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Keywords:
 The largest bottleneck to the development of convolutional neural network (CNN)models in the computational pathol-
ogy domain is the collection and curation of diverse training datasets. Training CNNs requires large cohorts of image
data, andmodel generalizability is dependent on training data heterogeneity. Including data frommultiple centers en-
hances the generalizability of CNN-based models, but this is hindered by the logistical challenges of sharing medical
data. In this paper, we explore the feasibility of training our recently developed cloud-based segmentation tool
(Histo-Cloud) using federated learning. Using a dataset of renal tissue biopsies we show that federated training to seg-
ment interstitial fibrosis and tubular atrophy (IFTA) using datasets from three institutions is not found to be different
from a training by pooling the data on one server when tested on a fourth (holdout) institution’s data. Further, training
a model to segment glomeruli for a federated dataset (split by staining) demonstrates similar performance.
Computational pathology
Cloud computing
Federated learning
Renal pathology
Interstitial fibrosis and tubular atrophy
Introduction

As the practice of digitizing histological slides has become common
practice,1 the field of computational pathology has exploded. Modern
image analysis technologies (such as deep learning2) are increasingly
being applied to examine whole-slide images (WSIs). The maturation of
convolutional neural networks (CNNs)3 (a specialized subset of deep learn-
ing) for the analysis and segmentation of natural images has led to wide-
spread adoption of this technology in the field of computational
pathology. CNNs have shown promising results for state of the art compu-
tational pathology image analysis tasks including tissue segmentation,4–8

disease classification,9–12 and outcome prediction.13,14 Training these net-
works is enhanced by access to diverse WSI datasets, as greater data vari-
ability is known to enhance model robustness.15 For histological tissue,
stained and scanned digitally as WSIs, the institution where data is pre-
pared often has a large effect on the quality and appearance of the tissue.16

Institution-specific factors such as tissue preparation and staining protocol,
as well as any demographic biases can have a large effect on the resulting
WSIs. Practically this means gathering training data from multiple institu-
tions. However, sharingmedical data across institutions can be complicated
by regulatory challenges,17 limiting the scope of collaboration and there-
fore the generalizability of computational pathology tools.
6 April 2022; Accepted 9 April 2
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).
Federated learning was recently proposed as an efficient solution for
decentralized training of models without sharing data.18,19 Training a net-
work on a federated dataset uses multiple rounds of local training per-
formed on hardware located at the data source, where the learned
network parameters are shared and averaged between each round to
avoid divergence between training sites. At the core of federated learning
is federated averaging (FedAvg),20 which is simply a weighted average of
the network weights across training sites, performed at pre-selected inter-
vals (Fig. 1). FedAvg has been practically shown to achieve convergence
with proper hyperparameter tuning.21 Originally proposed for smartphone
natural language processing tasks where data sharing is limited by a limited
network bandwidth and privacy concerns, federated learning has recently
gained the interest of computational researchers in the medical field.22

Computational pathology datasets are a perfect candidate for federated
learning where both file sizes of WSIs (gigapixels) and regulatory limita-
tions hinder data sharing.

To show the feasibility of federated learning on pathology data in the
real world, we have created a pipeline for federated segmentation on
WSIs capable of deployment acrossmultiple institutions. This pipeline is de-
ployed in the cloud for easy access for data viewing and annotation by each
site’s constituents. This companion work to our recently published Histo-
Cloud segmentation tool8 shows the feasibility for training Histo-Cloud in
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Fig. 1. The federated learning schematic. A schematic example of federated learning. Multiple worker nodes store data and model parameters locally at the institution of
origin. The data stored on these worker nodes is never shared, and the nodes perform local training using this data upon the request of the master server. The local
models are then shared with the master server which performs parameter averaging, before sending the updated global model back to the worker nodes for further local
training. This process is repeated iteratively throughout the training process until model convergence.
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a federated setup. Histo-Cloud is a cloud-based tool for segmentation of
WSIs. It combines the digital slide archive (DSA)23 for WSI data manage-
ment, HistomicsUI for WSI viewing and annotation, and a modified version
of the DeepLab V3+ network5 for WSI segmentation.

Our contributions are:
1) The first tool for federated segmentation of WSIs
2) Hyper-parameter recommendations for fast and reproducible

convergance
3) Validation of this tool using three physically separate servers

Results

Federated training was performed on data distributed across three dis-
crete servers (workers). A fourth server acted as themaster server, perform-
ing parameter averaging and training synchronization; a schematic is
available in Fig. 1. In each server, data is stored on an instance of the
DSA,23 and our Histo-Cloud plugin8 is responsible for network training.
This plugin is capable of utilizing hardware acceleration for training, and
uses two available GPUs in all three host machines for a total of 6 GPUs.
We demonstrate the feasibility of federated segmentation of WSIs with
two case studies:

1 - Federated IFTA segmentation (divided by institution):
For the first case study, interstitial fibrosis and tubular atrophy (IFTA)

was segmented fromWSIs from kidney transplant biopsies with chronic al-
lograft nephropathy stained using periodic acid Schiff (PAS). Three pathol-
ogists from different institutions each provided a minimum of 20 PAS
stained WSIs. The WSIs per set were uniformly chosen from four IFTA
2

classes defined based on ci/ct scores (0, 1, 2,& 3); ci/ct scoring is a method
defined in Banff 2018 criteria for assessing transplant biopsies with ci ad-
dressing cortical interstitial fibrosis and ct addressing tubular atrophy.24

A minimum of 5 slides per class were used for each set. The cases were re-
viewed to ensure the following selection criteria were met: (1) the amount
of early or evolving IFTA with variable intermixed edema was minimized,
(2) no active inflammation, (3) no prior history of rejection, and (4) cases
were selected to represent the full range of IFTA severity. All types of
IFTA, including classic, endocrinization, and thyroidization types, were in-
cluded in the analysis, without distinguishing between the types. In total,
the pathologists from institutions 1–3 provided 20, 48, and 22 slides respec-
tively. A holdout dataset was randomly selected by pooling 1/3rd of the
slides from each institution (29 slides total). We trained 5 models using
this dataset: The first model was trained across three federated servers,
training data for this study was split by institution of origin. For a baseline
performance, a second model was trained centrally by pooling all the train-
ing data on a single server and using traditional gradient decent. Finally, to
compare the performance in a data restricted setting, 3 additional models
were trained using data from a single institution alone.

We note that IFTA boundaries are poorly defined, and subject to dis-
agreement between pathologists.25 Receiver operating characteristic
(ROC) curves were used to better capture the performance characteris-
tics of our trained models. These were generated by applying a varying
threshold to the network logits for the prediction of IFTA regions. To
measure performance, we calculate the area under the curve (AUC)
which is a common metric for measuring performance when a ROC
curve is available.



B. Lutnick et al. Journal of Pathology Informatics 13 (2022) 100101
Testing these models on the holdout set, we observed that central train-
ing and federated training of the IFTAmodel performed similarly bothwith
AUC= 0.95. Performance fell when testing the models trained using a sin-
gle institutions data, giving AUC = 0.92, 0.87, & 0.91 respectively. ROC
plots of the performance of the 5 models is highlighted in Fig. 2a. An exam-
ple of IFTA segmentation on a holdout slide using the federated model is
shown in Fig. 2c. Here we use the network logits to display the predictions
as a probabilistic heatmap which we believe is better for the display of
structures with poorly defined boundaries such as IFTA.

A fourth pathologist from a different institution provided an additional
17 slides to be used as an independent testing dataset.Whenwe applied the
trained IFTAmodels to this independent set, we observed a similar trend as
the holdout set. Here the federatedmodel performed best withAUC=0.90
and the central model also performed similarly well withAUC=0.88. Like
the holdout set, performance of the models trained on a single institution
was lower than federated or central models, with AUC = 0.85, 0.81, &
0.84 respectively. ROC plots of the performance of thefivemodels are high-
lighted in Fig. 2b.

2 - Federated glomeruli segmentation (divided by stain):
As a further test of our method, we designed a second study focused on

glomerular segmentation, with a goal of studying the effects of tissue stain-
ing on federated training. A training set of 75 human renal WSIs from
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Fig. 2.Multi-institute IFTA segmentation performance, data split by institution. The segm
across 3 servers for federated training. Due to the subjective nature of IFTA boundaries
curves showing each models performance on a dataset of 29 holdout WSIs which were
training and federated training of the IFTA model performed similarly both with AUC =
data, giving AUC = 0.92, 0.87, & 0.91 respectively. [b] ROC curves showing each m
dataset was from an institution which did not provide any training data, and was ann
federated models outperformed the models trained on a single institution’s data. Int
model also performed well with AUC = 0.88. The institutions 1, 2, & 3 had AUC =
federated model on a slide from the holdout dataset. The prediction of IFTA is shown h

3

transplant biopsies, stainedwith 25 periodic acid Schiff (PAS), 25 hematox-
ylin & eosin (H&E), and 25 Masson’s trichome (TRI). These slides were se-
lected from a single institution and ground truth glomeruli annotation was
performed by a single annotator. Slides were divided by stain and uploaded
to the 3 training servers (25 slides per server). Like the IFTA study, 5models
were trained: A federated model, a central model using all the data, and 3
models trained on each single stain individually. A holdout set of 30 slides
(10 from each stain) was selected to test the model’s performance.

Unlike IFTA, glomerular boundaries are well defined and are best
displayed by directly using the network predictions. We convert these pre-
dictions to contours for display on the slide. Fig. 3c shows an example of
glomerular boundaries predicted using the federated model on holdout
slides of various stains. We choose to use Matthews correlation coefficient
(MCC) to measure the performance of glomerular segmentation, as it is
commonly used for binary segmentation tasks. On the holdout data the fed-
erated model and the central model had identical performance, both
achieving MCC = 0.91, outperforming all the models trained using only
one stain (MCC = 0.88 H&E model, 0.56 PAS model, and 0.85 TRI
model). A violin plot of the holdout performance as a function of the
model used is shown in Fig. 3a.

To further show themodel’s generalizability, an independent testing set
of 58 slides was chosen from a separate institution, and annotated by a
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entation performance of the trained IFTA models. This data was split by institution
, we use ROC curves and AUC to measure the segmentation performance. [a] ROC
randomly selected from the same data as the training set. We observed that central
0.95. Performance fell when testing the models trained using a single institutions
odels performance on an independent test set of data containing 17 WSIs. This
otated by an independent pathologist. Similar to the holdout set, the central and
erestingly the federated model performed best with AUC = 0.90 and the central
0.85, 0.81, & 0.84 respectively. [c] An example of IFTA segmentation using the
ere using a heatmap, which reflects the network confidence in IFTA segmentation.
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Fig. 3.Glomeruli segmentation performance, data split by stain. The segmentation performance of themodels trained for glomeruli segmentation. This data was split by stain
across 3 servers for federated training. Because glomeruli havewell-defined boundaries, weuseMCC to calculate the segmentation performance, without varying the network
prediction thresholds. [a] A violin plot showing the performance of each model on a dataset of 30 holdout WSIs which were randomly selected from the same data as the
training set. We observed that central training and federated training of the models performed similarly both with MCC = 0.91. Performance fell when testing the
models trained using a single stain, giving MCC = 0.85, 0.88, & 0.56 for TRI, H&E, & PAS stains respectively. [b] A violin plot showing the performance of each model
on a dataset of 58 holdout WSIs which were selected from an independent institution. This dataset also included WSIs stained with Jones, which was not used for
training. The federated model (MCC = 0.80) was outperformed by the central model (MCC= 0.83). However, the federated model still outperformed the models trained
using a single stain alone (MCC =0.65 TRI, 0.69 H&E, & 0.78 PAS). [c] Examples of glomeruli segmentation using the federated model on 3 slides from the holdout
dataset. From left to right the slides are stained with trichrome, H&E, and PAS.
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separate annotator. This data included PAS, H&E, and TRI stains, as well as
Jones stain which was not present in the training set. As expected, the seg-
mentation performancewas reduced on the independent test set. The feder-
atedmodel (MCC=0.80) was outperformed by the central model (MCC=
0.83). However, the federated model still outperformed the models trained
using a single stain alone (MCC= 0.69 H&E model, 0.78 PAS model, and
0.65 TRI model). Interestingly when examining the performance of each
model on the individual validation slides, the federated and centrally
trained models both achieve a similar maximum performance threshold
and a minimum performance which is higher than any model trained on
a singular stain. This trend can be seen in the violin plot of the holdout per-
formance as a function of the model used is shown in Fig. 3b.

Discussion

Numerous examples of federated learning on medical data exist,26–29

however at this time computational pathology research on federated learn-
ing using WSIs is limited to a paper by Lu et al.30 Lu et al trained a weakly
4

supervised, multi instance learning model for subtyping breast cancer and
renal cell carcinoma and predicting survival, while exploring the effects
of differential privacy31 on model performance. Setting aside the complex-
ities of network hyperparameter tuning, we argue that federated learning is
a data organization and synchronization problem at its core. While current
applications in the literature describe the hyperparameters used for train-
ing, their data management and synchronization strategies lack details.
Often federated learning research is performed locally in one machine, re-
lying on simulated data sites.18 For example, the details of the federated
setup used by Lu et al30 are not well-described, and it is unclear if the fed-
erated training was simulated or actually performed across physically dis-
tinct servers. While simulation results are valid for method development,
we argue that the complexities of managing data and coordination across
multiple training sites are a large logistical hurdle for real world applica-
tions of federated learning.

Our experiments (IFTA & glomeruli segmentation) show that not only
does federating training for WSI segmentation converge, but the resultant
model outperforms training done with a single dataset (institution or



Table 1
Federated learning performance and training time.

Experiment Training
WSIs

Dataset MCC Training time
(hours)

Holdout Independent

IFTA 61
Federated 0.75 0.44 32.5
Central 0.75 0.45 19.5

Glomeruli 30
Federated 0.91 0.79 27.7
Central 0.91 0.82 12.4

The training time and performance of federated and central training are compared.
We report the performance using Matthews correlation coefficient (MCC), and sep-
arate the performance on the holdout, and independent test datasets for eachmodel.
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stain). Furthermore, the federated model performs on par with a model
trained traditionally with multiple datasets gathered at a central location.
Most importantly, these experiments demonstrate the feasibility of training
and coordinating federated segmentation models, managing datasets dis-
tributed across physically separate servers, and training in a reasonable
time. The training times for federated and central learning are reported in
Table 1.

Compared to training a model centrally, the parameter sharing and av-
eraging of federated learning adds additional time to the training process.
However, as with all forms of federated learning there is a tradeoff between
the training time and model convergence which can be tuned with the fre-
quency of the parameter averaging. In our experiments we found that aver-
aging every 1000 steps (with a total of 40,000 training steps) produced a
model which converged with a reasonable time penalty. In the future, we
would like to study the frequency of federated averaging with respect to
model convergence.

We are not thefirst to propose federated segmentation, Yi et al proposed
SU-Net,32 a federated network for brain tumor segmentation, which per-
formed similarly to DeepLab5 for non-federated training. The first to train
the DeepLab V3+5 architecture in a federated setup was Michieli et al,33

who used the VOC2012 dataset34 and simulated federated training on a sin-
gle machine. In contrast, our federated approach offers comparable seg-
mentation performance to the traditional training of DeepLab on
gigapixel sized medical images (WSIs). While there is a time penalty for
conducting federated training, we believe that this tradeoff is worth the
added performance when comparing the performance to training done
using a single dataset alone, and plan to further optimize our pipeline for
speed in the future.

Working efficiently with WSIs using CNNs requires a substantial
amount of engineering effort, and the backbone of our code used for train-
ing was custom built to extract and process regions of interest fromWSIs ef-
ficiently. We believe the ability to easily manage and annotate WSI data at
each federated site using the DSA23 greatly enhances the real world applica-
tions of our method.

Throughout our training process, the newest segmentation model is
available for testing at each data site, and could theoretically be used in a
human-in-the-loop approach to aid in the annotation of new WSIs similar
to our previously describedH-AI-L approach.7 Newly addedWSIs will auto-
matically be incorporated into the training set at the beginning of each
round of training.

Approaches such as peer-to-peer federated learning35 and swarm
learning36 offer data synchronization strategies that do not require a central
coordinating (master) server. While the lack of centralized training coordi-
nation may be beneficial for some tasks, we argue that for federated medi-
cal image segmentation, it is likely that only one group will be responsible
for model development. Therefore, the ability to control and monitor train-
ing and adjust hyperparameters on one master server is ideal. The typical
setup of federated learning in a medical setting will involve orders of mag-
nitude fewer training sites than a task such as speech recognition,which has
millions of potential training sites such as mobile phones. Multi-institute
federated studies using medical images will require careful central coordi-
nation with recruitment and opt in by participating sites. The hardware
for performing the training (at least for medical image analysis) is
5

specialized, requiring IT setup and support at each institution. Our Histo-
Cloud tool (used for training) is easy to setup making it ideal for this
purpose.
Methods

An open-source version of our code is available here: https://github.
com/SarderLab/federated_learning.
Data acquisition

This study was approved by the Institutional Review Boards at the Uni-
versity at Buffalo, University of California Davis, University of California
Los Angeles, University of Coimbra, and University Hospital Cologne. All
methodswere performed in accordancewith the relevant federal guidelines
and regulations. All patients provided informed consent.
Segmentation plugin

This work is heavily based upon our previously published Histo-Cloud
tool,8 where we modified the DeepLab V3+ architecture5 to work natively
on WSIs and developed a series of plugins for running segmentation train-
ing and prediction in the cloud. Thisworkwas based on the Digital Slide Ar-
chive (DSA)23 an open source slide viewer and repository developed by
Kitware Inc. Specifically these plugins were developed for accessibility in
HistomicsUI, the slide viewing component of the DSA. Functions of the
DSA can be controlled using a REST web API,37 this includes the ability to
trigger jobs by running the installed plugins as well as upload and down-
load data stored in the DSA. Achieving federated learning using this system
was straightforward. We use the requests python library38 to send REST
calls to the federated workers, which all have the DSA and Histo-Cloud
installed and are hosting the respective training datasets.
Server coordination

In this pipeline, each site/institution has a worker node server with the
DSA installed where training data is uploaded and annotated. Using the
DSA, data permissions can be set so that only eligible users from the institu-
tion can access this data. A central (master) server manages the training
cycle, uploading the global model parameters to each worker via the DSA
REST API before requesting each to run local training. Training Jobs are
submitted to each worker (training site) using the Histo-Cloud training
plugin.8 The training job scheduling is handled by the DSA internally
using slicer_cli_web, which uses Celery39 for task queue management, and
RabbitMQ40 as a message broker. The job status is monitored by the master
server until completion. Upon job completion the master server requests
and downloads the resultant saved local model parameters from each
worker node. These parameters are averaged by the master server and the
global model is updated accordingly. The next round of training is then ini-
tiated: the global model is uploaded to each worker and is trained further
before being downloaded and averaged. If training fails on one of the par-
ticipating workers, then it is excluded from the rest of the training round,
but participates in future training rounds.
Data management

The training WSI data is uploaded to the DSA worker servers, where it
was annotated by expert pathologists. Training data is placed in a folder
created on each worker for easy access by the Histo-Cloud training plugin.
A separate folder was created for the models produced by training and
uploaded after federated averaging. The ID of these folders is known by
the master server so it can submit training jobs specifying the data and
models to be used for training.

https://github.com/SarderLab/federated_learning
https://github.com/SarderLab/federated_learning
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Training process

Training rounds involve parameter upload, training, parameter down-
load, and federated parameter averaging across the worker and master
nodes. The following pseudocode describes the training process:

INIT global model to ImageNet parameters
WHILE global training steps is less than total steps

FOR each client, in parallel do
UPLOAD global model parameters to clients
CALL TrainNetwork plugin involving

INIT network parameters with global model parameters 
TRAIN for number of steps in round

UPDATE global training steps
DOWNLOAD trained local model 

END FOR
COMPUTE average model parameters (FedAvg)
SET global model to FedAvg parameters

END WHILE
Training setup

For training, we used three physically distinct Linux servers running
Ubuntu 18.04.5 LTS, with the DSA installed. The three servers had different
hardware configurations, notably the graphics processing units (GPUs)
were different across the servers. All computers had 2 GPUs that were pro-
duced by the Nvidia corporation and included:

1) Titan X Pascale (12GB VRAM) & GeForce GTX 1080 (8GB VRAM) –
batch size 4.

2) GeForce RTX 2080 Ti (11GB VRAM)&GeForce GTX 1080 (8GB VRAM)
– batch size 4.

3) 2X Quadro RTX 5000 (16 GB VRAM) – batch size 12.
For training, we used both available GPUs on each server and adjusted

the batch size for each server to accommodate the individual VRAM (GPU
memory) capacity of each.
Training hyperparameters

The goal of federated averaging is to speed up training by removing the
overhead of frequent communication between training sites. This is done
by training locally for multiple steps before updating the central model pa-
rameters using FedAvg. Practically when optimizing the hyperparameters
of our training loop, we found that using 1000 training steps between
FedAvg achieved repeatable convergence. We trained for a total of 40
rounds (40,000 steps), using the momentum optimizer41 with an initial
learning rate of 7e-3. Polynomial decay with a learning power of 0.9 was
used to reduce the initial learning rate over the course of training, ending
on the value of 0.0 after the final training step. To achieve stability at the
start of training, we set the learning rate to 1e-4 for the first 750 steps. Fi-
nally, the gradients on the last layers of the networkwere scaled up by a fac-
tor of 10 to achieve faster convergence. These layers included the ASPP
pooling layers and the layers in the decoder as defined by the DeepLab net-
work architecture.5

All the models were trained using transfer learning with parameters
inherited from a model pre-trained on the ImageNet dataset. Due to the
low maximum batch size of 4 on 2 of the training servers, we did not
train the batch normalization parameters. Training patches with a size of
512x512 pixels were extracted from the training WSIs with various
downsampled resolutions. Here we followed the training protocol in the
Histo-Cloud work8 using training patches randomly downsampled to 1, 2,
3, & 4 times smaller with respect to the native WSI resolution.
6
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