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Corals and humans represent two extremely disparate metazoan lineages

and are therefore useful for comparative evolutionary studies. Two lipid-

based molecules that are central to human immunity, platelet-activating

factor (PAF) and Lyso-PAF were recently identified in scleractinian corals.

To identify processes in corals that involve these molecules, PAF and

Lyso-PAF biosynthesis was quantified in conditions known to stimulate

PAF production in mammals (tissue growth and exposure to elevated

levels of ultraviolet light) and in conditions unique to corals (competing

with neighbouring colonies over benthic space). Similar to observations in

mammals, PAF production was higher in regions of active tissue growth

and increased when corals were exposed to elevated levels of ultraviolet

light. PAF production also increased when corals were attacked by the sting-

ing cells of a neighbouring colony, though only the attacked coral exhibited

an increase in PAF. This reaction was observed in adjacent areas of the

colony, indicating that this response is coordinated across multiple polyps

including those not directly subject to the stress. PAF and Lyso-PAF are

involved in coral stress responses that are both shared with mammals and

unique to the ecology of cnidarians.
1. Introduction
Cnidarians (corals, jellyfish and anemones) are probably among the first

metazoans [1], making them an ideal system to investigate how the first

immune systems may have been structured. Cnidarians do not produce the

diversity of cell types central to immunity in more recently evolved lineages

such as mammals (e.g. T- and B-cells), but Cnidaria and Chordata (including

mammals) share many immune processes and components present in the

latter [2–8]. For example, enzymes involved in the biosynthesis and modifi-

cation of platelet-activating factor (PAF) [9], a phospholipid-derived

signalling molecule often studied in humans, are also produced by corals

[10]. Consistent with the presence of PAF-related genes in coral genomes,
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PAF and its precursor Lyso-PAF were recently detected in

coral metabolomes, and the latter was among the most abun-

dant molecules detected [10]. The presence of these immune

modulators in corals begs the question of whether PAF and

Lyso-PAF are produced in response to similar environmental

stimuli, which would suggest conserved processes, or

whether PAF is produced in processes specific to the ecology

of reef-building corals.

Diverse taxonomic groups produce PAF, including mam-

mals, cnidarians, protozoans, yeasts, plants and bacteria. In

mammals, PAF is involved in tissue growth [11–13] and the

initiation of numerous immune responses, including coagu-

lation, inflammation, and immune cell proliferation and

migration to lesion sites [9,14–18]. Coral immune systems exhi-

bit many similar processes, including coagulation, immune cell

migration to lesions and inflammatory reactions [19–21],

though PAF has rarely been implicated [10]. These processes

are carried out in corals via the expression of a large repertoire

of immune genes, including those that may be related to path-

ways involving PAF [4,6,8]. While PAF has been well studied,

the full diversity of its functions remains unclear, in part owing

to the complexity of processes in which it is involved. For

example, PAF acts as an immunosuppressor (as opposed to

an immune inducer) in response to tissue damage from exces-

sive ultraviolet radiation (UVR) exposure [14,22]. By

quantifying the production of PAF in corals under different

stimuli, this study offers insights into the roles of this molecule

in one of the most ancient immune systems on the planet.

To probe the potential involvement of PAF in growth and

stress responses in corals, the molecule was quantified during

accelerated tissue growth, during conditions known to induce

cellular damage and when one coral was attacking another

coral. Active tissue growth and the induction of cellular

damage were generated by modifying the light environment

experienced by the coral. Coral growth increases with the

amount of visible white light (though excessive white light

inhibits growth) [23], while UVR exposure causes cellular

damage [24], much as it does in humans. Corals attack one

another during competition for space on and above the

benthos, often using their mesenterial filaments, a mass of

long tentacle-like organs normally held within the polyp

stomach that can be protruded from the mouth. Coral tenta-

cles and mesenteries contain many cnidocyte cells that

release a harpoon-like microstructure (nematocyst) that injects

venom directly into their target organism. Nematocyst venom

is replete with phospholipase A2 (PLA2), the enzyme that cat-

alyses the formation of PAF [25]. Therefore, we hypothesized

that PLA2-stimulated production of PAF arises when corals

are attacked by neighbouring colonies. Through laboratory

experiments and field observations we found that PAF bio-

synthesis increased when corals were exposed to elevated

levels of UVR, in the growing region of coral tissue, and

when corals were being physically attacked by other corals.

We conclude that corals produce PAF during multiple pro-

cesses, including when responding to a broad stressor (UVR

exposure), growing new tissue and experiencing an acute

stress (direct physical attack).
2. Materials and methods
Experiments were conducted using the branching Pacific coral

Acropora yongei that was maintained in a flow-through culture
system at Scripps Institution of Oceanography (SIO; La Jolla,

CA). The original collection consisted of a single fragment that

was grown, fragmented, and maintained at SIO and the Birch

Aquarium at Scripps (La Jolla, CA). Thus, all experiments were

carried out using a putative single genotype. ‘Colonies’ refer to

larger pieces of this genet that contained multiple branches.

(a) Growth experiment
To test whether Lyso-PAF and PAF production changes during

coral growth, a pre-experiment was conducted to measure the

difference in linear extension of branches between shaded and

non-shaded A. yongei colonies. Acropora yongei colonies were

placed into four aquaria. The corals were acclimated to the

aquarium light conditions for 4 days prior to the experiment

using a Giesemann System 260 programmable light system

with T5 fluorescent lights (Geismann aquaristic, Germany).

After acclimation, two of the aquaria were covered with a

2 mm thick semi-porous screen to reduce the amount of light

reaching the coral (henceforth referred to as the ‘shaded/20%

UVR treatment’). Two aquaria were not modified and served as

controls for the coral growth that occurred under the laboratory

light conditions (henceforth referred to as the ‘non-shaded/20%

UVR treatment’). Light concentrations were measured throughout

the experiments using Hobo light and temperature loggers (Onset

Computer Corporation, MA, USA). The linear extension of coral

branch tips, the site of growth, was measured using a ruler prior

to the start of the experiment and after 12 days. Shading

decreased growth of branch tips by 77% relative to non-shaded

corals (shaded ¼mean of 0.12 cm linear extension, non-

shaded ¼mean of 0.35 cm linear extension; n ¼ 25 branch tips,

p ¼ 0.001), confirming that shading reduced coral growth in

our experimental set-up and that this manipulation could be

used to determine whether Lyso-PAF and PAF production

changes during growth.

The shaded and non-shaded corals were allowed to acclimate

for one week; then the experimental set-up of the pre-experiment

was repeated. Corals were sampled after 6 days by cutting two

samples from each coral branch: the growing tips of each

colony were sampled as the top-most cm of a branch, while the

non-growing bases were sampled as 1 cm below the bottom of

the tip (i.e. the third cm of a branch). In each light condition,

25 tips and 25 paired bases were sampled to measure PAF abun-

dance in growing tissues versus non-growing tissues and at

different growth rates. Measuring Lyso-PAF and PAF in the

non-growing bases controlled for any non-growth-related

changes that occurred due to higher light (e.g. differences in

UVR exposure). Immediately after cutting, samples were snap-

frozen in liquid nitrogen. Molecules were later extracted by

placing the frozen sample in 2 ml of liquid chromatography

tandem mass spectrometry (LC-MS/MS) grade 70% methanol

for 3 days at 48C. The resulting extracts were then stored at 2808C.

(b) Ultraviolet radiation experiment
To isolate the effects of UVR exposure (a presumed stress) from

growth (normal physiology), we conducted a subsequent exper-

iment examining PAF content in the bases of corals exposed to

increased UVR. Colonies from the non-shaded treatment that

were not sampled during the growth experiment were exposed

to increased UVR. The programmability of the Geismann light

includes the ability to change the level of UVR. For the exper-

iment, UVR was increased from 20% to 80% (20% was used

throughout the acclimation period and growth experiments)

over three A. yongei colonies in each of two aquaria. This

additional treatment is referred to as the ‘non-shaded/80%

UVR treatment’. After 24 h, 11 bases were sampled. Samples

were stored and extracted as indicated above for the growth

experiment.
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(c) Time-course experiment
At Birch Aquarium at Scripps (La Jolla, CA), five A. yongei and

five Pocillopora damicornis aquarium corals were moved from a

reserve aquarium, where they coexisted with a mixed reef com-

munity, to a new aquarium in the same flow-through seawater

system. After 4 h of acclimation, five pairs of A. yongei and P.
damicornis colonies were placed in close proximity to one another

(distanced by a few millimetres), but not in direct physical con-

tact. The proximity necessary to stimulate an interaction

between two colonies was determined in previous manipulations

(see the electronic supplementary material, movie S1 for

example). Acropora yongei colonies were consistently observed

to attack P. damicornis colonies with their mesenterial filaments,

while P. damicornis colonies did not exhibit any visually detect-

able defence response. The interaction zone was defined as the

area closest to the neighbouring colony and, on the P. damicornis,

the area attacked by the mesenteries of the A. yongei. Coral tip

samples were taken at the interaction zone and at the non-inter-

action zone after 1, 5, 10 and 15 min of mesenterial attack (n ¼ 5/

area � time). Non-interaction zones were branch tips of a colony

away from the site of interaction and served as a control for the

change in molecules produced at sites of coral–coral interactions.

Each tip sample was immediately placed in 2 ml of LC-MS/MS

grade 70% methanol for 3 days at 48C for lipid extraction. The

resulting extracts were then stored at 2808C.

(d) Coral interactions in situ
Acropora cervicornis, Porites porites and Madracis mirabilis in close

proximity to one another or alone were sampled from five Salt

Creek reefs around Bocas del Toro, Panama (9.280774,

282.104946). For the molecular three-dimensional (3D) cartogra-

phy of PAF in coral interactions, five contiguous 1 cm fragments

were sampled from each coral branch starting from the growing

tips. Samples were extracted in LC-MS/MS grade 70% methanol

and the extracts were stored at 2808C.

(e) Sample preparation for metabolomics analysis and
batch design

After being weighed, the lipid extracts were resuspended in 70%

methanol and added to a 96-well plate with 70% methanol

blanks at the end of each row (i.e. every 11 samples). A quality

control standard mix was also analysed in three intervals

throughout the run of each plate. Each sample well contained

150 ml of sample and 10 ml of 0.01 mM amitriptyline as a stan-

dard that was used to account for variation in ionization

efficiency among samples during analysis.

( f ) Mass spectrometry analysis
Ultra performance liquid chromatography tandem mass spec-

trometry (UPLC-MS/MS) mass spectrometry was carried out

using an UltiMate 3000 UPLC system (Thermo Scientific), con-

trolled by the CHROMELEON software (Thermo Scientific) coupled

to a maXis quadrupole time of flight mass spectrometer

(Bruker Daltonics), using the Otof Control and Hystar software

packages (Bruker Daltonics) and equipped with an electrospray

ionization (ESI) source. UPLC conditions of analysis were as fol-

lows: 1.7-mm C18 (50 � 2.1-mm) ultra-high performance liquid

chromatography column (Phenomenex); column temperature,

408C; flow rate, 0.5 ml min21; mobile phase A, 98% water/2%

acetonitrile/0.1% formic acid (vol/vol); mobile phase B, 98%

acetonitrile/2% water/0.1% formic acid (vol/vol). A linear gradi-

ent was used for the chromatographic separation: 0–2 min, 0–20%

B; 2–8 min, 20–100% B; 8–9 min, 100–100% B; 9–10 min, 0%

B. MS spectra were acquired in a positive ion mode in the mass

range m/z 50–2000. Instrument parameters were set as follows:
nebulizer gas (nitrogen) pressure, 2 bar; capillary voltage, 4500 V;

ion source temperature, 1808C; dry gas flow, 9 l min21; spectra

rate acquisition, 10 spectra s21. MS/MS fragmentation of the 10

most intense selected ions per spectrum was performed using

ramped collision-induced dissociation energy, ranged from 35 eV

forþ1 ions and 25 eV forþ2 ions in the collision cell with automatic

exclusion of the spectra after three counts for 10 s.

(g) Analysis of LC-MS/MS data
The Brukerw Daltonics Find Molecular Features algorithm was

used to identify molecular features in each sample (Brukerw

DATA ANALYSIS software v. 4.2 build 4.2.395.0) using the following

parameters: a signal-to-noise threshold of 5, correlation coeffi-

cient threshold of 0.7, a minimum compound length of 8

spectra and a smoothing width of 2. The number of detected

molecular features in each experiment were: 2150 (UVR exper-

iment), 5769 (timeline experiment), 8700 (in situ interactions)

and 6500 (molecular cartography of in situ interactions). Peak

area was normalized to the total abundance of all molecules in

the sample. Spectral data were converted to mzXML using

COMPASSXPORT (Bruker, Daltonics, Bremen, Germany) and files

were uploaded to the Global Natural Products Social Molecular

Network (GNPS) database [26] and deposited to Massive ID

under the reference MSV000080662. Molecular networks

of LC-MS/MS data were created using the GNPS data

analysis workflow (https://gnps.ucsd.edu/ProteoSAFe/status.

jsp?task=42443130e8a5451dbad8963736b803d7). The default

parameters were used for molecular networks except for the fol-

lowing: a precursor mass tolerance of 0.1 Da and a MS/MS

fragment ion tolerance of 0.1 Da to create consensus spectra.

Molecular networks were visualized using CYTOSCAPE 3.3.0 [27]

(electronic supplementary material, figure S5). The MS/MS

spectra were searched against GNPS’s spectral libraries and

others including Massbank, ReSpect, HMDB and NIST14.

Detected features were considered a match to known spectra

when they had a cosine score above 0.7, at least six matched

peaks and less than 20 ppm of relative error.

(h) Statistics
For all experiments, the area under the curve of ‘PAF C16’ (m/z
524.371) and ‘Lyso-PAF C16’ (m/z 482.361) was calculated manu-

ally using the DATA ANALYSIS software (Bruker Corporation, MA,

USA). The abundances of PAF and Lyso-PAF were normalized to

a standard (amitriptyline) abundance per sample as well as the

individual mass per sample. Samples from the time-course

experiment were normalized to the dry mass of the lipid extract.

Pairwise comparisons for the UVR and field interaction exper-

iments were made on raw data using a t-test for normally

distributed data and the non-parametric Mann–Whitney U-test

for non-normally distributed data. Datasets with more than

two groups were analysed with analysis of variance (ANOVA)

following a log transformation in order to achieve normality

(e.g. p , 0.001 for a Shapiro test using raw PAF values and p ¼
0.5 following log transformation). ANOVA was used to compare

the two main factors in the growth experiment: location (tip

versus base) and light intensity (non-shaded versus shaded). A

Tukey’s honestly significant difference test was used to make

pairwise comparisons of the four treatment groups. PAF abun-

dance across discrete sampling points through time were

compared with an ANOVA and differences between interacting

and non-interacting branches were compared at each time

point with a Mann–Whitney U-test.

(i) Molecular three-dimensional cartography generation
All corals pictures were taken with a GoPro underwater camera,

merged into a 3D model (coral interactions and controls) using

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=42443130e8a5451dbad8963736b803d7
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=42443130e8a5451dbad8963736b803d7
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=42443130e8a5451dbad8963736b803d7
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AUTODESK 123D CATCH, and then duplicated into four models. A

3D model was created and exported as an .stl file and then

imported into MESHLAB v.1.3.3 to determine the coordinates cor-

responding to each sample (five points per coral). An MS/MS

feature file was generated using the OPTIMUS workflow (v.

2016.7.21, Alexandrov Team, EMBL Heidelberg) as described in

[28], with a noise threshold intensity of 10 000. Peaks were ident-

ified as molecular features when their intensity was at least three

times higher than their maximum intensity in any blank. The

samples were associated to the corresponding 3D coordinates

using the OPTIMUS workflow to create a csv file. The 3D model

and the corresponding MS/MS data were visualized using ‘ili

toolbox (https://github.com/MolecularCartography/ili). Grap-

hing and statistical analyses were performed using GRAPHPAD

PRISM 6 (GraphPad Software, San Diego, CA). The midline

represents the median. The 3D model and csv file were uploaded

as part of the MSV000080662 submission to GNPS.

( j) Bioinformatic identification of enzyme homologues
involved in platelet-activating factor mode of action

Human protein sequences of the PAF receptor (GI: 298581) and

protein kinase C (GI: 4506067) were used with tBLASTn to

query a coral transcript database generated from transcripts

sequenced and described earlier [10].
3. Results
(a) Platelet-activating factor production is higher in

growing regions of corals
Given the role of PAF in mammalian tissue growth, PAF pro-

duction was sampled during active coral tissue growth by

sampling the growing region (tip) and non-growing region

(base) under non-shaded and shaded light regimes (higher

light exposure is associated with faster growth). PAF content

was greater in coral branch tips compared to coral branch

bases ( p , 0.001) and in non-shaded colonies compared to

shaded colonies ( p , 0.001; figure 1a). Non-shaded branch

tips had 1.3 times higher PAF levels than shaded branch tips

( p ¼ 0.01), though non-shaded bases had only marginally
different PAF content relative to shaded bases ( p ¼ 0.06). The

significant difference in PAF in growing tips at different light

intensities and the marginal difference in the non-growing

bases suggest that PAF production is associated with

growth, an observation that has also been made in growing

mammalian tissues [11–13]. However, PAF production (e.g.

in branch bases) may also be responding to differences in

light intensity, perhaps outside the visible light spectrum.

(b) Platelet-activating factor production increases when
corals are exposed to elevated levels of ultraviolet
radiation

Previous investigations of PAF production in mice and

humans showed that PAF abundance is elevated when skin

tissue is exposed to elevated levels of UVR [14,22]. To deter-

mine if UVR also leads to PAF production in corals, A. yongei
colonies from the growth experiment were exposed to a

higher level of UVR intensity and the PAF content of the

non-growing branch bases was compared before and after

the increases in UVR. The PAF content of branch bases was

approximately 1.3 times greater in the non-shaded/80%

UVR treatment compared to the non-shaded/20% UVR treat-

ment ( p ¼ 0.002; figure 1b). These results suggest that,

similarly to humans, experiencing elevated UVR radiation,

and probably the cellular stress induced by it, leads to

increased production of PAF in corals.

(c) Platelet-activating factor production is higher when
corals are attacked by stinging cells of neighbouring
corals

It was recently reported that PAF production is higher in

damaged coral tissue next to competitors [10]. To determine

whether PAF increases in damaged tissues due to being

attacked by a neighbouring colony, we used a model of

experimentally induced coral interactions in which A. yongei
rapidly extruded its mesenteries onto neighbouring Pocillo-
pora damicornis colonies, resulting in tissue damage and

https://github.com/MolecularCartography/ili
https://github.com/MolecularCartography/ili
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eventual death in the latter (electronic supplementary

material, movie S1).

A time-course experiment was conducted to directly test

whether PAF production increases in response to mesenterial

attack by A. yongei on P. damicornis. In aquaria with circulat-

ing seawater, colonies of the two species were placed adjacent

to each other. After 4 h, A. yongei extruded its mesenteries

and began making contact with P. damicornis. Sampling

was then carried out 1, 5, 10 and 15 min after the start of

the mesenterial attack. In P. damicornis, the attacked coral,

PAF content changed over the course of the experiment in

the branch that was directly attacked ( p , 0.01, one-way

ANOVA of discrete time points). PAF abundance remained

unchanged after 1 and 5 min of mesenterial contact (i.e. inter-

action; figure 2; p ¼ 0.28; unpaired t-test) but increased

between 5 and 10 min of interaction (figure 2; p , 0.001)

and then decreased between 10 and 15 min of interaction

(figure 2; p ¼ 0.01). By contrast, Lyso-PAF abundances

remained unchanged in up to 10 min of interaction (electronic

supplementary material, figure S1; p ¼ 0.08) and then

increased from 10 to 15 min ( p ¼ 0.02). PAF abundances

did not change significantly over time in branches of the

same P. damicornis colonies that were not interacting with

A. yongei ( p ¼ 0.09, one-way ANOVA of discrete time

points). Similar results were obtained for measurements of

Lyso-PAF in control fragments (electronic supplementary

material, figure S1; p ¼ 0.07). Observations from the coral

interactions revealed that P. damicornis tissue was degraded,

bleached and receded from the areas of physical attack,

while the A. yongei tissue was visually unaffected (electronic

supplementary material, movie S1). Consistently, PAF and

Lyso-PAF productions were stable in A. yongei during compe-

tition (electronic supplementary material, figure S2 and S3,

respectively; p ¼ 0.23 and p ¼ 0.35, respectively).
(d) Platelet-activating factor production during coral
interactions on the reef

To then determine whether this phenomenon occurs in the

natural environment, PAF was quantified in pairs of corals
of different species growing in close proximity to one another

on a reef. These pairs included A. cervicornis and P. porites,
A. cervicornis and M. mirabilis, and P. porites and M. mirabilis.
The only interaction in which mesenterial fighting was

observed was when A. cervicornis attacked P. porites. During

this interaction, PAF abundance in P. porites was higher in

branches next to A. cervicornis compared to branches further

away from the interaction site (figure 3a; p ¼ 0.006; unpaired

t-test). In A. cervicornis, PAF abundance remained stable

when interacting with P. porites (figure 3c; p ¼ 0.59),

suggesting that PAF abundance does not change in the

attacking coral, only in the coral being attacked. No signifi-

cant difference in PAF production was observed when two

coral species were adjacent to each other but not extruding

their mesenteries (i.e. when no observed physical attack

occurred): PAF abundance in P. porites was similar in

branches regardless of whether they were near to or far

from M. mirabilis branches (figure 3a; p ¼ 0.27). Similarly, in

M. mirabilis, PAF abundance remained unchanged when



Acropora

NI

NI

platelet-activating factor (PAF)

platelet-activating factor (PAF)

5.248 log 6.703

4.314 6.899log
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Figure 4. Molecular cartography of normalized platelet-activating factor (PAF) abundance (see intensity scale in colour) in Acropora cervicornis (left, labelled ‘Acro-
pora’) with Porites porites (right, labelled Porites) when interacting (centre fragments, labelled ‘I’) or not interacting (fragment extremities, labelled ‘NI’; n ¼ 4).
(a) All four replicates; (b) the average of normalized PAF abundances from the replicates in (a).
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adjacent to P. porites (figure 3b; p ¼ 0.25) and when adjacent

to A. cervicornis (figure 3b; p ¼ 0.83). Thus, the only inter-

action that resulted in increased PAF was when P. porites
was physically attacked by A. cervicornis. This result suggests

that PAF is associated with the tissue death response follow-

ing direct contact by the mesenteries of a neighbouring coral

colony.
(e) Coral response through platelet-activating factor
biosynthesis does not only occur at the point of
physical contact

Following attack by the mesenteries of a neighbour, we pre-

dicted that PAF production would spread from the point of

competitive interactions throughout adjacent coral polyps

within the same branch as a form of polyp-to-polyp com-

munication, because coral polyps are assembled and

network-connected in a complex colony. To test this, coral

branches from eight corals were sampled in contiguous

1 cm sections. Molecular abundances were then mapped
onto 3D models of each coral branch to visualize logarithmic

PAF abundances along the branch (electronic supplementary

material, movie S2 and figure S4). Cartographic projections

showed that PAF was more abundant in P. porites interacting

with A. cervicornis at the interaction zone (figure 4; p , 0.001)

and throughout the entire branch (electronic supplementary

material, figure S4; p , 0.001), suggesting that PAF biosyn-

thesis extended beyond the zone of direct interaction. No

significant difference was observed between A. cervicornis
interacting with P. porites and A. cervicornis alone, as

observed de visu earlier.
( f ) Presence of genes involved in platelet-activating
factor synthesis cascade

Consistent with the abundance of PAF and Lyso-PAF in

corals, the genes encoding for proteins involved in the syn-

thesis of PAF were found in the genome of Acropora
digitifera, a species in the same genus as the focal coral used

in these studies. The presence of PLA2, Lyso-PAF acetyltrans-

ferase and PAF acetylhydrolase was recently reported in coral



PLA2

LYSO
PAF

PAF

Figure 5. The proposed model of PAF production during coral competition. From the bottom rectangle going counterclockwise in a loop, the drawing represents a
coral attacking (left) another coral (right) with its mesenterial filaments externalized from the mouth of the coral. In the last circular zoom, the harpoon-like
nematocysts are projected from cnidocyte cells within the mesenterial filaments onto the attacked coral, penetrating the tissue. The tip of the harpoon contains
venom with phospholipase A2 that is injected into the tissue of the attacked coral, stimulating the conversion of the attacked coral’s phosphatidylcholine into Lyso-
PAF and then PAF, leading to inflammation in the attacked coral tissue. Illustration by I.G.A.
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transcriptomes [10]. Many genes involved in PAF down-

stream signalling were also identified here, including: the

PAF receptor (E-value: 1.09 � 10226, 57% identity with the

human protein sequence) and protein kinase C (E-value:

3.09 � 10245, 87% identity with the human protein sequence).

The presence of multiple genes in the mammalian PAF path-

way suggests corals may synthesize and modify PAF during

similar processes to those observed in mammals.
4. Discussion
As evidenced through our laboratory studies and field obser-

vations, increased PAF production occurs when corals

experience environmentally- and organismal-induced phys-

iological changes. Like humans, PAF production is higher

in corals during active tissue growth and when exposed to

increased levels of UVR. In corals, immune responses such

as increased phenoloxidase activity and higher fluorescent

protein levels have been observed in growing tissues [29,30]

as well as during tissue regeneration following damage

[20]. These findings, and the potential association between

tissue growth and a PAF-associated immune response,

suggest immune responses may be a common feature of

tissue growth in corals. While tissue growth may be
enhanced by PAF production, perhaps in concert with the

activation of other immune processes, PAF can act as an

immunosuppressant, as has been shown in mice exposed to

UVR [14,22]. Thus, the increases in PAF in corals exposed

to high UVR may lead to the depression of immune

responses. Whether these processes activate or inhibit

immune processes would be fertile subjects for future

research aiming to better understand the coral immune

system and cnidarians more generally.

While the increase in PAF observed in corals during

growth and UVR stress is similar to responses in humans,

PAF is also produced in situations specific to corals, specifi-

cally when under attack by the mesenterial filaments of a

neighbouring coral colony. Acropora spp. corals were

observed attacking neighbouring colonies with their mesen-

terial filaments in laboratory and natural settings. Acropora
and other genera studied here have similar sensitivities to

abiotic environmental changes (e.g. [31]), but the results pre-

sented here suggest divergent responses to ecologically

relevant competitive interactions. When placed close to one

another in the laboratory, A. yongei attacked P. damicornis,
and when living in close proximity in the field, A. cervicornis
attacked P. porites. By contrast, A. cervicornis living in close

proximity to M. mirabilis and P. porites living in close proxi-

mity to M. mirabilis did not attack their neighbour. When
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Acropora colonies attacked neighbours with their mesenteries,

PAF increased in the corals being attacked but did not change

in the attacking Acropora. Similarly, PAF did not change in

either species when neither species attacked the other with

their mesenteries.

The tentacle-like mesenteries contain large numbers of

venom-containing nematocysts that induce inflammatory

reactions in other organisms, including humans [32]. One of

the most pro-inflammatory enzymes found in many types

of venom of organisms (e.g. cobra, honeybee) is PLA2,

which initiates the production of PAF. PLA2 is abundant in

stony corals, particularly in their mesenteries and other

attacking structures [25]. In addition, PLA2 is highly

expressed and PAF is abundant at interaction zones between

corals in the Southern Line Islands [10]. Thus, increased

PLA2 activity probably induces the increase in PAF pro-

duction observed during mesenterial attack, revealing a

molecular response underlying the response of corals to

mesenterial attack. We propose that by trafficking PLA2 to

a neighbouring coral via its mesenteries, attacking corals

stimulate overwhelming production of PAF in the attacked

coral (figure 5), leading to acute inflammation and severe

tissue damage in the latter, exploiting this conserved process

and eliminating the competitor. For corals with similar

growth strategies and energy requirements, the production

of defensive molecules is particularly important in determin-

ing their success on the reef (as opposed to overgrowth or

shading neighbours). While previous work has mostly

focused on the direct passage of harmful molecules to a com-

petitor [33,34], here we highlight how overstimulation of

conserved processes in the attacked coral can be a potent
force in determining interaction outcomes, thereby influen-

cing the composition of coral assemblages in reef ecosystems.
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