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Abstract

Locomotion is a defining characteristic of animal life and plays a crucial role in most behaviors. 

Locomotion involves physical activity, which can have far-reaching effects on physiology and 

neurobiology, both acutely and chronically. In human populations and in laboratory rodents, 

higher levels of physical activity are generally associated with positive health outcomes, although 

excessive exercise can have adverse consequences. If and how such relationships occur in wild 

animals is unknown. Behavioral variation among individuals arises from genetic and 

environmental factors, their interactions, and also from developmental programming (persistent 

effects of early-life environment). Although tremendous progress has been made in identifying 

genetic and environmental influences on individual differences in behavior, early-life effects are 

not well understood. Early-life effects can in some cases persist across multiple generations 

following a single exposure and, in principle, may constrain or facilitate the rate of evolution at 

multiple levels of biological organization. Understanding the mechanisms of such trans-

generational effects (e.g., exposure to stress hormones in utero, inherited epigenetic alterations) 

may prove crucial to explaining unexpected and/or sex-specific responses to selection, as well as 

limits to adaptation. One area receiving increased attention is early-life effects on adult physical 

activity. Correlational data from epidemiological studies suggest that early-life nutritional stress 

can (adversely) affect adult human activity levels and associated physiological traits (e.g., body 

composition, metabolic health). The few existing studies of laboratory rodents demonstrate that 

both maternal and early-life exercise can affect adult levels of physical activity and related 

phenotypes. Going forward, rodents offer many opportunities for experimental studies of (multi-

generational) early-life effects, including studies that use maternal exposures and cross-fostering 

designs.
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1.1 Ecological and Evolutionary Importance of Locomotor Behavior

Locomotion is a defining characteristic of animal life and locomotor behavior plays a crucial 

role in most natural activities, including foraging, searching for mates, escaping from 

predators, patrolling the home range, dispersal, and migration. Consequently, individual 

differences in locomotor behavior have the potential to be important determinants of various 

components of Darwinian fitness, such as survivorship and fecundity (Feder et al. 2010; 

Careau and Garland, Jr. 2012). However, for animals in the wild, few empirical studies have 

examined relationships between measures of physical activity (e.g., daily movement 

distance, home range size) and components of Darwinian fitness (for some examples with 

lizards, see: Civantos 2000; Clobert et al. 2000; Sinervo et al. 2000).

Although studies of individual variation in physical activity as it relates to fitness 

components are few and far between, some comparisons of species have identified 

relationships between locomotor behavior observed in the wild and aspects of locomotor 

performance as measured under controlled laboratory conditions (e.g., Garland, Jr. 1999; 

Albuquerque et al. 2015). These relationships imply correlated evolution, likely because they 

coadapted in response to selection (Huey and Bennett 1987; Bauwens et al. 1995; Angilletta 

Jr et al. 2006) (but see Artacho et al. 2015). Although most typically it is imagined that past 

natural selection acted to favor the evolution of appropriate behaviors and physiological 

abilities, sexual selection may also have played a role (Irschick et al. 2007; Kuijper et al. 

2012; Oufiero et al. 2014). In any case, locomotor behavior and activity levels can be viewed 

as key aspects of an animal’s overall function, behavioral ecology, life history, and 

evolutionary biology (Dickinson et al. 2000; Nathan 2008; Kuhn et al. 2016; Wallace and 

Garland, Jr. 2016).

Most voluntary behaviors can be classified as complex traits, and locomotor behavior 

(physical activity) is no exception (Swallow and Garland, Jr. 2005; Garland, Jr. and Kelly 

2006; Garland, Jr. et al. 2011b, 2017). Behaviors result from interactions of the brain, 

nerves, and muscles, supported by the digestive, circulatory, and thermoregulatory systems. 

Like all voluntary behaviors, the expression of voluntary activity can be limited by either 

motivation or ability. An individual with an extremely high motivation to be active will 

likely be limited by its exercise abilities (presuming that it has ample opportunity to be 

active), whereas a “super athlete” in terms of physiology will not run a marathon unless duly 

motivated. This type of interaction is an example of what can be termed phenotypic epistasis 

(Phillips 2008; Rice 2008).

The complexity of activity levels goes beyond the motivation-ability dichotomy. Total 

activity (e.g., daily movement distance in the wild: Garland, Jr. 1983, 1999; Goszczynski 

1986) will be the product of the amount of time spent moving (duration) and the average 

speed (intensity), each of which can be limited by motivation or ability. In turn, each of these 

four lowest-level traits (motivation or ability for both duration and intensity) is affected by 

genes, environmental factors, gene-by-environment interactions, and developmental 

programming (a general term describing the entrainment of early-life effects). Moreover, 

aspects of motivation and ability might share certain components. For example, 

susceptibility to exercise-induced muscle pain could be affected by properties of muscles as 
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well as integration of pain signals in brain areas that affect motivation and reward. Such 

shared and interactive effects can also be modified in an acute sense by immediate 

environmental conditions. For example, a heavy snow fall could pose physical and 

thermoregulatory challenges that might affect both motivation (e.g., via hunger) and ability 

(via the physical impediments of moving through deep snow).

The non-additive complexity of interactions among the subordinate traits that determine 

activity levels means that single-factor manipulations (e.g., Kolb et al. 2010) may be less 

informative than in simpler, more linear physiological or biomechanical systems. Moreover, 

selection generally does not act directly on single subordinate traits but rather at higher 

levels of biological organization, such as behavior and organismal performance (e.g., 

Garland, Jr. and Kelly 2006; Careau and Garland, Jr. 2012; Storz et al. 2015). Therefore, 

selection experiments and experimental evolution have become popular approaches to 

elucidate both the evolution and biological underpinnings of particular complex traits 

(Garland, Jr. 2003; Swallow and Garland, Jr. 2005; Garland, Jr. and Kelly 2006; Garland, Jr. 

and Rose 2009; Kawecki et al. 2012; Storz et al. 2015). However, before entertaining the 

possibility of a phenotypic selection experiment, it is prudent to consider the extent to which 

a trait is heritable and hence likely to respond to selection.

1.2 Genes, Environment, and (Locomotor) Behavior

Most behaviors that have been studied from the perspective of quantitative genetics show 

some evidence of narrow-sense heritability within particular study populations, including 

both humans and rodents (Turkheimer 2000; Visscher et al. 2008; Jensen 2015). Aspects of 

locomotor behavior measured in various contexts are no exception (DeFries et al. 1978; 

Roberts et al. 2012; Careau et al. 2013; Kelly and Pomp 2013; de Geus et al. 2014; Gielen et 

al. 2014).

Most of the existing quantitative genetic studies of locomotor behavior suffer from the 

typical limitations of quantitative genetics. The total phenotypic variation within a 

population is statistically partitioned into a minimum of two components (genetic and 

environmental), which are then treated as veritable black boxes. Depending on the related 

individuals included in the analysis, rearing conditions, sample size, and the aptness of the 

fitted statistical model, the genetic and environmental components of variance can be broken 

down into many more subcomponents, including additive genetic, dominance genetic, 

epistatic genetic, pre-natal maternal environmental, post-natal maternal environmental, and 

interactions between the various genetic and/or environmental subcomponents (Falconer and 

Mackay 1996). Nonetheless, each of these subcomponents is still treated as a black box in 

that (typically) no attempt is made to identify the specific factors (mechanisms) that act on 

the phenotype of interest within the categories. For example, if post-natal maternal effects 

are found to be substantial in a study of rodents, then that study typically does not include 

measurement of possible maternal factors that might be involved (e.g., milk yield, milk 

composition, maternal behaviors). This is understandable in that one must first identify the 

important sources of variation before pursuing detailed studies of those sources, but 

relatively few studies seem to follow-up on the initial findings.
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Moving beyond the statistical descriptors that derive from quantitative genetic analyses, 

chromosomal regions and specific genes associated with locomotor behavior have been 

identified in mammals (e.g., Kelly et al. 2012a; Kelly and Pomp 2013; Kostrzewa and Kas 

2014). However, much of the individual variation in locomotor behavior is not accounted for 

by genetics (e.g., Kelly et al. 2012a; Kelly and Pomp 2013; Kostrzewa and Kas 2014), 

highlighting the importance of environmental effects. Considerable progress has also been 

made towards understanding the neural and endocrine substrates of variation in activity 

levels, such as the involvement of dopamine signaling in the brain’s reward pathways in the 

control of voluntary exercise (e.g., see Rhodes et al. 2005; Knab and Lightfoot 2010; 

Garland, Jr. et al. 2011b; Keeney et al. 2012; Roberts et al. 2012; Waters et al. 2013; Majdak 

et al. 2014). However, the possible role of epigenetic processes in the control of locomotor 

behavior has scarcely been studied (Zhu et al. 2016).

1.3 Genes, Environment, and “Epigenetic” Processes Affect Complex 

Traits

Many aspects of developmental processes can be influenced by environmental factors 

(Waterland and Garza 1999). Epigenetic development is one such process that has recently 

attracted much attention. Modern usage of the term “epigenetics” stems from Conrad 

Waddington, who used it to bridge Mendelian inheritance and developmental biology 

(Waddington 1939). Epigenetics was broadly used as an explanation for how cells grew into 

differentiated cell types in different regions of the body during development, a concept 

which is still used today (Zhou et al. 2011). Some confusion has ensued because the 

definition, usage, and conceptualization of the term “epigenetic” has evolved since 

Waddington’s oft-cited 1942 paper (Waddington 1942). Part of this confusion may stem 

from the tendency for articles published in biomedically oriented journals not to cite journals 

in ecology/evolutionary biology/organismal biology (e.g., see Rosvall and Bergstrom 2007; 

Nesse and Stearns 2008). The inconsistent usage of the term is evident in Table 1. As 

Burggren and Crews note, “a reading of the epigenetic scientific literature reveals that the 

use of the word ‘epigenetics’ is currently relatively messy, with ambiguity apparent, 

especially over the past two decades” (Burggren and Crews 2014). The prefix, epi, of the 

term “epigenetics” comes from the Greek for “above,” “over,” or “outside.” Thus, 

epigenetics happens “above” the genetic level. In the 1930s, “epigenetics” was based on the 

concept of epigenesis, and defined as the manifestation of genotypic variation into 

phenotypes (Waddington 1953). More complete histories and etymologies of epigenetics can 

be found elsewhere (Holliday 2006; Deans and Maggert 2015).

Holliday (Holliday 1994) and others refined the study of epigenetics to a more molecular 

level, as in the following definition by Riggs and colleagues: “the study of mitotically and/or 

meiotically heritable changes in gene function that cannot be explained by changes in DNA 

sequence” (Riggs et al. 1996). But the definition continues to be in flux. Jablonka and Raz 

(Jablonka and Raz 2009) proposed that although some components of epigenetics are 

heritable (“transmitted to subsequent generations of cells or organisms”), they need not 

necessarily be. For example, the mechanical forces involved in muscle contractions in utero 
are important epigenetic factors in skeletogenesis (Carter et al. 1998), and phenotypic 
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differences in monozygotic twins can be attributed to epigenetic differences accumulated 

during the lifetime of each twin that would not be inherited by their offspring (Fraga et al. 

2005).

Thus, Jablonka and Raz defined epigenetics as “the study of the processes that underlie 

developmental plasticity and canalization and that bring about persistent developmental 

effects in both prokaryotes and eukaryotes” (Jablonka and Raz 2009). They next define 

“epigenetic inheritance” as “… phenotypic variations that do not stem from variations in 

DNA base sequences [which] are transmitted to subsequent generations of cells or 

organisms.” Epigenetic inheritance can be transgenerational if the mechanism of heritable 

epigenetic variation occurs in or is otherwise transmissible to germ line cells. Bonduriansky 

(Bonduriansky 2012) discusses the varied and complex implications that non-genetic 

inheritance has on the classic Mendelian model of heredity.

Some are proposing to broaden the scope of epigenetics even further, defining it as the study 

of any mechanisms for the inheritance of biological traits that are not themselves coded into 

the genome (nucleotide sequence) of the organism (e.g., see Burggren and Crews 2014). 

This definition encompasses any example of inheritance so long as the biological trait 

involved is not strictly genetic, regardless of the specific nature of the mechanism involved 

(DNA methylation, histone modification, etc.).

Jablonka and Raz (Jablonka and Raz 2009) also proposed “broad” and “narrow” sense 

descriptions of epigenetics to define different modes of inheritance. In the narrow sense, 

there must be transmission of biological variation not due to variation in DNA nucleotide 

sequences from mother to daughter cell. The narrow aspect of epigenetic inheritance focuses 

on sexual and asexual reproduction. The cell, rather than multicellular individuals, is the unit 

of transmission. When defining epigenetics, many researchers may restrict its usage to the 

system they are studying. Holliday, for example, proposed that epigenetics is “the study of 

the mechanisms of temporal and spatial control of gene activity during the development of 

complex organisms” (Holliday 1990). Indeed, it is not uncommon to find researchers 

insisting upon a direct mechanism of gene regulation for a biological trait to qualify 

something as “epigenetic.” Prions are an apparent exception to these strict considerations 

(Halfmann and Lindquist 2010). Here, we use the term “epigenetic” to refer to mitotically 
heritable alterations in gene expression potential that are not caused by changes in DNA 
sequence (Waterland and Michels 2007).

The expression of behavior is reliant, to a certain extent, on the expressional outcomes of the 

genome. Some behaviors are innate or instinctual, whereas others arise only in individuals 

who were exposed to certain experiences. To illustrate the latter point, consider the work of 

Meaney, Szyf, and their colleagues, which experimentally demonstrates the transmission of 

epigenetic factors that result in an anxiety phenotype in laboratory rats. Rats who were 

neglected early in life as pups by their mother grew into adults with higher corticosterone 

levels. Neglected rats also showed higher methylation of the promoter region of the 

glucocorticoid receptor (GR) gene in the hippocampus, which blocks promoter factors from 

binding and represses the gene, thus down-regulating GR expression. The result was 

diminished resilience to stress, which manifested as higher levels of anxiety in the animal. 
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Adult rats who experienced higher levels of anxiety did not lick or groom their own pups as 

often as did rats with lower levels of anxiety and higher levels of GR expression (Caldji et 

al. 2001; Meaney and Szyf 2005). To be clear, there does not appear to be any biological 

transmission of chemical epigenetic factors from mother to offspring. Rather, the behavior of 

the parent had epigenetically altered expression of a gene in the offspring, which made the 

offspring phenotypically resemble the parent. Such phenomena have been termed 

‘recapitulation,’ which is distinct from transgenerational epigenetic inheritance (Waterland 

2014).

1.4 Causes and Consequences of Early-life Effects

“Early-life” effects potentially can occur at any point prior to sexual maturity, while the 

brain and body continue to develop, including alterations of sperm or eggs that occur prior to 

conception, during gestation or egg development, around birth, and while experiencing 

maternal or paternal provisioning and care (e.g., via lactation) (Figure 1). This definition 

indicates that “early-life” ends at sexual maturity, which seems an appropriate 

developmental milestone.

Genetic and environmental factors (including those affecting epigenetic processes) may act 

in an age- or stage-specific manner, or their effects may extend over fairly long portions of 

an organism’s total life cycle. Long-lasting environmental and epigenetic effects are 

particularly likely if they occur during critical periods of development. This concept has led 

to growing recognition of the importance of “developmental programming,” “fetal 

programming,” “biological embedding,” and the Developmental Origins of Health and 

Disease (DOHAD) hypothesis (Waterland and Garza 1999; Ross and Desai 2005; Breier et 

al. 2006; Taylor and Poston 2007; Waterland and Michels 2007; Hanson and Gluckman 

2008; McGowan et al. 2008; Samuelsson et al. 2008; Langley-Evans 2009; Metges 2009; 

Alfaradhi and Ozanne 2011; Sullivan et al. 2011; Hertzman 2012; Bahls et al. 2014; 

Grissom et al. 2014; Ong and Muhlhausler 2014; Öst et al. 2014; Barboza Solís et al. 2015).

Considered broadly, early-life effects might occur through variation in any environmental 

factor, whether abiotic or biotic. For example, most ectothermic vertebrates experience 

variation in temperature as developing embryos while inside the mother, incubating in a nest, 

or shortly after birth or hatching -- and this variation has the potential to alter developmental 

processes in ways that could have lasting effects on various phenotypic traits (e.g., Mitchell 

et al. 2013). As another example, birds, during the egg stage, are potentially exposed to a 

relatively wide range of variation in temperature, which could have long-lasting effects. 

Indeed, birds have become convenient model systems for studies of early-life effects because 

the egg stage facilitates separating prenatal versus postnatal effects (Crino and Breuner 

2015; Ben-Ezra and Burness 2017; Lynn and Kern 2017).

In mammals, lasting effects on adult traits can be caused by variation in amount or quality of 

maternal care, transmission of hormones and nutrients to offspring in utero or during 

lactation, general levels of energy availability, the social environment, and occurrence of 

various physical or psychological stressors (Alfaradhi and Ozanne 2011; Connor et al. 

2012). Some of the effects may be mediated by such intermediate phenotypes as alterations 
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in fetal growth rates, whereas others may be more direct. The nature of a given early-life 

effect can differ between pre- and postnatal periods (Simar et al. 2012). Certain early-life 

effects can amplify across successive generations, i.e., effects accumulate 

transgenerationally (Waterland et al. 2008). Moreover, they can interact with other sources 

of environmental and genetic variation, including sex (Whitaker et al. 2012), in ways that 

facilitate or constrain the rate of evolution at multiple levels of biological organization 

(Badyaev 2008; Paranjpe et al. 2013). Hence, understanding early-life effects may prove 

crucial to explaining sex-specific responses to selection (Garland, Jr. et al. 2011a; Keeney et 

al. 2012) and limits to behavioral evolution (Careau et al. 2013, 2015).

Of various potential biological mechanisms mediating the persistent effects of early-life 

exposures (Waterland and Garza 1999), induced alterations in epigenetic regulation likely 

play an important role in developmental programming of physical activity (Waterland 2014; 

Zhu et al. 2016). In particular, the epigenetic mechanism of DNA methylation is a prime 

candidate (Alvarado et al. 2014); developmental establishment of DNA methylation is 

affected by environment (Jirtle and Skinner 2007) and, once established, is maintained with 

high fidelity (Cedar and Bergman 2009), enabling the life-scale stability that is the hallmark 

of developmental programming.

Alterations in epigenetic regulation need to be understood at the level of the intermediate 

phenotypes (endophenotypes) or subordinate traits that lead ultimately to dysregulation of 

organismal function and behavior. Additionally, despite the overwhelming current focus of 

the developmental origins field on epigenetics as an underlying mechanism, it is essential to 

recognize that epigenetics is just one of multiple developmental mechanisms that are likely 

coordinately impacted by environment (Waterland and Garza 1999; Waterland 2014). In 

particular, one mechanism that previously received much more attention is induced 

alterations in morphological development (Waterland and Garza 1999). During various 

critical ontogenetic periods, both epigenetic and morphological development are underway, 

and are intimately intertwined. For example, in the mouse, during postnatal development of 

arcuate nucleus of the hypothalamus, cell-type specific maturation of DNA methylation (Li 

et al. 2014) occurs at the same time that neuronal projections are forming from the arcuate 

nucleus to other regions of the hypothalamus (Bouret et al. 2004). Hence, although it is 

useful to list potential mechanisms of developmental programming, studying these 

interacting processes in an integrative fashion will be essential to gain meaningful insights 

into how environment affects developmental outcomes, including physical activity behavior 

(Waterland 2014).

1.5 Early-life Effects on Adult Physical Activity in Humans and Rodents

Human studies suggest that early-life experiences from conception to sexual maturity can 

alter adult levels of voluntary exercise (VE) and/or spontaneous physical activity (SPA). For 

example, in a prospective birth-cohort study using accelerometers, parents’ physical activity 

during pregnancy and early in the child’s life was positively associated with the child’s 

physical activity at 11–12 years (Mattocks et al. 2008). Adults exposed to the Dutch Famine 

during gestation have increased adiposity and more atherogenic lipid profiles that may be 

related to decreased physical activity (Lussana et al. 2008; Stein et al. 2009). The 
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mechanisms underlying these sorts of effects in humans are poorly understood (Dishman et 

al. 1985; Sallis and Hovell 1990; Andersen et al. 2009; Koeneman et al. 2011), in part 

because existing human studies are mostly correlational, cross-sectional (Trost et al. 2002), 

or of questionable methodological quality (e.g., use of questionnaires to gauge physical 

activity: Hallal et al. 2006; Stein et al. 2009; Koeneman et al. 2011).

Numerous rodent studies establish that early-life nutritional and other environmental 

exposures can affect adult body composition, appetite, dietary preferences, reward signaling, 

etc. (e.g., Frazier et al. 2008; Teegarden et al. 2009; Vucetic et al. 2010, 2012; Ozanne and 

Siddle 2011). All of these traits are potentially related to levels of physical activity (Garland, 

Jr. et al. 2011b). Far fewer rodent studies address early-life effects on adult VE or SPA 

(Breier et al. 2006; Dai et al. 2012; Sun et al. 2013) (see also Donovan et al. 2013 on sheep).

In rats, for example, supplementing the maternal diet with sunflower oil caused elevated 

offspring SPA (Brenneman and Rutledge 1982), whereas maternal undernourishment 

reduced it (Vickers et al. 2003). Adult offspring of diet-induced obese mice were hyperactive 

in home cages (Samuelsson et al. 2008), but rats were not (Samuelsson et al. 2010). Mouse 

maternal diets with partial substitution of protein by fat and carbohydrate can cause cage 

hyperactivity in adult offspring (Roghair et al. 2009). Mice that experienced undernutrition 

in utero showed reduced wheel running at night but increased running during the day (Sutton 

et al. 2010). Maternal protein undernutrition in mice can interact with post-weaning diet and 

have sex-specific effects on SPA (Whitaker et al. 2012). In mice, overnutrition during the 

suckling period causes blunted SPA in adult female but not male offspring (Li et al. 2013). 

Fetal growth restriction followed by postnatal catch-up growth induces to a persistent 

decrease in SPA, also only in female offspring (Baker et al. 2015). Maternal wheel exercise 

before and during gestation can reduce the negative effects of a maternal high-fat diet on 

offspring metabolic health (Stanford et al. 2015). Surprisingly, standing exercise to obtain 

food/water during pregnancy caused male (but not female) offspring to have increased % 

body fat as adults (Rosa et al. 2013).

Two recent studies from our laboratories clearly demonstrate early-life effects on adult 

physical activity in mice. Acosta et al. (Acosta et al. 2015) housed male mice from 

selectively bred High Runner lines and from their non-selected control lines in standard 

cages or in the same cages with attached wheels for 3 weeks, beginning just after weaning. 

All mice then experienced two months without wheel access. Early-life wheel access 

increased adult voluntary exercise, but not cage activity, in both High Runner and control 

lines of mice. The effect on adult plasma leptin concentrations depended on genetic 

background, causing a decrease in High Runner mice but an increase in mice from control 

lines (after adjusting for variation in fat pad mass). In a study of inbred C57BL/6J mice, 

females were housed with locked or unlocked wheels before and during pregnancy. Females 

with unlocked wheels ran throughout pregnancy, though daily distance and velocity declined 

as pregnancy progressed. As adults, offspring of the mothers who exercised during 

pregnancy were more physically active both on wheels and in their cages, with some 

variation between the sexes (Eclarinal et al. 2016).
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Overall, existing rodent studies provide clear evidence that factors experienced by mothers 

prior to conception, by individuals in utero or during the suckling period, and even during 

later phases of early life can have important effects on adult physical activity or such 

associated traits as body composition and aerobic capacity. The biological underpinnings of 

these effects are not yet understood. Nevertheless, they may have important implications for 

adult life, including various aspects of behavior, energetics, and health.

1.6 Health Impacts of Locomotor Behavior

As outlined in the previous section, a variety of studies now suggest or demonstrate that 

adult locomotor behavior can be influenced by early-life effects (e.g., Levin 2008; Gardner 

and Rhodes 2009; Meek et al. 2010; Donovan et al. 2013; Eclarinal et al. 2016). Locomotor 

behavior involves physical activity, whose primary components are generally termed 

voluntary exercise (VE) and spontaneous physical activity (SPA) in studies of humans and 

laboratory rodents (Garland, Jr. et al. 2011b). The biological determinants of VE and SPA 

differ, and in sex-specific ways (Dishman et al. 2006; Garland, Jr. et al. 2011b). 

Considerable research implicates both VE and SPA as key contributors to energy 

expenditure in humans, depending on the population, sex, and age considered. In general, 

higher levels of physical activity are associated with a wide range of positive health 

outcomes in humans (Haskell et al. 2007). In humans, deficiencies specifically in VE and/or 

SPA have been associated with numerous socially and economically important diseases and 

disorders, including obesity, metabolic syndrome, cardiovascular disease, Type 2 diabetes, 

and certain cancers (Booth and Lees 2006a; Booth et al. 2007). Similar studies have yet to 

be done for wild populations of other vertebrates. Nonetheless, it is reasonable to propose 

the working hypothesis that physical activity will be positively related to aspects of animal 

health in nature (see also Halsey 2016).

Excessive exercise can have adverse effects in both humans and other vertebrates, including 

loss of body mass, bone and joint degeneration, chronic localized pain, hormonal 

dysfunction, sleep disturbances, changes in emotions, an inability to sustain intense exercise, 

and an increase in the amount of time required for recovery from exercise (Garland, Jr. et al. 

1987; Bruin et al. 1994; Meeusen et al. 2007; Scheurink et al. 2010; Matzkin et al. 2015). 

Whether overtraining, activity-induced anorexia, amenorrhea or other negative consequences 

of excessive physical activity occur in non-human vertebrates living in the wild has, to our 

knowledge, not been studied.

1.7 Ecological Relevance, Anthropogenic Disturbances, and Conservation 

Biology of Early-life Effects on Locomotor Behavior

Early-life effects fall under the general heading of (developmental) phenotypic plasticity 

(Garland, Jr. and Kelly 2006; Kelly et al. 2012b; Martin et al. 2015). A tradition in 

functional biology has been to assume that most if not all cases of phenotypic plasticity 

(e.g., during acclimation to changed temperature conditions) are adaptive in the sense of 

increasing organismal performance in the altered conditions and hence also positively 

affecting Darwinian fitness. However, this hypothesis (often found as an unstated 

assumption) deserves critical testing, and many such tests have failed to support it (Wilson 
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and Franklin 2002; Angilletta Jr et al. 2006; Kelly et al. 2012b; Bateson et al. 2014). This 

should be born in mind as we consider the ecological relevance of early-life effects on adult 

locomotor behavior. In particular, one could argue that most early-life perturbations would 

be likely to have adverse effects because organisms have been fine-tuned through many 

generations of natural selection in a relatively stable environment. Early-life perturbations 

that stem from “unusual” or unfamiliar environmental conditions (e.g., smoking cigarettes: 

Pembrey et al. 2006; Barboza Solís et al. 2015) are not necessarily “anticipated” and so 

might well have adverse consequences. In general, non-adaptive plasticity is expected to 

occur with fairly high frequency any time an organism experiences an environmental change 

that is novel in the context of its evolutionary history (Garland, Jr. and Kelly 2006; Kelly et 

al. 2012b; and references therein).

Early-life modifications of locomotor behavior and of many other traits could have major 

adaptive -- or maladaptive -- significance in natural populations (Meyers and Bull 2002; 

Ghalambor et al. 2007; Badyaev 2008; Duckworth 2009; Kuijper et al. 2014; Dantzer 2015). 

For example, mothers experiencing poor nutritional conditions might be at a selective 

advantage if they could somehow increase the locomotor tendencies of their offspring, such 

that they might be more likely to disperse from unfavorable habitats (Le Galliard et al. 

2004). Although these sorts of scenarios have been widely discussed with respect to 

manipulation of the sex ratio of offspring (Sheldon and West 2004), relatively little attention 

has been given to the possibility that offspring locomotor behavior (in terms of ability and/or 

propensity) might be similarly modified. A few existing studies of lizards (de Fraipont et al. 

2000; Meylan et al. 2012; Bestion et al. 2014) and of small mammals (Nunes et al. 1998) in 

the wild demonstrate that it can, and some of these studies also implicate hormonal 

mechanisms. These previous studies of wild animals, however, have not resolved effects on 

different components of physical activity, such as voluntary exercise vs. spontaneous 

physical activity (Garland, Jr. et al. 2011b).

At the level of the population, early-life effects might either decrease (canalize) or increase 

the range of individual variation, and they might increase or decrease the magnitude of trait 

correlations. In natural populations experiencing poor nutrition or other types of 

environmental deterioration that causes physical or psychological stress, the ecological 

consequences of any resultant effects on activity levels would seem difficult to predict from 

current knowledge. For example, habitat fragmentation often leads to increased early-life (or 

parental) interactions with humans, their technology, noise pollution, feral cats, and so forth. 

Many of these interactions would be stressful in the generally accepted sense of that term, 

but we have little evidence to suggest whether this might cause individuals to move more or 

less as adults. If they moved less, then it might facilitate their staying within the safe 

confines of a small habitat fragment. If they moved more, then it might facilitate their 

dispersal to a larger piece of suitable habitat, which would have implications for potential 

range shifts under climate change (see also Feder et al. 2010; Valladares et al. 2014). In 

general, the ecological consequences and conservation relevance of early-life effects with 

respect to habitat loss and climate change are poorly understood. For example, two recent 

reviews of conservation physiology and behavior contain little or no mention of plasticity, 

early-life effects, epigenetics, locomotor behavior or physical activity (Cooke et al. 2013, 

2014).

Garland et al. Page 10

Physiol Biochem Zool. Author manuscript; available in PMC 2019 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition to ecological consequences of early-life effects on the overall amount of physical 

activity (e.g., total daily movement distance: Garland, Jr. 1983; Goszczynski 1986; Chappell 

et al. 2013), the frequency, duration, intensity, and timing of activity could be crucial. For 

example, if a normally nocturnal animal were to become active during the day it might lead 

to dire consequences for predation risk. Similarly, if the seasonal timing of the zugunruhe 

were altered, then entire migrations might fail.

1.8 Experimental Designs to Explore Early-life Effects on Adult Physical 

Activity

We conclude with some thoughts regarding the use of laboratory strains of rodents for 

investigating early-life effects. Laboratory rodents (especially mice and rats) are the most 

widely used animal models for studies of exercise effects on various aspects of health, 

physiology, and neurobiology -- and many of the general principles of those studies (Kregel 

et al. 2006) are directly applicable to early-life studies. Figure 2 depicts various stages at 

which maternal and/or offspring environment can be experimentally manipulated to 

elucidate early-life effects on adult phenotypes, as well as possible trans-generational 

effects.

Although not depicted in Figure 2, cross-fostering designs (e.g., Dohm et al. 2001; 

Plyusnina et al. 2009; Sadowska et al. 2013; Baker et al. 2015; Zhu et al. 2016) are a 

powerful way to explore early-life maternal effects (and, in some species, even paternal 

effects). For example, it is common for investigators to provide a nutritional or other 

exposure to female rodents before and during pregnancy and lactation, then examine effects 

on the offspring. In such designs, cross-fostering offspring at birth (i.e., “swapping” pups 

between exposed and unexposed dams) enables one to distinguish whether exposure during 

fetal or early postnatal (suckling period) development is essential for effect persistence. 

Another important design consideration is to study inbred populations of animals, so as to 

take genetic variation (and potential genetic selection at the gametic level [Waterland 2014]) 

out of the picture. This is essential to understanding more pure epigenetic (or, at least, not 

genetically mediated) effects. On the other hand, in a natural outbred population there will 

always be genetic variation. So, performing such experiments (Figure 2) in both isogenic 

and outbred populations, to see which gives stronger transgenerational effects, would give 

insights into how much of these effects are mediated by genetic selection vs. 

transgenerational effects of developmental programming.

The theoretical construct of ‘metabolic imprinting’ (Waterland and Garza 1999) should be 

useful to guide studies into the fundamental biological mechanisms of early-life effects on 

physical activity. In particular, metabolic imprinting postulates that the persistence of early-

life effects is mediated by primary imprints, which can be characterized at the 

morphological, cellular, and molecular level. By definition, the primary imprint must be 

present directly after the early life exposure, and persist to adulthood. In this regard, it is 

noteworthy that most studies of early-life influences on physical activity test offspring at 

only one age, usually either directly after the exposure or in adulthood. Testing physical 

activity behavior at multiple ages provides an essential test of effect persistence, and in some 
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cases such will indicate latent effects in which altered physical activity behavior is not 

apparent until sexual maturation (Li et al. 2013). Such findings may provide insights into a 

potential role of sex hormones on central regulation of physical activity. Indeed, early-life 

effects should be explored in both sexes. Recent work in mice suggests that females may be 

particular vulnerable to developmental programming of SPA (Li et al. 2013); (Baker et al. 

2015). Rather than an annoyance, sex-specific effects should be viewed as an opportunity to 

test mechanistic hypotheses.

Various approaches can be envisioned to test the hypothesis that epigenetic mechanisms play 

a key role in developmental programming of physical activity. For example, dietary methyl 

donor supplementation of female mice before and during pregnancy both promotes DNA 

methylation in their offspring (Waterland and Jirtle 2003), and prevents transgenerational 

amplification of obesity (Waterland et al. 2008) that is associated with blunted physical 

activity (Baker et al. 2015). It will be important to determine if methyl donor 

supplementation both induces epigenetic changes in the central nervous system and 

normalizes lifelong physical activity in this model. Transgenic mice with cell-type specific 

perturbation of the DNA methylation machinery may also be useful. For example, cre-lox 

technology can be used to knock out the expression of the de novo methyltransferase 

Dnmt3a in specific types of neurons to test the overall principle that epigenetic mechanisms 

are important in regulation of physical activity behavior.

Most of the health- and obesity-related literature with rodent models uses, as a “control” 

group, animals housed without any opportunity for voluntary exercise. However, almost all 

laboratory (e.g., see Figure 3 in Garland, Jr. et al. 2017) and wild (Dewsbury 1980; Meijer 

and Robbers 2014) rodents will exhibit a substantial amount of wheel running, if given the 

opportunity. Thus, rodents housed without wheels or other facilities for physical exercise 

should be considered as “activity-restricted,” though this is rarely acknowledged. Therefore, 

a strong case can be made that physically active subjects should be the “control” group, 

rather than rodents housed without access to wheels, climbing towers (Lionikas and Blizard 

2008) or other opportunities to exhibit voluntary exercise (Booth and Lees 2006b; Garland, 

Jr. et al. 2011b). Similarly, the majority of such studies focus on the potential adverse effects 

of, for example, high-fat or low-protein diet, with fewer emphasizing the possible positive 

effects of certain types of diets. We would urge future studies to cast a wider net, potentially 

including housing conditions without and with opportunities for voluntary exercise, 

application of forced exercise, diets with expected positive and negative effects, both sexes, 

and multiple genetic backgrounds (Svenson et al. 2007; Mathes et al. 2011; Meek et al. 

2014). This is a tall order, but important if we are to move further towards a comprehensive 

understanding of early-life effects on adult phenotypes. From an ecological perspective, 

future studies could attempt to place such experiments into a more naturalistic context by, 

for example, experimental releases of animals treated differently during early-life stages, 

then tracking individuals to determine effects on components of Darwinian fitness, such as 

survival and reproductive success.
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Figure 1. 
Illustration of genetic, environmental, and epigenetic factors acting at various stages of an 

organism’s life history. (For simplicity, genotype-by-environment interactions are not 

depicted.) Epigenetic mechanisms are one of several developmental processes that are 

influenced by environment, especially during so-called critical periods (Waterland and Garza 

1999). Mechanisms of epigenetic effects, which alter gene expression without changing 

DNA sequences, include DNA methylation and histone modification. “Ontogeny” can be 

used to describe the entire sequence from fertilization (conception) through development, 

growth, sexual maturation, aging, and senescence. Additional genes (not shown) may act not 

only at specific ages or stages but generally across most or all of ontogeny. Similarly, some 

environmental factors (e.g., pH of a lake in which fish live) may last for the entire lifecycle 

(subject to seasonal cycles). For many animals, immediate maternal environmental effects 

stop at weaning (e.g., for mice in a lab setting), but this is not necessarily the case for 

humans of for other animals in the wild, especially for species in which offspring tend to 

inherit their parents’ home ranges or territories.
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Figure 2. 
Potential experimental design to elucidate early-life effects on adult phenotypes, as well as 

possible trans-generational effects. Life-history and developmental stages are based on 

placental mammals, and specific timing of events is based on house mice. The maternal 

environment and/or the juvenile environment can be modified in many ways, including 

through changes in diet or the providing of access to exercise wheels (Acosta et al. 2015). 

During the post-natal period from birth to weaning, such factors as litter size or ambient 

temperature could be manipulated, thus providing other avenues of environmental 

manipulation that do not derive solely and directly from the mother. Cross-fostering designs 

also have much to offer, as discussed in the text.
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