
UCLA
UCLA Previously Published Works

Title
Unstructured moving least squares material point methods: a stable kernel approach with
continuous gradient reconstruction on general unstructured tessellations

Permalink
https://escholarship.org/uc/item/7184p1mw

Authors
Cao, Yadi
Zhao, Yidong
Li, Minchen
et al.

Publication Date
2024

DOI
10.1007/s00466-024-02524-x

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7184p1mw
https://escholarship.org/uc/item/7184p1mw#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNSTRUCTURED MOVING LEAST SQUARES MATERIAL POINT

METHODS: A STABLE KERNEL APPROACH WITH CONTINUOUS

GRADIENT RECONSTRUCTION ON GENERAL UNSTRUCTURED

TESSELLATIONS

Yadi Cao1, Yidong Zhao2,1, Minchen Li3,1, Yin Yang4, Jinhyun Choo2, Demetri Terzopoulos1, and Chenfanfu Jiang1

1University of California, Los Angeles, Los Angeles
2Korea Advanced Institute of Science & Technology

3Carnegie Mellon University
4University of Utah

ABSTRACT

The Material Point Method (MPM) is a hybrid Eulerian Lagrangian simulation technique for solid
mechanics with significant deformation. Structured background grids are commonly employed
in the standard MPM, but they may give rise to several accuracy problems in handling complex
geometries. When using (2D) unstructured triangular or (3D) tetrahedral background elements,
however, significant challenges arise (e.g., cell-crossing error). Substantial numerical errors develop
due to the inherent C0 continuity property of the interpolation function, which causes discontinuous
gradients across element boundaries. Prior efforts in constructing C1 continuous interpolation
functions have either not been adapted for unstructured grids or have only been applied to 2D
triangular meshes. In this study, an Unstructured Moving Least Squares MPM (UMLS-MPM) is
introduced to accommodate 2D and 3D simplex tessellation. The central idea is to incorporate a
diminishing function into the sample weights of the MLS kernel, ensuring an analytically continuous
velocity gradient estimation. Numerical analyses confirm the method’s capability in mitigating cell
crossing inaccuracies and realizing expected convergence.

1 Introduction

The Material Point Method (MPM) [54] was introduced to solid mechanics as an extension of both the Fluid-Implicit
Particle (FLIP) method [6] and the Particle-in-Cell (PIC) method [26]. The MPM is a hybrid Eulerian-Lagrangian
method, often referred to as a particle-grid method that retains and monitors all physical attributes on a collection of
particles. A background grid serves in solving the governing equations. Both Eulerian and Lagrangian descriptions are
incorporated in the MPM to overcome the numerical challenges stemming from nonlinear convective terms inherent in
a strictly Eulerian approach, while avoiding significant grid distortions typically found in purely Lagrangian methods.
The efficacy of the method has been demonstrated in problems concerning extreme deformation of solid materials, such
as biological soft tissues [33, 24], explosive materials [25, 47], sand [29, 38, 55], and snow [53, 21, 22].

Based on the specific Lagrangian formulations, the MPM is categorized into total Lagrangian [59, 58, 14, 15] and
updated Lagrangian [50] variants, in which equations are formulated in different reference configurations. In the
total Lagrangian MPM, numerical dissipation errors or artificial fractures are not observed; however, challenges arise

ar
X

iv
:2

31
2.

10
33

8v
2

 [
cs

.C
E

]
 3

1
Ju

l 2
02

4

due to mesh distortions as the connectivity is preserved in a manner similar to the Finite Element Method (FEM).
Conversely, the updated Lagrangian MPM has been found to exhibit greater robustness, particularly in dealing with
demanding scenarios such as impacts and shocks [66, 31, 29, 7], failures and cracks in both single-phase and multi-phase
materials [10, 64, 55], and contact mechanics [45, 11, 28, 27, 12, 58, 23, 48].

Despite its numerous successes, the updated Lagrangian MPM mainly adopts a uniformly-structured background
grid that aligns with the axes of the global Cartesian coordinate system, using (2D) quadrilaterals or (3D) hexahedra
for spatial discretization. When boundaries involve complex geometry, however, the aforementioned approach may
introduce significant challenges in conformally discretizing the space. Remarkably, many engineering problems,
such as those in mechanical and geotechnical engineering [17], involve complex boundary geometry. Hence, some
researchers [61, 4, 34, 60] have proposed using unstructured (2D) triangles or (3D) tetrahedra for discretization, which
provides substantial flexibility in the presence of geometrically complex boundaries.

Unfortunately, most of the existing approaches using unstructured triangular or tetrahedral elements adopt a piecewise
linear (C0) basis function [61, 4, 34, 60] whose gradient is discontinuous along element boundaries. In this case,
when particles move from one element to another (i.e., crossing element boundaries), a significant error arises—the
so-called cell-crossing error [2]. Because the function gradient becomes discontinuous along element boundaries, the
cell-crossing error leads to severe stress oscillations, causing significant numerical errors.

Several approaches have been proposed for circumventing the cell-crossing error, including the generalized interpolation
material point (GIMP) method [2, 9], the dual domain MPM (DDMPM) [63], the use of high-order basis functions such
as B-splines [52, 19], and approaches based on moving least squares (MLS) basis functions [30, 56]. Unfortunately,
they are either limited to structured quadrilaterals/hexahedra or are only applicable to 2D cases using triangles [39].
This leaves the cell-crossing error as an unsolved challenge when using unstructured tessellations in both the 2D and
3D MPM.

The objective of this study is to address the aforementioned cell-crossing challenge for general unstructured meshes in
both 2D and 3D. The proposed approach is built upon a new MLS reconstruction process that is suitable for general
unstructured discretization. By incorporating a diminishing function into the sample weights of the MLS kernel, an
analytically continuous function gradient is achieved, which efficiently eliminates the cell-crossing error. A new MLS
kernel function is derived that can be straightforwardly implemented into an existing MPM framework.

The remainder of this paper is structured as follows: Section 2.1 introduces the general governing equations of the
MPM and the details of a typical explicit MPM process. The Moving Least Squares (MLS) approximation and the
MLS-MPM method are discussed in Section 2.3.1. A seemingly straightforward yet inherently flawed extension of the
MLS-MPM to unstructured meshes, along with the associated cell-crossing challenge, is presented in Section 2.3.2.
Section 2.3.4 develops a solution to this challenge, accompanied by an in-depth analysis and kernel reconstruction for
representative unstructured meshes. Numerical results affirming the efficacy of the proposed method are reported in
Section 3. The paper concludes in Section 4 with reflections and recommendations for future work.

2 Methodology

2.1 Governing Equations

Following standard continuum mechanics [5], consider the mapping x = ϕ(X, t), which maps points from the
(reference) material configuration, represented by X , to their corresponding locations in the (current) spatial configu-
ration, represented by x. In this framework, velocity is defined in two different but equivalent manners. On the one
hand, V (X, t) = ∂x

∂t (X, t) defines the Lagrangian velocity in the material configuration. On the other hand, the
Eulerian velocity in the spatial configuration, is denoted by v(x, t) = V (ϕ−1(x, t), t). Furthermore, the deformation
experienced by the material points is quantified using the deformation gradient, given by F (X, t) = ∂x

∂X (X, t). The
determinant of this gradient, represented by J , is also crucial as it provides insights into volumetric changes associated
with the deformation process.

2

Given these definitions, the conservation equations for mass and momentum (neglecting external forces) are [67, 5]

ρJ = ρ0,

ρ
Dv

Dt
= ∇ · σ,

(1)

where ρ represents the density, D/Dt is the material derivative, and

σ =
1

J
PF T . (2)

is the Cauchy stress tensor, which is related to the first Piola-Kirchhoff stress P = ∂Ψ
∂F , where Ψ denotes the strain

energy density. The evolution of the deformation gradient is given by

Ḟ = (∇v)F . (3)

Consider a domain represented by Ω. Boundaries on which the displacement is known, represented as ∂Ωu, are
governed by the Dirichlet boundary condition

xk(x, t) = x̄k(x, t), ∀x ∈ ∂Ωu, (4)

where x̄k denotes the predetermined displacement for component k. Boundaries on which the tractions (forces per unit
area) are predefined, represented as ∂Ωτ , adhere to the Neumann boundary condition

σkl(x, t)nl = τ̄k(x, t), ∀x ∈ ∂Ωτ , (5)

where τ̄k is the prescribed traction for component k, and σkl(x, t)nl represents the traction inferred from the stress
tensor σkl acting in the direction of the outward unit normal vector nl. For ease of reference and notational clarity in
our framework, the subscripts k and l refer to components k and l of any given vector or tensor.

To solve the conservation equations for mass and momentum within the MPM framework, one often turns to the weak
form. Specifically, a continuous test function ϕ, which vanishes on ∂Ωu, is employed. Then, both sides of the equation
are multiplied by ϕ and integrated over the domain Ω:∫

Ω

ϕρẍkdΩ =

∫
∂Ωτ

ϕτkdA−
∫
Ω

∂ϕ

∂xl
σkldΩ. (6)

At this juncture, integration by parts and the Gauss integration theorem are utilized, nullifying the contributions on ∂Ωu

due to the vanishing of the test function on this boundary subset.

For clarity, in the remainder of this paper, the terms "grids" or "grid nodes" will exclusively refer to regular background
grid nodes. In contrast, "mesh nodes" will denote nodes in general, unstructured meshes. For simplicity, we do not
change the common abbreviations such as Particle-To-Grid (P2G) and Grid-To-Particle (G2P).

In the standard implementation of the MPM, physical quantities such as mass and velocity are retained at material
points and then projected onto background grid nodes for further computation. (6) is discretized on these nodes by the
Finite Element Method (FEM) and then solved using either implicit or explicit time integration schemes. This article
focuses on the explicit symplectic Euler time integration method. While the extension to implicit methods is possible
and straightforward, it would be orthogonal to the contribution of the article.

2.2 Explicit MPM Pipeline

The explicit MPM pipeline in each time step has four main stages: (1) the transfer of material point quantities to the
background nodes, known as Particle-To-Grid (P2G), (2) the computation of the system’s evolution on these background
nodes, (3) the back-transfer of the evolved quantities to the material points, known as Grid-To-Particle (G2P), and (4) the
execution of necessary post-processings, such as elastoplasticity return mapping and material hardening. Algorithm 1
presents an overview of the MPM pipeline, and the main stages are elaborated below.

3

Algorithm 1 Explicit MPM
1: Determine material point-node connectivity, calculate kernel functions wp,i

2: P2G:
Nodal mass: mi =

∑
p ρpVpwp,i

Nodal momentum: pi =
∑

p vpρpVpwp,i

Nodal velocity: vi = pi/mi

3: Internal force: f int
i = −

∑
p Vpσp∇wp,i

4: Gravity: f ext
i =

∑
p wp,impgp

5: Nodal force: fi = f ext
i + f int

i
6: Deformation of background nodes:

Updated nodal accelerations: ẍi = fi/mi

Update nodal velocities: ṽi = vi +∆tẍi

Enforce Dirichlet conditions: ẍi = 0 and fi = 0
7: G2P:

Update point velocities: v∆t
p = vp +∆t

∑
i wp,iẍi

Update point positions: x∆t
p =

∑
i wp,ix̃i

8: Update deformation gradient: F∆t
p =

(
I +

∑
i(x̃i − xi)(∇wp,i)

T
)
Fp

9: Update point volume: V ∆t
p = det(F∆t

p)V 0
p

10: Update point stresses: σp = C(Fp)
11: Enforce plasticity, reset background deformation, advance to next timestep

Stage 1: P2G In the MPM, material points are the Lagrangian particles that track the location of the continuum along
with physical attributes such as mass, position, and velocity. To evolve the dynamics on the background grid or mesh
nodes, an interpolation function—also known as a transfer kernel or simply a kernel—needs to be determined to relate
the information from particles to their nearby active nodes. Generally, for a particle located at xp and all surrounding
nodes at x1, . . . ,xN , the stacked kernel values associating the two sides are:

wp = [wp,1, . . . , wp,N]T = w(z;xp,x1, . . . ,xN)

∣∣∣∣
z=xp

. (7)

Specifically, we include x1, . . . ,xN in this definition because constraints, such as the partition of unity, can only
be determined while considering all active neighbors. Nonetheless, the neighbors are implicitly detected by xp; for
conciseness, we omit this implicit condition in the remaining part of this paper. The kernel supports transferring
information between the nodes and any location z near xp; in most MPM works, the kernel is evaluated at the lagged
xp before the completion of P2G, i.e., we set z = xp and keep the kernel unchanged for both P2G and G2P.

Following this, the stacked gradients of the kernels are obtained with respect to the spatial variable z, then evaluated at
xp:

Gp = [gp,1, . . . , gp,N]T = [∇zw(z;xp)]

∣∣∣∣
z=xp

. (8)

In the explicit MPM framework, the lumped mass at each background node is defined as mi =
∑

p ρpVpwp,i, where
ρp represents the density and Vp the volume of each nearby particle. This definition facilitates the calculation of the
background node momentum, expressed as

miẍi = f int
i + f ext

i , (9)

where ẍi is the acceleration of node i, and f int
i and f ext

i represent the internal forces and the external forces acting on
the it, respectively:

f int
i = −

∑
p

Vpσp∇wp,i, (10)

4

f ext
i =

∑
p

mpwp,ibp +
∑
p

mpwp,igp. (11)

The stress tensor σ is determined by the deformation gradient F through some constitutive relation, indicating how
material deformation influences internal forces:

σ = C(F). (12)

Stage 2: Evolution on the Background Nodes Using the accelerations obtained from (9), we integrate the velocities
and positions of the background nodes using a symplectic Euler time integrator employed throughout this work:

ṽi = vi +∆tẍi (Velocity Update), (13)

x̃i = xi +∆tṽi (Position Update), (14)

where the time step size ∆t is chosen based on the CFL condition [18].

Stage 3: G2P The FLIP scheme [6] is utilized for all experiments discussed in Section 3. In FLIP, the particle
positions and velocities are updated as follows:

x∆t
p =

∑
i

wp,ix̃i, (15)

v∆t
p = vp +∆t

∑
i

wp,iẍi. (16)

Subsequently, the evolution of the deformation gradient F in (3) is conducted as follows:

F∆t
p =

(
I +

∑
i

(x̃i − xi)(∇wp,i)
T

)
Fp. (17)

Given the initial deformation gradient F 0 = I and initial volume V 0
p , particle volumes are updated as:

V ∆t
p = det(F∆t

p)V 0
p . (18)

Stage 4: Post-Processing and Resetting the Background Nodes This stage encompasses all post-processing tasks
such as plasticity return mapping and material hardening [51]. In the updated Lagrangian MPM, the grid is reset to a
non-deformed state at the end of each timestep. This is achieved by keeping the grid or mesh constant while zeroing all
information such as velocity and acceleration.

2.3 Transfer Kernel

In the MPM, the transfer kernel is crucial for relaying particle information to adjacent background nodes. Techniques
such as the B-spline MPM [52] and GIMP [2] use a specific compact support function to smoothly influence nearby
grid nodes, whereas methods like Moving Least Squares MPM (MLS-MPM) [30] determine the kernel implicitly, based
on the proximity of nodes. However, both strategies follow a similar workflow, which involves for every particle: (1)
identifying the set of nearby nodes, and (2) calculating the transfer kernel and gradient for every particle-node pair.

This section first introduces the general MLS reconstruction process and the application of MLS-MPM with a com-
prehensive linear polynomial basis. It is followed by a discussion on a naive extension of MLS-MPM to unstructured
meshes, highlighting the steps of identifying nearby nodes and computing the transfer weights. We then delve into the
desirable properties of the kernel, emphasizing why the naive extension fails to yield continuous gradient reconstructions
when particles cross cell boundaries. Finally, we propose a solution addressing the issue of discontinuous gradient
reconstructions and introduce UMLS-MPM.

5

2.3.1 Introduction to General MLS and MLS-MPM

Given the kernel definition in (7), the Moving Least Squares (MLS) method aims to use a polynomial-based kernel to
reconstruct û for some function u at any location z near a given particle location xp. It is defined as follows:

û(z;xp) = pT (z − xp)c(xp), (19)

where p(z − xp) = [p0(z − xp), p1(z − xp), . . . , pl(z − xp)]
T represents the polynomial basis, c(xp) =

[c0(xp), c1(xp), . . . , cl(xp)]
T are the corresponding coefficients, and l indicates the total order of the basis. The

coefficients c(xp) are determined by minimizing the sum of weighted square errors between the sampled function
values ui and the reconstructed values ûi at nearby node positions xi:

c(xp) = argmin
∑

i∈Bxp

d(xi − xp) ||ui − pT (xi − xp)c(xp)||2, (20)

where d is a weighting function that takes proximity as input, and Bxp is the set of sample points in the local region
around xp where the weighting function is non-zero.

This minimization leads to the following solution for c(xp):

c(xp) = M−1(xp)B(xp)u, (21)

where
M(xp) =

∑
i∈Bxp

d(xi − xp)p(xi − xp)p
T (xi − xp)

= P (xp)D(xp)P (xp)
T ,

(22)

and
B(xp) = P (xp)D(xp). (23)

Here we use the stacked notations: u = [u1, . . . , uN]T is the stacked sample values, P (xp) = [p(x1−xp), . . . ,p(xN−
xp)] is the stacked basis, and D(xp) is the diagonal sample weighting matrix with Di,i(xp) = d(xi − xp).

Substituting (21) into (19), we obtain the reconstruction:

û(z;xp) = pT (z − xp)M
−1(xp)B(xp)u

= w(z;xp)
Tu,

(24)

where the last derivation is obtained by defining the kernel for MLS, and note that M−1(xp) is symmetric:

w(z;xp) = BT (xp)M
−1(xp)p(z − xp). (25)

Similar to (7) and (8), in the context of MPM, we again set the spatial variable z to be the particle positions xp before
completing P2G and obtain the kernel value:

wp = w(z;xp)

∣∣∣∣
z=xp

= BT (xp)M
−1(xp)p(0), (26)

as well as the kernel gradient:

Gp = [∇zw(z;xp)]

∣∣∣∣
z=xp

= BT (xp)M
−1(xp)(∇zp)(0). (27)

6

Particle location

0th ring of neighbors

Further neighbors

1st ring of neighbors+

Figure 1: Schematic plot of the zeroth and first ring of neighbors.

The Linear Polynomial Basis Case A special case involves using a complete linear polynomial basis, as in MLS-
MPM [30], where p(z − xp) = [1, (z − xp)

T]T . Setting z = xp in this basis, we have:

p(0) =

[
1

0dim

]
,

(∇zp)(0) =

[
0T

dim

Idim,dim

]
,

[p(0), (∇zp)(0)] = Idim+1,dim+1;

(28)

Substituting (28) into (26) and (27) and stacking wp and Gp in a column, we obtain a compact formula for both the
kernel and the gradient:

[wp,Gp] = BT (xp)M
−1(xp)[p(0), (∇zp)(0)]

= BT (xp)M
−1(xp)Idim+1,dim+1

= BT (xp)M
−1(xp).

(29)

Applying (29) to the stacked function sample values at nodes u, we obtain a compact formula for both the reconstructed
function value ûp and the gradient ∇zûp of u:[

ûp

∇zûp

]
= [wp,Gp]

Tu = M−1(xp)B(xp)u. (30)

We adopt the linear basis throughout this work.

2.3.2 Extending MLS-MPM Onto Unstructured Meshes

We select MLS-MPM as our foundation because of its inherent versatility, allowing it to be applied to adjacent nodes
without reliance on specific topological or positional constraints. Our implementation and experiments are based on
triangular and tetrahedral cells. Nonetheless, it is worth noting that our method can easily be extended to any tessellation
by designing a smooth and locally diminishing function ηv compatible with the tessellation, such as the one in (32) for
simplex cells.

7

(a) If 0th ring of neighbors are DOFs (b) Expand to use 1th ring of neighbors

Particle location

Inactive DOFs

Common 0th/1st ring of neighbors+

+ Added/removed ones

Figure 2: (a) When N 0
p alone is selected as the active nearby nodes, as a particle crosses the cell edge, the nodes

indicated by the blue and red boxes are added or removed, respectively. Consequently, the weights there must approach
zero to ensure C0 continuity, resulting in kernel degeneration along the edge. (b) Advancing to C1 addresses this issue
by incorporating a sufficient number of surrounding nodes to fully encompass the particle.

Identifying Nearby Nodes Around a Particle To determine the nearby nodes for a given particle p, we first locate
the cell that encompasses p and refer to its nodes as N 0

p , representing the 0-ring neighbors of p. Then, we define N 1
p

as the 1-ring neighbors, which comprise all nodes connected to N 0
p . Note that N 0

p ⊂ N 1
p . Similarly, we can define

N 2
p , . . . in an analogous manner, as illustrated in Figure 1.

To quickly search for the cell that contains p, we pre-store the adjacency relationship between the spatial hashing grid
and the mesh cells. When given a xp, the spatial hash grid is queried, and we then only check the cells adjacent to this
hash grid. The detailed pipeline can be found in Appendix A.

Ring Level Selection for Nearby Nodes When a specific level of ring neighbors is chosen as the active set of nodes,
a natural question arises:

What is the minimum number of rings required to satisfy the desired properties of the MPM kernel?

Assume N 0
p is selected, and the particle only affects the nodes i ∈ N 0

p ; since at least C0 continuity is required for the
kernel, when the particle passes one interface of the cell, the node not on the interface is removed from the active set and
the kernel for it must be zero. This leads to the kernel degenerating, i.e., the kernel affecting merely the interface when
the particle crosses it, as depicted in Figure 2a. Conversely, opting for 1-ring neighbors, N 1

p , effectively circumvents
this issue, ensuring a non-degenerate kernel interaction as illustrated in Figure 2b.

Computing the Weights For conciseness, we replace the function input with the subscript, for example replacing
(xp) with p in all related equations, the reconstruction reads:[

ûp

∇zûp

]
= M−1

p Bpu. (31)

8

2.3.3 Required Properties for the Transfer Kernel

Consider the essential desirable properties for an MPM kernel:

1. The kernel must be a non-negative partition of unity. This means that the sum of the kernel weights for all nearby
vertices of a particle should equal 1; i.e.,

∑
v∈N 1

p
wv = 1, with each individual weight wv ≥ 0,∀v ∈ N 1

p .

2. There should be a continuous reconstruction of both the function value and gradient as the particle crosses the
cell boundary.

With MLS-MPM, the partition of unity is inherently assured by the characteristics of MLS [40], and non-negativity
is assured by the uniform sampling of grid nodes (i.e., no degenerate samples). Lastly, with uniform grid nodes,
MLS-MPM ensures continuous reconstruction by utilizing a B-spline for sample weighting and provides C1 continuity.

However, this property holds only under uniform grid nodes with spacing properly aligned with the support of the
B-spline weighting function. The key is that the B-spline function approaches zero for grid nodes that are about to be
added or removed. Consequently, the influence of the discrete change in the set of active nodes on the assembly of Mp

and Bp in (30) is infinitesimal, ensuring no abrupt change during the reconstruction.

Due to the varying spacing of the unstructured meshes, the weighting function is not guaranteed to approach zero for
the added or removed nodes during cell crossings, leading to discontinuous reconstruction. This issue will be addressed
in the next section.

Still, we can borrow the key insight from MLS-MPM that “the weighting function for added or removed nodes should
approach zero” and design a scheme to enforce this property. The solution will be discussed and presented in the next
section.

2.3.4 Remedying Discontinuous Reconstruction Across the Cell Boundary

The jump change originates from the discrete change of the active set N 1
p during particle cell crossing if their influence

on the MLS assembly is nonzero. Hence, an intuitive solution is to artificially diminish their influence on the MLS
assembly. To achieve this, we multiply any initial sample weighting function dp,i, such as B-spline, by a smooth
diminishing function ηp,i; i.e., d′p,i ← ηp,idp,i. Here, ηp,i → 0 for nodes that are added or removed from the active set
N 1

p during the cell crossing. A detailed proof of the efficacy of this approach is provided in Appendix B.

For simplex elements, we design the following ηp,i:

ηp,i =
∑

n∈N 0
p

Bp,nAi,n, (32)

where A denotes the mesh’s adjacency matrix; an adjacency matrix is a binary matrix representing the connectivity
of a graph, where each Ai,j = 1 indicates the presence of an edge between nodes i and j. A mesh can naturally be
viewed as a graph by connecting an edge between every pair of adjacent nodes in a cell. Bp,n represents the barycentric
coordinate for particle p with respect to a specific node n ∈ N 0

p . Taking a 2D simplex, the triangular cell, as an example,
the barycentric coordinates of a location xp are triplets of numbers b1, b2, b3, subject to b1 + b2 + b3 = 1. If these
values are considered as masses placed at the nodes of the triangle, the centroid of these masses will be at xp. Generally,
barycentric coordinates can be calculated as follows:

Bp,ni =
det
(
[xn1

, . . . ,xni−1
,xp,xni+1

, . . . ,xndim+1
]
)

det
(
[xn1

, . . . ,xndim+1
]
) . (33)

Combining (33) with the adjacency matrix definition provides a more geometric interpretation of the design (32): for
i ∈ N 1

p , ηp,i is the sum of the barycentric weights for all n ∈ N 0
p that are connected to i. Note that ηp,i = 1, ∀v ∈ N 0

p .
Appendix B proves the claimed diminishing property for this design in the simplex cell, while Figure 25 provides a
simple visual illustration of the proposed ηp,i.

9

Figure 3: 1D meshes: (a) Uniform. (b) Uniform but truncated. (c) Periodically shrinking/expanding.

Figure 4: Comparison of kernel values and gradient estimations on a uniform 1D mesh (a) with and (b) without applying
the diminishing function.

2.3.5 Verification of the Proposed Kernel

To verify that the proposed method can produce continuous reconstruction, analytical and numerical solutions of some
examples are produced in 1D and 2D test cases, respectively.

For the 1D case, the first basic verification is conducted on a uniform mesh, as shown in Figure 3a. Figure 4a shows
the correct kernel reconstruction with the diminishing function η, while Figure 4b, as an ablation, shows that the
reconstruction is discontinuous even for the simplest uniform mesh, proving the necessity of η. The detailed setup for
this analytical solution is provided in Appendix C.

Note that when a particle is in a boundary cell, such as Node 3 in Figure 5, negative weight values may be obtained
for some interior nodes. This is caused by kernel degeneration due to the absence of a first ring of neighbors on the
boundary side during MLS sampling. To remedy this problem, which can cause numerical instabilities [1], an extra
layer of cells beyond the real boundary is included in our experiments.

The next verification is on a periodically shrinking and expanding 1D mesh (Figure 3c). The mesh contains cyclic cell
sizes of [. . . , 1, R,R2, R, 1, . . .] designed to mimic the transition between varying mesh resolutions. The size transition
ratios tested range from 1.1 to 1.5 to correspond with typical transition ratios in FEM analysis. Kernel reconstructions
are conducted on Nodes 5, 6, 7, and 8 as a full cycle. As shown in Figure 6, both the kernel and the gradient estimations
are piece-wise C1.

We note that kinks can be seen in the function value plots in Figure 6, leading to the potential confusion that the
gradient is discontinuous. However, the plots of kernel values are w(z;xp)|z=xp

= w(xp;xp) versus xp, as in (7);
for the misleading statement to hold true, the gradient should have been taken with respect to the plot axis xp, i.e.,
∇xp

w(xp;xp), which is not the case according to (8).

10

Figure 5: The negative weight for Node 3 (yellow) when the particle is in the boundary cell and there is no extra layer.

The ablation tests are also performed on a 2D unstructured mesh featuring a “&” shape. The comparison between
scenarios with and without the use of η, as shown in Figure 7a and Figure 7b respectively, validates the importance of η
and the effectiveness of the proposed method in managing unstructured meshes.

Finally, we experimentally show that UMLS-MPM can seamlessly be combined with other schemes, such as the Affine
Particle in Cell (APIC) scheme [35, 37] to help conserve the total angular momentum of the system. For details, see
Appendix D.

3 Experiments and Results

To demonstrate and assess the effectiveness of our approach, particularly its reduced cross-cell error owing to the con-
tinuous gradient reconstruction, we have chosen representative test cases from prior related studies. Our benchmarking
relies on analytical solutions when feasible; alternatively, we use the standard MPM with B-spline or GIMP basis
functions at a sufficiently high resolution. All experiments were carried out on a single PC equipped with an Intel®

Core™ i9-10920X CPU.

3.1 1D Vibrating Bar

Consider the 1D vibration bar problem shown in Figure 8a [62]. The left end of the bar is fixed and the right has
a sliding condition in the x direction. The physical properties of the bar are: E = 100Pa, ν = 0, L = 25m, and
ρ = 1 kg/m3. The initial velocity conditions are u̇(x, t = 0) = v0 sin (β1x) with β1 = π

2L .

The analytical expression of the center of mass in this problem is

x(t)CM =
L

2
+

v0
β1Lω1

sin (ω1t) , (34)

and
u̇(t)CM =

v0
β1L

cos (ω1t) , (35)

with ω1 = β1

√
E/ρ.

The original experiments in [62] included two velocity settings: v0 = 0.1m/s and v0 = 0.75m/s. The lower velocity
setting, v0 = 0.1m/s, was utilized solely for validation against the linear kernel MPM, as it does not involve cell
crossings. Here, we focus on the higher-velocity setting to assess the effectiveness of UMLS-MPM in addressing
cell-crossing errors.

11

Figure 6: Kernel values (left column) and gradient estimations (right column) on a periodically shrinking/expanding 1D
mesh with varying size transition rate R.

Figure 9 presents the convergence rate of UMLS-MPM with grid refinement. Specifically, Figure 9a shows that, with
the exception of the coarsest resolution dx = 2m, UMLS-MPM consistently achieves high accuracy, with a maximum
root mean square error (RMSE) of 0.554% in particle displacements. Figure 9b indicates that the convergence rate is
approximately second order on coarser grids, but it starts to level off on finer grids due to mounting temporal errors,
aligning with established MPM theory [36].

Figure 10a displays the stress profile for a particle located at x0 = 12.75m, which undergoes the most frequent cell
crossings during its vibrational motion. The outcomes achieved with UMLS-MPM showcase a remarkable level of
smoothness and precision. Figure 10b illustrates the energy dynamics for the entire system, revealing that the system’s
energy is largely conserved throughout the simulation, with only slight fluctuations. We believe the fluctuations in

12

Figure 7: Comparison of the kernel on an unstructured mesh (a) without and (b) with the application of the diminishing
function.

Figure 8: Setup of the 1D bar vibration test.

the energy plot are due to the symplectic integration schemes or the combined effect of the FLIP scheme. Similar
phenomena have been observed in previous works [16] and [57], respectively. These findings collectively underscore
the robustness and precision of UMLS-MPM in managing intense cell crossings by particles.

3.2 2D Collision Disks

Next, we considered the problem of two colliding elastic disks shown in Figure 11a [62]. The physical properties of the
disks are: E = 1000Pa, ν = 0.3, ρ = 1000 kg/m3, and v = ±(0.1, 0.1)m/s for the left and right disks, respectively.
Each disk was discretized with 462 material points using the triangle mesh of a disk. The background mesh was
generated using Delaunay triangulation with a target element size of 0.025m. We plot key snapshots of the simulation
in Figure 11b–d, with the impact at 1.5 s, total retardation right before 2.0 s, and rebounding separation right before
2.5 s.

Quantitative results for the collision disks are presented in Figure 12. In Figure 12a, a comparison of momentum
recovery during collision between UMLS-MPM and the B-spline MPM with sufficiently high resolution is shown.
While a perfect momentum recovery, such as that in the rigid collision (dashed gray line in Figure 12a), is not expected,
UMLS-MPM approaches this limit effectively. Similarly, Figure 12b displays the kinetic energy recovery during the
collision. The results indicate that UMLS-MPM effectively preserves the system energy. Figure 12c illustrates the
stress log at the center particle of the left disk. The results align perfectly with the reference, but only for negligible

13

Figure 9: Plots of (a) the center of mass displacement of the bar and (b) convergence rate of the RMSE of particle
displacements.

Figure 10: Plots of (a) the stress at the sampled particle closest to [17.5, 0.5] and (b) the system energy.

fluctuations, showing that UMLS-MPM does not generate spurious stress oscillations either from the collision or cell
crossings.

3.3 2D Cantilever With Rotations

Although an unstructured mesh offers the adaptability to match any boundary shape, the cell orientation, or a different
tessellation, can potentially affect accuracy. To illustrate the precision of our method under various rotation angles,
we examined the case of a cantilever under its own weight, as shown in Figure 13a [62]. The cantilever’s physical
characteristics are as follows: length l = 10m, height h = 2m, gravitational acceleration g = 9.81m/s2, Young’s
modulus E = 100000Pa, Poisson’s ratio ν = 0.29, and density ρ = 2 kg/m3. The cantilever was discretized with
uniformly spaced particles in both directions. We created the background mesh using Delaunay triangulation, aiming

14

(a) setup

1.0v -v

0.2 -300 70

(b) t = 1.5s; before contact (c) t = 2.0s; total retardation

-300 70

(d) t = 2.5s; rebounding

-300 70

Figure 11: 2D collision disks: (a) Problem setup. (b)–(d) Snapshots of the simulation at 1.5s, 2.0s, and 2.5s.

Figure 12: Plots of (a) the momentum in the x-direction of the left disk, (b) the energies of the system, and (c) the stress
at the sampled particle closest to the center of the left disk.

for an element size of 0.5m. Additionally, we rotated the mesh of the cantilever by angles of 15◦, 30◦, and 45◦ to
showcase the resilience of our method to rotation, as depicted in Figure 13b–d.

Figure 14a illustrates the spatial convergence of the y-displacement at the right tip of the cantilever beam under grid
refinement. Notably, except for the coarse resolutions of dx = 2m and dx = 1m, errors for all finer resolutions are
negligible. Therefore, a resolution of dx = 0.5m was employed to ensure sufficient accuracy for all subsequent plots in
this experiment. Figure 14b demonstrates that UMLS-MPM effectively conserves energy, aligning with the reference
B-spline MPM.

Figure 15a shows snapshots of the cantilever with different initial mesh rotation angles. The results indicate that
UMLS-MPM is robust under mesh rotation with only minor visible errors. Figure 15b quantitatively compares the

2

10

g g gg

(a) zero rotation (b) rotated 15o (c) rotated 30o (d) rotated 45o

Figure 13: 2D cantilever problem under different rotation angles: (a) 0◦, (b) 15◦, (c) 30◦, and (d) 45◦.

15

Figure 14: Plots of (a) the displacement in the y-direction at the right tip of the cantilever and (b) the energies of the
system.

Figure 15: (a) Snapshots of the cantilever with different initial rotating angles. (b) Comparison of the displacement in
the y-direction at the right tip of the cantilever.

y-displacement at the right tip. The results align well overall with both zero rotation and the reference, with errors of
1.27%, 2.18%, and 4.72% for 15◦, 30◦, and 45◦ rotation, respectively.

The convergence rate of UMLS-MPM is demonstrated in Figure 16. The results indicate that for cases with zero
rotation, the convergence rate is second order. While the RMSE increases slightly for cases with mesh rotation, it still
remains in the magnitude of 1E − 2, and the convergence rate remains near second order. These combined results
demonstrate the robustness and accuracy of UMLS-MPM under mesh rotation.

3.4 2D Ball in a Wavy Channel

16

Figure 16: Convergence plot of the RMSE of particle displacements.

T=0s T=6.0sT=3.0sT=1.4s

Figure 17: 2D ball in a wavy channel: snapshots of the simulation at 0s, 1.4s, 3.0s, and 6.5s.

We highlight the proposed method’s ability to conform to irregular geometric boundaries. To this end, we consider
the case of a ball freely falling but confined in a wavy channel, as shown in the leftmost subfigure of Figure 17. The
physical properties of the ball are: radius r = 1.0 m, Young’s modulus E = 100 kPa, Poisson’s ratio ν = 0.29, and
density ρ = 400 kg/m3. The ball was discretized with 4735 randomly sampled material points. The background wavy
channel has a sinusoidal shape.

17

The left wall of the channel has an analytical expression of:

xl =

{
A sin(ω1y) sin(ω2y), 0 < y ≤ 20.0 m

0, Otherwise,
(36)

where A = 1.0 m, ω1 = π
5 rad/m, and ω2 = π

20 rad/m. The right wall is created by shifting the left wall by 2.0 m, i.e.,
xr = xl + 2.0 m. The background mesh was generated using Delaunay triangulation with a target element size of 0.05
m, resulting in 43360 cells.

The snapshots of the simulation at 1.4s, 3.0s, and 6.5s are shown in Figure 17, while the zoomed-in views of the ball’s
deformation and hydrostatic stress are shown in Figure 18. UMLS-MPM captures both the bouncing into the wavy
channel (at 1.1s, 1.9s, 3.7s) and the squeezing through the narrow part of the channel (at 1.4s, 2.4s, 3.0s) with no
rasterization artifacts, proving the robustness of the proposed method in simulating under general mesh tessellation and
handling irregular geometry boundaries.

3.5 3D Slope Failure

Next, the performance of the proposed approach was investigated when dealing with material behavior involving
plasticity. To this end, we simulated failure of a 3D slope comprosed of sensitive clay. The problem geometry was
adopted from [69] and is illustrated in Figure 19. Here, the bottom boundary of the slope is fixed and the three lateral
sides are supported with rollers. To model the elastoplastic behavior of the sensitive clay in an undrained condition, a
combination of Hencky elasticity and J2 plasticity with softening was used. The softening behavior is governed by
the following exponential form: κ = (κp − κr)e

−ηεpq + κr, where κ, κp, and κr denote the yield strength, the peak
strength, and the residual strength, respectively, εpq denotes the equivalent plastic strain, and η is a softening parameter.
The specific parameters were adopted from [69]. They are a Young’s modulus of E = 25MPa, a Poisson’s ratio of
ν = 0.499, a peak strength of κp = 40.82 kPa, a residual strength of κr = 2.45 kPa, and a softening parameter of
η = 5. The assigned soil density is ρ = 2.15 t/m3.

The space was discretized using Delaunay triangulation with the shortest edge length of 0.2 m. The material points
were initialized with a spacing of 0.1 m in each direction, amounting to 311,250 material points in the initial slope
region. Note that the spatial discretization aligns with the one used in [69] in terms of both the shortest edge length
of the background element and the number of material points. Also, the F̄ approach proposed in [69] was utilized to
circumvent volumetric locking that UMLS-MPM solutions encounter when simulating a large number of particles of
incompressible materials. As a reference to verify the correctness of the proposed formulation, the F̄ solution in [69]
was used.

Figures 20 and 21 show the snapshots of the slope simulated by the standard and UMLS-MPM, where particles are
colored by the equivalent plastic strain and mean normal stress, respectively. We can see that UMLS-MPM effectively
captures the retrogressive failure pattern of slopes made of sensitive clay. Also, in terms of equivalent plastic strain
fields and mean normal stress fields, we observe a strong similarity between the UMLS-MPM solution and the reference
solution from [69].

For a further quantitative comparison, Figure 22 presents the time evolutions of the run-out distance—a measure of
the farthest movement of the sliding mass. Observe that the distances in the standard and UMLS-MPM solutions are
remarkably similar. Taken together, these findings confirm that the proposed method performs similarly to the standard
MPM.

3.6 3D Elastic Object Expansion in a Spherical Container

Finally, we examined the performance of UMLS-MPM in problems involving complex boundary geometry. In this
problem, the standard MPM with a structured grid may be challenged to impose conforming boundary conditions.
Hence, a collision between an elastic body with a spherical container was considered and simulated.

18

Figure 18: Zoomed-in view of the ball’s deformation in the wavy channel at key timestamps. From top to bottom,
timestamps around 1.4s, 3.0s, and 6.0s.

19

15 m

5 m

5 m 10 m

45∘

Figure 19: Problem geometry of the 3D slope failure (adapted from [69]).

The geometry of the problem, as demonstrated in Figure 23, involves an elastic object in the shape of a Metatron, which
is located at the center of a spherical container (with a radius of 0.5 m). The object is initially compressed isotropically
(with an initial deformation gradient of F = 0.75I), storing non-zero elastic potential energy. At the onset of the
simulation, the stored elastic energy is released, causing the object to expand and collide with the spherical container’s
boundary. To capture the elastic behavior of the object, a Neohooken elasticity was adopted with a Young’s modulus of
3.3 MPa and a Poisson’s ratio of ν = 0.49. The elastic object was discretized using a significant number of material
points (2,392,177) for high-fidelity simulation. Also, the spherical container was discretized using 2,178,129 tetrahedral
elements, each with an average edge length of h = 0.025m. Note that to avoid negative kernel values at boundary
nodes, an extra layer of elements was added outside the original boundary, as discussed in Section 2.3.5.

To consider the frictional collision between the elastic object and the container boundary, a barrier approach [68] was
adopted, ensuring that the elastic object does not penetrate the boundary. Contact forces are applied when the distance
between a material point and the boundary is below a specific value d̂, which was chosen to be a quarter of h for
sufficient accuracy. Also, a friction coefficient of µ = 0.5 was introduced to stop the sliding of the elastic object in the
later stages. The simulation ran with a time increment of ∆t = 6.16× 10−5 s until t = 1.5 s.

Figure 24 presents six snapshots simulated with UMLS-MPM, where the particles are colored based on the magnitude of
the contact force. The dynamic behavior of the object at various stages is well captured, including the initial expansion
stage (a), the first collision stage (b–d), the rebounding stage (e), and the final static stage (f). Overall, the UMLS-MPM
effectively handles complex geometry with a conformal discretization, which is critical for simulating a wide range of
interactions between deformable objects and complex boundaries.

4 Conclusion, Limitations, and Future Work

This study has extended the Moving Least Square Material Point Method to encompass general tessellations within
both 2D and 3D meshes. This advance has been achieved through the multiplication of a diminishing function to the
MLS sample weights. Analytically proved, the approach ensures continuous kernel reconstruction and provides a sound
foundation for MPM on any unstructured mesh types. Several numerical experiments in both 2D and 3D domains
have demonstrated the method’s effectiveness in achieving high-order convergence and eliminating cell-crossing errors.
However, the proposed method still has limitations.

To ensure the MLS solution does not degenerate, there are quality requirements for the surrounding nodes of the particle,
which pose challenges, especially in meshes with sharp resolution transitions or poor quality. Additionally, related to
varying mesh resolution is the sample weights: we used a B-spline function with a fixed support radius equaling the
maximum edge size to ensure that the first ring of neighbors is reserved in the coarsest area. However, this strategy

20

(a) t = 1.5 s

Standard MPM

equiv. plastic strain (%)

UMLS-MPM

(b) t = 2.5 s

equiv. plastic strain (%)

UMLS-MPM

Standard MPM

(c) t = 3.5 s

equiv. plastic strain (%)

UMLS-MPM

Standard MPM

(d) t = 5.5 s

equiv. plastic strain (%)

UMLS-MPM

Standard MPM

Figure 20: Snapshots of the solutions from the UMLS-MPM and the standard MPM with GIMP basis functions in
Zhao et al. [69]. Particles are colored based on the equivalent plastic strain.

21

(a) t = 1.5 s

Standard MPM

UMLS-MPM

mean normal stress (kPa)

(b) t = 2.5 s

UMLS-MPM

Standard MPM

mean normal stress (kPa)

(c) t = 3.5 s

UMLS-MPM

Standard MPM

mean normal stress (kPa)

(d) t = 5.5 s

UMLS-MPM

Standard MPM

mean normal stress (kPa)

Figure 21: Snapshots of the solutions from the UMLS-MPM and the standard MPM with GIMP basis functions in
Zhao et al. [69]. Particles are colored based on the mean normal stress.

22

Figure 22: Time evolutions of the run-out distance from UMLS-MPM and the standard MPM with GIMP basis
functions.

Spherical container (clipped) Spherical container

Elastic object

Figure 23: Problem setting of the 3D elastic object expansion in a spherical container.

leads to nearly uniform sample weights in finer regions, blurring the kernel. A potential solution could be to incorporate
a sizing field within the mesh to dynamically adjust the sample weight function.

Although UMLS-MPM has advantages in conforming to irregular geometry, this also brings potential issues and leaves
room for further improvements. For example, the lack of surrounding samples on one side when the particle is inside
the boundary cell can lead to kernel degeneration. While this issue was mitigated in our experiments by drawing an
extra layer of cells, an automatic and algorithmic approach is more appealing. Combining UMLS-MPM with regular
MPM is also promising, as it leverages the advantage of UMLS-MPM in conforming to boundary shapes, as well as the
robustness and efficiency of regular MPM for interior domains. For the transition between interior nodes and boundary
nodes, methods similar to immersed FEM [65, 46, 43] could be effective, as they project information from regular
background grids to irregular meshes.

From a practical standpoint, we need not a higher-order polynomial basis or higher rings of neighbors as long as the
current schemes, which have the lowest cost as discussed in Section 2, provides sufficient accuracy. However, from a

23

(a) t = 0 s (b) t = 0.004 s

(c) t = 0.006 s (d) t = 0.012 s

(e) t = 0.016 s (f) t = 1.5 s

Contact force magnitude (N)

Figure 24: Snapshots from the UMLS-MPM solutions in which particles are colored based on the magnitude of the
contact force.

24

theoretical perspective, these two prososals are still interesting. Several challenges can be noted: 1. Changing to higher
rings of neighbors will require a different solution for the diminishing function (32) to accommodate the new discrete
change of active sets. 2. The higher-order polynomial basis will result in a different MLS solution compared to the
linear solution (31). Additionally, since the propositions in Appendix B are based on the linear solution, it remains an
open question whether the higher-order solution has a continuous kernel and gradient, even with a diminishing function.
3. The higher-order polynomial basis will necessitate a more delicate selection of quadrature point locations. Unlike
higher-order FEM simulations, where the quadrature points are usually well-designed and fixed [32], in MPM, these
points may need to be adjusted with the particle locations, requiring extra design and attention.

From an application standpoint, exploring the integration between the Material Point Method (MPM) and gas or fluid
simulations via the Finite Volume Method (FVM) presents significant potential [7, 3]. For simulating granular materials
in realistic and irregular container shapes, combining UMLS-MPM with the Discrete Element Method (DEM) [13]
is also an interesting direction. Moreover, object contact detection and handling [42] is crucial to prevent artificial
penetration and sticking commonly seen in MPM [36]. In the field of scientific machine learning, recent advances have
demonstrated learning MPM or other mesh-based simulations using graph neural networks, accelerating the inferences
[49, 41, 8]. Our kernel construction suggests a potentially novel learning paradigm for MPM on unstructured meshes,
similar to embedding both kernel and mesh information into the network’s channel [20, 44].

25

References
[1] Soren Andersen and Lars Andersen. Analysis of spatial interpolation in the material-point method. Computers &

Structures, 88(7-8):506–518, 2010.

[2] S. G. Bardenhagen and E. M. Kober. The generalized interpolation material point method. Computer Modeling in
Engineering and Sciences, 5(6):477–496, 2004.

[3] A. S. Baumgarten, B. L. Couchman, and K. Kamrin. A coupled finite volume and material point method for
two-phase simulation of liquid–sediment and gas–sediment flows. Computer Methods in Applied Mechanics and
Engineering, 384:113940, 2021.

[4] L Beuth, Z Więckowski, and PA Vermeer. Solution of quasi-static large-strain problems by the material point
method. International Journal for Numerical and Analytical Methods in Geomechanics, 35(13):1451–1465, 2011.

[5] J. Bonet and R. D. Wood. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University
Press, 2008.

[6] J. U. Brackbill, D. B. Kothe, and H. M. Ruppel. FLIP: a low-dissipation, particle-in-cell method for fluid flow.
Computer Physics Communications, 48(1):25–38, 1988.

[7] Y. Cao, Y. Chen, M. Li, Y. Yang, X. Zhang, M. Aanjaneya, and C. Jiang. An efficient b-spline lagrangian/eulerian
method for compressible flow, shock waves, and fracturing solids. ACM Transactions on Graphics (TOG), 41(5):
1–13, 2022.

[8] Y. Cao, M. Chai, M. Li, and C. Jiang. Efficient learning of mesh-based physical simulation with bi-stride
multi-scale graph neural network. In International Conference on Machine Learning, pages 3541–3558, 2023.

[9] T. Charlton, W. Coombs, and C. Augarde. igimp: An implicit generalised interpolation material point method for
large deformations. Computers & Structures, 190:108–125, 2017.

[10] Z Chen, W Hu, L Shen, X Xin, and R Brannon. An evaluation of the MPM for simulating dynamic failure with
damage diffusion. Engineering Fracture Mechanics, 69(17):1873–1890, 2002.

[11] Z. Chen, X. Qiu, X. Zhang, and Y. Lian. Improved coupling of finite element method with material point method
based on a particle-to-surface contact algorithm. Computer Methods in Applied Mechanics and Engineering, 293:
1–19, 2015.

[12] Y. Cheon and H. Kim. An efficient contact algorithm for the interaction of material particles with finite elements.
Computer Methods in Applied Mechanics and Engineering, 335:631–659, 2018.

[13] Benjamin K Cook and Richard P Jensen. Discrete element methods: numerical modeling of discontinua. American
Society of Civil Engineers, 2002.

[14] Alban de Vaucorbeil, Vinh Phu Nguyen, Christopher R Hutchinson, and Matthew R Barnett. Total lagrangian
material point method simulation of the scratching of high purity coppers. International Journal of Solids and
Structures, 239:111432, 2022.

[15] Alban de Vaucorbeil, Vinh Phu Nguyen, and Tushar Kanti Mandal. Mesh objective simulations of large strain
ductile fracture: A new nonlocal johnson-cook damage formulation for the total lagrangian material point method.
Computer Methods in Applied Mechanics and Engineering, 389:114388, 2022.

[16] Denis Donnelly and Edwin Rogers. Symplectic integrators: An introduction. American Journal of Physics, 73
(10):938–945, 2005.

[17] James Fern, Alexander Rohe, Kenichi Soga, and Eduardo Alonso. The material point method for geotechnical
engineering: a practical guide. CRC Press, 2019.

[18] Joel H Ferziger, Milovan Perić, and Robert L Street. Computational methods for fluid dynamics. springer, 2019.

26

[19] Y. Gan, Z. Sun, Z. Chen, X. Zhang, and Y. Liu. Enhancement of the material point method using b-spline basis
functions. International Journal for numerical methods in engineering, 113(3):411–431, 2018.

[20] R. Gao, I. K. Deo, and R. K. Jaiman. A finite element-inspired hypergraph neural network: Application to fluid
dynamics simulations. Available at SSRN 4462715, 2022.

[21] J. Gaume, T. Gast, J. Teran, A. Herwijnen, and C. Jiang. Dynamic anticrack propagation in snow. Nature
communications, 9(1):1–10, 2018.

[22] J. Gaume, A. Herwijnen, T. Gast, J. Teran, and C. Jiang. Investigating the release and flow of snow avalanches at
the slope-scale using a unified model based on the material point method. Cold Regions Science and Technology,
168:102847, 2019.

[23] J. Guilkey, R. Lander, and L. Bonnell. A hybrid penalty and grid based contact method for the material point
method. Computer Methods in Applied Mechanics and Engineering, 379:113739, 2021.

[24] J. E. Guilkey, J. B. Hoying, and J. A. Weiss. Computational modeling of multicellular constructs with the material
point method. Journal of biomechanics, 39(11):2074–2086, 2006.

[25] JE Guilkey, TB Harman, and B Banerjee. An Eulerian–Lagrangian approach for simulating explosions of energetic
devices. Computers & structures, 85(11-14):660–674, 2007.

[26] F. H. Harlow. The particle-in-cell method for numerical solution of problems in fluid dynamics. Technical report,
Los Alamos Scientific Lab., N. Mex., 1962.

[27] M. Homel and E. Herbold. Fracture and contact in the material point method: New approaches and applications.
In Advances in Computational Coupling and Contact Mechanics, pages 289–326. World Scientific, 2018.

[28] M. A. Homel and E. B. Herbold. Field-gradient partitioning for fracture and frictional contact in the material
point method. International Journal for Numerical Methods in Engineering, 109(7):1013–1044, 2017.

[29] M. A. Homel, R. M. Brannon, and J. E. Guilkey. Simulation of shaped-charge jet penetration into drained and
undrained sandstone using the material point method with new approaches for constitutive modeling. CIMNE,
Barcelona, pages 676–687, 2014.

[30] Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang. A moving least squares material point method
with displacement discontinuity and two-way rigid body coupling. ACM Transactions on Graphics (TOG), 37(4):
1–14, 2018.

[31] P. Huang, X. Zhang, S. Ma, and X. Huang. Contact algorithms for the material point method in impact and
penetration simulation. International Journal for Numerical Methods in Engineering, 85(4):498–517, December
2010.

[32] T. J. Hughes. The finite element method: linear static and dynamic finite element analysis. Courier Corporation,
2012.

[33] I. Ionescu, J. E. Guilkey, M. Berzins, R. M. Kirby, and J. A. Weiss. Simulation of soft tissue failure using the
material point method. Journal of Biomechanical Engineering, 128:917–924, 2006.

[34] Issam Jassim, Dieter Stolle, and Pieter Vermeer. Two-phase dynamic analysis by material point method. Interna-
tional Journal for Numerical and Analytical Methods in Geomechanics, 37(15):2502–2522, 2013.

[35] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. The affine particle-in-cell method. ACM Transactions
on Graphics (TOG), 34(4):1–10, 2015.

[36] C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. The material point method for simulating continuum
materials. In ACM SIGGRAPH 2016 Courses, page 24. ACM, 2016.

27

[37] C. Jiang, C. Schroeder, and J. Teran. An angular momentum conserving affine-particle-in-cell method. Journal of
Computational Physics, 338:137–164, 2017.

[38] G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. Drucker-prager elastoplasticity for sand
animation. ACM Transactions on Graphics (TOG), 35(4):103, 2016.

[39] P. Koster, R. Tielen, E. Wobbes, and M. Möller. Extension of b-spline material point method for unstructured
triangular grids using powell–sabin splines. Computational Particle Mechanics, 8(2):273–288, 2021.

[40] D. Levin. The approximation power of moving least-squares. Mathematics of computation, 67(224):1517–1531,
1998.

[41] J. Li, Y. Gao, J. Dai, S. Li, A. Hao, and H. Qin. MPMNet: A data-driven MPM framework for dynamic fluid-solid
interaction. IEEE Transactions on Visualization and Computer Graphics, 2023.

[42] Lehui Li, Yanping Lian, Ming-Jian Li, Ruxin Gao, and Yong Gan. A contact method for b-spline material point
method with application in impact and penetration problems. Computational Mechanics, pages 1–19, 2023.

[43] Ming-Jian Li, Yanping Lian, and Xiong Zhang. An immersed finite element material point (ifemp) method for
free surface fluid–structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 393:
114809, 2022.

[44] T. Li, S. Zhou, X. Chang, L. Zhang, and X. Deng. Finite volume graph network (fvgn): Predicting unsteady
incompressible fluid dynamics with finite volume informed neural network. arXiv preprint arXiv:2309.10050,
2023.

[45] Y. Lian, X. Zhang, and Y. Liu. Coupling of finite element method with material point method by local multi-mesh
contact method. Computer Methods in Applied Mechanics and Engineering, 200(47-48):3482–3494, 2011.

[46] Wing Kam Liu, Yaling Liu, David Farrell, Lucy Zhang, X Sheldon Wang, Yoshio Fukui, Neelesh Patankar, Yongjie
Zhang, Chandrajit Bajaj, Junghoon Lee, et al. Immersed finite element method and its applications to biological
systems. Computer methods in applied mechanics and engineering, 195(13-16):1722–1749, 2006.

[47] S. Ma, X. Zhang, Y. Lian, and X. Zhou. Simulation of high explosive explosion using adaptive material point
method. Computer Modeling in Engineering and Sciences (CMES), 39(2):101, 2009.

[48] K. Nakamura, S. Matsumura, and T. Mizutani. Particle-to-surface frictional contact algorithm for material point
method using weighted least squares. Computers and Geotechnics, 134:104069, 2021.

[49] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia. Learning mesh-based simulation with graph
networks. arXiv preprint arXiv:2010.03409, 2020.

[50] G. Pretti, W. M. Coombs, C. E. Augarde, B. Sims, M. M. Puigvert, and J. A. R. Gutiérrez. A conservation law
consistent updated lagrangian material point method for dynamic analysis. Journal of Computational Physics,
485:112075, 2023.

[51] Juan C Simo and Thomas JR Hughes. Computational inelasticity, volume 7. Springer Science & Business Media,
2006.

[52] Michael Steffen, Robert M Kirby, and Martin Berzins. Analysis and reduction of quadrature errors in the material
point method (MPM). International Journal for Numerical Methods in Engineering, 76(6):922–948, 2008.

[53] A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. A material point method for snow simulation. ACM
Transactions on Graphics (TOG), 32(4):102, 2013.

[54] D. Sulsky, S. Zhou, and H. L. Schreyer. Application of a particle-in-cell method to solid mechanics. Computer
physics communications, 87(1-2):236–252, 1995.

28

[55] A. P. Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. Multi-species simulation of porous
sand and water mixtures. ACM Transactions on Graphics (TOG), 36(4):105, 2017.

[56] Quoc Tran, Elizaveta Wobbes, Wojciech Tomasz Sołowski, Matthias Möller, and Cornelis Vuik. Moving least
squares reconstruction for b-spline material point method. In International Conference on the Material Point
Method for Modelling Soil-Water-Structure Interaction, pages mpm2019–07, 2019.

[57] Quoc-Anh Tran and Wojciech Sołowski. Temporal and null-space filter for the material point method. International
Journal for Numerical Methods in Engineering, 120(3):328–360, 2019.

[58] A. Vaucorbeil and V. P. Nguyen. Modelling contacts with a total lagrangian material point method. Computer
Methods in Applied Mechanics and Engineering, 373:113503, 2021.

[59] A. Vaucorbeil, V. P. Nguyen, and C. R. Hutchinson. A total-lagrangian material point method for solid mechanics
problems involving large deformations. Computer Methods in Applied Mechanics and Engineering, 360:112783,
2020.

[60] L. Wang, W. M. Coombs, C. E. Augarde, M. Cortis, M. J. Brown, A. J. Brennan, J. A. Knappett, C. Davidson,
D. Richards, D. J. White, et al. An efficient and locking-free material point method for three-dimensional analysis
with simplex elements. International Journal for Numerical Methods in Engineering, 122(15):3876–3899, 2021.

[61] Zdzisław Więckowski. The material point method in large strain engineering problems. Computer Methods in
Applied Mechanics and Engineering, 193(39-41):4417–4438, 2004.

[62] P. Wilson, R. Wüchner, and D. Fernando. Distillation of the material point method cell crossing error leading
to a novel quadrature-based c 0 remedy. International Journal for Numerical Methods in Engineering, 122(6):
1513–1537, 2021.

[63] D. Z. Zhang, X. Ma, and P. T. Giguere. Material point method enhanced by modified gradient of shape function.
Journal of Computational Physics, 230(16):6379–6398, 2011.

[64] H. Zhang, K. Wang, and Z. Chen. Material point method for dynamic analysis of saturated porous media under
external contact/impact of solid bodies. Computer methods in applied mechanics and engineering, 198(17-20):
1456–1472, 2009.

[65] Lucy Zhang, Axel Gerstenberger, Xiaodong Wang, and Wing Kam Liu. Immersed finite element method.
Computer Methods in Applied Mechanics and Engineering, 193(21-22):2051–2067, 2004.

[66] X. Zhang, K. Sze, and S. Ma. An explicit material point finite element method for hyper-velocity impact.
International Journal for Numerical Methods in Engineering, 66(4):689–706, 2006.

[67] X. Zhang, Z. Chen, and Y. Liu. The material point method: a continuum-based particle method for extreme
loading cases. Academic Press, 2016.

[68] Yidong Zhao, Jinhyun Choo, Yupeng Jiang, and Liuchi Li. Coupled material point and level set methods for
simulating soils interacting with rigid objects with complex geometry. Computers and Geotechnics, 163:105708,
2023.

[69] Yidong Zhao, Chenfanfu Jiang, and Jinhyun Choo. Circumventing volumetric locking in explicit material point
methods: A simple, efficient, and general approach. International Journal for Numerical Methods in Engineering,
124(23):5334–5355, 2023.

29

Algorithm 2 Build Hash to Adjacent Cell
1: Input: Mesh node positions: pos, mesh cells: cell, hash grid size: dx
2: Output: Hash to adjacent cell connectivity: hash2cell
3: Calculate the bounding box of the whole mesh

min_pos← min(pos, axis=0)
max_pos← max(pos, axis=0)

4: Initialize hash2cell as an empty dictionary
hash2cell← {}

5: For each cell, find its bounding box, determine the spatial hash grids it touches, and append the cell to those
hash grids

6: for cell_idx in range(len(cell)) do
7: cell_min← min(pos[cell[cell_idx]], axis=0)
8: cell_max← max(pos[cell[cell_idx]], axis=0)
9: min_idx← floor((cell_min - min_pos) / dx)

10: max_idx← ceil((cell_max - min_pos) / dx)
11: range← indices(max_idx - min_idx)
12: candidates← range.reshape(dim, -1).T + min_idx
13: for c in candidates do
14: hash2cell[c].append(cell_idx)
15: end for
16: end for

A Pipeline for Rapid Cell Search

Fast determination of which cell contains a specific particle is crucial for the efficiency of UMLS-MPM. We propose
a hash grid-based method to accelerate this process. The pipeline consists of two steps: (1) building the hash grid
connectivity table, a dictionary mapping the hash grid as a key to all of its touching cell indices, as detailed in
Algorithm 2, and (2) the online search for determining which cell contains a given particle, as described in Algorithm 3.

B Proofs for the Continuous Reconstructions

For conciseness, we drop the subscripts p in the following proofs. We start by assuming there exists a smooth, locally
diminishing function η for the nodes added or removed from the set of nearby nodes N 1 when a particle crosses the
boundary of a cell. Under this assumption, we can prove that our kernel value and gradient estimation is continuous
across the boundary. We present the proof in 2D when a particle crosses an edge; the extension to 3D and other crossing
cases is straightforward. Finally, we prove that (32) satisfies the forementioned assumption.

Proposition. Our kernel value and gradient estimation is continuous across cell boundaries.

Proof Let N 1
o,n be the sets of nearby nodes before/after the particle p crosses the common edge between the old/new

cells N 0
o,n. Here, the subscripts o, n denote the old/new cell, respectively, and the superscripts 0, 1 indicate the

ring-0/1 neighbors of the cell, respectively. Let xo,n be the position of particle p before/after the crossing and
||xn − xo|| = O(ϵ). Define the common node set N 1

c = N 1
o ∩ N 1

n , the added node set N 1
a = N 1

n \ N 1
c , and the

removed node set N 1
r = N 1

o \ N 1
c . Since η is locally diminishing for v ∈ N 1

a,r, we have a positive value K1 such that
η = O(K1ϵ) = O(ϵ). The pertubation for the assembled matrix M before/after the particle p crosses an edge is

δM =
∑
v∈N 1

c

δ(ηdppT) +
∑
v∈N 1

a

ηdppT −
∑
v∈N 1

r

ηdppT , (37)

30

Algorithm 3 Find Containing Cell
1: Input: Mesh node positions: pos, mesh cells: cell, Mesh minimum position: min_pos, hash grid size: dx, Hash

to adjacent cell connectivity: hash2cell, particle position: xp
2: Output: Containing cell index or None
3: Get the hash spatial index for the particle

hash_idx← floor((xp-min_pos) / dx)
4: Get all adjacent cells to this hash grid

candidates← hash2cell[hash_idx]
5: For each candidate cell, check if the particle is inside
6: for c in candidates do
7: e← cell[c]
8: vs← pos[e]
9: # get the bounding box of the cell

10: e_min← min(vs, axis=0)
11: e_max← max(vs, axis=0)
12: # quick filter using bounding box
13: if all(xp >= e_min) and all(xp <= e_max) then
14: # check barycentric coordinates
15: bc← barycentric_coord(vs, xp)
16: if all(bc >= 0) then
17: return c
18: end if
19: end if
20: end for
21: # If no candidate cells contain xp
22: return None

where the first term is continuous by construction since every factor is smooth; i.e., ||δ(ηdppT)|| = O(ϵ). For the
second and third terms, since η = O(ϵ), we have

||δM || ≤
∑
v∈N 1

c

||δ(ηdppT)||+
∑
v∈N 1

a

||ηdppT ||+
∑
v∈N 1

r

||ηdppT ||

≤
[
|N 1

c |+
(
|N 1

a |+ |N 1
r |
)

max
v∈N 1

a,r

||dppT ||
]
O(ϵ)

= O(|N 1|h2ϵ)

= O(ϵ).

(38)

Here, as long as the mesh has a reasonably good quality, |N 1| is finite and small; i.e., there is a finite and small amount
of ring-1 neighbors. Also, h, a constant, is the support radius of the kernel, outside of which the weight is zero. In all,
both |N 1| and h can be omitted in the analysis.

31

The perturbation of the inverse matrix is given by

||δM−1|| = ||(M + δM)−1 −M−1||
= ||M−1 −M−1δMM−1 +O(||δM ||2)−M−1||
= ||M−1δMM−1 +O(ϵ2)||
≤ ||M−1δMM−1||+O(ϵ2)
≤ ||M−1||2 · ||δM ||+O(ϵ2)

=
||δM ||

σ(M)2min

+O(ϵ2)

= O
(

ϵ

σ(M)2min

)
+O(ϵ2)

= O
(

ϵ

σ(M)2min

)
,

(39)

where σ(M)min is the minimum singular value of M .

Similarly, for the perturbation in the assembled vector Bu = PDu before/after the particle crossing is

||δ (PDu) || = ||
∑
v∈N 1

c

δ(ηdup) +
∑
v∈N 1

a

ηdup−
∑
v∈N 1

r

ηdup||

≤
∑
v∈N 1

c

||δ(ηdup)||+
∑
v∈N 1

a

||ηdup||+
∑
v∈N 1

r

||ηdup||

≤

[
|N 1

c |+
(
|N 1

a |+ |N 1
r |
)

max
v∈N 1

a,r

||dup||

]
O(ϵ)

= O(|N 1|hϵ)
= O(ϵ).

(40)

Furthermore, we can establish the following bound for the assembled vector PDu:

||PDu|| = ||
∑
v∈N 1

ηdup||

≤ |N 1| · max
v∈N 1

||ηdup||

= O(|N 1|h)
= O(1).

(41)

Finally, the perturbation for
[
û,∇ûT

]T
from (31) is[

û,∇ûT
]T

= ||δ(M−1Bu)||
= ||δ(M−1PDu)||
= ||δM−1PDu+M−1δ (PDu) ||
≤ ||δM−1PDu||+ ||M−1δ (PDu) ||
≤ ||δM−1|| · ||PDu||+ ||M−1|| · ||δ (PDu) ||

= O
((

1

σ(M)2min

+
1

σ(M)min

)
ϵ

)
.

(42)

In the incomplete singular value decomposition of M , the singular values will always be non-negative. And if the
surrounding nodes are not degenerate, the minimum singular value σ(M)min will always be positive and the condition

32

number of M is bounded. Therefore, as long as the mesh is of reasonably good quality, both the function value and
gradient estimation is C0 across the boundary.

Proposition. The function ηi in (32) is locally diminishing for ∀i ∈ N 1
a,r.

Proof Formally, we need to prove that for any i ∈ N 1
a,r, when x is crossing the edge of a triangle and ||xn − xo|| =

O(ϵ), the smoothing function ηi = O(ϵ).

Denote the edge that the particle is crossing as e and the portion of ||xn − xo|| in the new/old cell as Ln,o. Trivially,

Ln,o ≤ Ln + Lo

= ||xn − xo||
= O(ϵ).

(43)

Then, let the far-away node not on the edge but in the new/old cell be ifar (i.e., in,ofar /∈ e ∧ in,ofar ∈ N 0
o,n) and the height

from a node i to an edge e be H(i, e). Since the height is orthogonal to the edge, we have H(xn,o, e) ≤ Ln,o = O(ϵ).
Consider the barycentric coordinate contributed by the far-away node, in the new/old cell respectively, for x:

Bn,o
ifar

=
H(xn,o, e) · ||e||
H(in,ofar , e) · ||e||

=
H(xn,o, e)

H(in,ofar , e)

= O(ϵ

H(in,ofar , e)
)

= O(ϵ).

(44)

S

Finally, if a node is added/removed during the particle crossing (i.e., i ∈ N 1
a,r), this means that i is only connected to

the far-away nodes in,ofar but not to the edge e; i.e., Ai,in,o
far

= 1,∀i ∈ N 1
a,r, otherwise Ai,n = 0,∀n ∈ e ∧ ∀i ∈ N 1

a,r.
Hence,

η =
∑

n∈N 0

BnAi,n

= Bn,o
ifar

Ai,in,o
far

+
∑
n∈e

BnAi,n

= Bn,o
ifar
· 1 +

∑
n∈e

Bn · 0

= Bn,o
ifar

= O(ϵ), ∀i ∈ N 1
a,r.

(45)

This concludes the proof.

C Settings and Analytical Solutions for the Verification Experiments of the Continuous
Reconstructions

This section presents the detailed setup and analytical solutions for the 1D verification experiments on a uniform 1D
mesh in Section 2.3.5. The kernel value is denoted as f and the gradient estimation is denoted as g, respectively. For the
uniform 1D mesh, each cell has a length of 1, and the unit support length for the B-spline used for the sample weights is

33

Particle locationCommon 0th/1st ring of neighbors+

Inactive DOFs+ Added/removed ones

H(xp
o, e)

H(xp
n, e)

H(vfar
n, e)

H(vfar
o, e)

||e||

Height to the edge

Helper lines to form a triangle

+

Figure 25: A visual representation of the notations used to prove that η diminishes locally, as described in ((44)), for
every vertex i within the first ring of neighbors, N 1

a,r. The dashed line denotes the perpendicular height from a given
position to the shared edge. Dotted lines are drawn to construct a triangle between the point x and the edge, facilitating
the computation of the barycentric coordinates.

also 1. The analytical solution for the uniform 1D mesh, obtained using Mathematica 2023, is as follows:

f =

0.25(0.5−x)2x
x5−6x4+13.5x3−13.75x2+6.3125x−0.5625 , 0.5 < x ≤ 1
−x6+5x5−9.5x4+8.5x3−3.3125x2+0.3125x+0.0625

−x5+4x4−5.5x3+3.25x2−1.3125x+1.0625 , 1 < x ≤ 1.5
x6−12x5+58.5x4−148.25x3+205.563x2−147.063x+42.25

x5−11x4+47.5x3−100.25x2+103.313x−41.125 , 1.5 < x ≤ 2
x6−12x5+58.5x4−147.75x3+202.563x2−141.438x+39

−x5+9x4−31.5x3+53.75x2−45.3125x+16.125 , 2 < x ≤ 2.5
x6−19x5+149.5x4−623.5x3+1453.31x2−1794.19x+915.687

−x5+16x4−101.5x3+318.75x2−495.313x+304.188 , 2.5 < x ≤ 3
−0.25x3+2.75x2−10.0625x+12.25

−x5+14x4−77.5x3+212.25x2−288.313x+156.688 , 3 < x ≤ 3.5

0, Otherwise

(46)

g =

− 1(0.5−x)2x(x−2)
x5−6x4+13.5x3−13.75x2+6.3125x−0.5625 , 0.5 < x ≤ 1

−x5+5x4−10.5x3+11.5x2−5.8125x+1.0625
−x5+4x4−5.5x3+3.25x2−1.3125x+1.0625 , 1 < x ≤ 1.5
−x5+9x4−33.5x3+65.75x2−67.3125x+27.625

−x5+11x4−47.5x3+100.25x2−103.313x+41.125 , 1.5 < x ≤ 2
−x5+11x4−49.5x3+112.25x2−125.313x+53.625

x5−9x4+31.5x3−53.75x2+45.3125x−16.125 , 2 < x ≤ 2.5
−x5+15x4−90.5x3+274.5x2−417.813x+254.188
x5−16x4+101.5x3−318.75x2+495.313x−304.188 , 2.5 < x ≤ 3

x4−13x3+62.25x2−129.5x+98
−x5+14x4−77.5x3+212.25x2−288.313x+156.688 , 3 < x ≤ 3.5

0, Otherwise

(47)

34

D Conservation of the Linear and Affine Momentum When Combined With Affine
Particle-in-Cell

Since UMLS-MPM by construction generates a kernel that is the partition of unity and conserves the linear basis [40],
i.e., ∑

i

wn
p,i = 1,∑

i

wn
p,ix

n
i = xn

p ,∑
i

wn
p,i(x

n
i − xn

p) = 0,

then the system’s total linear and angular momentum will be conserved when combined with APIC. A simple
introduction to APIC is given here for the sake of completeness, while the detailed proof can found in the supplementary
document of the original APIC paper [35].

In APIC, mass mp, position xp, velocity vp, and an affine matrix Bp =
∑

i wp,ivi(xi − xp)
T are stored and tracked

on particles. Then,

Definition 1 The total linear momentum on grids is

ptot
i =

∑
i

mivi.

Definition 2 The total linear momentum on particles is

ptot
p =

∑
p

mpvp.

Definition 3 The total angular momentum on grids is

Itot
i =

∑
i

xi ×mivi.

Definition 4 The total angular momentum on particles is

Itot
p =

∑
p

xp ×mpvp +
∑
p

mp(Bp)
T : ϵ,

where ϵ is the Levi-Civita permutation tensor, and for any matrix A, the contraction A : ϵ =
∑

αβ Aαβϵαβγ , which is
usually used to transition from a cross product into the tensor product u× v = (vuT)T : ϵ. Also note that for the total
angular momentum of the particles: 1) the grid node locations can be perceived as the sample points of a rotating mass
centered at the material particle location, and 2) the total angular momentum comprises both that of the center and that
of the affine-rotation of the grids around the center.

APIC P2G is given by

mn
i =

∑
p

wn
p,imp

Dn
p =

∑
i

wn
p,i(x

n
i − xn

p)(x
n
i − xn

p)
T

mn
i v

n
i =

∑
p

wn
p,imp(v

n
p +Bn

p (D
n
p)

−1(xn
i − xn

p))

(48)

35

1.0 0.2
v

-v

(a) setup

v-v

(b) step 2E4

v-v

(c) step 6E4

v-v

(d) step 2E5

Figure 26: Setup and snapshots of a rotating elastic square.

Figure 27: Logs of (a) linear and (b) angular momentum of the rotating cube experiment after 106 time steps.

with G2P given by

vn+1
p =

∑
i

wn
p,iṽ

n+1
i

Bn+1
p =

∑
i

wn
p,iṽ

n+1
i (xn

i − xn
p)

T ,
(49)

where the superscript˜means the intermediate value after the update on grids but before the G2P process.

D.1 Numerical Validation

A numerical validation as in [35] is also conducted here to verify these conservations. A square with a side length of
l = 0.2 is discretized with 20 × 20 particles. The physical properties of the square are as follows: E = 1 × 104 Pa,
ν = 0.3, and ρ = 1.0 kg/m3. Initially, the square is divided into two halves by a hypothetical vertical line through
the middle. The left half is initialized with an upward velocity v = (1, 0)m/s, while the right half is initialized with
a downward velocity v = (−1, 0)m/s. The experimental setup is illustrated in Figure 26. The background mesh is
generated using Delaunay triangulation with a target element size of 0.01m in a 1× 1m2 box. The simulation is run
for 1× 106 time steps with a time step size of 1× 10−5 s.

The proposed conservation is accurately illustrated in Figure 27b–c, with only round-off errors on the order of 1×10−15

and 1× 10−7 for the total linear and affine momentum of the system, respectively.

36

