/), the Grid Portal Development
Kit (http://www-itg.lbl.gov/grid/projects/GPDK/) and GridSphere
(http://www.ascportal.org/, see [1]).

Portal interfaces need not be web-based, but web portals have
been widely adopted by the Grid community. This is in part due to
the ability to leverage the wide variety of robust development tools,
components, and platforms that have already been developed for
e-commerce servers. Also, given the ubiquitous availability of the
web platform and the comparatively uniform cross-platform pro-
gramming model it offers for the client UI, it makes an attractive
platform for a widely-deployed client interface to Grid services.
Furthermore, it requires essentially no custom software installation
for the scientists who use the service (a task that many are loath to
perform and would otherwise limit acceptance of the tool).

We regard the spreadsheet approach as an excellent match for the
interaction modality of the web. Spreadsheets are immediately able
to capitalize on the HTML table display paradigm as well as the use
of hyperlinks to drill down into information content. Such an inter-
face will be particularly amenable to integration with other ongoing
portal development efforts throughout the Grid community.



Related Web and Grid-based
Visualization Work

Web-based control of visualizations using the Grid combines
research in two active areas: Web-based visualization sys-
tems and distributed visualization in grid-like environments.
Though there has been limited interaction between these
fields before, most previous research has focused on only
one them.

Ang [1] described one of the first web-based visualization
systems. In Ang’s system, visualization results are displayed
within a web page using an embedded application (an ap-
plet); the results are controlled using a launched application
on the client side. This launched application communicates
with the visualization server to request rendering; the visual-
ization server then communicates with the applet to display
the result.

Wood [2] generalized Ang’s approach to discuss four dif-
ferent compositions of Web-based visualization. In their first
scenario, only images are sent to the client with no user in-
teraction with the visualization. Their second scenario allows
a user to manipulate the result (for example, interaction with
a VRML model), but a user cannot change the visualization
parameters. The next scenario supports full control of the
visualization—including the type of visualization performed—
but requires significant resources on the client side. Their
last scenario, and the one implemented by Wood and Ang,
supports web-based interaction for controlling the parame-
ters and the visualization type performed without requiring a
significant client installation—in Wood’s case, parameters for
IRIS Explorer we sent by the client while VRML (in one of
its first web visualization usages) was sent back. The ma-
jority of subsequent web-based visualizations follow this last
approach, using an applet to allow interaction with the visual-
ization. Our web interface combines aspects of the first and
last scenario: only images are ever sent to the client, but
client interaction with the web page causes updates to the
visualization process.

Lefer [3] and Bajaj et al. [4] have implemented a web-based
interface to distributed or grid-based visualization systems.
Lefer’s visualization system dynamically and transparently
shares the processing load on a local-area network (LAN).
Another interesting property of Lefer’s approach is that inter-
action with the visualization system is done entirely through
HTML-based forms—no external applet is needed. We use
an all-HTML approach as well, but augment it with enhanced
interaction via JavaScript. This approach eliminates the need
for HTML forms by allowing the JavaScript events to invoke
actions on the visualization server. Bajaj and Cutchin’s work
[4], unlike the previous approaches mentioned, also coordi-
nates the users, distributed resources, and the utilization of
those resources. This coordination is in addition to the co-
ordination of the visualization. Our web interface does not
manage the grid resources; this task is handled by the un-
derlying visualization portal as a whole.

Visualization utilizing grid-resources that do not involve
web-based interfaces have also been investigated. Three
representative examples are presented. GridMapper [5] ad-
dresses the problem of determining the performance of grid
computations by collating and visualizing this distributed in-
formation. This information is dynamically gathered from
the sites performing the computation on the Grid. TeraVi-
sion [6] allows users to seamlessly present and interact with
graphics—such as visualizations—over the AccessGrid. Fi-
nally, Cactus [7] is a grid-based, computational astrophysics
framework that incorporates various visualization methods:
a web-based slice viewer of the simulation volumes created
at each node, a remote isosurfacer (with the isosurface cal-
culated locally at each compute source and rendered else-
where), and Visapult, an image-based rendering volume ren-
derer (as described elsewhere in this issue). Each of these
approaches (except the web-interface for Cactus) require a
“thick-client” installation to perform the visualization. In other
words, for any particular remote user, their platform and sys-
tem capabilities must be determined before the appropri-
ate grid visualization client for this system can be installed
and launched—if an appropriate version exists. Our ap-
proach eliminates the need for a thick-client by using a web-
browser—assumed to be installed on the user’s system—to
perform the visualization.

References

[1] C. S. Ang, D. C. Martin, and M. D. Doyle. Integrated control of distributed
volume visualization through the world-wide-web. In R. D. Bergeron and
A. E. Kaufman, editors, Proceedings of the IEEE Conference on Visual-
ization 1994 (Vis’94), pages 13–20. IEEE Computer Society Press, Los
Alamitos, CA, October 17–21 1994.

[2] J. Wood, K. Brodlie, and H. Wright. Visualization over the world wide web
and its application to environmental data. In R. Yagel and G. M. Nielson,
editors, Proceedings of the IEEE Conference on Visualization 1996 (Vis
’96), pages 81–86, 470. IEEE Computer Society Press, Los Alamitos, CA,
1996.

[3] W. Lefer. A distributed architecture for a web-based visualization service.
In D. Bartz, editor, Proceedings of the Ninth Eurographics Workshop on
Visualization in Scientific Computing. 1998.

[4] C. Bajaj and S. Cutchin. Web based collaborative visualization of dis-
tributed and parallel simulation. In J. Ahrens, A. Chalmers, and H.-W.
Shen, editors, Proceedings of the 1999 IEEE Parallel Visualization and
Graphics Symposium (PVG’99), pages 47–54. IEEE Computer Society
Press, Los Alamitos, CA, October 25–26 1999.

[5] W. Allcock, J. Bester, J. Bresnahan, I. Foster, J. Gawor, J. A. Insley, J. M.
Link, , and M. E. Papka. GridMapper: A tool for visualizing the behavior
of large-scale distributed systems. In Proceedings of High Performance
Distributed Computing. 2002.

[6] J. Leigh, J. Girado, R. Singh, A. Johnson, K. Park, and T. A. De-
Fanti. TeraVision: a platform and software independent solution for
real time display distribution in advanced collaborative environments.
In Proceedings of the Access Grid Retreat, 2002. 2002. http://www-
fp.mcs.anl.gov/fl/accessgrid/ag-retreat-2002/proceedings/leigh-tera.pdf.

[7] G. Allen, T. Goodale, G. Lanfermann, T. Radke, E. Seidel, W. Benger, H.-
C. Hege, A. Merzky, J. Masso, and J. Shalf. Solving Einstein’s equations
on supercomputers. IEEE Computer , 32, 1999.

Portal for Web-based Visualization
Exploration and Encapsulation

The system we are developing for web-based visual data explo-
ration over the grid consists of three major components: a web-
based user interface to grid-enabled visualization services, a visu-
alization web application which tracks the exploration of visual-

ization results, and the portal application server that manages and
coordinates the authentication for and use of grid resources (includ-
ing the interface, web application, and volume renderer). The ap-
plication server (the VisPortal) uses established grid technologies
to handle user and resource management (such as data transport).
Once authenticated, a new visualization exploration session is ini-
tialized by the web application; the web application (also called a
servlet) is a program on the web server that communicates with the



client via HTTP (the Hypertext Transfer Protocol—the protocol for
the World-Wide Web). In our case, the servlet maintains the visu-
alization session state. After the visualization session is initialized,
the web-based visualization interface is loaded in the client’s web
browser. As the visualization session progresses, the visualization
results and the relationships between those results are stored by the
web application for later examination. Finally, when the user is fin-
ished visualizing their data, the session is closed. The user can then
initialize another session or re-examine previous explorations. We
explain the interplay between the interface and the web application
next.

Web-based Sheet-like Interface for Visualization

Our web interface implements an entirely web-based version of the
visualization exploration sheet-like interface discussed in [2]. The
original spreadsheet-like interface (the VisSheet, for short) was de-
signed to assist visualization exploration by providing context for
where a user is in their exploration, where they have been, and sug-
gesting where they may go next. The VisSheet handles these tasks
by providing a movable, scalable window into the visualization pa-
rameter space. By manipulating the visualization parameters, the
user changes the position and size of this window. Only two vi-
sualization parameters are displayed at a time: one along the rows
and another along the columns. For the non-displayed parameters,
a set of default values is maintained that may be updated at run-
time. Parameter values are rendered as glyphs. Cells—representing
a combination of the row, column, and default parameter values—
display the visualization results. By changing the default values for
non-displayed parameters or which parameters are displayed along
the rows or columns, the window can be moved in the visualization
space. Thus, the data exploration process becomes the process of
manipulating the spreadsheet window through visualization space.

Our sheet-like web interface shares many characteristics with the
VisSheet. The interface refines the initial VisSheet design to allow
a user to easily modify default and displayed parameters via the de-
fault parameter bar and drop-down row and column parameter lists
(Figure 1). The default bar assists in the identification of parameter
values and their corresponding results: the parameters are always
the parameters belonging to a cell’s row and column, combined
with the default values for the other parameters in the default bar.
Interaction with the tabular display remains essentially unchanged:
users can add, edit, or remove parameter values; render or view a
cell’s image; and apply parameter and value operators to generate
new rows, columns, or cells. The implementations of these two
systems, however, differ significantly.

Design considerations for our web interface required several
modifications to the original VisSheet. Due to the wide range of
platforms scientists can use to access the web interface, a platform-
independent solution was desired. However, the software environ-
ment of each user is unlikely to be the same, and the difficulty
in remotely installing or the unavailability of plug-ins for certain
environments meant that Macromedia’s Flash or Sun’s Java could
not be used. For example, the incompatibilities of Java on dif-
ferent platforms or between different versions make it difficult to
use in a robust client setting. The only assumption we made was
that a user possesses a standards-compliant web browser with EC-
MAScript/JavaScript and cookie support. No permanent state can
be stored on the client machine. This limitation is again due to
the wide variety of potential platforms for portal users: some may
be unable to store such state. By keeping state in a centralized,
web-accessible location, visualization sessions can be re-examined
by the same user in different locations without loss of information.
Due to these constraints, the interface is a web-based and not a
single-user, network-unaware Java application like the VisSheet.

There are several consequences resulting from our web interface

Figure 1: The AMRWebSheet interface, an example of our web in-
terface to grid-based visualizations. The interface consists of three
major areas: The default parameter bar that displays and allows
the modification of the default parameter values; the displayed row
and column parameter drop-down lists; and the tabular result dis-
play. The first two components are used to change the location of
the tabular window in visualization parameter space while the last
component is used to request the rendering of new results.

design. First, interactivity partially suffers in comparison to the
VisSheet. The VisSheet uses the Java Foundation Classes (JFC)
for its user interface (UI). The JFC supports a rich set of user in-
terface elements and customizability. In contrast, the interface el-
ements offered by HTML are limited: only checkboxes, radio but-
ton, push-buttons, lists, menus, and text fields/areas are supported
with little customizability. The use of JavaScript overcomes many
of these limitations by allowing different portions of the HTML
page to react to mouse events. For example, JavaScript can de-
tect a user dragging the mouse in the view position editor of the
AMRWebSheet; the resulting event causes the client to update the
corresponding parameter display. Interactivity is still impacted—
HTML cannot be used to render glyph icons representing the pa-
rameter values in a drop-down list for the default parameter bar, for
example (again, JavaScript is used). The complexity of implement-
ing interface interaction is also increased in comparison to the Vis-
Sheet implementation—the JFC provides more functionality built-
in compared to raw JavaScript. Finally, our web interface cannot
query any significant information about a client’s machine. Meth-
ods exist to extract the client’s browser information or to download
a single file off of the client machine at a time, but such transfers are
not optimized for the large data set sizes common in visualization
applications.



VisPortal

AMRWebSheet

Portal Application
Server

Visualization
Web Application

The Grid
Logon, Transfer Data, 
Start Visualization

Request result

Launch, Update

Launch 
Visualization 
Session

Authenticate, Transfer Data

Transfer 
Data

Request result

Return Result
AMR Renderer

Web Browser

Figure 2: The VisPortal/AMRWebSheet architecture. Elements within the blue box represent web pages that the user interacts with, green
boxes represent web servers, and the other nodes represent grid-accessible resources. Dashed lines are HTTP/HTTPS connections for HTML
and images (for the client) and connection requests (for the server), and solid lines are TCP connections. A line’s label indicates the action
performed over that link; for bidirectional connections, the top label corresponds to actions initiated from the left entity while the bottom
label corresponds to actions initiated from the right entity. Note that the AMR renderer can be located anywhere on the Grid—the VisPortal
initializes the connection between the renderer and the visualization web application when a visualization is first requested.

Web-based Encapsulation of Visualizations

The web-based visualization interface structures the visualization
exploration process. The visualization web application server cap-
tures this process. By capturing the process, we ensure that the
visualization results generated, and the relationships between those
results, are not lost when the visualization session ends. To record
the visualization process, a formal model of the visualization ex-
ploration process is used (see the Visualization Exploration Model
Sidebar, page 5). As each requested image is rendered, the corre-
sponding visualization session result is stored by the web applica-
tion server. Thus, at the end of a session, all the rendered images,
the parameter value sets (p-sets) used for creating that image, when
that image was generated, and that image’s relation to previous im-
ages are available for later use.

The visualization web application is the entry point to our web
interface. When loaded from the portal, the servlet provides a user
with two options: the user may start a new visualization session or
view previous sessions. When the user chooses to start a new ses-
sion, another servlet, the UI servlet, is loaded to handle interactions
with the visualization UI. As the user requests images or adds, ed-
its, or removes parameter values, the underlying JavaScript sends
HTTP requests to this servlet. The servlet then processes the re-
quests, contacting the rendering server if needed, and updates the
visualization session and the client. The UI servlet represents the
state of the UI; our web interface web page presents the view of this
state.

If a user chooses to examine previous sessions, the session
servlet is loaded. Initially, a list of all the previous explorations,
sorted by date, is presented to the user. The list supports three ac-
tions. A user can re-load a previous session in our web interface by
clicking on its corresponding link. New results can be added to this
session; when the session terminates, these results will be stored
along with the old session information. This capability is crucial to
the VisPortal—scientists must be able to distribute their work over
time as well as over space.

The second service the session servlet supports is the viewing
of previous sessions. By selecting the “View as HTML” option,
the user initiates the generation of an HTML page that summarizes
the corresponding visualization session. Each result, the parameters
corresponding to that result, and the parent and child results for that
result are all part of the HTML page. The HTML page serves as an

overview of a previous visualization session and as documentation
of that session. First, the web page fully documents the visualiza-
tion process as it completely describes the information captured by
the visualization process model. Second, users are allowed to add
or edit annotations of results. These annotations are stored on the
web application server for others to access. Scientists can use these
annotations to flag certain results as “interesting” to collaborators.

The session servlet also allows a user to view an overview graph
of a visualization. While the HTML session document describes
the visualization in detail, it is difficult to obtain a sense of the vi-
sualization “at-a-glance.” By selecting the “View Overview Graph”
option from the session list, the servlet generates a graph depicting
the results and various relationships between the results. The user
chooses a “visualization metric” that determines how the graph is
displayed. All the graphs use a new radial focus+context visualiza-
tion technique. In this technique, the radial distance from the center
node to another node represents the distance of that node’s result p-
sets from the center result’s p-set according to the chosen metric; as
the distance increases, the size of the node and its radial separation
decreases in order to allow the system to display all results simulta-
neously. Example metrics include those that measure how a result
was derived from another result (a directed edge only exists if the
first result derives the second) and those that measure the temporal
distance of the result (a directed edge only exists if the first result
was rendered immediately before the second result). Different met-
rics and the HTML session view provide means of understanding
what occurred during a visualization session.

Application Domain: Web-based AMR
Data Visualization

The web interface and visualization web application we have de-
scribed can be applied to a variety of scientific visualization prob-
lems. Of particular interest to scientists at LBNL is the visualization
of Adaptive Mesh Refinement (AMR) data. This section discusses a
specific implementation of our grid-enabled, web-based visualiza-
tion system for the exploration of AMR data—the AMRWebSheet.

Many of the most challenging problems in numerical modeling
involve meshes with huge ratios of scale. For instance, when mod-
eling a fuel injection system of an automobile, one must model the
fluid dynamics of the 30µm orifice of the injector as well as the dy-



Visualization Exploration Process Model

The visualization process for both information and scientific
visualization is an iterative sequence of user-applied trans-
formations from data to view [1, 2, 3]. The fundamental op-
eration that occurs during the visualization process is the for-
mation of parameter value sets to derive visualization results.
These parameter value sets, or p-sets, posses a parameter
value for each parameter in a visualization transform—the
function that performs the mapping of data to visual primi-
tives. When applied to a visualization transform, a p-set cor-
responds to a rendered result. In [4], a model of the visu-
alization process based upon a parameter derivation calcu-
lus is described. The calculus defines how p-sets—and thus
the results rendered from them—are derived from previous
p-sets. New p-sets are created by user interaction with the
visualization system in one of three ways:

• Parameter Application. Parameter values from a p-set
are applied to another p-set to generate a new p-set.
Example: A new color map replaces an old color map in
a previously generated p-set/result in order to render a
new result from the new p-set.

• Parameter Range Sweep. A single parameter value is
interactively manipulated over a range between an initial
and final p-set. Example: A range of view positions is
generated by dragging a mouse pointer in the render
window.

• Function Parameter Generation. A function/operator
generates a set of parameter values to be used in a p-
set. Example: A new opacity map is created by apply-
ing a set union operator to two previously used opacity
maps.

In the AMRWebSheet, only two types of parameter deriva-
tions are used: parameter application and function parame-
ter generation. When a cell is rendered, the parameters for
that cell are collected in a p-set; this process corresponds
to a parameter application of the new parameter values to
the p-set from the last generated result. Function parameter

generation occurs when an operator is applied in the AMR-
WebSheet to generate new parameter values.

The parameter derivation calculus is the basis for record-
ing a visualization exploration session. Formally, a visualiza-
tion session consists of a set of visualization session results.
A visualization session result contains a p-set, the visualiza-
tion result derived from the p-set, a timestamp to place the
result in temporal context, and a parameter derivation cal-
culus instance detailing how the result was derived. Each
session result represents the generation of a single visual-
ization result. However, as more than one result can be gen-
erated in a single user action—e.g. when applying a param-
eter operator—multiple session results can share the same
timestamp. For each visualization result (an image), the AM-
RWebSheet stores its corresponding visualization session re-
sult (information about that image). This approach differs
from previous web-based collaborative visualization work [5]
where only parameters for particular visualizations and their
position in a tree of parameter snap-shots are stored for fu-
ture collaboration. In our system, the complete exploration
and derivation information (encapsulated in session results)
is stored as an XML document on the portal for later access
and re-exploration.

References

[1] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in Information
Visualization: Using Vision to Think . Morgan Kaufmann Publishers, 1999.

[2] C. Upson, T. A. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The application visualization
system: A computational environment for scientific visualization. IEEE
Computer Graphics and Applications, 9(4):30–42, 1989.

[3] R. B. Haber and D. A. McNabb. Visualization idioms: A conceptual mod-
el for scientific visualization systems. In G. Nielson and B. Shriver, edi-
tors, Visualization in Scientific Computing. IEEE Computer Society Press,
1990.

[4] T. J. Jankun-Kelly, K.-L. Ma, and M. Gertz. A model for the visualization
exploration process. In R. J. Moorhead, M. Gross, and K. I. Joy, editors,
Proceedings of the IEEE Conference on Visualization 2002 (Vis ’02). IEEE
Computer Science Press, Los Alamitos, CA, 2002.

[5] K. Brodlie, S. Lovegrove, and J. Wood. Harnessing the web for scientific
visualization. Computer Graphics, 34(1), February 2000.

namics of fuel-air mixing in a cylinder chamber that is 10 cm long
or more. Cosmologists investigating the structure of the universe
require simulations that model the formation of large-scale struc-
tures (superclusters) consisting of “clusters of clusters of galax-
ies.” These simulations resolve relevant features down to individual
stars. A typical finite-difference or finite-element simulation cov-
ers the entire domain with a uniform mesh of cells, the smallest
of which must be less than half the size of the smallest structure
being modeled1. Given the huge ratio of scale in these structures,
it would be impossible to span this range of spatial scales without
using impractically large meshes.

AMR techniques for finite-difference codes use “refinement cri-
teria” that create higher-resolution meshes only in areas they are
needed. For instance, large-scale structures of the superclusters in
the cosmology example are relatively compact; it would be a waste
to model the uninteresting events in the voids using the same mesh
resolution as that used for the events that occur in the dense re-
gions. With current methods, the refined meshes must be an even
multiple of the size of the parent meshes on which they are placed.
Furthermore, refined regions themselves may be refined in a re-
cursive process that can descend through many levels of resolution.

1For second- or higher-order methods, the cell size must be even smaller.

The cosmology simulations of Mike Norman, Greg Bryan, and Tom
Abel [3] that modeled the formation of the first stars in the universe
require 27 levels of refinement, covering an eight-billion-to-one ra-
tio of scale using a fraction of the memory required for a uniform
mesh. Starting with a1283 base mesh for the AMR simulation, an
equivalent simulation on a uniform mesh would require at least a
1036 element uniform mesh. AMR makes these extreme problems
tractable for today’s supercomputers, but they also pose significant
challenges for visualization researchers.

AMR data structures do not fit into any of the traditional data
structures that are used in modern visualization techniques and sys-
tems [4]. Sampling AMR data onto uniform meshes results in the
same data handling problems that motivated the development of
AMR in the first place. Näıve conversion of AMR data to finite-
element data structures composed of hexahedral cells requires us
to use memory-inefficient data structures with comparatively in-
efficient visualization algorithms. Furthermore, “dangling nodes”
at the interfaces at the coarse-fine mesh boundaries can occur and
cause “cracks.” Finally, direct application of finite-difference tech-
niques to an AMR hierarchy leads to visual artifacts at the coarse-
fine boundaries as well as significant data management issues—a
typical desktop system cannot process these deep hierarchies inter-



actively. Consequently, there are few visualization algorithms that
can be directly applied to hierarchical meshes, and essentially no
off-the-shelf commercial software is available for visualizing AMR
data. It is critically important to develop the tools and techniques
necessary to navigate data sets with huge ratios of scale in a simple
and widely accessible manner.

Given the growing interest in AMR simulation and the need for
scalable systems supporting the remote visualization of the data,
we have developed a parallel multiprocessor hardware accelerated
volume renderer for AMR data (for more information on the ac-
tual AMR volume rendering, see the sidebar on page 7). Since the
majority of LBNL visualization users are off-site and have compar-
atively smaller resources at their disposal, we created a client-server
architecture so that the entire system is accessible over the Grid us-
ing a traditional client interface. The goal of the AMRWebSheet
project is to extend access to this parallel rendering back-end us-
ing an entirely web-based Grid portal interface that is suitable for
embedding in many emerging web-based co-laboratories.

Architecture

Figure 2 summarizes the VisPortal/AMRWebSheet architecture.
The AMRWebSheet interface and web application are implemented
in a flexible visualization exploration and encapsulation framework.
The framework, implemented in Python (http://www.python.org/),
consists of a series of objects that manage visualization sessions
and a visualization UI’s interactions with the sessions. Visualiza-
tion session, transform, parameter, result, and derivation objects ex-
ist within the framework to capture the information described in the
visualization exploration process model. A view object exists to
represent the interactions between visualization UIs and the visual-
ization session in a platform independent manner. Other UI and UI
toolkit-independent objects representing general visualization ex-
ploration spreadsheet views and state also exist within the frame-
work. These later classes are used as the basis for different imple-
mentations of the VisSheet. One implementation recreates the orig-
inal VisSheet as a Java application using Jython (the Java version
of Python) to communicate between the framework and the Java
classes. The servlet application uses the framework to implement
the AMRWebSheet. A Java applet that combines the properties of
both approaches has also been created.

The web application servlets that manage visualization sessions
are implemented in Python using the Webware web application en-
vironment (http://webware.sourceforge.net/). We use the Apache
web server, running under Linux. A group of servlets create, pro-
cess, and store sessions. When a client connects, a new session—
identified by a temporary cookie—is created in addition to servlet-
persistent objects. Whenever a user interacts with the generated
HTML interface—the AMRWebSheet—HTTP requests are com-
municated to the interface servlet indicating that the behavior fired.
This request in turn modifies the visualization session state. When
the client needs to be updated—e.g., after result generation—a
server-initiated refresh is performed to display the new informa-
tion. Finally, when a session terminates or expires due to inactivity,
the session results are encoded as an XML document on the web
application server for later retrieval as described previously.

The web application server handles all communication between
the AMR volume renderer and the AMRWebSheet. When the AM-
RWebSheet requests a result, a visualization transformation class
instance on the web application requests the corresponding result
from the volume rendering server. This communication is enabled
by a pure Python implementation of the AMR volume renderer’s
client-server protocol. When the corresponding result is returned
by the volume renderer, a copy is stored by the web application in
order to store the visualization session result. This result is then
displayed by forcing a refresh on the client’s web browser.

Access to the visualization interface is handled by the en-
compassing VisPortal. The VisPortal provides a single point
of access to launch and control all of the components of this
distributed tool. The architecture of the VisPortal is based
on the Grid Portal Development Kit (GPDK, http://www-
itg.lbl.gov/grid/projects/GPDK/) that uses the Java Com-
modity Grid (CoG) toolkit (http://www.globus.org/cog/java/)
in conjunction with an Open Source Java Server Pages ap-
plication server (Tomcat: http://jakarta.apache.org/tomcat/).
Users authenticate to the portal using the MyProxyServer
(http://www.ncsa.uiuc.edu/Divisions/ACES/MyProxy/) to supply
their X.509 delegated credentials in a secure fashion.

The Grid Security Infrastructure (GSI) X.509 credentials make
it possible for the portal application server to transfer files, launch
jobs, and otherwise access any Globus grid services on remote hosts
on the user’s behalf using only a single login. From the stand-
point of the user, the portal hides a complex application launch-
ing mechanism for a multi-component distributed application. In
the case of a thick-client application, the portal launches a paral-
lel computing component using the Globus GRAM, brokers a di-
rect socket connection between this computing component and a
high-performance back-end data source like a running simulation
code. It then launches the thick-client through the web-browser
using appropriate MIME-type definitions. The thick-client in turn
connects back to the remotely located parallel visualization compo-
nent, thereby completing the distributed visualization application.
This entire elaborate launching procedure is hidden entirely from
the user by the portal client interface. The user simply selects re-
motely located data and presses a button to start the visualization
application.

The AMRWebSheet supports an even simpler launching mech-
anism whereby the back-end is simply started using the GRAM
on the resource that contains the data set. The back-end connects
directly to the Python visualization web application. The server
makes requests of the back-end and then formats the output images
appropriately for the HTML interface presented in the user’s web-
browser. If the back-end is located on a Silicon Graphics machine,
the it can employ hardware-assisted off-screen rendering using In-
finite Reality Engine pipes. If the back-end host is a cluster or dis-
tributed memory computing architecture, it can employ the parallel
software rendering back-end. Again, the complexity of grid archi-
tecture and distributed applications is hidden from the user by the
portal client interface.

The performance of the AMRWebSheet depends on three major
factors: the performance of the AMR volume renderer, the perfor-
mance of the visualization application server, and the performance
of the user’s web browser. Variance in network traffic between the
renderer, application server, and client can also effect performance.
Table 1 provides performance measures for the elements under our
control: the volume renderer and the application server. In this ex-
ample, an AMR data set consisting of 501 timesteps and 640× 256
× 256 cells at the finest level was used. Performance was measured
in seconds for three different hierarchy levels (0 being the coarsest
and 2 being the finest) using an 800x600 pixel image as our output.
Two sets of performance data were collected: one for the initial
loading of the data set (which requires the hardware textures on the
SGI Onyx3400 renderer to be initialized), and one for pre-loaded
data (and pre-generated textures). As the table shows, the rendering
time does depend on the maximum level rendered while the appli-
cation server processing time is nearly constant. This result is to
be expected since the application server only processes completed
images, which do not depend significantly on the rendered hierar-
chy level. It is important to note that processing on the application
server only occurs once: when a result is initially rendered. Subse-
quent requests for the same image (such as when the HTML page
is refreshed to add other new images) are either cached by the web-



AMR Volume Rendering

The current rendering back-end for AMR data is a hardware-
assisted 3D texture-based parallel volume renderer [1]. AMR
hierarchies are typically highly irregular and cannot be ren-
dered directly using graphics hardware’s texture mapping ca-
pabilities (Figure 1). Instead, a given AMR hierarchy has
to be homogenized, i.e., it has to be transformed into a set
of non-overlapping rectangular grids with acyclic visibility or-
der for any viewing direction. This process generally in-
volves removing parts of lower-resolution grids that are over-
layed by higher-resolution grids, and splitting of the resulting
non-convex grid regions into rectangular grid patches. Our
method uses a tree-based approach, in a k-d tree covering
the entire domain of an AMR data set is refined as AMR grids
are inserted one at a time, starting with lowest-resolution
grids. A 2D AMR hierarchy and its homogenizing k-d tree
are shown in Figure 2.

Once an AMR hierarchy is homogenized, it can be ren-
dered from arbitrary viewpoints by sorting all grid patches
on-the-fly in back-to-front visibility order. All grid patches are
rendered independently into the same color buffer using α-
blending, performing implicit compositing of partial rendering
results. For parallel rendering on n nodes, the sorted list of
grid patches is “chopped” into n sequences of approximately
equal rendering cost (rendering cost is estimated during k-d
tree traversal). The sequences are then assigned to render-
ing nodes. This step is performed on all nodes in parallel
and does not require communication between nodes. Each
node renders its sequence of patches into its own color buffer.
When rendering is done, nodes exchange color buffers to
composite a complete rendering. Since the rendering bot-
tleneck is grid patch rendering, and compositing itself is per-
formed in hardware, a simple binary tree compositing strat-
egy is sufficient; it could be replaced with a binary-swap com-
positing strategy should the need arise—the rendering algo-
rithm is independent from the choice of compositing strategy.

The portal-version of the parallel renderer currently runs
on an SGI Onyx3400 with two IR4 graphics pipes. A
software-only, parallel renderer can also be used on cluster or
distributed-memory architectures. At UC Davis, the renderer

Figure 1: Volume rendering of the argon bubble with superimposed
AMR grid hierarchy.

(a) (b)

Figure 2: Homogenizing a 2D AMR hierarchy. The hierarchy has
a uniform refinement ratio of two. Grid boundaries are denoted
by bold lines. All hierarchy levels consist of two grids. Note that
finer grids can cross boundaries between coarser grids. (a) Original
AMR hierarchy with overlapping grids. (b) Homogenized hierar-
chy with non-overlapping rectangular grid patches.

runs on two Linux clusters (with four and 16 nodes, respec-
tively) using NVidia GeForce3 graphics cards for rendering
and 100 BaseT ethernet for inter-node communication. More
information is provided in [1].

References

[1] O. Kreylos, G. H. Weber, E. W. Bethel, J. Shalf, B. Hamann, and K. I.
Joy. Remote interactive direct volume rendering of AMR data. Technical
Report LBNL-49954, Lawrence Berkeley National Laboratory, 2002.

browser (which does not require retransmission) or cached by the
application server (which requires retransmission over the network,
but no further rendering).

Usage Scenario

To demonstrate the VisPortal/AMRWebSheet concepts, we present
a typical scenario. In our example, a scientist at LBNL named Al-
ice decides to visualize results from a shock refraction and mix-
ing computational fluid dynamics (CFD) simulation. The data set
shows the time evolution of an argon bubble after being disturbed
by a shock wave. The bubble moves steadily from one side of the
volume used for the simulation to the other while deforming. The
user is interested in a particular time-step in the later stages of the
simulation; the data set is located on the LBNL intranet and is ac-
cessible over the Grid.

Alice first enters the VisPortal URL into her web browser. Af-
ter logging onto the system, the scientist uses the portal’s access
to the Grid to transfer the argon bubble data set from its original
location to the AMR volume renderer server. Since Alice’s vir-
tual organization allows her to access the AMR renderer via the

No. of Initial Data Load Pre-Loaded Data
Levels Renderer App. Server Renderer App. Server

0 0.29 0.35 0.30 0.31
1 0.32 0.36 0.30 0.32
2 1.4 0.37 0.53 0.30

Table 1: Performance measurements the AMR volume renderer and
the AMRWebSheet application server versus the maximum level of
the hierarchy rendered. For all examples, the argon bubble data
set discussed in the usage scenario was used to generate 800x600
pixel images. The renderer used an SGI Onyx3400 while the appli-
cation server used an 1.8 GHz Intel Pentium 4. The first columns
lists times needed to render initial image (including data load); the
second column lists the time needed for the application server to
process the image from the first column; the third column lists time
needed to render an image after the data has been loaded; and the
fourth column lists the time needed for the application server to pro-
cess the image from the third column. Note that application server
processing only occurs once (when the result is first rendered). All
measurements are in seconds.



Figure 3: Parameter different session graph for the session in Figure
1. Edges indicate that only one parameter value differs between
the two resulting images. Session graphs provide an overview of
different information about the visualization session.

Grid, this transfer is authenticated. The complexities of the transfer
(such as using GridFTP) are hidden from Alice; as such, they can be
changed to improve efficiency without affecting users. Alice then
requests a new visualization session from the portal. Again, Alice’s
credentials are verified, this time confirming that she can access the
visualization service; all of the authentication occurs behind-the-
scenes. Once the verification is complete, the portal transfers the
authentication to the visualization web application.

Upon initialization, the web application determines whether Al-
ice desires to start a new visualization or view/expand an older ses-
sion. In this scenario, she starts a new visualization session. After
specifying an initial data set, the AMRWebSheet page is loaded in
Alice’s browser, a few results already generated from the default pa-
rameter values the AMRWebSheet uses. She then explores the data
via the web-page interface until she is satisfied with the results. At
this point, Alice terminates the visualization session and exits the
portal. When Alice exits, the visualization session is automatically
recorded by the system.

At some later date, a colleague of Alice named Bob wishes to
verify the results generated during the visualization; Bob is also
part of Alice’s virtual organization. Like Alice, Bob logs on to the
VisPortal. Unlike Alice, Bob requests to view a previous visualiza-
tion session instead of starting a new one. The visualization web
application presents Bob with a list of sessions from which he can
choose. Bob first chooses to examine an overview graph of the vi-
sualization session (Figure 3). After familiarizing himself with the
visualization results, Bob loads the HTML session document (Fig-
ure 4). Bob then annotates a few results of interest and exits the
system. As with the original session, the visualization web appli-
cation stores Bob’s annotations automatically when he exits. Later,
Alice can reload the session, view Bob’s comments, and perhaps

Figure 4: HTML session page for the session in Figure 1. The page
provides a summary of the visualization session and supports the
annotation of results.

add some comments of her own. The portal allows these scientists
to focus on using their data, not managing it.

Conclusions and Future Work

Our VisPortal project provides centralized access to grid-enabled
resources world-wide. We have described an entirely web-based UI
for exploring data created using the portal. The interface is coupled
with a web application for recording and managing visualization
results. Combined, these tools provide a platform for universally
accessible visual exploration of scientific data over the Grid.

Scientists benefit in several ways by using the portal and the AM-
RWebSheet. The portal and the AMRWebSheet are based on stan-
dard HTML; scientists using web browsers from any location can
generate and explore their data without requiring significant client
installation. The visualization environment structures the visual in-
vestigation of the data, preventing costly re-exploration. Remote
collaborators can access these explorations on the portal to vali-
date their colleagues’ results. Since entire visualization sessions are
captured, previous sessions are a launching point for further data
exploration. The AMRWebSheet is a Grid application that makes
visualization easy to access and utilize by scientists.

The work described here represents one aspect of the VisPortal
project. Three areas are under active development: the underly-
ing portal application server, the visual exploration tools available,
and the management of visualization sessions. For the application
server, current work focuses on improving its low-level implemen-
tation and the connection between GPDK and the various CoGs.
This work includes adding support for a Python CoG for easier in-



tegration of the visualization exploration and encapsulation frame-
work with the Grid. Finally, integration of a database management
system (DBMS) with the application server is underway. Once
complete, authentication, session management, and resource allo-
cation will utilize the DBMS to record portal-wide usage behavior.

The AMRWebSheet is only one of several visualization UIs
planned for the VisPortal. Visapult, a visualization system that uses
both client and server resources to perform interactive visualization
(see the article about Cactus and Visapult elsewhere in this issue),
has already been integrated with an earlier version of the portal.
Alternate web-based VisSheet implementations are also being in-
vestigated. For example, a VisSheet-like interface for visualiza-
tions using the Visualization Toolkit (VTK) would vastly increase
the potential number of visualization applications used by scien-
tists interacting with the portal. Additionally, we are interested in
utilizing more grid resources for the visualization. The interface
should allow access to visualization resources, numeric and sta-
tistical analysis codes, and other related services; the Grid would
then transparently manage the resource discovery, process alloca-
tion, and data transport between these services. Finally, the inter-
face could be adapted to support computational steering of grid-
based simulations. A form of this is already possible—one could
visualize results as they are generated in one web browser window
and modify simulation parameters in another window. A stronger
coupling is possible. For example, the simulation parameters could
be incorporated into the visualization transform the interface dis-
plays. Then, changes to these parameters would not only update
the visualization but could be also communicated to the simulation.

The web application server currently encapsulates the visualiza-
tion session from the AMRWebSheet. Though previous sessions
are stored, more information stored within these sessions can be
exploited. For example, when the same result is rendered in two
different visualization sessions, this result and its corresponding p-
set are stored multiple times on the server. By integrating the ses-
sion information management with the planned application server
DBMS, this redundant storage is eliminated. In addition, storing
visualization session information in a DBMS allows the session to
be used by different portal applications. Potentially, this session in-
formation, combined with other portal usage information stored by
the DBMS, can be analyzed and visualized by the portal designers
to better understand how scientists are utilizing the system. This
understanding can then lead to future improvements of the portal
and its applications for grid-based visual data exploration.

Acknowledgments

This work was supported by the National Science Foundation, the
Lawrence Berkeley and Lawrence Livermore National Laborato-
ries, and the Director, Office of Science, of the U.S. Department
of Energy under contract DE-AC03-76SF00098. The argon bub-
ble data set is courtesy of the Center for Computational Sciences
and Engineering, Lawrence Berkeley National Laboratory. We
would like to thank the members of the UC Davis Visualization
and Graphics Research Group and the Lawrence Berkeley National
Laboratory Visualization Group for their input and assistance. We
especially thank Tom Hsu and Praveenkumar Shetty for their work
on the portal, Jason Novotny for creating the Grid Portal Develop-
ment Kit and for considerable technical support, and Xia Liu for
her work on the DBMS for distributed applications.

References

[1] M. Russel, G. Allen, G. Daues, I. Foster, E. Seidel, J. Novotny, J. Shalf, and
G. von Laszewsi. The astrophysics simulation collaboratory: A science portal

enabling community software development.Journal of Cluster Computing, 5(3),
2002.

[2] T. J. Jankun-Kelly and K.-L. Ma. Visualization exploration and encapsulation via
a spreadsheet-like interface.IEEE Transactions on Visualization and Computer
Graphics, 7(3):275–287, 2001.

[3] T. Abel, G. L. Bryan, and M. L. Norman. The Formation of the First Star in the
Universe.Science, 295:93–98, January 2002.

[4] M. L. Norman, J. Shalf, S. Levy, and G. Daues. Diving Deep: Data Manage-
ment and Visualization Strategies for Adaptive Mesh Refinement Simulations.
Computing in Science and Engineering, 1(4):22–32, 1999.




