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Abstract: Iterative reconstruction algorithms often have relatively large computation time affecting their clinical 
deployment. This is especially true for 4D reconstruction in dynamic imaging (DI). In this work, we have shown how 
sparse domain approaches and parallelization for static 3D image reconstruction and 4D dynamic image recon-
struction (directly from sinogram) in Single Photon Emission Computed Tomography (SPECT), without any intermedi-
ate 3D reconstructions, can improve computational efficiency. DI in SPECT is one of the hardest inverse problems 
in medical image reconstruction area and slow reconstruction is a challenge for this promising protocol. Our work 
hopefully, paves a new direction toward making DI in SPECT clinically viable. Our 4D reconstruction also is a novel 
application of non-negative matrix factorization (NNMF) in an inverse problem.

Keywords: Sparse image reconstruction, 4D reconstruction, dynamic SPECT, pre-clinical, high performance com-
puting, GPU-based reconstruction

Introduction

Computation time is a well-known bottleneck 
for iterative image reconstruction algorithms 
development within any research laboratory 
where repeated experimentation with different 
versions and data are needed, and for eventual 
clinical translation of such algorithms. This is 
true across almost all imaging modalities. The 
problem is more acute in 4D reconstruction for 
dynamic imaging (DI), where the problem com-
plexity increases by an order of magnitude. DI 
promises additional information relevant to 
diagnosis, as different types of tissues have 
different uptake and washout characteristics 
or temporal signature of the tracer.

A key to efficient computation in many imaging 
problems is the sparse nature of data. Sparsity 
comes in two forms: explicit zero values in an 
image or other relevant data (e.g., system ma- 
trix), or implicit, in terms of information con- 
tent of data. For example, a Fourier transform 
may reduce the size of data by eliciting frequ- 
ency components and then keeping only the 
important ones. Such a sparsification may be 
lossless or not (not completely recoverable).

In dynamic SPECT imaging (with fixed and rotat-
ing camera heads) we encounter an inverse 
problem where sparsification is not only need-
ed for computational efficiency, but also need-
ed to make it feasible to solve the problem [1]. 
In a typical SPECT DI, the gamma camera con-
tinuously collects data as it rotates and the 
imaging starts as soon as the tracer is being 
injected. In contrast, the conventional static 
image is acquired after the tracer concentra-
tion stabilizes. In SPECT DI only a limited view 
projection is available at each instance (one or 
two, depending on available SPECT camera 
heads) while the tracer concentration is still 
changing. This makes the optimization problem 
highly underdetermined with far more unknowns 
to solve (4D dynamic image) than the available 
data (sequence of 2D projections, each from a 
rotating camera view at different time instanc-
es). We have developed the Spline-initialized 
Factor Analysis in Dynamic Structures (SIFADS) 
algorithm [2], that addresses this problem by a 
sparsification approach and thus, by signifi-
cantly reducing the dimensionality of the prob-
lem. Our approach is an application of the non-
negative matrix factorization (NNMF) approach 
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popularized by [3] within the linear algebra and 
data science communities.

In order to handle large dimensionality of the 
problem we also deploy an explicit sparsifica-
tion or data compression technique by eliminat-
ing zero values from our computation. This not 
only saves computational time but also memo-
ry requirements of the algorithm. We also used 
a novel way to use GPU for faster implementa-
tion of our iterative reconstruction process, 
borrowing from [4]. Each of the GPU processing 
elements synchronously compute the same 
instruction on different data elements and 
shares same memory. While there has been 
active adaptation of using high-performance 
computing hardware for reconstruction in po- 
sitron emission tomography (PET), there are 
relatively fewer developments for SPECT re- 
construction using similar techniques. Further- 
more, SPECT DI reconstruction (which requires 
much more extensive computational power 
than that needed by static reconstruction) us- 
ing a high-performance computing technique 
has not been investigated either.

Main contributions of this work are (1) propose 
a computational view of dynamic image recon-
struction in SPECT, and (2) parallelization steps 
for a high performance implementation of the 
algorithm, and (3) to take advantage of a 
Graphics Processing Unit (GPU) architecture  
to optimize efficiency of the algorithm. 

In the next section, we first describe a compu-
tational view of the MLEM algorithm and the 
SIFADS algorithm. In section three, we show 
how we validate both of these algorithms. The 
computational performance comparing CPU 
and GPU implementations are discussed in  
the section four. The last section concludes  
the article providing some future directions of 
this work.

Computational views of static and dynamic 
reconstruction

MLEM [5] uses a statistical model of Poisson 
distribution of photon counts on a detector 
pixel. The following formula summarizes the 
algorithm for computing estimated 3D SPECT 
image in each iteration k

nextv% from that before 
the iteration kv% using the input sinogram gn 
and the precomputed system matrix an,k, with  
n the sinogram pixel index, and k the image 
voxel index.

: a a v
g ak

next

n n,k
n

n n,k k

n
n,k

kv v= / //% %

                     (1)

Each iteration in MLEM involves two primary 
components, forward projection (FP) and back-
projection (BP). FP estimates sinogram ng% 
(hat indicates estimated value rather than the 
input gn as in eq. 1) from the 3D image as one 
of the denominators in eq. 1:

: a vk n,k kng = /%                                                   (2)

A colon (:) indicates direction of assignment or 
data flow. BP estimates a correction factor for 
each voxel of the image: 

:g a Bn
n

n,k k
gn

=/ _ i%                                           (3)

Subsequently, normalized correction term up- 
dates the image voxel by voxel:

:A
v B
k

k k

k
nextv= %                                                      (4)

The constant normalization term for each voxel 
is pre-computed from the system matrix once 
before the iterations start:

:a An n,k k=/                                                        (5)

Image v is arbitrarily initialized, typically with all 
ones for voxels, and iterations loop over eqs. 
2-4.

The SIFADS algorithm [2] for SPECT DI esti-
mates tissue specific time activity curves (TACs) 
directly from projections data. The forward 
problem of DI in this model is: 

:g a vk n,k k,tn,t = /                                                 (6)

with t indicating time instance.

Factorizing v, the 4D image volume as in NNMF 
[3] we express,

:v C fk j k,j j,t= /                                                     (7)

where j is the index of factors, f are 1D time 
series used as basis vectors in factorization, 
and three dimensional (with the dimensions  
of image volume v) C are the corresponding 
coefficients. With this factorization the forward 
model in eq. 6 becomes,

:g a C fn,t k,j n,k k,j j,t= /                                            (8)

This factorization method is not completely 
new in the literature. The spline-based me- 
thod [6] has also used a similar factorization 
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approach with a fixed set of b-splines for f as a 
set of non-orthogonal basis functions. The fac-
tor analysis [7] in dynamic structures or FADS 
optimized f as well as C, alternately within each 
iteration [8]. A major problem in both of them is 
that they are very sensitive to the arbitrary ini-
tial choice of values of C and f. SIFADS’ main 
contribution is to use spline-based method for 
estimating the initial values of C and f for the 
subsequent FADS approach. This pre-process- 
ed initialization achieves strong stability, at the 
cost of a few extra iterations (around five) of the 
spline-based optimization. The factorization of 
the problem (eq. 8) also gains in computational 
speed, because the amount of data to be pro-
cessed is reduced with the dimensionality re- 
duction. A lesser data transfer between memo-
ry units also facilitates further gain in efficien- 
cy with GPU programs.  

SIFADS uses maximum a posteriori (MAP) algo-
rithm [9], which is a MLEM version where total 
variation (TV) regularization is applied to smo- 
oth the reconstructed image. The MAP objec-
tive function L for SIFADS is:

( ( ) ln ln !L P C, f aCf g aCf g U C, f= - + - -; / / /^ ^^ ^ ^h hh hh h  (9)

where ln is the natural logarithm, and U is the 
regularization function, and

U(C,f)=λ1Ω(C)+λ2Θ(C)+λ3Φ(f)                         (10)

Ω(C) provides a penalty term for anisotropic 
(without crossing any object boundary) TV term 
for smoothness over each coefficient, and Φ(f) 
is the TV measured with L1 norm over each fac-
tor. Θ(C) is a penalty term that prevents coeffi-
cients from overlapping with each other in 
space [2]. The equations for updating f and C in 
each iteration are obtained by equating the 
partial derivatives of L with respect to f and C 
respectively. 

:
Ia f C

U a a C f
g

f
n,t n,k

T
n,t j,t

T
n,t n,k

T

k,j,t n,k k,j j,t

n
j,t
T

k,J
next

k,J
C

C=
-
2

2/ //
^ h

%

%

   (11)

:
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2

2/ //
^ h

%
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      (12)

where Ιx,y: a matrix of size (x,y) with all elements 
equal to 1, n: pixel index, k: voxel index, j: id of 
the factor, t: time index, same as id’s of projec-
tions. Eqs. 11 and 12 contains same matrix 
operations as in static MLEM reconstruction 

(eqs. 1-5). In our parallelization strategy, each 
thread corresponded to one factor. Mean- 
while, a limited number of nonzero (NZ) pixel 
values (e.g. ≤557, for our canine data) were 
loaded from the system matrix an,k to the GPU 
thread. FP estimates the sinogram g :%

: a C fk,j,t n,k k,j j,tng = /%                                         (13)

For eq. 11 FP estimates correction terms for 
coefficients for each voxel:

:a
g

f Bn,t n,k
T n

j,i
T

k
gn

=/ ^ h%                                   (15)

and correction terms for factor for each time 
unit, on eq. 12: 

:a
g

C B'n,t n,k
n

k,j k
gn

=/ ^ ^h h%                              (14)

Spatial smoothness function are applied to the 
voxels that belong to the same tissue type 
(determined by a threshold on coefficient value 
and from prior anatomical information provided 
additionally, e.g. in our case a 3D static recon-
struction of consistent data of the later camera 
rotations 3rd through 20th):

: IC a f C
U

n,t n,k
T
n,t j,t

T= -O
2

2/ ^ h                             (16)

Temporal smoothness function minimizes the 
differences of the factor arrays:

: If a f
UCk,n k,j n,k

T
n,t= -O

2

2/ ^ h                            (17)

Finally, the new coefficients and new factors 
are: 

:C C Bk,J
next

k
Ck,J=
O

% %

                                               (18)

:f f B'J,I
next

k
J,If=
O

% %
                                               (19)

The ray-driven system matrix is generated 
(including point-response function) separately 
[10] and is stored in a compressed format (only 
NZ values) as a binary file. Our home-grown 
compression format is specifically designed for 
emission or transmission tomography, called 
YZ format, due to its originator Yuval Zelnik 
[11]. The YZ compressed representation uses a 
relational data structure (Figure 1) rather  
than the traditional compressed matrix repre-
sentation. The system matrix file contains a 
sequence of four elements (n, nzn, Kn, Gn): n is 
pixel id (of all pixels, i.e., sequence from 0 
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through N-1, for N pixels), nzn is the number of 
NZ voxel values for this pixel, Kn is a vector of 
nzn voxel indices (each index is an 8-bit integer) 
and Gn is a vector of nzn corresponding voxel 
values (each value is a 32-bit double precision 
float) in exactly the same sequence as that of 
Kn. A pixel that has no NZ voxels will still have  
its pixel id written followed by 0 written for nzn 
on the file indicating absence of the following 
two vectors.

Sparse format creates additional complexity in 
matrix operations as the number of NZ ele-
ments (nzn) is not a constant and the vectors 
lengths Kn and Gn vary from pixel to pixel. The 
system matrix elements, elements of the input 
sinogram, estimated sinogram, the voxel cor-
rection factors, and estimated voxel values,  
all need to be distributed over GPU computing 
elements and aligned in the available limited 
memory per thread, in order to maximize local-
ization of computing. This is because local 
memory on each GPU element is not large and 
the whole system matrix cannot be loaded 
there. Data transfer between slower memory  
to faster memory located closer to the com- 
puting unit, is a major bottleneck in efficient 
image reconstruction. A memory distribution or 
“chunking”, needs to be done even for any CPU 
implementation in case the system matrix is 
too large to fit in the available RAM memory. In 
a GPU implementation, the “chunking” opera-
tion needs to be sensitive to the localization of 

data (pixel or voxel elements that are to be esti-
mated, along with the system matrix elements). 
We have also shown here how such improved 
memory assignments may enhance GPU per-
formance further with two different experimen-
tations, one without memory alignment and 
one with it. Table 1 shows our CPU and GPU 
configurations for our experimentations.

GPU threads are organized in blocks and 
threads. Appropriate utilization of the archi- 
tecture is crucial in efficient implementation 
with GPU. CUDA 2.0 allows maximum 65535× 
65535 blocks, with 1024 concurrently running 
threads available per block. A thread is expre- 
ssed with two dimensions p and q. Maximum 
allowed threads per block in our system is 
p×q=1024. Preferable number for p is 36 for 
best performance, and hence a maximum va- 
lue of integer multiple of 36 that is ≤1024, or, 
1008 number of threads may run concurrently 
on a block. A thread is a sequence of opera-
tions written as a kernel routine in the code. 
Multiple concurrent threads run the same se- 
quence operations synchronously on different 
input. 

The number of threads used in each CUDA ker-
nel (code fragment whose copies run as multi-
ple threads with differing data) is a multiple of 
the actual chunk size for the current pixel for FP 
(for the current voxel for BP, see eqs. 2 and 3 
respectively) and on each thread the voxel ids 
and corresponding system matrix values are 
passed to the GPU. 

As mentioned before the system matrix is too 
large to fit in the GPU memory, and so, needs to 
be loaded chunk by chunk during FP and BP 
operations. On the other hand, tackling a vary-
ing number of NZ voxel elements for each pixel 
in the system matrix makes it difficult to decide 
the size of such chunks. To overcome this diffi-
culty, first, we load the system matrix as three 
vectors on CPU memory (a vector A of all NZ 
chunk sizes for all pixels (nzn for all n: a vector 
of unsigned int nz1, nz2, …), a vector B of all 
voxel indices with NZ values (of unsigned int 
K1, K2, …), and a vector C of all the correspond-

Table 1. Platforms used for comparison
Hardware/Method CPU GPU
Processing cores AMD Opteron 6128, 8 core NVIDIA Tesla M2070, 448 cores
RAM 32 GB 6 GB
Implementation Function C++ C++ with CUDA 2.0 kernel

Figure 1. YZ sparse matrix format for system matrix.
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ing NZ values (of real numbers V1, V2, …)). This 
resampling is done in CPU before iterations 
start with GPU. 

We compute the maximum possible number of 
NZ values (max(nzn)) over all pixels for FP with a 
scan of the first vector A. Subsequently, a mul-
tiple of this number u×max(nzn), where u is an 
integer >0, is used as the chunk size for loading 
from A, B and C on memories of GPU elements 
(threads). Similarly for BP, we check for maxi-
mum number of NZ pixel values in the system 
matrix over each of the voxels (say, max(nzk))  
and the chunk size is determined according to 
this max(nzk).

Each block in CUDA is expressed with three 
dimensions x, y, and z. In FP (eqs. 14-15), for 
example, they are mapped to the number of 
factors, the maximum number of NZ voxels per 
pixel max(nzn), and the number of pixels in one 
projection respectively (e.g. for our canine data 
they are 4, 557 and 1280, respectively). Again, 
due to the GPU global memory size limitation, 
we cannot put data for all time units (e.g., 72 for 
canine data) into the thread level. In that case, 
we needed loops to load and compute with par-
tial data into the thread level synchronously, 
e.g., 2 loops with 36 time elements or 35 pro-
jections for canine data (note again, each pro-
jection corresponds to a time-instance). For 
canine data the total dimension for the block 
and the thread is (4×557×1280)×(36×1). After 
all threads on each blocks are finished, the 

results are off loaded from GPU to CPU, and the 
next data block is loaded from CPU to GPU. This 
reduces the bandwidth between CPU and GPU 
communication, thus improving performance.

Methods

We have experimented SIFADS implementa-
tions for dynamic SPECT reconstruction. We 
have used three types of data sets: static im- 
aging data generated with NCAT simulations, 
dynamic imaging data with the same and 
canine data from real SPECT DI. They are 
described below.

Static SPECT

In order to measure the GPU performance on 
different data sizes, we have created four nu- 
merically simulated volumes of different reso- 
lutions (or binary matrices). They are of dimen-
sions: 16×16×16, 32×32×32, 64×64×64 and 
128×128×128 with voxel values of 1 within the 
volume and 0 on the background [12]. Figure 2 
shows a cartoon of such a ground truth of vol-
ume in the center. In order to produce a sino-
gram for each data size, we generated respec-
tive SPECT system matrices for the following 
acquisition parameters: (1) 120 projections 
over 360 degrees, (2) single detector head of 
size corresponding to the respective volume 
(e.g., for volume with 64×64×64 voxels, detec-
tor head is of 64×64 pixels size), and (3) a low-
energy high-resolution (LEHR) parallel-hole col-
limator. Finally, a forward projected sinogram 
was created for each of these to which Poisson 
noise was added. No attenuation or scatter cor-
rections were applied to these system matri- 
ces. 

The first choices for thread organizations in 
reconstructing for four data sizes are, respec-
tively: 16×16=256 blocks and 16 threads/
block; 32×32=1024 blocks and 32 threads/
block; 64×64=4096 blocks and 64 threads/
block; and 128×128=16384 blocks and 128 
threads/block. The second set of GPU imple-
mentations have the threads reorganized res- 
pectively, according to available CUDA cores: 
16 blocks with 16×16=256 threads/block; 32 
blocks with 32×32=1024 threads/block; 64× 
4=256 blocks with 6×16=1024 threads/block; 
and 128×16=2048 blocks with 128×8=1024 
threads/block. This takes the advantage of 
maximum allowed number of threads per block 
(1024) for our system. 

Figure 2. Cartoon for numerically simulated volumes 
(of a sample dimensions) used for static images re-
construction.
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We express the dimensionality of a static recon-
struction problem by U×V×P×X×Y×Z, where U×V 
is the detector dimension in pixels, P is the 
number of projections, and X×Y×Z is the recon-
structed volume’s dimension. 

Dynamic SPECT with NCAT phantom 

The simulated dynamic datasets were generat-
ed from an NCAT phantom [13] of 64×64×41 
voxels size for cardiac imaging with a real sys-
tem matrix for GE Millennium VG3 SPECT ma- 
chine. A dynamic sinogram is generated by  
forward projecting the phantom with different 
input TACs that resemble tissue TACs for the 
known activities of the tracer 99mTc-sestamibi 
for cardiac SPECT studies over three types of 
regions: blood-pool in heart, myocardium, and 
liver. We first segmented the phantom volume 
for these three ROIs. Then, the curves in  
Figure 3A are used to model the change of  
tracer activities in the blood pool, myocardium, 
and liver segments of the NCAT volume respec-
tively. The curves are b-splines and are based 
on our experience on how the tracer behaves  
in the respective organs. These segments  
and the three curves are subsequently used  
as ground truths for comparing the correspond-
ing reconstructed output TACs and their coeffi-
cients respectively. Acquisition parameters 
used for forward projection are: (1) LEHR paral-
lel-hole collimation, (2) one detector head, (3) 
64×64 bins per projection angle, (4) 72 projec-
tions over 360 degrees rotation, and (5) cam-
era rotating at a speed of one second per  
projection, i.e., 72 seconds for a full rotation. 
No scattering or attenuation is used in generat-
ing system matrix over this experiment with 
simulated dynamic data. Generated dyna- 
mic sinogram with added Poisson noise (Fig- 
ure 3A) is the input to the SIFADS implemen- 
tations. 

For this dynamic reconstruction, the natural 
thread organization used for the GPU imple-
mentation is: (64×41) 2624 blocks and (72×3) 
216 threads/block, according to the dimen-
sionality of the problem. After thread reorgani-
zation, the improved GPU implementation has: 
(16×41) 656 blocks, with (4×72×3) 864 thre- 
ads/block for 3 factors (or tissue types).

Canine dynamic SPECT 

Our third data set is from a pre-clinical canine 
cardiac rest-study performed with a GE Millen- 

nium VG3 Hawkeye SPECT/CT camera with 
LEHR parallel-hole collimator where the detec-
tor dual heads were in H-mode (two heads are 
opposite or at 180-degree angle to each other) 
and was rotating continuously. Injection of 3.7 
mCi (1.37×108 Bq) of 201Tl tracer was adminis-
tered at the onset of acquisition that continued 
for 20 minutes. For each rotation, two sets of 
72 one-second projections over 360 degrees 
were acquired. Each view contained 64×64 
projection bins (4.42 mm). In the reconstruc-
tion with GPU the initial thread organization  
is: (64×20) 1280 blocks and (72×4) 288 th- 
reads/block, and the reorganized structure is: 
(32×20) 640 blocks, (2×72×4) 576 threads/
block for 4 factors. The system matrix embeds 
attenuation (measured from CT scan prior to 
SPECT scan) and collimator scatter correction. 
Gullberg lab [14] provided data and the sys- 
tem matrix.

For expressing data sizes of dynamic image 
reconstruction problem, an added dimension is 
F, the number of factors. The number of time 
units is same as P with one detector head (one 
projection per time-unit) in SPECT, but must be 
an integer P/2 for two simultaneously rotating 
heads. Thus, the dimensionality for SPECT with 
single head camera is U×V×P×X×Y×Z×F.

We measured the spatial and temporal accura-
cies and the SNR for each of the reconstructed 
images from GPU and CPU implementations 
over the simulated data sets, where the ground 
truths are known. Spatial accuracy was mea-
sured from the estimated coefficients of each 
tissue type. After applying a threshold, the 
coefficients represented segmentations of the 
imaged volume into a number of tissue types 
based only on their temporal behaviors and not 
just their spatial locations. These segmenta-
tions were then evaluated using the dice simi-
larity coefficient (DSC) metric [15]:

2 n

C C
DSC C

C C
J

J
est

J
true

J
est

J
true

=
+

#
c m % %
%

% %

                          (20)

where CJest
% denotes the binary mask created 

from the thresholded estimated coefficients for 
the factor j or tissue type j,   CJtrue

% denotes the 
corresponding ground truth from the original 
NCAT phantom, and |C| indicates the number 
of voxels in C. DSC =1 indicates a perfect seg-
mentation, and DSC =0 indicates no overlap 
between the estimated and the true segments. 
Note that, all our validation efforts are involved 
with the 3D coefficients and the correspond- 
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Figure 3. A. Left, the initial b-splines set and corresponding segments of NCAT used for producing the forward pro-
jected dynamic sinogram. Right, dynamic projections of NCAT data. B. Left, final reconstructed TACs, blood (blue), 
myocardium (red), and liver (green). Results from CPU implementation are the dashed curves. Right, blood-pool, 
myocardium and liver coefficients from GPU based dynamic SIFADS reconstructions of NCAT data over 30 iterations. 
C. Canine dynamic SPECT studies, results from a GPU version. Left, final TACs for four tissue types. Right, slices of 
reconstructed tissues (i.e. coefficients) with 30 iterations of SIFADS. Each image is scaled to fit the same sized box.
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ing factors. These (C and f) may be multiplied  
to produce a 4D image if necessary.

Temporal accuracy is measured by computing 
the Root Mean Square (RMS) difference betw- 
een the reconstructed TACs and the known 
ground truth:

RMS TAC
TAC

TAC TAC
2

2

j
i j

est
i j

est
j
true

i

i i=
-

/
/

^
^

^ ^
h

h
h h6 @      (21)

namic images SNR is measured over the coef-
ficients C.

Results

Comparison of CPU and GPU implementations 
of MLEM with varying sinogram sizes 

Figure 4 depicts a reconstructed image for 
32×32×32 voxels volume from the CPU and the 

Figure 4. Left, the 16th transverse slices from GPU and CPU implementations-based static MLEM reconstruction 
algorithms for the volume size 32×32×32 with 20 iterations. Right, two plots are intensity values on Y-axis of the 
voxels against the line profiles on left. Curves from GPU and CPU are identical as expected and overlapped each 
other on the right figure.

Figure 5. The X-axis is data size represented by that of the system matrix 
equal to the size of volumes times the size of the corresponding sinograms, 
varying from 163×162×120 to 1283×1282×120. Y-axis is time taken for 
20 iterations (arbitrarily chosen for acceptable quality of reconstruction) of 
MLEM.

where TAC jest i^ h  denotes the 
value of the estimated TAC  
of tissue type j at time ti, 
TAC jtrue i^ h  is the correspond- 

ing ground truth TAC value 
used as an input in the simu-
lation. RMS =0 indicates per-
fect recovery of the TACs.

Signal-to-noise ratio (SNR) is 
measured for the reconstruct-
ed images:

SNR
x x N

x

/2k 1
N

k k 1
N

k N

k 1
N

k N

/

/
-

=
/ /

/

= =

=

^ h

                                           (22)

where xk denotes the value  
of the kth voxel in the signal 
region (segments) and N de- 
notes the number of those 
voxels. In the cases of dy- 



4D-spect reconstruction with GPU

291	 Am J Nucl Med Mol Imaging 2017;7(6):283-294

GPU implementations, verifying that the two 
implementations result in same images.

Comparison of MLEM reconstruction-times 
over the different sinogram sizes 

Figure 5 and Table 2 show scalability of the 
GPU implementation over the CPU implementa-
tion, even though for a small data size GPU may 
take more time than that with CPU (row 1, Table 
2) because of the communication overhead. 
With 32 times increase in size of the sinogram, 
the CPU needs about 7.7 times more computa-
tion to do the reconstruction, while the GPU-
based computation time has increased by 5.8 
times, and threads reorganized GPU implemen-
tation time grows by 5.3 times. Table 3 com-
pares the qualities of the images. They are 
mostly similar, but may have differed slightly, 
because of better precision GPU processors 
[16].

Timing comparison between dynamic re-
constructions with CPU and GPU versions of 
SIFADS  

For 4D SPECT reconstruction we have used an 
NCAT phantom, and a canine cardiac study. The 
Table 4 summarizes the timing comparisons for 
the two data sets: with CPU, with GPU, and with 
threads reorganized GPU. For measuring data 
sizes in 4D we incorporate the numbers of tis-
sue types reconstructed, i.e. multiply the vol-

ume with the number of factors. Subsequent 
subsections will discuss more detail of the 
results obtained by the SIFADS reconstructions 
from each data set.

Dynamic SPECT NCAT data: A slice of the co- 
efficients for myocardium reconstructed with 
each of the GPU and CPU implementations is 
shown in Figure 6 left. Line profiles on CPU and 
GPU generated images (Figure 6 right) show 
that they are very similar. Improvement of GPU 
performance is shown in Table 4, while Table 5 
shows the quality metrics of NCAT image recon-
structions from each implementation. Figure 
3B shows the result of SIFADS (from GPU): a 
small region around each coefficient, and the 
corresponding TACs for each tissue type.

Canine dynamic SPECT data: Figure 7 com-
pares the two reconstructed coefficients C for 
the myocardium from CPU vs GPU. Figure 3C 
shows the reconstructed tissues for the GPU 
version (CPU and GPU versions have same 
results). We have used four factors here, for left 
and right ventricles of the blood-pool inside 
heart, myocardium, and lungs. We were able to 
slice the projections to eliminate liver from 
interfering with heart.

Table 6 presents the SNR in each of the recon-
structed coefficient-images representing a seg-
mentation for each tissue type. Note again that 
each coefficient-image is reconstructed inde-
pendently (in the 3D image domain) within the 
iterations of the algorithm. Regions having 
stronger signal content shows higher SNR val-
ues as expected.

Discussion

GPU-based sparse image reconstruction shows 
expectedly a better scalability for both static 
and dynamic cases. However, reorganization of 
threads by appropriately mapping the dimen-
sionality of the problem to the system architec-
ture of the GPU platform, improves perfor-

Table 2. Scalability of GPU SPECT static 3D reconstruction with NCAT phantom (run time in seconds)
Size for each  
system matrix CPU (s) GPU (s) GPU with threads 

reorganization
Ratio (CPU vs 

GPU)
Ratio (CPU vs GPU  

with reorganization)
163×162×120 1.87 1.93 1.92 0.97 0.97
323×322×120 14.4 12.85 12.91 1.12 1.12
643×642×120 134.18 106.91 95.04 1.26 1.41
1283×1282×120 819.35 275.86 243.33 2.97 3.37

Table 3. Measure of qualities: Dimension-
less measures of quality of SPECT static 3D 
reconstructions for NCAT phantom
Size for each sinogram SNR_CPU DSC
163×162×120 0.443 0.908
323×322×120 0.531 0.911
643×642×120 0.536 0.914
1283×1282×120 0.552 0.931
They are exactly same (up to three decimal) for all three 
set of experimentations: on CPU, on GPU and with 
thread-optimization on GPU.
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mance further. A major problem in thread reor-
ganization for a GPU implementation of dynam-
ic reconstruction is with some constraints in 
the GPU system structure itself. For example, 
the number of threads cannot be more than 
1024 in our system, and using a lesser number 
of threads may not achieve full parallelization 
and under-utilize the system. This means that 
the mapping of the dimensions of the problem 
to the threads and blocks should be such that 

tions maximum numbers of threads per block 
that we could use, given the dimensionalities of 
our respective reconstruction problems, are: 
for NCAT 864 (32×27) and for Canine data 576 
(32×18), thus, full parallelization could not be 
achieved. Any GPU implementation needs to be 
sensitive to this issue.

Large size of the system matrix poses a great 
challenge in working with small local memory 

Table 4. Comparison of timing with three versions of SIFADS algorithm over two data sets
30 iterations 
SIFADS Data size CPU Time 

(sec)
GPU Time 

(sec)
GPU with threads 

reorganization
Ratio of CPU 

vs GPU
Ratio of CPU vs GPU 
with reorganization

NCAT 4.65×1010 583 198 193 2.94 3.02
Canine 6.05×1010 1862 542 537 3.43 3.46

Figure 6. Left, the 23rd liver coefficient’s transverse slices from CPU (top) and GPU (bottom) based dynamic SIFADS 
reconstruction algorithms for NCAT data. Right, two plots are values of the voxels (blue GPU curve is completely 
overlapped by the red CPU curve). Curves from GPU and CPU are identical as expected and overlapped each other 
on the right figure.

Table 5. Quality metrics of 4D reconstruction (for dynamic 
projections generated from NCAT data) by SIFADS against 
the ground truth NCAT segments
SIFADS reconstruction 
of NCAT Data

Spatial accuracy 
with CPU (DSC)

Spatial accuracy 
with GPU (DSC) RMS 

Blood 0.981 0.971 0.003
Myocardium 0.867 0.631 0.005
Liver 0.928 0.891 0.007
DSC values are exactly same for both the experimentations on GPU: with 
and without thread optimization, and slightly better than those found on 
CPU. RMS values of TACs are exactly same for all three experimentations.

as many threads (≤1024) as possible 
are utilized. Also, it is recommended 
that the number of threads should be 
a multiple of 32, which provides a 
better utilization of the physical com-
puting nodes (in CUDA 2). Note that 
we could use all threads (1024) in 
static reconstruction with each of the 
four sizes of data of the numerical 
phantom, thus achieving maximum 
feasible parallelization (not present-
ed here but in [17]). However, in the 
cases of dynamic image reconstruc-
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on GPU, even in cases of our SPECT recons- 
truction. This gets further complicated with 
sparse form of the matrix that is a necessity  
for any efficient implementation. On a different 
project [12], we have observed more than ten 
times improvement with GPU in the case CT 
data because of the use of on-the-fly scheme 
for generating system-matrix (as is the conven-
tion in CT reconstruction, because the size of a 
system matrix may be too large to fit even on a 
CPU RAM), where GPU is particularly suitable 
for a repeated system matrix computation with-
in the iterations. A ray-tracing algorithm was 
first proposed in [18], which is highly paralleliz-
able. This algorithm lies at the heart of our sys-
tem matrix generation. 

Conclusion

We have studied here the scalabilities of both 
static and dynamic image reconstructions in 

SPECT with GPU based implementations. Static 
reconstruction was performed with convention-
al MLEM iterative algorithm, which forms the 
basis of our dynamic reconstruction algorithm 
SIFADS. Dynamic reconstruction in SPECT is a 
highly underdetermined problem for limited 
angle projections. SIFADS takes advantage of 
the sparse nature of data and uses matrix fac-
torization in order to make the problem solv-
able. Parallelization significantly reduces com-
putational time (3 to 4 times). This is indepen-
dent of the speed up of system matrix genera-
tion with GPU, where GPU is very suitable for 
ray-tracing within system-matrix generator, but 
that is not part of this work as we use pre-com-
puted system matrix.

In future, we will use a different shared memory 
architecture than that in GPU, and use a distrib-
uted memory architecture for our 3D and 4D 
reconstruction problems. We have also report-
ed here scalability with respect to data size. To 
the best of our knowledge no such systematic 
study has been done before, especially for dy- 
namic SPECT image reconstruction. Our future 
efforts will also be directed in reducing the 
communication between the processors by pa- 
rallelizing over multiple GPU units as in [19, 20], 
where ordered subset expectation maximiza-
tion-like [21] approaches are used for partial 
reconstructions on each GPU unit that are com-
bined time to time after certain fixed number of 
iterations.

Figure 7. Left, the 11th slices myocardium along transverse views from CPU (top) and GPU (bottom) based dynamic 
SIFADS reconstructions. Right, two plots are values on the line profiles on left. Curves from GPU and CPU are identi-
cal as expected and overlapped each other.

Table 6. Quality of reconstructions by SIFADS 
over each tissue type from canine studies
Canine Data SNR of reconstruction 
LV 0.035
RV 0.025
Lungs 0.206
Myocardium 0.328
SNR values on second column are exactly same for all 
three set of experimentations: on CPU, on GPU and with 
thread-optimization on GPU.
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