
UC Berkeley
UC Berkeley Previously Published Works

Title
Sparse domain approaches in dynamic SPECT imaging with high-performance computing.

Permalink
https://escholarship.org/uc/item/7181q2n3

Journal
American Journal of Nuclear Medicine and Molecular Imaging, 7(6)

ISSN
2160-8407

Authors
Pan, Hui
Chang, Haoran
Mitra, Debasis
et al.

Publication Date
2017

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7181q2n3
https://escholarship.org/uc/item/7181q2n3#author
https://escholarship.org
http://www.cdlib.org/

Am J Nucl Med Mol Imaging 2017;7(6):283-294
www.ajnmmi.us /ISSN:2160-8407/ajnmmi0069155

Original Article
Sparse domain approaches in dynamic SPECT
imaging with high-performance computing

Hui Pan1*, Haoran Chang1, Debasis Mitra1*, Grant T Gullberg2, Youngho Seo2

1School of Computing, Florida Institute of Technology, Melbourne, FL 32901, USA; 2Department of Radiology and
Biomedical Imaging, University of California, San Francisco, CA 94143, USA. *Equal contributors.

Received May 26, 2017; Accepted December 2, 2017; Epub December 20, 2017; Published December 30, 2017

Abstract: Iterative reconstruction algorithms often have relatively large computation time affecting their clinical
deployment. This is especially true for 4D reconstruction in dynamic imaging (DI). In this work, we have shown how
sparse domain approaches and parallelization for static 3D image reconstruction and 4D dynamic image recon-
struction (directly from sinogram) in Single Photon Emission Computed Tomography (SPECT), without any intermedi-
ate 3D reconstructions, can improve computational efficiency. DI in SPECT is one of the hardest inverse problems
in medical image reconstruction area and slow reconstruction is a challenge for this promising protocol. Our work
hopefully, paves a new direction toward making DI in SPECT clinically viable. Our 4D reconstruction also is a novel
application of non-negative matrix factorization (NNMF) in an inverse problem.

Keywords: Sparse image reconstruction, 4D reconstruction, dynamic SPECT, pre-clinical, high performance com-
puting, GPU-based reconstruction

Introduction

Computation time is a well-known bottleneck
for iterative image reconstruction algorithms
development within any research laboratory
where repeated experimentation with different
versions and data are needed, and for eventual
clinical translation of such algorithms. This is
true across almost all imaging modalities. The
problem is more acute in 4D reconstruction for
dynamic imaging (DI), where the problem com-
plexity increases by an order of magnitude. DI
promises additional information relevant to
diagnosis, as different types of tissues have
different uptake and washout characteristics
or temporal signature of the tracer.

A key to efficient computation in many imaging
problems is the sparse nature of data. Sparsity
comes in two forms: explicit zero values in an
image or other relevant data (e.g., system ma-
trix), or implicit, in terms of information con-
tent of data. For example, a Fourier transform
may reduce the size of data by eliciting frequ-
ency components and then keeping only the
important ones. Such a sparsification may be
lossless or not (not completely recoverable).

In dynamic SPECT imaging (with fixed and rotat-
ing camera heads) we encounter an inverse
problem where sparsification is not only need-
ed for computational efficiency, but also need-
ed to make it feasible to solve the problem [1].
In a typical SPECT DI, the gamma camera con-
tinuously collects data as it rotates and the
imaging starts as soon as the tracer is being
injected. In contrast, the conventional static
image is acquired after the tracer concentra-
tion stabilizes. In SPECT DI only a limited view
projection is available at each instance (one or
two, depending on available SPECT camera
heads) while the tracer concentration is still
changing. This makes the optimization problem
highly underdetermined with far more unknowns
to solve (4D dynamic image) than the available
data (sequence of 2D projections, each from a
rotating camera view at different time instanc-
es). We have developed the Spline-initialized
Factor Analysis in Dynamic Structures (SIFADS)
algorithm [2], that addresses this problem by a
sparsification approach and thus, by signifi-
cantly reducing the dimensionality of the prob-
lem. Our approach is an application of the non-
negative matrix factorization (NNMF) approach

4D-spect reconstruction with GPU

284	 Am J Nucl Med Mol Imaging 2017;7(6):283-294

popularized by [3] within the linear algebra and
data science communities.

In order to handle large dimensionality of the
problem we also deploy an explicit sparsifica-
tion or data compression technique by eliminat-
ing zero values from our computation. This not
only saves computational time but also memo-
ry requirements of the algorithm. We also used
a novel way to use GPU for faster implementa-
tion of our iterative reconstruction process,
borrowing from [4]. Each of the GPU processing
elements synchronously compute the same
instruction on different data elements and
shares same memory. While there has been
active adaptation of using high-performance
computing hardware for reconstruction in po-
sitron emission tomography (PET), there are
relatively fewer developments for SPECT re-
construction using similar techniques. Further-
more, SPECT DI reconstruction (which requires
much more extensive computational power
than that needed by static reconstruction) us-
ing a high-performance computing technique
has not been investigated either.

Main contributions of this work are (1) propose
a computational view of dynamic image recon-
struction in SPECT, and (2) parallelization steps
for a high performance implementation of the
algorithm, and (3) to take advantage of a
Graphics Processing Unit (GPU) architecture
to optimize efficiency of the algorithm.

In the next section, we first describe a compu-
tational view of the MLEM algorithm and the
SIFADS algorithm. In section three, we show
how we validate both of these algorithms. The
computational performance comparing CPU
and GPU implementations are discussed in
the section four. The last section concludes
the article providing some future directions of
this work.

Computational views of static and dynamic
reconstruction

MLEM [5] uses a statistical model of Poisson
distribution of photon counts on a detector
pixel. The following formula summarizes the
algorithm for computing estimated 3D SPECT
image in each iteration k

nextv% from that before
the iteration kv% using the input sinogram gn
and the precomputed system matrix an,k, with
n the sinogram pixel index, and k the image
voxel index.

: a a v
g ak

next

n n,k
n

n n,k k

n
n,k

kv v= / //% %

 (1)

Each iteration in MLEM involves two primary
components, forward projection (FP) and back-
projection (BP). FP estimates sinogram ng%
(hat indicates estimated value rather than the
input gn as in eq. 1) from the 3D image as one
of the denominators in eq. 1:

: a vk n,k kng = /% (2)

A colon (:) indicates direction of assignment or
data flow. BP estimates a correction factor for
each voxel of the image:

:g a Bn
n

n,k k
gn

=/ _ i% (3)

Subsequently, normalized correction term up-
dates the image voxel by voxel:

:A
v B
k

k k

k
nextv= % (4)

The constant normalization term for each voxel
is pre-computed from the system matrix once
before the iterations start:

:a An n,k k=/ (5)

Image v is arbitrarily initialized, typically with all
ones for voxels, and iterations loop over eqs.
2-4.

The SIFADS algorithm [2] for SPECT DI esti-
mates tissue specific time activity curves (TACs)
directly from projections data. The forward
problem of DI in this model is:

:g a vk n,k k,tn,t = / (6)

with t indicating time instance.

Factorizing v, the 4D image volume as in NNMF
[3] we express,

:v C fk j k,j j,t= / (7)

where j is the index of factors, f are 1D time
series used as basis vectors in factorization,
and three dimensional (with the dimensions
of image volume v) C are the corresponding
coefficients. With this factorization the forward
model in eq. 6 becomes,

:g a C fn,t k,j n,k k,j j,t= / (8)

This factorization method is not completely
new in the literature. The spline-based me-
thod [6] has also used a similar factorization

4D-spect reconstruction with GPU

285	 Am J Nucl Med Mol Imaging 2017;7(6):283-294

approach with a fixed set of b-splines for f as a
set of non-orthogonal basis functions. The fac-
tor analysis [7] in dynamic structures or FADS
optimized f as well as C, alternately within each
iteration [8]. A major problem in both of them is
that they are very sensitive to the arbitrary ini-
tial choice of values of C and f. SIFADS’ main
contribution is to use spline-based method for
estimating the initial values of C and f for the
subsequent FADS approach. This pre-process-
ed initialization achieves strong stability, at the
cost of a few extra iterations (around five) of the
spline-based optimization. The factorization of
the problem (eq. 8) also gains in computational
speed, because the amount of data to be pro-
cessed is reduced with the dimensionality re-
duction. A lesser data transfer between memo-
ry units also facilitates further gain in efficien-
cy with GPU programs.

SIFADS uses maximum a posteriori (MAP) algo-
rithm [9], which is a MLEM version where total
variation (TV) regularization is applied to smo-
oth the reconstructed image. The MAP objec-
tive function L for SIFADS is:

(() ln ln !L P C, f aCf g aCf g U C, f= - + - -; / / /^ ^^ ^ ^h hh hh h (9)

where ln is the natural logarithm, and U is the
regularization function, and

U(C,f)=λ1Ω(C)+λ2Θ(C)+λ3Φ(f) (10)

Ω(C) provides a penalty term for anisotropic
(without crossing any object boundary) TV term
for smoothness over each coefficient, and Φ(f)
is the TV measured with L1 norm over each fac-
tor. Θ(C) is a penalty term that prevents coeffi-
cients from overlapping with each other in
space [2]. The equations for updating f and C in
each iteration are obtained by equating the
partial derivatives of L with respect to f and C
respectively.

:
Ia f C

U a a C f
g

f
n,t n,k

T
n,t j,t

T
n,t n,k

T

k,j,t n,k k,j j,t

n
j,t
T

k,J
next

k,J
C

C=
-
2

2/ //
^ h

%

%

 (11)

:
IC a f

U a C f
g

a C
k,n k,j n,k

T
n,t

k,n
k,j,t n,k k,j j,t

n
n,k k,jJ,I

next
J,I

f
f=

-
2

2/ //
^ h

%
%

 (12)

where Ιx,y: a matrix of size (x,y) with all elements
equal to 1, n: pixel index, k: voxel index, j: id of
the factor, t: time index, same as id’s of projec-
tions. Eqs. 11 and 12 contains same matrix
operations as in static MLEM reconstruction

(eqs. 1-5). In our parallelization strategy, each
thread corresponded to one factor. Mean-
while, a limited number of nonzero (NZ) pixel
values (e.g. ≤557, for our canine data) were
loaded from the system matrix an,k to the GPU
thread. FP estimates the sinogram g :%

: a C fk,j,t n,k k,j j,tng = /% (13)

For eq. 11 FP estimates correction terms for
coefficients for each voxel:

:a
g

f Bn,t n,k
T n

j,i
T

k
gn

=/ ^ h% (15)

and correction terms for factor for each time
unit, on eq. 12:

:a
g

C B'n,t n,k
n

k,j k
gn

=/ ^ ^h h% (14)

Spatial smoothness function are applied to the
voxels that belong to the same tissue type
(determined by a threshold on coefficient value
and from prior anatomical information provided
additionally, e.g. in our case a 3D static recon-
struction of consistent data of the later camera
rotations 3rd through 20th):

: IC a f C
U

n,t n,k
T
n,t j,t

T= -O
2

2/ ^ h (16)

Temporal smoothness function minimizes the
differences of the factor arrays:

: If a f
UCk,n k,j n,k

T
n,t= -O

2

2/ ^ h (17)

Finally, the new coefficients and new factors
are:

:C C Bk,J
next

k
Ck,J=
O

% %

 (18)

:f f B'J,I
next

k
J,If=
O

% %
 (19)

The ray-driven system matrix is generated
(including point-response function) separately
[10] and is stored in a compressed format (only
NZ values) as a binary file. Our home-grown
compression format is specifically designed for
emission or transmission tomography, called
YZ format, due to its originator Yuval Zelnik
[11]. The YZ compressed representation uses a
relational data structure (Figure 1) rather
than the traditional compressed matrix repre-
sentation. The system matrix file contains a
sequence of four elements (n, nzn, Kn, Gn): n is
pixel id (of all pixels, i.e., sequence from 0

4D-spect reconstruction with GPU

286	 Am J Nucl Med Mol Imaging 2017;7(6):283-294

through N-1, for N pixels), nzn is the number of
NZ voxel values for this pixel, Kn is a vector of
nzn voxel indices (each index is an 8-bit integer)
and Gn is a vector of nzn corresponding voxel
values (each value is a 32-bit double precision
float) in exactly the same sequence as that of
Kn. A pixel that has no NZ voxels will still have
its pixel id written followed by 0 written for nzn
on the file indicating absence of the following
two vectors.

Sparse format creates additional complexity in
matrix operations as the number of NZ ele-
ments (nzn) is not a constant and the vectors
lengths Kn and Gn vary from pixel to pixel. The
system matrix elements, elements of the input
sinogram, estimated sinogram, the voxel cor-
rection factors, and estimated voxel values,
all need to be distributed over GPU computing
elements and aligned in the available limited
memory per thread, in order to maximize local-
ization of computing. This is because local
memory on each GPU element is not large and
the whole system matrix cannot be loaded
there. Data transfer between slower memory
to faster memory located closer to the com-
puting unit, is a major bottleneck in efficient
image reconstruction. A memory distribution or
“chunking”, needs to be done even for any CPU
implementation in case the system matrix is
too large to fit in the available RAM memory. In
a GPU implementation, the “chunking” opera-
tion needs to be sensitive to the localization of

data (pixel or voxel elements that are to be esti-
mated, along with the system matrix elements).
We have also shown here how such improved
memory assignments may enhance GPU per-
formance further with two different experimen-
tations, one without memory alignment and
one with it. Table 1 shows our CPU and GPU
configurations for our experimentations.

GPU threads are organized in blocks and
threads. Appropriate utilization of the archi-
tecture is crucial in efficient implementation
with GPU. CUDA 2.0 allows maximum 65535×
65535 blocks, with 1024 concurrently running
threads available per block. A thread is expre-
ssed with two dimensions p and q. Maximum
allowed threads per block in our system is
p×q=1024. Preferable number for p is 36 for
best performance, and hence a maximum va-
lue of integer multiple of 36 that is ≤1024, or,
1008 number of threads may run concurrently
on a block. A thread is a sequence of opera-
tions written as a kernel routine in the code.
Multiple concurrent threads run the same se-
quence operations synchronously on different
input.

The number of threads used in each CUDA ker-
nel (code fragment whose copies run as multi-
ple threads with differing data) is a multiple of
the actual chunk size for the current pixel for FP
(for the current voxel for BP, see eqs. 2 and 3
respectively) and on each thread the voxel ids
and corresponding system matrix values are
passed to the GPU.

As mentioned before the system matrix is too
large to fit in the GPU memory, and so, needs to
be loaded chunk by chunk during FP and BP
operations. On the other hand, tackling a vary-
ing number of NZ voxel elements for each pixel
in the system matrix makes it difficult to decide
the size of such chunks. To overcome this diffi-
culty, first, we load the system matrix as three
vectors on CPU memory (a vector A of all NZ
chunk sizes for all pixels (nzn for all n: a vector
of unsigned int nz1, nz2, …), a vector B of all
voxel indices with NZ values (of unsigned int
K1, K2, …), and a vector C of all the correspond-

Table 1. Platforms used for comparison
Hardware/Method CPU GPU
Processing cores AMD Opteron 6128, 8 core NVIDIA Tesla M2070, 448 cores
RAM 32 GB 6 GB
Implementation Function C++ C++ with CUDA 2.0 kernel

Figure 1. YZ sparse matrix format for system matrix.

4D-spect reconstruction with GPU

287	 Am J Nucl Med Mol Imaging 2017;7(6):283-294

ing NZ values (of real numbers V1, V2, …)). This
resampling is done in CPU before iterations
start with GPU.

We compute the maximum possible number of
NZ values (max(nzn)) over all pixels for FP with a
scan of the first vector A. Subsequently, a mul-
tiple of this number u×max(nzn), where u is an
integer >0, is used as the chunk size for loading
from A, B and C on memories of GPU elements
(threads). Similarly for BP, we check for maxi-
mum number of NZ pixel values in the system
matrix over each of the voxels (say, max(nzk))
and the chunk size is determined according to
this max(nzk).

Each block in CUDA is expressed with three
dimensions x, y, and z. In FP (eqs. 14-15), for
example, they are mapped to the number of
factors, the maximum number of NZ voxels per
pixel max(nzn), and the number of pixels in one
projection respectively (e.g. for our canine data
they are 4, 557 and 1280, respectively). Again,
due to the GPU global memory size limitation,
we cannot put data for all time units (e.g., 72 for
canine data) into the thread level. In that case,
we needed loops to load and compute with par-
tial data into the thread level synchronously,
e.g., 2 loops with 36 time elements or 35 pro-
jections for canine data (note again, each pro-
jection corresponds to a time-instance). For
canine data the total dimension for the block
and the thread is (4×557×1280)×(36×1). After
all threads on each blocks are finished, the

results are off loaded from GPU to CPU, and the
next data block is loaded from CPU to GPU. This
reduces the bandwidth between CPU and GPU
communication, thus improving performance.

Methods

We have experimented SIFADS implementa-
tions for dynamic SPECT reconstruction. We
have used three types of data sets: static im-
aging data generated with NCAT simulations,
dynamic imaging data with the same and
canine data from real SPECT DI. They are
described below.

Static SPECT

In order to measure the GPU performance on
different data sizes, we have created four nu-
merically simulated volumes of different reso-
lutions (or binary matrices). They are of dimen-
sions: 16×16×16, 32×32×32, 64×64×64 and
128×128×128 with voxel values of 1 within the
volume and 0 on the background [12]. Figure 2
shows a cartoon of such a ground truth of vol-
ume in the center. In order to produce a sino-
gram for each data size, we generated respec-
tive SPECT system matrices for the following
acquisition parameters: (1) 120 projections
over 360 degrees, (2) single detector head of
size corresponding to the respective volume
(e.g., for volume with 64×64×64 voxels, detec-
tor head is of 64×64 pixels size), and (3) a low-
energy high-resolution (LEHR) parallel-hole col-
limator. Finally, a forward projected sinogram
was created for each of these to which Poisson
noise was added. No attenuation or scatter cor-
rections were applied to these system matri-
ces.

The first choices for thread organizations in
reconstructing for four data sizes are, respec-
tively: 16×16=256 blocks and 16 threads/
block; 32×32=1024 blocks and 32 threads/
block; 64×64=4096 blocks and 64 threads/
block; and 128×128=16384 blocks and 128
threads/block. The second set of GPU imple-
mentations have the threads reorganized res-
pectively, according to available CUDA cores:
16 blocks with 16×16=256 threads/block; 32
blocks with 32×32=1024 threads/block; 64×
4=256 blocks with 6×16=1024 threads/block;
and 128×16=2048 blocks with 128×8=1024
threads/block. This takes the advantage of
maximum allowed number of threads per block
(1024) for our system.

Figure 2. Cartoon for numerically simulated volumes
(of a sample dimensions) used for static images re-
construction.

4D-spect reconstruction with GPU

288	 Am J Nucl Med Mol Imaging 2017;7(6):283-294

We express the dimensionality of a static recon-
struction problem by U×V×P×X×Y×Z, where U×V
is the detector dimension in pixels, P is the
number of projections, and X×Y×Z is the recon-
structed volume’s dimension.

Dynamic SPECT with NCAT phantom

The simulated dynamic datasets were generat-
ed from an NCAT phantom [13] of 64×64×41
voxels size for cardiac imaging with a real sys-
tem matrix for GE Millennium VG3 SPECT ma-
chine. A dynamic sinogram is generated by
forward projecting the phantom with different
input TACs that resemble tissue TACs for the
known activities of the tracer 99mTc-sestamibi
for cardiac SPECT studies over three types of
regions: blood-pool in heart, myocardium, and
liver. We first segmented the phantom volume
for these three ROIs. Then, the curves in
Figure 3A are used to model the change of
tracer activities in the blood pool, myocardium,
and liver segments of the NCAT volume respec-
tively. The curves are b-splines and are based
on our experience on how the tracer behaves
in the respective organs. These segments
and the three curves are subsequently used
as ground truths for comparing the correspond-
ing reconstructed output TACs and their coeffi-
cients respectively. Acquisition parameters
used for forward projection are: (1) LEHR paral-
lel-hole collimation, (2) one detector head, (3)
64×64 bins per projection angle, (4) 72 projec-
tions over 360 degrees rotation, and (5) cam-
era rotating at a speed of one second per
projection, i.e., 72 seconds for a full rotation.
No scattering or attenuation is used in generat-
ing system matrix over this experiment with
simulated dynamic data. Generated dyna-
mic sinogram with added Poisson noise (Fig-
ure 3A) is the input to the SIFADS implemen-
tations.

For this dynamic reconstruction, the natural
thread organization used for the GPU imple-
mentation is: (64×41) 2624 blocks and (72×3)
216 threads/block, according to the dimen-
sionality of the problem. After thread reorgani-
zation, the improved GPU implementation has:
(16×41) 656 blocks, with (4×72×3) 864 thre-
ads/block for 3 factors (or tissue types).

Canine dynamic SPECT

Our third data set is from a pre-clinical canine
cardiac rest-study performed with a GE Millen-

nium VG3 Hawkeye SPECT/CT camera with
LEHR parallel-hole collimator where the detec-
tor dual heads were in H-mode (two heads are
opposite or at 180-degree angle to each other)
and was rotating continuously. Injection of 3.7
mCi (1.37×108 Bq) of 201Tl tracer was adminis-
tered at the onset of acquisition that continued
for 20 minutes. For each rotation, two sets of
72 one-second projections over 360 degrees
were acquired. Each view contained 64×64
projection bins (4.42 mm). In the reconstruc-
tion with GPU the initial thread organization
is: (64×20) 1280 blocks and (72×4) 288 th-
reads/block, and the reorganized structure is:
(32×20) 640 blocks, (2×72×4) 576 threads/
block for 4 factors. The system matrix embeds
attenuation (measured from CT scan prior to
SPECT scan) and collimator scatter correction.
Gullberg lab [14] provided data and the sys-
tem matrix.

For expressing data sizes of dynamic image
reconstruction problem, an added dimension is
F, the number of factors. The number of time
units is same as P with one detector head (one
projection per time-unit) in SPECT, but must be
an integer P/2 for two simultaneously rotating
heads. Thus, the dimensionality for SPECT with
single head camera is U×V×P×X×Y×Z×F.

We measured the spatial and temporal accura-
cies and the SNR for each of the reconstructed
images from GPU and CPU implementations
over the simulated data sets, where the ground
truths are known. Spatial accuracy was mea-
sured from the estimated coefficients of each
tissue type. After applying a threshold, the
coefficients represented segmentations of the
imaged volume into a number of tissue types
based only on their temporal behaviors and not
just their spatial locations. These segmenta-
tions were then evaluated using the dice simi-
larity coefficient (DSC) metric [15]:

2 n

C C
DSC C

C C
J

J
est

J
true

J
est

J
true

=
+

#
c m % %
%

% %

 (20)

where CJest
% denotes the binary mask created

from the thresholded estimated coefficients for
the factor j or tissue type j, CJtrue

% denotes the
corresponding ground truth from the original
NCAT phantom, and |C| indicates the number
of voxels in C. DSC =1 indicates a perfect seg-
mentation, and DSC =0 indicates no overlap
between the estimated and the true segments.
Note that, all our validation efforts are involved
with the 3D coefficients and the correspond-

4D-spect reconstruction with GPU

289	 Am J Nucl Med Mol Imaging 2017;7(6):283-294

Figure 3. A. Left, the initial b-splines set and corresponding segments of NCAT used for producing the forward pro-
jected dynamic sinogram. Right, dynamic projections of NCAT data. B. Left, final reconstructed TACs, blood (blue),
myocardium (red), and liver (green). Results from CPU implementation are the dashed curves. Right, blood-pool,
myocardium and liver coefficients from GPU based dynamic SIFADS reconstructions of NCAT data over 30 iterations.
C. Canine dynamic SPECT studies, results from a GPU version. Left, final TACs for four tissue types. Right, slices of
reconstructed tissues (i.e. coefficients) with 30 iterations of SIFADS. Each image is scaled to fit the same sized box.

4D-spect reconstruction with GPU

290	 Am J Nucl Med Mol Imaging 2017;7(6):283-294

ing factors. These (C and f) may be multiplied
to produce a 4D image if necessary.

Temporal accuracy is measured by computing
the Root Mean Square (RMS) difference betw-
een the reconstructed TACs and the known
ground truth:

RMS TAC
TAC

TAC TAC
2

2

j
i j

est
i j

est
j
true

i

i i=
-

/
/

^
^

^ ^
h

h
h h6 @ (21)

namic images SNR is measured over the coef-
ficients C.

Results

Comparison of CPU and GPU implementations
of MLEM with varying sinogram sizes

Figure 4 depicts a reconstructed image for
32×32×32 voxels volume from the CPU and the

Figure 4. Left, the 16th transverse slices from GPU and CPU implementations-based static MLEM reconstruction
algorithms for the volume size 32×32×32 with 20 iterations. Right, two plots are intensity values on Y-axis of the
voxels against the line profiles on left. Curves from GPU and CPU are identical as expected and overlapped each
other on the right figure.

Figure 5. The X-axis is data size represented by that of the system matrix
equal to the size of volumes times the size of the corresponding sinograms,
varying from 163×162×120 to 1283×1282×120. Y-axis is time taken for
20 iterations (arbitrarily chosen for acceptable quality of reconstruction) of
MLEM.

where TAC jest i^ h denotes the
value of the estimated TAC
of tissue type j at time ti,
TAC jtrue i^ h is the correspond-

ing ground truth TAC value
used as an input in the simu-
lation. RMS =0 indicates per-
fect recovery of the TACs.

Signal-to-noise ratio (SNR) is
measured for the reconstruct-
ed images:

SNR
x x N

x

/2k 1
N

k k 1
N

k N

k 1
N

k N

/

/
-

=
/ /

/

= =

=

^ h

 (22)

where xk denotes the value
of the kth voxel in the signal
region (segments) and N de-
notes the number of those
voxels. In the cases of dy-

4D-spect reconstruction with GPU

291	 Am J Nucl Med Mol Imaging 2017;7(6):283-294

GPU implementations, verifying that the two
implementations result in same images.

Comparison of MLEM reconstruction-times
over the different sinogram sizes

Figure 5 and Table 2 show scalability of the
GPU implementation over the CPU implementa-
tion, even though for a small data size GPU may
take more time than that with CPU (row 1, Table
2) because of the communication overhead.
With 32 times increase in size of the sinogram,
the CPU needs about 7.7 times more computa-
tion to do the reconstruction, while the GPU-
based computation time has increased by 5.8
times, and threads reorganized GPU implemen-
tation time grows by 5.3 times. Table 3 com-
pares the qualities of the images. They are
mostly similar, but may have differed slightly,
because of better precision GPU processors
[16].

Timing comparison between dynamic re-
constructions with CPU and GPU versions of
SIFADS

For 4D SPECT reconstruction we have used an
NCAT phantom, and a canine cardiac study. The
Table 4 summarizes the timing comparisons for
the two data sets: with CPU, with GPU, and with
threads reorganized GPU. For measuring data
sizes in 4D we incorporate the numbers of tis-
sue types reconstructed, i.e. multiply the vol-

ume with the number of factors. Subsequent
subsections will discuss more detail of the
results obtained by the SIFADS reconstructions
from each data set.

Dynamic SPECT NCAT data: A slice of the co-
efficients for myocardium reconstructed with
each of the GPU and CPU implementations is
shown in Figure 6 left. Line profiles on CPU and
GPU generated images (Figure 6 right) show
that they are very similar. Improvement of GPU
performance is shown in Table 4, while Table 5
shows the quality metrics of NCAT image recon-
structions from each implementation. Figure
3B shows the result of SIFADS (from GPU): a
small region around each coefficient, and the
corresponding TACs for each tissue type.

Canine dynamic SPECT data: Figure 7 com-
pares the two reconstructed coefficients C for
the myocardium from CPU vs GPU. Figure 3C
shows the reconstructed tissues for the GPU
version (CPU and GPU versions have same
results). We have used four factors here, for left
and right ventricles of the blood-pool inside
heart, myocardium, and lungs. We were able to
slice the projections to eliminate liver from
interfering with heart.

Table 6 presents the SNR in each of the recon-
structed coefficient-images representing a seg-
mentation for each tissue type. Note again that
each coefficient-image is reconstructed inde-
pendently (in the 3D image domain) within the
iterations of the algorithm. Regions having
stronger signal content shows higher SNR val-
ues as expected.

Discussion

GPU-based sparse image reconstruction shows
expectedly a better scalability for both static
and dynamic cases. However, reorganization of
threads by appropriately mapping the dimen-
sionality of the problem to the system architec-
ture of the GPU platform, improves perfor-

Table 2. Scalability of GPU SPECT static 3D reconstruction with NCAT phantom (run time in seconds)
Size for each
system matrix CPU (s) GPU (s) GPU with threads

reorganization
Ratio (CPU vs

GPU)
Ratio (CPU vs GPU

with reorganization)
163×162×120 1.87 1.93 1.92 0.97 0.97
323×322×120 14.4 12.85 12.91 1.12 1.12
643×642×120 134.18 106.91 95.04 1.26 1.41
1283×1282×120 819.35 275.86 243.33 2.97 3.37

Table 3. Measure of qualities: Dimension-
less measures of quality of SPECT static 3D
reconstructions for NCAT phantom
Size for each sinogram SNR_CPU DSC
163×162×120 0.443 0.908
323×322×120 0.531 0.911
643×642×120 0.536 0.914
1283×1282×120 0.552 0.931
They are exactly same (up to three decimal) for all three
set of experimentations: on CPU, on GPU and with
thread-optimization on GPU.

4D-spect reconstruction with GPU

292	 Am J Nucl Med Mol Imaging 2017;7(6):283-294

mance further. A major problem in thread reor-
ganization for a GPU implementation of dynam-
ic reconstruction is with some constraints in
the GPU system structure itself. For example,
the number of threads cannot be more than
1024 in our system, and using a lesser number
of threads may not achieve full parallelization
and under-utilize the system. This means that
the mapping of the dimensions of the problem
to the threads and blocks should be such that

tions maximum numbers of threads per block
that we could use, given the dimensionalities of
our respective reconstruction problems, are:
for NCAT 864 (32×27) and for Canine data 576
(32×18), thus, full parallelization could not be
achieved. Any GPU implementation needs to be
sensitive to this issue.

Large size of the system matrix poses a great
challenge in working with small local memory

Table 4. Comparison of timing with three versions of SIFADS algorithm over two data sets
30 iterations
SIFADS Data size CPU Time

(sec)
GPU Time

(sec)
GPU with threads

reorganization
Ratio of CPU

vs GPU
Ratio of CPU vs GPU
with reorganization

NCAT 4.65×1010 583 198 193 2.94 3.02
Canine 6.05×1010 1862 542 537 3.43 3.46

Figure 6. Left, the 23rd liver coefficient’s transverse slices from CPU (top) and GPU (bottom) based dynamic SIFADS
reconstruction algorithms for NCAT data. Right, two plots are values of the voxels (blue GPU curve is completely
overlapped by the red CPU curve). Curves from GPU and CPU are identical as expected and overlapped each other
on the right figure.

Table 5. Quality metrics of 4D reconstruction (for dynamic
projections generated from NCAT data) by SIFADS against
the ground truth NCAT segments
SIFADS reconstruction
of NCAT Data

Spatial accuracy
with CPU (DSC)

Spatial accuracy
with GPU (DSC) RMS

Blood 0.981 0.971 0.003
Myocardium 0.867 0.631 0.005
Liver 0.928 0.891 0.007
DSC values are exactly same for both the experimentations on GPU: with
and without thread optimization, and slightly better than those found on
CPU. RMS values of TACs are exactly same for all three experimentations.

as many threads (≤1024) as possible
are utilized. Also, it is recommended
that the number of threads should be
a multiple of 32, which provides a
better utilization of the physical com-
puting nodes (in CUDA 2). Note that
we could use all threads (1024) in
static reconstruction with each of the
four sizes of data of the numerical
phantom, thus achieving maximum
feasible parallelization (not present-
ed here but in [17]). However, in the
cases of dynamic image reconstruc-

4D-spect reconstruction with GPU

293	 Am J Nucl Med Mol Imaging 2017;7(6):283-294

on GPU, even in cases of our SPECT recons-
truction. This gets further complicated with
sparse form of the matrix that is a necessity
for any efficient implementation. On a different
project [12], we have observed more than ten
times improvement with GPU in the case CT
data because of the use of on-the-fly scheme
for generating system-matrix (as is the conven-
tion in CT reconstruction, because the size of a
system matrix may be too large to fit even on a
CPU RAM), where GPU is particularly suitable
for a repeated system matrix computation with-
in the iterations. A ray-tracing algorithm was
first proposed in [18], which is highly paralleliz-
able. This algorithm lies at the heart of our sys-
tem matrix generation.

Conclusion

We have studied here the scalabilities of both
static and dynamic image reconstructions in

SPECT with GPU based implementations. Static
reconstruction was performed with convention-
al MLEM iterative algorithm, which forms the
basis of our dynamic reconstruction algorithm
SIFADS. Dynamic reconstruction in SPECT is a
highly underdetermined problem for limited
angle projections. SIFADS takes advantage of
the sparse nature of data and uses matrix fac-
torization in order to make the problem solv-
able. Parallelization significantly reduces com-
putational time (3 to 4 times). This is indepen-
dent of the speed up of system matrix genera-
tion with GPU, where GPU is very suitable for
ray-tracing within system-matrix generator, but
that is not part of this work as we use pre-com-
puted system matrix.

In future, we will use a different shared memory
architecture than that in GPU, and use a distrib-
uted memory architecture for our 3D and 4D
reconstruction problems. We have also report-
ed here scalability with respect to data size. To
the best of our knowledge no such systematic
study has been done before, especially for dy-
namic SPECT image reconstruction. Our future
efforts will also be directed in reducing the
communication between the processors by pa-
rallelizing over multiple GPU units as in [19, 20],
where ordered subset expectation maximiza-
tion-like [21] approaches are used for partial
reconstructions on each GPU unit that are com-
bined time to time after certain fixed number of
iterations.

Figure 7. Left, the 11th slices myocardium along transverse views from CPU (top) and GPU (bottom) based dynamic
SIFADS reconstructions. Right, two plots are values on the line profiles on left. Curves from GPU and CPU are identi-
cal as expected and overlapped each other.

Table 6. Quality of reconstructions by SIFADS
over each tissue type from canine studies
Canine Data SNR of reconstruction
LV 0.035
RV 0.025
Lungs 0.206
Myocardium 0.328
SNR values on second column are exactly same for all
three set of experimentations: on CPU, on GPU and with
thread-optimization on GPU.

4D-spect reconstruction with GPU

294	 Am J Nucl Med Mol Imaging 2017;7(6):283-294

Acknowledgements

This work was supported by National Institute
of Health grant numbers R01EB07219,
R01HL50663, R01HL135490 and R01CA-
154561. Yuval Zelnick developed the YZ
sparse system matrix data format. We ack-
nowledge Rostyslav Boutchko for providing
the canine data.

Disclosure of conflict of interest

None.

Address correspondence to: Debasis Mitra, School
of Computing, Florida Institute of Technology, 150
West University Blvd., Melbourne, FL 32901, USA.
E-mail: dmitra@cs.fit.edu

References

[1]	 Gullberg GT, Reutter BW, Sitek A, Maltz JS,
Budinger TF. Dynamic single photon emission
computed tomography basic principles and
cardiac applications. Phys Med Biol 2010; 55:
R111-91.

[2]	 Abdalah M, Boutchko R, Mitra D and Gullberg
GT. Reconstruction of 4-D dynamic SPECT im-
ages from inconsistent projections using a
spline initialized FADS algorithm (SIFADS).
IEEE Trans Med Imaging 2015; 34: 216-228.

[3]	 Lee D and Seong S. Learning the parts of ob-
jects by non-negative matrix factorization. Na-
ture 1999; 401: 1999.

[4]	 Alhassen F, Kim S, et al. Ultrafast multipinhole
single photon emission computed tomography
iterative reconstruction using CUDA. IEEE Nucl
Sc Symp Conf Record 2011.

[5]	 Lange K and Carson R. EM reconstruction al-
gorithms for emission and transmission to-
mography. J Comput Assist Tomogr 1984; 8:
306-316.

[6]	 Reutter BW, Gullberg GT and Huesman RH.
Direct least-squares estimation of spatiotem-
poral distributions from dynamic SPECT projec-
tions using a spatial segmentation and tempo-
ral B-splines. IEEE Trans Med Imaging 2000;
19: 434-450.

[7]	 Dipaola R, Bazin JP, et al. Handling of dynamic
sequences in nuclear medicine. IEEE Trans
Nucl Sci 1982; 29: 1310-1321.

[8]	 Sitek A, Di Bella EV and Gullberg GT. Factor
analysis with a priori knowledge application in
dynamic cardiac SPECT. Phys Med Biol 2000;
45: 2619-2638.

[9]	 Levitan E and Herman GT. A maximum a poste-
riori probability expectation maximization algo-
rithm for image reconstruction in emission to-
mography. IEEE Trans Med Imaging 1987; 6:
185-192.

[10]	 Huesman RH, Gullberg GT, Greenberg WL and
Budinger TF. Users manual-donner algorithms
for reconstruction tomography. Lawrence Ber-
keley Laboratory Publication PUB‑214, 1977.

[11]	 Winant CD, Aparici CM, Zelnik YR, Reutter BW,
Sitek A, Bacharach SL, Gullberg GT. Investiga-
tion of dynamic SPECT measurements of the
arterial input function in human subjects using
simulation, phantom and human studies. Phys
Med Biol 2012; 57: 375-93.

[12]	 Mitra D, Pan H, Alhassen F and Seo Y.
Parallelization of iterative reconstruction algo-
rithms in multiple modalities. IEEE Nucl Sci
Symp Conf Rec (1997) 2014; 2014.

[13]	 Segars WP and Tsui BMW. Study of the efficacy
of respiratory gating in myocardial SPECT us-
ing the new 4D NCAT phantom. IEEE Trans
Nucl Sci 2002; 49: 675-679.

[14]	 Reutter BW, Botvinick E, Boutchko R, Huesman
RH and Gullberg GT. Quantitative rest/stress
myocardial perfusion imaging with dynamic
SPECT. J Nucl Med 2010; 51: 241.

[15]	 Dice LR. Measures of the amount of ecologic
association between species ecology. Ecology
1945; 26: 297-302.

[16]	 Whitehead N, Fit-Florea A. Precision & perfor-
mance: floating point and IEEE 754 compli-
ance for NVIDIA GPUs. Florea 2011; 21.

[17]	 Pan H. Accelerated tomographic image recon-
struction of SPECT-CT using GPU paralleliza-
tion. Ph.D. Dissertation 2015; Florida Institute
of Technology, Melbourne, Florida.

[18]	 Gullberg GT, Huesman RH, Malko JA, Pelc NJ,
Budinger TF. An attenuated projector‑backpro-
jector for iterative SPECT reconstruction. Phy
Med Biol 1985; 30: 799‑816.

[19]	 Pratx G, Chinn G, Olcott PD and Levin CS. Fast,
accurate and shift-varying line projections for
iterative reconstruction using the GPU. IEEE
Trans Med Imag 2009; 28: 435-445.

[20]	 Yang,L, Zhou J, Ferrero A, Badawi RD and Qi J.
Fast and efficient fully 3D PET image recon-
struction using sparse system matrix factoriza-
tion with GPU acceleration. Phys Med Bio
2014; 59: 403-419.

[21]	 Hudson HM, Larkin RS. Accelerated image re-
construction using ordered subsets of projec-
tion data. IEEE Trans Med Imag 1994; 13:
601-609.

mailto:dmitra@cs.fit.edu

