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Abstract

Two protagonists face an intertemporal alleocation problem. Each

has limited, indivisible resocurces and must decide how best to
“"spend” them over time. We formulate this problem as a continuous-
time game, using techniques recently developed by Simon and
Stinchcombe. For the class of parameters that we consider in this
paper, the problem Has a unique solution, with surprising properties.

*The author has benefited greatly from discussions with Martin Osborne
Carolyn Pitchik, Suzanne Scotchmer, Bill Zame and, espscially, Maxwell
Stinchcombe.
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This paper is part of a series that develops a new approach to modelling continuous time gamcs.‘ In
the first paper (Simon-Stinchcombe [10]), we studied a pure strategy model in which agents were allowed 1o
move finitely many times. In the second (Simon [9]), we introduced behavior stralegies, but resmicted
atiention to games that end at the instant that some agent moves. We proposed a "calculus for continuous
time games,” which enabled us 1o solve a certain class of timing games with a minimum of compulation.
This paper combines and illustrates the methodologies of the two earlier papers in the context of a specific
application.z We exploit our "calculus™ to study a problem that would be exmemely tedious to solve in
discrete time, and impossible to model using conventional continuous-time teci‘u’aiques.3 Consider the

following scenario.

1. The Problem,

Two gunfighters stand at either end of a dusty sweet. Each has a Colt 45 and spare bullets. Apan from
their ammunition supplies, they are equally matched. As they begin to walk toward each other, their
accuracy increases. Since both bullets and time are expensive, they prefer not to waste either. The guns
have no silencers, so that each fighter can keep track of the number of bullets his opponent has left to fire.
Who will fire first? In what order will subsequent bullets be fired? Will the bullets be fired sooner or later
than the optimal times?*  Will agents’ aggregate payoffs be higher or lower as the disparity between their
initial numbers of bullets is increased?

Our protagonists face an intertemporal allocation problem. Each has limited, indivisible resources, and
must decide how best to allocate them over time. Since economic agents frequently face problems of this
kind, the answers 10 the questions raised above are of interest to economists. Indeed, the scenario above can
be rephrased as the following problem for industrial organization theorists.

1 For an alternative approach to modelling continuous time games, see Stinchcombe [12).
2 We also draw cxtensively on ideas that will appear in a third paper (Simon-Stinchcombe [10]) which is still in preparation.

3 Simon [9] discusses in detail the advantages of continucus time relative to discrele time for problems of this kind and points owt
why conventional continuous time techniques are inappropriate.

4 Qur benchmark netion of optimality is the usual one: we solve the single person decision probiem that defined by maximizing the
sum of agents’ expected payoffs.




There is a large potential market for some medical product. Two firms can produce the product, but
neither has obtained government certification. To obtain this, a firm must undertake a costly piloi study.
which may or may not succeed. As time passes and the products are refined, the probability of a successful
pilot study increases. Each firm has limited financial resources and so can initiate only a finite number of
studies; if all of these fail, it must quit the race. If exactly one firm obtains certification, it eams flow profits
until a finite time horizon is reached. 1f both are certified, price competition drives profits to zero. The firms
are identical except for their financial resources.

The analysis below is concemed with the economic rather than the Western scenario. We will,
however, borrow some convenient duelling terminology. In particular, our protagonists will "shoot bullets”
rather than "underiake pilot projects.” Our main result addresses the following question. Assuming that
agents start out with unequal numbers of bullets, who will shoot the first buliet and when? In what order and
at what times will the remaining bullets be fired? Intuition strongly suggests that the agent who starls out
with more bullets will fire first, and continue 10 do so until he has no more bullets than his adversary; once
this point is reached, we would expect an alternating pattem thereafter. This intuition is incorrect. In the
unique equilibrium for our model, the player who starts out with fewer bullets will fire the first shot. If this
bullet misses, he will keep on shooting until he either scores a hit or runs out of bullets. The second player
will hold his fire until the first has completely exhausted his supply of bullets.

Since some readers may be unfamiliar with the techniques developed in [9] [10] [11], we will study this
problem at two levels, We first analyze it informally, highlighting the economic principles involved and
using conventional economic reasoning. We then introduce our continuous-time model. We will proceed
heuristically, presuming no prior familiarity with our methodology. Even so, less specialized readers may
well be content with the firsi level of the analysis.

We conclude with some caveats about our result. Our purpose in this paper is to develop an interesting
point and illustrate continuous-time game theory, rather than prove an abstract theorem. With this in mind,
we impose some special restrictions. First, we consider only the most elementary functional form. In

particular, we assume that the probability of a hit {or success) increases linearly with time.> Second, our

5 The only role this assumption plays is to guarantee that our duopolists always fire strictly before the time that a2 monopolist with
the sum of their bullets would fire. This is certainly an intuitive property and, obviously, does not depend on linearify. per se.
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model has a unique and easily computed solution only for a certain range of parameter values. We have been
unable 1o identify this range by analytic methods. There is, however, a simple computational test we can
perform, to see whether the parameters for a given game fall within this range. Our results apply to the cla‘ss
of games that pass this test. By running the test repeatedly, we have verified that this is a rather large class.
Finally, we impose two rather arbitrary festrictions on agents’ sn-auegies;.6 Without question, these
restrictions are unobjectionable from a behavioral standpoint. They are, however, distasteful because they are
ad hoc. On the other hand, they drastically simplify our analysis.

The paper is organized as follows. In section IT we analyze the problem at an heuristic level and state
the results. Our continuous-time model is introduced in section 11l and formalized in section IV. In section

V we construct equilibrium strategies for the game.

II.  An introduction to the analysis

Our aim in this section is to introduce and motivate our result. We will ignore several delicate
modelling issues; indeed, we shall not even specify an explicit model! Our due! is played on the interval
[0, 2). (The horizon is set equal to ‘2" to simplify the arithmetic.) There are two players.-'7 Each player can
fire at any time he chooses. If he fires at ¢ < 1, his chance of scoring a hit is ¢; if he fires beyond ¢ = I, he
scores a hit with certainty. If one or more players fire a bullet, play is momentarily frozen, while "nature”
determines whether any bullet will hit its target. If a hit is scored, the game is over. If exactly one player
scores, he is declared the winner. If both players score, then nobody wins. (This is consistent with the
scenario we outlined on pp. 1-2: we assumed that if both firms’ projects succeeded, price competition would
drive profits to zero.) If each bullet misses, then play resumes iminediately and continues until either some
player .sc.ore(.s a.hi.i or all bullets have been fired.

Our two players will be called i and j. The ‘generic’ player will be denoted by ¢ (iota) and the

generic ‘other player’ by —t (not iota). A multistage duel is completely described by a triple (B*, #*, c*).

B* = (B, B}) is a pair of integers, denoting the number of bullets with which i and j start out the game.

& Assumptions F3 and FS$, specified in section IV below.

7 For easc of exposition, we assume these players are male.




This ‘pair will be called the endowment vector for the duel. The scalar $¢* > 0 denotes the resale value of

gach bullet. If an player wins the game at ¢, he earns a flow profit of #* from ¢ unui] time 2. Thus, if the
game ends at 7, and a player has fired » bullets, his ex post payoff will be - Snc* plus, if he wins, the “prize”
of $7*(2 - r). We asspme that #* > c*, so that playing the game is individually rational.

I i has bullets and j has none, the game reduces 1o a single person decision problem and is trivial 1o

solve. Set F19° = 0. When i has B, bullets, we shall say that we are in phase (8,,0) of the duel. Let L0y
denote i’s payoff if he fires his 8;-th to last bullet at ¢ and, if he misses, fires at the optimal times thereafter.

Clearly, for r less than the time he should fire his §;~1-th to last bullet,

LBy = n*x (2 - 1) - o* + (1 = nITPE

Let % denote the maximizer of L*°(r) and 1?0 denote i ’s expected payoff when he fires at this time. It is

easy to verify that (+*®) is a strictly decreasing sequence, starting at 1'% = 1. Set Hf"o =0
We now consider the duopoly phases of the duel, in which each agent has bullets. For
B = (B, B;) » 0, we will say that we are in phase B of the duel if player : has #, bullets remaining. We

will solve the duopoly phases one at a time, using backward induction. We start with phase (1,1), and then

proceed 1o (2,1), _..(B.1), (2,2), (3.2), etc. Once we have determined how players will play, if at any time
they enter a phase with fewer bullets than B, we can determine agents’ expected payoffs if one or both of
them fire at any time in phase ,6.8 We can then reduce this phase to a strategically eq.uivalem "single move"
game that ends as soon as one agent fires. Payoffs in this game comrespond to the payoffs that would result if
agents played in the predetermined way once they left phase B. Since there will not be a unique equilibrium
way 1o continue to play, there will be many single move games that correspond equally well to each phase of
the original game. We will establish, however, that these games are all identical "on the equilibrium path.”
The single-move games we construct are examples of a classical problem in game theory, known as the

l-lﬁg

"noisy due To distinguish these simple games from our original, multi-stage duel (which is also noisy),

¥ Of course, we have not yet even defined the game in which these stratcgics will be played! We will be abie to establish, however,
the kinds of cutcomes that these strategies musl generate.

? A noby duel is so named because each player can hear his opponent’s bullel at the instant it s fired. In a silent ducl, by contrast,
the shots cannot be heard, so that at any given time, i cannot determine whether j has fired and missed or is has been holding his fire.
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we will refer 1o them as classical duels. Since the classical duel plays a fundamental role in our subsequent

analysis, we will study it in some detail.

The classical duel.
In a classical duel, each player must choose a time in [0, 2) to fire one bullet. If | fires at time ¢ and j

does not, we will say that i leads and j follows at t. Alternatively, both players may fire simultaneously at

1. To define a payoff function for the classical duel, we must specify the payoff that player v will receive if
either or both players fire at any ¢ € [0, 2). We call these the "lead,” follow™ and “fire simultaneously” func-
tions for player 1. In the generic duel, we denote them, respectively, by L,(9), F,() and §,(-). To avoid trivi-
alities, we will always assume that if neither player ever fires, each earns a payoff of minus infinity. We will
also need 1o analyze the "subduels” of a given duel. Given T € [0, 2) and a classical duet CD, we denote by

€D (1) the subduel of CD that begins at t. This game is defined by restricting the payoff functions for

CD 1o the interval {z, 2), and starting play at time 7.
The classical duels corresponding to phase (1,1) are easy to solve. We will show that if players start
playing in this phase at time zero, then in any equilibrium, the first bultet will be fired at the time ¢ at

which each player is indifferent between leading and following. That is, t"'! must solve the equation

LY@ = m*2—1) =~ ¢* = (1 —t){x* = ¢c*) = FR(. 2.2

Cali 1! the firing time for phase (1,1). In any equilibrium, exactly one player fires at this time. There is a

unigue equilibrivm _payoff vector, ', defined by:

M o= (O T = (a2 - ) - eX, (1= ) - ¥, 2.3)

An important fact is that 1’ < 129, where #>® is the optimal firing time for an industry with two bullets.
If players enter phase (1,1) at some time 7 > ¢!, the next bullet will be fired immediately. There are

three possible outcomes. For each z, there is an equilibrium in which 1 fires with probability one and —1

fires with probability zero. The third outcome is random. Each outcome generates a distinct payoff vector.

Clcarly, the two games have very dificrent properties. For other discussions of thi~ game, see Pitchik [7). Hendriks-Wilson {6] and Dixit
[H. Pichik’'s paper contains a useful list of references.




Phase (2,1): introducing our main result.

As we have observed, there are many classical duels that correspond to this phase. However, their

payoff functions all agree on the interval [0, r"').m Moreover, there 15 a unigue equilibrium outcome that is

common to each of them and is completely determined by payoffs on the above interval. With no essential
ambiguity. therefore, we can refer to the duel corresponding to phase (2,1), denoted by CD*'. For each t,
the lead and follow payoffs will be denoted by L2(-) and F2!(). We will specify these payofls only on the
interval [0, 1*). If i leads at time 7 < ¢*', he will score a hit with probability . With the remaining proba-
bility, the duel will enter phase (1,1), the next bullet will be fired at ¢’ and agents wi-Il earn the payoff vec-

tor TT''. I j leads and misses at 7, then he earns nothing and i earns 20, Summarizing, for 1 € [0, '),

LBy = m*2 - 1) - c* + (1-DI! (24.2)
FA(1) = (1 - 0IE® (2.4.5)
Lf"(t) = m*(2 - 1)~ c* _ (24.0
FFay = (1 - o)t (2.4.d)

Obviously, L}'(")'is strictly increasing and, for each 1, F 21(1) is strictly decreasing. Also, as one would ex-
pect, a*(2 - 1) exceeds I on [0, ') so that L21(") is also strictly increasing on this interval. An impor-

tant property of this game is that for each 1, there is a time 7, < ¢ at which L2Y(+) intersects F,>'(-). More-

over, these times are different for each player.
When modelled as a closed-loop, continuous-time game, CD?' has a unique solution. The bullet is

fired with probability one at max(s, ;). Denote this time by ¢*! and call it the firing-time for phase 2.1).

. The player who fires the bullet will be the one whose lead function first intersects his follow function. It
turns out that that this player is j!
This result is at first sight surprising. Since i has a "second chance," while j does not, we might ex-

pect i to be the first to shoot. Indeed, this latter conclusion is suggested by the law of diminishing returns: J

19 The reason is that these payofl’ functions are determined by the different possible equilibrivm sirategies for phase (L1} As we

have observed, all of the equilibria for phasc (1,1) agree, provided agents enter the phase before 1. 1f they enter afier this time, there
are several distinct equilibrium out omes,




presumably values his second bullet less highly than his first, and so should be more willing than j 10 nsk
“wasting” a bullet in the hope of scoring an early hit. As we shall see, these inpitions are incorrect. They
fail (o take into account the nature of the trade-off faced by i. In addition to the obvious "first-mover advan-
tage.” there is a less obvious "second-mover advantage” that more than offsets the former. To see this, sup-
pose that ¢ fires first and, if he misses, fires second. In this case, both of his bullels will be fired "too eur-
Iy" I j fires first and misses, on the other hand, ; will become a monopolist and will fire his bullets at the
optimal times. It turns out that in equilibrium, the gain to firing at the optimal times rather than suboptimally
more than offsets the risk 7 takes that he will never get to sk;oot, because j’s bullet finds its target.

We now explain the argument in more detail. To establish that player j is the one to fire at this time,
we need only establish that at 123 j alreadv swicily prefers leading to following. Observe from
(2.4.2)-(2.4.d) that i’s payoffs both to leading and following exceed the corresponding payoffs for j. We will
show that the difference between the two players’ ‘follow’ payoffs strictly exceeds the difference between

their ‘lead’ payoffs. As a consequence, the intersection of i's lead and follow functions must occut strictly
later than the corresponding intersection for j. From (2.4.b) and (2.4.d) above, the difference between F 21
and F(1) is (1 — £)([1}° - II}'); From (2.4.a) and (2.4.c), the difference between L2'(1) and L}'(1r) is
(1 — NI, (These differences are illustrated in Figure 1 for 7* = 2 and ¢* = 1.} To establish that the form-

er difference exceeds the latter, therefore, we need only show that 120 > I1}'! + IT}%, i.e., that the payoff that
a monopolist with two bullets receives strictly exceeds the aggregare payoff for the rwo players in phase
(1,1). But this inequality must be satisfied, because the monopolist fires at the optimal times for an industry

with two bullets, while in the duopoly (1,1), the first bullet is fired too early. More precisely, we have:

me o+ I o= LM+ FRE) .5

e = 11y = o* + (1= R - %)

k2 - MY = o+ (1= DI

L2301y < L2V = IR0
The first three equalities follow, respectively from eguations (2.2), (2.3} and (2.1). The inequality holds be-

- . . v e
cause 729 is the unique maximizer of L2°(").
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The generic phase of the problem.
Fix a pair B, where, for convenience, we assume B > B; + 1. Assume that for every pair (8,.8,) ¢ B,

there is a common, unique solution for each of the classical duels corresponding to phase (B,/.B;). (We will

return 1o this assumption at the end of the section.) Let t# and I1?"% denote, respectively, the firing time

and equilibrium payoff vector for phase (B,,8,"). An important fact is that /&1 < ¢P#7 that is, the bullet
is fired sooner in the less asymmetric phase than the more as._ymmenié one,

Qur analysis of this phase exactly parallels our analysis of phase (2,1). All of the classical duels
corresponding to this phase have identical payoffs on the interval [0, ¢® "'“’E’).” Moreover, there is a com-
mon, unique solution for each of these duels, which is completely determined by payofs on the above inter-

val. Once again, therefore, we will refer to the duel corresponding to phase B, and will denote it as CD¥*.

Foreach t < Plintis i, the lead and follow functions for each player are defined as follows:

LA = @ -1 —c* + (- pifh (2.6.2)
FRG) = (1 = nrfh (2.6.b)
LA = m*(@2 - 1) - c* + (1- OnpdT (2.6.c)
Foy = (¢~ onfP 2.6.4)

The duels corresponding to this phase will all share a common, easily computible solution if:
for each 1, the functions LP(¢) and FE(1) intersect before B {*)
For the moment, we will assume that (*) is satisfied and return to this assumption at the end of the section.
To establish that player j fires in this phase, we need to show that throughout [0, PPy,
FPy = FPfO > LPO - LPOY. 2.7

In this general case, it is less easy 10 see why this inequality should hold. Once we have established (2.7},

M1 See footnote 10 above. The equilibria for phase (8,—1.8,) all agree before !.B,-—!..Bj; similarfy, for phases (8;.8;-1) and
8;-1 B8 B,

(ﬁ;-—l,ﬂj-i), the equilibria all agree before, respectively, ’p,- and is the smallest of these three times.




-9.

however, we can conclude as before that i's intersection occurs later than j’s, so that, as in phase (2,1), j

fires the bullet at i 's intersection time.
From (2.6.b)-(2.6.d) above, the difference between FP(tyand F f(:) is (1 — n)(I7; Bt _ nf-‘**’:); from
(2.6.2) and (2.6.0), the difference between LF(t) and LF() is (1 - n@IE™H — TI}%7'); To establish 2.7),

therefore, we need only show that TI?#" 4 18871 5 P18 4 1H~"%. That is, (2.7) will hold if and only
if aggregate profits in phase (B,,8,—1) exceed those in phase (B;-1,8;). Now since B, > B;, the two players
are less evenly matched in the former phase than in the latter. It seems quite likely, therefore, that aggregate
payoffs will be higher in the former phase. The intuition is that when players are less evenly matched, com-
petition between them is less intense, so that downward pressure on profits is weaker. Indeed, this intuition
is corisistem with several studies of related problems in the literature."?

While this intuition is persuasive, it is by no means straightforward to verify. The proof is deferred to

the Appendix. What follows is a very brief outline of the argument. We first establish that in every duopoly

phase of the duel, the buliet is fired earlier than in the corresponding monopoly phase. That is, for each

B = B/ > 0, the firing time, %, in phase (B/.B,') occurs stricily earlier than the time, 280 that would
maximize aggregate profits. As we have observed, this seems as though it should be an easy fact to establish.
In fact, it is the most difficult step in the proof, and the only one for which we have no economic intuition!
Assume that we have established that player j fires the bullet in phases (B.,8;—1) and (B,-1,B)). {Since
B >B+ 1, j still has fewer bullets in phase (B:—1,B;). We first argue that the firing time in phase
(B;.B;—1) will be later than it is in phase (8;—1,8;). By assumption, j fires in each of these phases at the mo-
ment that i’s lead and follow functions intersect. We need to establish, therefore, that i’s intersection will
occur lale.r iﬁ phase (ﬁ,—.,ﬁj-—l.) than in phase (ﬁ,.--i,,B;,-). The intuitioﬂ runs és foﬂows. In the latter phase, jis
*one miss closer” to running out of bullets than he is in the former. Moreover, i has one more bullet at his

disposal in the latter phase. Consequently, following is even more attractive relative to leading in phase

(B..B,~1) than it is in phase (B—1,8,). Therefore, the time at which F/7'() intersects L8719 occurs

12 See, for example, Fudenberg et al. [3], Harris-Vickers {S]. Grossman-Shapiro [4].
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B!

strictly later than the time at which F}B""ﬂf(-) intersects L,—B"l'ﬂ’(-). It now follows that P occurs later

than +P~'#. The final step bf the argument is immediate. The firing time in phase (B;—1.B;) occurs sooner
than the optimal firing time in the corresponding monopoly phase (B:+B;-1,0). The monopoly phase that
corresponds to phase (B;,B;—1) is also (B;+8;—1,0), so that the optimal firing time for phase (8,~1,B,) is also
BP0 hatis, 1P s even earlier than (BBt while +PP7 is already too early. Moreover, aggregate
profits are a strictly concave function of time. Therefore, they must be lower in phase (8;-1,8;) than in

phase (ﬁ,‘ ,ﬁj" l).

A unigueness test for multi-stage duels.

To conclude this section, we return to the issue of whether or not the classical duels associated with
phase B will have unique solutions. The answer depends on whether or not condition (*) defined on p. 8
above will be satisfied for this phase. It is easy to check that for any B,, this condition will always be
satisfied in phase (8;,1). For B such that B, > B; > 1, however, assumption (*) will not always hold. That is,

there are parameter values such that when i’s payoffs to leading and following are defined according to

(2.6.a)-(2.6.b) above, FB(-) will strictly exceed LB() throughout the interval [0, P ;-l.ﬁ,-)‘ When this happens,

we will be unable to solve phase B without taking into account agents’ continuation payoffs if the phase con-

tinues beyond 2% These values will not be uniquely defined, and the ;mr task will be much more com-
plicated. Ac;:ordingly, we will restrict our attention to the range of parameters for which (+) is satisfied.

We have been unable to identify this range by analytic methods. There is, however, a simple numerical
test that we can perform to check the condition. This test can easily be run on a computer. We have in fact
run it many times, and verified that for a wide range of parameter values, condition (*) will indeed be

satisfied.”> Whenever it is, we can follow the inductive procedure described above and construct the unique

solution for our multistage game.

13 The condition is more likely to be satisfied for given B, the smaller is c* relative x*. Indecd, when ¢* = 0, the condition was
satisfied for all numbers that we tested (up o twenty bullets cach),
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The easiest way to explain our test is by analogy. Faced with a constrained maximizaiion problem, the
first step is to solve the corresponding unconstrained problem. If the latter problem has a solution that lies
inside the original constraint set, then this solution will also solve the constrained problem. Our constrained
problem that does not involve maximization, but we are looking for an interior solﬁtion. The constraint in
our problem is condition (*) on p. 8. The algorithm below solves the sequence of problems defined by sim-
ply ignoring this constraint. If the "test firing times" defined by this algorithm all satisfy constraint (*), then
these will also be the unique firing times that solve our problem. We now state the test.

Fix a triple (B*, n*, c*). For each B;, define the vectors fi*° ana f1*#

to be the solutions to the
monopoly phases (B,,0) and (0,8,) of the corresponding multistage duel. That is, set i 0 equal to the vector
1% defined on p. 4. Now fix B < B* and assume that fi*"# and T1%®™ have been defined.”®  For

1 = i, j, define the test _payoff functions LA(yand F P(-) on the interval [0, 1} as follows.

EP) = m*@ -1~ c* + (1 - it (2.6.2%)
FPuy = (- of??” | 6.9
Lfa) = m@-n—ct + (- 0fif™” (2.6.¢")
Ffy = a - nftd™™® (2.6.4"

For each 1, let 7 7 be the solution to f,”(-) — FP() = 0. The left hand side is a quadratic with 2 unique solu-
tion on [0; 13. Now set 1P = max(?,p, Tf). Finally, for each 1, define ﬁf = f,”(? p}_ Call 7° the

test firing time for phase B and fif = ({18, ﬁf) the test payoff vector for phase B. Proceed in this way to

construct ¢ #, for every B’ < p*.
Suppose that each of the test firing times defined above satisfy condition (*). Let f be any equilibrium

profile for the multistage duel with parameters (B*, =¥, c*). Pick any duopoly phase B < p*. We will show

-1, X
4 More specifically, we proceed inductively as follows. We first determine fi"". For B, > 1, once %™ and fi™° have been

. . -1
determined, we have enough information to determine ﬁ" ]. Now fix 8; and assume that we have determined ﬁp"” , for every B;. In

L U

= -1.8, . .
particular, we will have determined ﬁﬂ"p" and fi" #5 50 we can determine fi b, Finally, for B; > B;, once and TI

have been determined, we can proceed as follows.
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that the payoff functions for the phase B classical duel defined by playing f beyond phase B coincides on
[0, T AR 7y with the "test payoff functions” defined by (2.6.d")-(2.6.3") above. Moreover, we will show that

when f is played in this phase starting from ¢ < 78, the bullet will be fired with probability one at re.

Since this will be true for every B, we have the following resul:

Prop’n I. Consider the triple (B*, n*, c*), where p¥ = p* and B 2 ,6.,-'. Define the family of

scalars (75')@.'.#9,’)5.3'
1<B;<B andall B, S B < B;, then there is a unique equilibrium payoff vector
for the multi-stage duel defined by (B*, =n*, c*), which coincides with the test

payoff vector i,

according to the algorithm above. If 77 < T for all

For the remainder of the paper, we will restrict our attention to multistage duels that pass our test.

Resulfts.
Since we have not yet defined our continuous time game, our results are stated in a nontechnical way.
Our main result is:

Th’m II: Consider the multistage duel with parameters (B*, 7%, c*). Assume that these param-

eters pass the test specified in Proposition I. If B’ > Bl., the game has a unique
equilibrium outcome, generating the payoff vector IT7", defined inductively as above,
Moreover, 1 will fire a bullet only if - has already fired all of his. That is, the
phases of the game that will be reached with positive probability are

(BB, BBLa=1h..s (B 0), (B'-1,0),.... (1,0)). If phase B is reached, the bul-
let will be fired at 7P, defined inductively as above. If B = B;, then there are three

equilibrium outcomes. For each :, there is an equilibrium in which 1 never fires a
bullet unless —1 has fired all of his. There is a third one in which, for each 1, with
probability %, 1 never fires a bullet until —: has fired all of his.
We outlined a nontechnical version of the proof of this result in the preceding section. The details are de-
ferred to the Appendix.
In order to prove Theorem II, we established another result. Since we believe it {0 belof independent
interest, we will state it as separate theorem. It compares the efficiency of two duels that are identical except

for the initial relative strengths of the two agents. It states that if one bullet is transferred from the weak

player to the strong player, then competition will be less intense and aggregate efficiency will increase.
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Th'm II: Consider two maltistage dvel with parameters (B*, 7%, ¢*) and

((B7+1,8/-1), m*, c*), where B 2 B;. Aggregate expecied payoffs are higher in
the second duel. Moreover, each bullet in the second duel is fired later than the

corresponding bullet in the first. That is, foreach 1< 8, < 8 ; . (PALEL o PR

In our next two sections, we develop our continuous time model. We introduce our methodology in
section I, restricting attention to the classical duel. The presentation in this section is informal. In the fol-

lowing section, we will introduce our muliistage model, adopting a much more formal approach.

III. Introducing our continuous-time model: the classical duel

We will restrict attention in this section to the particular family of classical duels that are relevant for
the purposes of this paper. The family is identified by conditions (A1)-(A4), defined below. These condi-
tions are rather special. The reason is that they arise "endogenously” in the course of solving our multistage

game. The conditions are:

For each v, L,(+), F,(-) and §,(-) are right continuous, piecewise polynomial func;tions."5

(A1)
For each t, there exists ¢, € [0, 2) such that : (A2)

before t,, L,(?) and F,(-) are continuous and L, (") lies strictly below F,(-); (A2.a)

beyond t,, F,(-) lies stricily below L,(-) (A2.b)

and for all s> 1, %iﬂl.,(s—&) = F,(s). (A2.c)

There exists T > max(#;, ¢;) such that for each 1, L,(-) is strictly increasing on [0, T). (A3)
S, () lies strictly below F.(-) on [0, 2); (Ad)

Assumption (Al) is purely technical and is trivially satisfied. Assumptions (A3), (A2.a) and (A2.b) are natur-
al in the context of the duel: as time progresses, 1’s accuracy increases, and so he becomes increasingly more
likély to .score a hit if be fires. Hence, L,(-) is .strictly increasing at the start of the ganié. At the very begin-
ning of the game, both players will be sufficiently inaccurate that each will prefer to be fired at than to fire; in
this region of the game, F,(?) will exceed L,(-). Eventuaily, however, both players will become sufficiently

accurate that 1 prefers to fire than be fired at. At this point L, () will overtake F (-). It is harder at this stage

15 A function @ is piecewise polynomial on [0, 2) if there exists a finite subsct, {0 = << t’ <.« 117 = 2}, of this interval
such that for each r < last, the restriction of 8 to (¢, £**Y) is a polynomial.




- 14 -

to explain why L,() should be continuous and strictly increasing until afrer it is overtaken by F,(-). Condi-
tion (A2.c) is simply a strengthening of the condition that L,(") exceeds F, (). Since either function ﬁlay be
discontinuous beyond 1,, the condition is not implied by (A2.a). Finally, (A4) is a very delicate assumption.
We have to choose our equilibrium strategies very carefully to ensure that it is satisfied.

&

We first review how a duel in this class would be modelled in discrete time.‘ Let R denote a

discrete-time grid, i.e., a finite subset of [0, 2). A discrete time behavior strategy for agent 1 is a function,

&R, that assigns a probability weight to each point in K. EX has the following interpretation: "for each r € R,

if nobody has fired by the time r is reached, T will play ‘fire’ at this time with probability £X(r)." A pair of
strategies, one for each agent, will be called a strategy profile. When any sirategy profile is played. starting
from any grid-point in R, it will generate by induction a unique probability distribution over endings, which
we shall call an putcome.

The model just described has no direct analog in continuous-time. In particular, it is not obvious that

one can sensibly define a continuous-time behavior strategy. The "natural” counterpart of £F would be a
function &, mapping each point in [0, 2) to a probability weight in {0, 1). But how should this function be
interpreted? The literal interpretation would be: "for each r e [0, 2), if nobody has fired by the time 7 is
reached, I will play ‘fire’ at this time with probability &,{¢)." In order to "play” this strategy, however, an
agent would have to be able to perform a continuum of independent randomizations. It is well known that
this is not an easy thing to do.

Our continuous-time model is specified in a way that finesses this difﬁcu!ty.n Our agents do choose
behavior strategies that have the form just described. That is, each. behavior strategy for the classical duel is
a function mapping [0, 2) to [0, 1]."3 We will, however, propose a novel interpretation of these strategies,

together with a novel way to associate strategy profile to outcomes.!®  We interpret a continuous-time

16 Dixit [1] contains an analysis of the discrete-time ducl.
17 There are many other difficolties that nced 1o be addressed. These are discussed at length in [9] and [10].

¥ This specification is actually quite restrictive. See Simon [9], pp. 7-8 for a discussion of this point. A more general class of sira-
tegies will be proposed in Simon-Stinchcombe 11].

19 The model we present below was motivated by Fudenberg-Tirole [2], in which an altemnative model is proposed.
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behavior strategy as a set of instructions about how to play the game on every conceivable discrete-time grid.
Specifically, the restriction of any continuous-time profile to a discrete-time grid will be a well-defined
discrete-time profile. When played starting from any grid point, this profile will define a unique discrete-lime
outcome, in exactly the conventional way. When strategies are interpreted in this way, there is a natural can-
didate procedure for defining outcomes: (a) fix a starting point 7 in [0, 2) and a continuous-time profile: (b)
restrict these strategies to an arbitrary, increasingly fine sequence of discrete-time grids and play the restricted
profiles, starting from ; (¢} define the continuous time outcome generated by playing this profile from r 10 be
the Iimit of these discrete-time outcomes.

In general, this procedure may break down. For some pairs of strategies, the limit of discrete-time out-
comes may not exist. For others, it may exist, but depend on the particular sequence of grids on which the
strategies are played. Accordingly, for our procedure to be coherent, we needlto identify a class of strategies
with the following property: when any two members of this Class are paired together and played from some
starting point on an arbitrary sequence of grids, the resulting sequence of outcomes must converge to a
unique limit that is independent of the particular sequence of grids. Once we have identified this family of
strategies, and by implication, the universe of possible outcomes, we will have completed the specification of
our continuous-time classical duel.

For a problem as simple as the classical duel, the restrictions on strategies that we need are minimal. I
suffices 10 require that agents choose ‘piecewise rational’ behavior strategies. (A rational function is the ratio
of two polynomial functions) We will also impose a second restriction, pu.rely because it considerably
simplifies the exposition. We will require that if an agent is properly randomizing at 7 (i.e., he both waits
and fires with positive probability), then his strategy is i*ight continuous at ¢, It will become apparent that in
~ pur present context, this restriction is completely innocuous.

Our continuous-time duel has a continuum of ‘subgames,’ one for each 1€ {0, 2). The

subgame beginning at t is simply the subduel of the original duel that begins at r. The natural solution con-

cept for our model is subgame perfection. A pair of strategies will be a subgame perfect equilibrium for a

19 This solution concept was originally proposed in Selien [8].
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continuous-time classical duel if the strategies form a Nash equilibrium for every subduel.

Equilibrium strategy profiles for a symmetric classical duel.

In this section we will construct equilibrium strategies for a symmetric classical duel. Specifically, we
will consider the duel, CD ', corresponding to phase (1,1). When ¢ € [1, 2), an agents who fires scores a hit
with probability one. Consequent].y, the payoffs to leading, following and moving simultaneously are
LMy = 7*@ - 1), FM(t) = 0 and §M(1) = —c*. This part of the game is completely uninteresting
and we will henceforth ignore it. If 1 fires and misses at ¢ < 11 = 1, player —t will wait until time 1, fire at
point blank range and earn the payoff (x* — ¢*). If both players fire simultaneously at ¢ < 1, then 1+ wins

with the probability 1{1 — 1} that his bullet hits and —:'s misses. Thus, for ¢ € [0, 1), we have

L) = m*(2-1)—c* (3.1.3)
FHI( = (1 - D+ = c%) (3.1.b)
SM@) = t(1 - HA*2 =) - c* . (.1.0)

It is easy to check that conditions (A1)-(A4) above are indeed satisfied. In particular, as we claimed on p. 5,
L) intersects F,1() at + € (0, 1). As usual, we call t1 the firing-time for this duel.
In any equilibrium for this game, player 1 eams the payoff LI(s"Y). There is a unique symmetric

equilibrium profile that generates these payoffs. The strategies, denoted by £° = (£, £D), are defined as fol-

0 if t € [0, 'Y

lows: EX(t) = L) - FAD) . » Assumptions (A2.b) and (A4) guarantee that E%ye (0. 1)
~ - iftett2)
L!(’) - St_(')

beyond 1.

We first describe the outcome generated by these strategies, when outcomes are defined as on
pp. 14-15. The outcome function will be defined formally in section III below. If these strategies are played
starting from any 7 < t, the outcome is that with probability 1, exactly one player fires at exactly ¢
Each agent is equally likely to fire. (We emphasize that players fire simultaneously with probability zero.

That is, the limit outcome generated by these strategies is not a product distribution! 0) We will show that

20 An almoest universal source of confusion is that this outcome looks like a "comelated equilibrium.” This is misleading. Apgents
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this is indeed the limit of the outcomes generated by restricting £% to any increasingly fine sequence of grids.
Fix £ > 0, and let y = E2(t' + %¢). Clearly, v is strictly positive. Now pick a very fine discrete-time grid
and play £° on this grid. Since £P is strictly increasing beyond ', each agent will fire with probability at
least y at each grid point in the interval (1™ + '4e, 1! + ¢), provided that the game has not ended by the
time this grid point is reached. If this interval contains at least n grid points, then the probability that the end
of this interval will be reached without a shot being fired will be no more than (1 - ", If n is sufficiently
large, this probability will be less than &. We have verified, therefore, that for every positive g, if EC is
played on a sufficiently fine grid, the probability that some agent will have moved befo;'e t1! + £ will exceed
1 — &. 1t follows that in the limit, the bullet must be fired with probability one at £, Next, note that if ¢ is
sufficiently small, the probability that both agents fire simulianeously will be arbitrarily small relarive to the
probability that only one agent fires. In the Limit, therefore, the probability that agents fire simultaneously at
1! must be zero. Finally, note that by definition of 1!, each agent is indifferent between leading and fol-

lowing at this time. Therefore, the payoff vector that is generated by playing £°, starting from before ¢!, is

@, L.
Now suppose that the profile £° is played starting from ¢ > ¢!, With the help of a formula that we

provide in the following section, it is easy to compute the outcome in this case. With probability one, the

1- &N D)
0

bullet will be fired exactly at ¢. Player 1 fires alone with probability . With prfobability T
- I(I)

both players fire simultaneously. Some tedious algebra verifies that player 1’s expected payoff from this out-

come is F (1)

We next argue informally that these strategies are best responses to each other in every subgame. First
fix 7 < 11 and consider the subgame that begins at . Since L'(-) is strictly increasing before !, ¢ cannot

‘ gain by shooting before this time. If 1 fires at exactly ¢!, his payoff will be LMY, since —t fires with

probability zero at this time. This deviation yields him no more than his original payoff. Now suppose that

are randomizing independently. The limit of a sequence of product distributions need not be a product distribution,
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for some £, 1 fires with probability zero between 7 and ' + £, and then fires with probability one. We will

describe what happens when this strategy is played against £°, on an increasingly fine sequence of grids.
Just as before, —t will fire with probability ¥ at each of an increasingly large number of grid points in the in-

terval (+ + %e, 111 + £). In the limit, —1 must fire with probability one at t1, Therefore, this deviation

by 1 earns him a payoff of F,'''(t'""), which is exactly what he was geting originally. This completes our ar-
gument that &° is Nash equilibrium for each subgame that begin before e,

The argument is similar for subgames that begin beyond ¢''. Fix r > . Since 1 is randomizing at T,
we need to verify that he is indifferent between firing with probability one at = and waiting until 7 + &, and
then firing with probability one. If 1 fires with probability zero on {r. T + &), then by exactly the argument

given above, the outcome will be that —1 will fire with probability one at 7. In this case, t's payoff will be
Fl(1). Now suppose that 1 fires with probability one at 7. In this case, he will earn 5.1z} with the proba-

bility that - also fires at this time, and L)'(7) with the remaining probability. His expected payoff, there-

fore, is

11 - 1.1 1.} —Sl'l
L) = B oy B0 250 a0y o Fl.

SME) + (1= BT = \
M + A= &ELTE Lz - SM(7) L}Y(z) - M)

Thus, we have verified that 1 cannot do better by playing any pure strategy other than £2 and thus established

that £° is a Nash profile for the subgame beginning at z.2!

There are two other equilibrium outcomes for this duel. Each of them generates the same payoff vector

as £° For each 1, there is an equilibrium in which 1 fires at ¢1 with probability one. A swategy profile that

implements ope of these is ', which is identical to £° except that gy = 1.2 We have already verified

21 If we were working in discrete-time, it would go without saying that we neced only check pure-stratcgy deviations. It is also troe
in continuous time, but no longer self-evident. The reader is referred to Proposition V11 of Simen [9] for formal details.

22 Because £, is discontinuous w.r.t. time, the interpretation of this strategy is a subtle matter. 1If we simply restricted this profile to

an arbitrary grid, the outcome would depend critically on whether or not the grid contained the discontinuity point ', To avoid this
dependence, we “adapt” the profile to each grid, ensuring that if the grid is sufficiently finc, cach of the profile’s discontinuities will be
"captured” by the grid. Specifically, we definc an operator called a "graph preserving restriction” {(g.p.5.). which "shifts to the right” the

discontinuities of a profile in the appropriate way. For cxample, the g.p.r. of &' to the grid R has player i terminating with probability
one at the first grid point in R greater than or equal to t For details see Simon Stinchcombe [10], [11].
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that £! is a best response against §, = £°,. To see that £L, is a best response against &/, observe that if —
fires with probability one at 7', he will earn S,''(+"'), which is strictly less than Flath.

Not surprisingly, there are countless other equilibrium profiles for this duel. To construct one, take,
say, £° and modify it as follows: at each of a finite number of times beyond 1!, have 1 fire with probability
one and —t fire with probability zero. By rearranging the arguments given above, it is straightforward to
verify that the modified profile is an equilibium, An important fact, however, is that for any equilibrium
profile, £, there must exist & > 0 such that § will agree with one of the three profiles defined above on the in-
terval [0, 11 + )7

A stiking property of the symmerric duel just described is that all three of its equilibrium outcomes are.
payoff equivalent and yield each player equal payoffs. Not surprisingly, this result depends on the fact that
agents started playing the duel su-ictly.before the bullet was due to be fired. Once this inequality is reversed,
these properties no longer hold. For example, pick = > ¢’ and consider the subduel CDV\(1), of CD' that
begins at 7. It is straightforward to verify that this duel has three equilibrium outcomes, each generating a

distinct payoff vector. Specifically, for each t, there is an equilibrium in which 1 fires with probability one,
and —t waits with probability one, at 7. Obviously, t’s payoff in this equilibrium is L(7), while —1’s is
F(z). In the third kind of equilibrium, strategies must coincide with £° both at and immediately after .

The payoff vector corresponding to this equilibrium is (F,'(z), F1Y(z)). As we have noted, this multiplicity

of solutions can significantly complicate our analysis.

The asymmetric classical duel.

The analysis of an asymmetric duel is similar to the one just given except for two differences. First, as -
we asserted when we were studying CD?', if agents start playing in an asymmetric duel before its firing
time, there will be only one equilibrium outcome, rather than three. If 1’s lead function intersects his follow
function while —t still strictly prefers following to leading, then the unique outcome will be that 1 fires with

probability one at —t’s intersection time. The second difference concerns the intensity with which agents

23 To prove this from scratch is a little tedious. It follows almost immediately, however, from Proposition VII of Simen [9].
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randomize beyond the firing time. At each , 1 must fire’ with sufficiently high probability that —t is
indifferent between firing and waiting. It is easy to check that if agents are randomizing at ¢ beyond the

. . ayr L-i = -
firing time of an asymmetric duel, then 1 must fire with probability 1—((%—-%%

Summary: equilibrium strategies for the classical duel.

The results described above will be used repeatedly in the analysis that follows. For future reference,
we will tabulate them below in the form of a proposition. Let CD denote the classical duel with payoffs
(L., Fi. §,),—;;. Assume that these functions satisfy assumptions (A1)-(A4) {p. 13 above). Let 1, denote the
time at which I, and F, intersect. By assumption A2, 7, exists. Let ¢ denote the firing time for CD (1), ie.,
the maximum of 7, and ;. Let CD () denote the subduel of CD thai begins at 1.

We define three "canonical profiles,” &%, £™ and &™/, for the subduel CD (t). All three are identical
except for their values at the maximum of 7 and 1 at this time, £ has 1 firing with probability one, and

—t firing with probability zero. &% is symmetric.

/

ift e [r, 1)

o

First, define £7° by for each 1, £7°(r) Now, for each 1

$L_ - F_ ()

— — if ¢ > max(z, 1)
L)~ S}

iftefr,1)

if + = max(r, t)and ¥y =1

and each y € {i, j}, define &™* by 57*(¢) The

[

=R

if t = max(z, t)and y = -t
L) - F_(1)

- — if ¢ > max(z, 1)
L—n('} - S-u(l)

\

following result describes equilibrium strategies, outcomes and payoff vectors for the subduels of symmetric

and asymmetric classical duels.
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Prop’n IV: Let CD satisfy assumptions (A1)-(A4).

G If <7 and &, = 7;, then the subduel CD (7) has exactly three distinct equilibri-
um outcomes, all of which generate the payoff vector (L;(1), L;()). For each
x € {0, i, j}, £™¥ is an equilibrium strategy profile.

(i ¥ t<7 and 1; <7;, then CD(7) has a unique equilibrium outcome, yielding
payoffs (L,(7), L;(1)). £/ is an equilibrium profile.

(1i1): For each T 2 t, CD (1) has exactly three distinct solutions and exactly three dis-
tinct equilibrium outcomes. For each x € {0, 7, j} E™X is an equilibrivm for
the duel €D (1). £%° yields the outcome (F;(7), F;(1)). &™ yields the outcome
(L (1), F (1))

The existence parts of this result follow immediately from Proposition V, Proposition VI and Theorem VIII
in Simon {9]. We do need to prove uniqueness, however. Since the proof is instructive, we will include it in
the text. The proof of part (iii} is a straightforward extension of the other proqfs, and is omitted.

First note that for any ¢, if 1 fires with probability one at r, then —1 strictly prefers to follow at this
time. (This is a consequence of (A4).) Therefore, since L, () is strictly increasing on {0, T) o {0, 7)1 will
choose 1o fire at some ¢ < 7 only if —t is intending to fire immediately after ¢. Otherwise, 1 would prefer to

wait a little. On the other hand, if — is intending to fire immediately after ¢, then 1 will fire at ¢ only if he

prefers firing to being fired at at this time. Otherwise, he could earn F,(f) > L,(t) by letting — fire! To-

gether, these facts imply that neither agent will fire unless both weakly prefer leading to following. That is,
there can be no equilibrium in which the bullet is fired before T. We now argue that if an equilibrium exists,
the bullet must be fired at 7. Suppose that it is not fired until ¢ > T. Now it turns out that in any equilibri-
um, t’s payoff must be either L, (1) or F.(t). (This follows from Proposition V in Simon {9].) Since 1 and
1 cannot both win the duel, at least one of them, say 1, must earn F,(¢). However, 1 can preempt, fire just

__before 1, attain essentially L,(¢) and thus do better. (If # < T, this is true by continuity; if + > T > 1,, it fol-

lows from (A2.c).) This establishes (informally) that if an equilibrium exists, then the bullet must be fired at
7. Moreover, exactly one player will fire at 7. This is true because if both were to fire with positive proba-
bility, then : would earn 5,(1) < L,(7) with positive probability, so that t's expected payofl would be strictly
less than L,(7). In this case, by continuity (A2.c), + could do better by firing just before 7 and aftaiping

essentially L,(r). Finally, we need to establish that in any equilibrium, player 1 anains the payoff L,(1). If
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L=t =1,then L(1)= F (1), for each 1. Since exactly one player fires at 7,1 must ean L, (1), whether he
leads or follows. H 1, < 1, then 1 must fire with probability one; otherwise, he could do better by preempt-
ing. In this case, therefore, 1 earns L, (). Moreover, by definition, T must equal r_,. That is, -1 must be

indifferent between leading and following, so that his payoff when 1 fires is F q,{7) = Z_,l(?). This com-

pletes our verification of uniqueness.

IV. The Formal Model.
Outline of the model.

In this section, we extend our model to incorporate histories. We will then be able to formalize our
analysis of the multistage duel. A history in our model will be a finite list of *states’, paired with the times
at which the system changes from one state to the next. We will distinguish between three kinds of states:
there will be ‘firing states’, ‘terminal states’ and an additional state, called 'prepare to fire!” The system
starts out in the state ‘prepare to fire!’ We shall represeni this state by the symbol ‘@’ (nobody has fired).
The moment a bullet is fired, there is a swit_ch to one of the three ‘firing states” These three states are
denoted by {i}, {j} and {i,j}. They indicate the set of agents who have just fired. If i alone fires, the sys-
tem switches to {i}. If both players fire simulianeously, it switches 10 {i,j}. Immediately after this switch,
nature moves, 1o determine whether a hit has been scored. If she decides that all bullets will miss their tar-
géts, she resets the state to ‘prepare to fire!' Otherwise, the system moves into one of the three
‘terminal states.’ These three states are denoted by (i), {j} and {i,j) and indicate which agents have scored
hits. The generic state will be denoted by ‘a.” Since ‘our states are denoted by sets, we will often use the
notation ‘1 € a.” If a is a firing state, this means that 1 is one _c_)f the agents who has just fired. If, say, state
(i) is reached, this means that i has scored a hit and won the game. If both agents score hits, then {i,j)is
reached; in this case, the game is over, but there is no winner.

We can now state more precisely how we model‘histories. Each history will consist of a string of
pairs. Each pair is a time, together with a state. Each history is ‘initialized’ with the same "zero'th" pair,
(0, @). (Recall that @ denotes the state ‘prepare to fire!") Each odd numbered par will be of the form

(1, @), where a is one of the three ‘firing states’. For example, the history [{0, @), (1, {i])] is interpreted as
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“the first bullet in the game is fired by i alone at £, nature’s judgment has not yet been announced.” Each
even numbered pair (beyond the zero’th) will record nature’s decision, which is made immediately after the
last bullet was fired. For example, the history above can be augmented in one of two ways: if i’s bullet hits,
then the "next” history will be [(0, @), (¢, {i ]), (¢, {i})] and the game will be over. If i misses, it will be
[0, @), (¢, {i 1), (1, ©)] and play can continve.

A decision node is a point in time, paired with a past history of the system. (Thus, a continuous time
decision node is just like a discrete-time one.) A strategy for an agent is a function thét assigns a probability
weight to each decision node. If the history part of a decision node ends in either a firing or a terminal state,
then the agent has no decision to make. In the former case, he must await nature’s decision; in the latter, the
game is over. If the last state of tht;. history is 'preparer to fire!' and the agent still has bullets remaining,
then he must decide whether or not to fire at this node. Thus, for each given history, the agent’s decision
problem is just as it was in the classical duel. Formally, therefore, a strategy for our multistage game is just
a family of ‘classical duel’ swrategies, one for every history that en&s in the state ‘prepare to fire!'

An outcome for our game will be a probability measure on the set of possible histories. Because of the
restrictions on s;:rategies that are imposed in this paper, the outcomes that can actually arise in our model
have an extremely simple structure: each outcome will concentrate mass on a finite set of histories. We will

define an outcome function for the game. This function assigns an outcome to each strategy profile and deci-

sion node. This outcome is interpreted as "what happens” when the given strategy profile is played, starting
at the given decision node.

Each agent has a valuation function that assigns a value to each history. This function has already

been described in section II. The expected payoff function for the game assigns a pair of payoffs to each
strategy profile and decision node. The expected payoff an agent receives if a profile is played from a deci-
sion node is the expected value of the outcome generated by these strategies, starting from this node. We

will now discuss each of the components of the model in more detail.

Histories.
Recall that a history of the game is a string of pairs, recording the various states through which the sys-

tem has passed, together with the times at which the system moved from one state 10 the next. Let h denote
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the generic history. Each history begins with the ‘initial pair,’ (0, ). The history consisting of just this pair

will be called the zero-length history and will be denoted by k2. A history in which the state has changed

& tmes will be called a "k-length history.” Thus, a "k-length history" actually has k+1 pairs. We denote
the length of a  history k by &(h). The pairs of A wil be enumerated as
[0k, @)y (FH(RY, @ RN oo s (E5CR), @¥(BY), ..., (1*O0(h), @*U(RY)), where (1°(h), a®(h)) is the ini-
tial pair (0, @) and (+*(k), a"(h)) denotes, respectively, the x'th iransition time and the state to which the
system moves at this time.

We will frequently need to refer to both the last and the penultimate pair of a hisiory. We will refer to
these, respectively, as (t%%"(h), @'®'(k)) and (+'"~'(k), a”~}(h)). Also, we shall refer 10 a'®"=1(k) as the

last firing state of k. We now summarize the conditions that a history A must satisfy.

(i) (t°%h), a®(h)y = (O, B);
(ii) for each odd x, a“(h) is a firing state, i.e., either {i}, {j} or {i,j};
(iii) for each odd x, t¥(h) 2 17 (h);
(iv) for each even x > 0, r=(h) = t*"(h);
(v) for each even x < k(k), a*(h) = &,
(vi) if k(k) is even, then a*(k) is either @ or a firing state, i.e., either (i), (j} or .05
(vii) if @**)(h) contains 1 then a**~1(h) contains 1.
Note the weak inequality in condition (iii). It means that a string of bullets can be fired in instantaneous suc-
cession. Condition (iv) states that nature always makes her decision immediately after bullets are fired. Con-
dition (v) states that any even state that is not the end of the game must be the state ‘prepare to fire!’
Condition (vi) describes the various ways that the game can end. Note that a history may end with the state
‘prepare 1o fire!’ This can ha.ppen.if ‘agents fire all of their bullets and they all miss. Altenatively, agents
may simply stop firing before the game is over. Condition (vii) states that an agent cannot score a hit unless

he has just fired a bullet. Let H ¥ denote the set of k-length histories satisfying (i)-(vii). Let H = uUH *
. k

denote the universe of all possible histories.

We will denote by h,, the x-length truncation of 4. The history h;, is obtained from h by truncat-

ing it after its first x changes in state. For example, if # = {(0, @), (0, {i}). (0. &), (4 {j]). (%, (Nl
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then 4, is the 1-length history [(0, @), (0, {i D] and k3 is [(0, ©), (0, {i ]}). (0. ©)}. Note that every trun-
cation of h also satisfies conditions (i)-(vii) above and so is a member of H.
Tt will be important to keep track of the number of bullets that each agent has left to fire. Accordingly,

we define a function b() = (b(-), b;(+)) that counts the number of bullets each agent has left to fire. That is,

for each 1, b(h) = B} — #{x: 1 € a"(h)}, where B is the number of bullets that 1 had at the beginning of

the gamt;-..24 In conformity with our earlier terminology, we will refer to b(k) as the phase of the history A.

Decision Nodes.

A decision node is a point in time, paired with a complete description of past activity in the system.
Decision nodes play the same role in cur model that they_ play in the conventional discrete-time one. In par-
ticular, the set of decision nodes is the domain on which a continuous-time strategy will be defined.

Let (1, #) denote the generic decision node, where ¢ is a point in time, and h is a history in H whose

last transition time occurs strictly before f. TFor example, for 723, the decision node

(t, [0, 2), 04 {1 D), (4, !25)]) is interpreted as follows: the present time is f; player 7 fired his first bullet at

time Y and nature declared that he missed. Since each history keeps track of each bullet that has been fired
in the past, agents can condition their choices at each deci#ion node on this information.

Observe that we allow decision nodes of the form (t**'(h), h). That is, agents are allowed to move
immediately after a change in state has occurred. In this case, ‘immediately’ should be interpreted as "at the
first available opportunity.” Or every discrete-time grid, this first opportunity is well-defined. It is, there-
fore, consistent with our conception of continuous time--and extremely convenient--to allow for a correspond-
ing "first” moment in our continuous time model.

Let DN denote the set of all decision nodes, i.e.,, DN = (J {(t, h): 1 € [1%%(h), 2)]. We denote the
keH

generic element of DN by (, k). We emphasize that DN is not the cartesian product of [0, 2) and H.

Whenever we refer to (f, #} € DN, we are implicitly asserting that that + weakly exceeds 1= (h), ie., the

last time that a change in state occurred.

24 We are, of course, abusing notation, because Bk} depends on B* as well as h.




- 26 -

Behavior Strategies.

3 T
e scalar

A behavior strategy is a function assigning a point in [0, 1] to each decision node.
fi(z, k) is interpreted as the probability that i will fire a bullet at the decision node (1, k). We restrict
agents 10 choose strategies that satisfy restrictions (F1)-(F5) below. The first of these enforces the rules of
the game described above. The others are imposed for technical reasons.

First, a player can fire with positive probability at (¢, k) only if he has not yet used up all his bullets

and if the most recent state of k is ‘prepare to fire!” That is,
for all (1, k) € DN, f,(1, h) > O only if b(h) > 0 and a'®'(h) = 'prepare to fire! Fh)

Our next two assumptions correspond to the ones that we imposed on strategies for the classical duel.
The first is a regularity condition that is imposed to ensure that our outcome function is well-defined. We re-
quire that for all %,

f.(-, k) is a piecewise rational function of time. 26

(F2)

‘The next condition is that 1’s strategy must be right continuous at ¢, unless ¢ is either firing or waiting

with probability one. In symbols, we require that for all (4, h),
If £,(¢, k) € (0, 1), then f,(-, k) is right continuous at 1. (F3)

Our two remaining restrictions are purely technical in nature. (F4) restricts the way strategies can
depend on the past history of the system. Its role is to guarantee that our outcome function is indeed the lm-

it of the discrete-time outcome functions. In the present context, this restriction is again completely innocu-

ous. Let a(k) denote the vector of states of h. That is, a(h) = (@' (h)s..n @“(R),... a*PXR)). We require

that agents treat as indistinguishable any two histories that have the same vector of states. In addition, we

impose a right continuity condition on agents’ immediate reactions to histories. Precisely, the restriction is:

25 In any given multi-stage game, only a small subsct of the universe of decision nodes will actually be relevant. For example, if
agents start out with only one bullet cack, thea histories that have more than two different firing states cannot arise, We will simply ig-
nore these redundant nodes from now on.

26 A function @ is piscewise rational on [0, 2) if there exists a finite subset, 0= 1% <,..< t* << 1™ = 2}, of this interval such
that for #ach k < last, there exist two polynomial functions 8’ and 8°’, defined on (tf, 1**Y), such that the restriction of 8 10 (rt, 15
’

. 8
is equal to i
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For all k and # such that a(k’) = a(k), and all s > max(¢'®'(h), 1 (#')), we require that  (F4)
fi(s, W)y = f.(s, h). Moreover, for each # and sequence (k") such that for all n, 7
a(h™) = a(h) and £97(h™) L £%(h), we require that lim £ (1" (™), A"} = £,(t"*'(h), h).

Our final condition is completely ad hoc; we impose it because it drastically simplifies the argument
that our equilibria is unique. Indeed, without some assumption of this kind, it would be extremely difficult to

characterize the set of equilibria. The condition states that if player 1 alone has just fired, then at the very

next instant, he must fire with probability zero:

If a*=Y(h) = {1}, then FCC'*"(R), b) = 0. (E5)

The outcome function.?’

Our outcome function assigns to each strategy profile and point in time a probability distribution over
histories. As explained above, the outcome generated by f from (z, k) is the limit of the sequence of
outcomes--i.e., of probability measures over histories--generated by restricting f to an arbitrary, increasingly
fine sequence of discrete-time grids, and playing these restrictions from (7, k). For the class of satisfying
(F1)-(F5) above, this limit distribution has a very simple structure. Assumptions F2-F3 together guarantee
that with probability one, the state will change at the first instant that some agent fires with positive probabili-
ty. Precisely, for each f and decision node (¢, i) such that (k) = @

if £.{- h) > 0, for some i, either at or immediately afier ¢ 4.1)

then with probability one the state will change to some firing state at 1 28

A consequence of (4.1) is that the outcome generated by any profile of strategies concenirates mass on only a

finite number of histories.
We first define the the conditional probability that the system will change to state o at 7 given that
agents start playing f from the decision node (1, k). We will denote this probability by TP{{a,7) f.1.h)

and call it the transition probability of (&,t) given (f, t, k). There are two cases 10 consider. ¥ a'*'(h) is

27 Some work is needed 10 verify that the outcome function we specify here is indecd the limit of the corresponding discrete-time
cutcomes. See [9], {10] and {11] for details.

28 This was established on pp. 16-17.
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a firing state, then TP((e,1); f.1,h) is exogenously determined by‘ ‘pature.” If a’®(h) is the state
prepare to fire! then this transition probability is determined endogenously.

First, fix k& such that a'®'(h) is a firing state and let o denote either a terminal state or the state
‘prepare to fire!" The transition probability, TP ((a,t); f,1,h), is determined by nature. She always moves
immediately, so that TP{(x,7); f,t,h} = 0 whenever 1 # 7. Also, an agent cannot score a hit unless he has
just fired, so that TP((e,7); f,t,h) = O unless all agents in & c a®'(k). For 1 € a'(h), the probability
that 1 scores a hit at 7 is 7. Therefore, the conditional probability the system will switch to « is: ( the pro-
bability that exactly those agent in & score hits ) rimes ( the probability that agents in &‘“’(h) ~ o all miss ).
That is, for each k such that a*'(h) is a firing state, and each o that is either a terminal state or

‘prepare to fire!’

tha(l - HITBrD  if o c a''(h) and T = 1"'(h)

TP({e,7); f.i.h) = (0 otherwise (4.2)

For example, if o = {j) and a™(h) = {i,j}, then (a'(h)~ea) is the singleton set comaining /. Since this
set and o each have one element, it follows that TP ((e,7); f,t,h) = (1 - ¢).

Now assume that the last state of h, a'®'(h), is ‘prepare to fire!" From (4.1), we know that
TP({a,t); f,t,h) will be zero unless T is the infimum of the times after ¢+ at which some agent fires with po-
sitive probability. If 7 is indeed this infimum, then TP ((er,7); f,t,h) will be the sum of two terms. The first
is the proba-bility that exactly those agents in o fire exactly at . The second term is the probability that no
agent fires at r, multiplied by the limit, as s J 7, of the conditional probabilities that the set « fires at s,
given that some agent fires at 5. (See _S_il_'r_lpnTSt_inch;_ombe_: [1_1}_for_g.v¢:i_ﬁcagiqn Ithat the outcome defined by
this formula is indeed the limit of the discrete-time outcomes.)

To make the above statements precise, we need some additional notation. Fix a strategy profile f and a
decision node (s, h). For each subset & of {i, j}, we define ¢/=*(a) to be the probability that exactly those

agents in o fire at 5. That is, ¢/**(a) = fo(s, k) x J]Q = fi(s, h)). Note that o/ ** (D) is the proba-

1€a 1€

bility that no bullet is fired at 5. For each & such that a*'(k) is ‘prepare to fire!' and each firing state a,

we define TP ((a,1); f,t,k) as follows. If 7= inf{s> 1 oM@y < 1), then TP((cr,7): fi1.h) = 0. If
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r =inf{s > 1: ¢/ F(@D) < 1}, then®®

fah
TP((a,1); fot.h) = o7 (a) + ¢f-'-“(®){1im ~¢—iﬁ)—~] 0 (4.3)

sbe (1 - o722 @)
For the equilibrium profiles that we construct in this paper, only two kinds of transitions actually arise
along the equilibrium path. In the first kind, agents® sirategies are symmetric. In this case, agents will actu-

ally fire with probability zero at 7 =inf{s > £ ¢ =" (@) < 1}, and randomize thereafter. In this case,

FER
TP(i o) fr k) = TPj)) foruh) = [um ahaiit13)

—ho| =% rified this in th
sl {1- ¢f-5.fl(®))] (we ve ‘e 1§ Case 1n e

preceding section.) The second kind of outcome generated by our equilibrium strategies has some agent, say
1, firing with probability one at z. In this case TP(({1 },7); f.t,h) = ¢/**({1}) = 1. Off the equilibrium
path, obviously, things can be more complicated.

We are now ready to define our outcome function. The outcome generated from (¢, k) by f will be the

finite support measure on histories defined as follows. First, if neither agent fires with positive probability
between 1/'(k) and the end of the game, then the history will not change. In this case, obviously,
of "*{h} = 1. Assume therefore that some agent fires with positive probability before the end of the game.
Clearly, o/-"* will assign positive probability to some history n only if 0.y = h, ie., if the appropriate
length truncation of n agrees with h. For any history n satisfying this condition, the probability that this
history will be realized is the transition probability of (r***'(n),a****!(n)) given (f 1,k times the product,
taken over the x's between k(h)+2 and k(n), of the wansition probabilines of (t*(n)a"(n)) given

¢, (1)sM 1-1)- In symbols, for each i such that 7 xs) = A

. . . . . & e
of ¥ n) = TP (n)a" ™ () £.h) X Iﬂ[) TP (). () £ () e-)
xrk(h)+2

$i0 (1

Faah

29 If both the numerator and denominator converge to zero, we need to be careful that Qi,m ——’—ff;a-{-)-é—);] is well-defined. In
- gl

e simply invoke the obvious generaliza-

our model, convergence is guaranteed by our restriction that strategies be piecewise rational.
tion of L'Hospital’s rule.

30  When we change symbols in the obvious way, the right hand side becomes the outcome function for the classical duel
Specifically, define ¢5* analogously to ¢/+**. If agents play the classical duel profile, £, from ¢, and ¥ = inf{s > 1: #54(D) < 1}, then

. N . -8 £ . ¢€"(a)
the probability that the set o fires at T is preciscly #* @) + ¢>(D) |lim ——————|.
e (1 - #5(D))
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To illustrate how our onicome function works, it-is instructive to work through a complete example.
Each agent starts out with two bullets; that is, g* = (2, 2). We will partially specify a profile f and study the
outcome that it generates. The profile will agree along the equilibrium path with our equilibrium strategies,
but will not be fully specified off this path. Choose f to have the following properties. For each A such that
b,(h) = b;(h), set f,(-, k) equal to zero on the interval [t%' (), t*®). Beyond 1*™), have 1 randomize, en-

suring that Liﬁ fi(* ™ + 8, h) = 03! Now consider & such that b,(h) > b_,(h) > 0. Define f,(-, h) in ex-

actly the same way as above. Set f_.(- k) equal to f,{-, h), except that exactly at t*®), —t fires with proba-
bility one instead of zero. If b, (k) > b_,(h) = 0, then specify f.(-, k) so that to solve 1's single person deci-
sion problem.

This pair of strategies generates the following outcome in our multi-stage game. It is illustrated
schematically by Figure 2. With probability one, the first change in state occurs at 1?2, The new firing state
will be {i} or {j} with equal probability. From now on, we will assume that state {i} is actually realized.
Nature now moves immediately. The system moves to the terminal state (/) with probability 1*%; with the
remaining probability, it is reset to ‘prepare to fire!’ In the latier event, the next change in state occurs at
(21 This time, the state switches to {i} again with probability one. Nature now moves again and the system
moves fo (i) with probability #>!; with the remaining probability, it is reset to ‘prepare fo fire!” In this
event, i no longer has any bullets to fire and j becomes as a monopolist. By making the appropriate subst-

tutions, it is straightforward to verify that for each 1 the expected value of playing f from the beginning of

the game is 1122, where this term is defined in the usual way from the appropriate set of classical duels.

Payoffs and Equilibrium Notions.

Player i's valuation function, V;, assigns a value to each history. If a'™'(h) = (1), then ¢ wins the

game. In this case, V,(h)is (2 - 4t (h))m* minus the unit cost, ¢*, of each bullet that he fires. Otherwise,

the value of a history to 1 is, simply, minus the cost of each bullet that he has fired. Summarizing,

(2 = 19 (n)a* - b(n)cr  if a''(h) = (1)
Vin) =

=b;(n)c* otherwise The expected payoff function P assigns a

payoff vector to each strategy profile and decision node. P:(f,t, h) is player i’s payoff if agents play f




(" {)

(t-¢"")
(tz,l) ﬁ,) — (‘tz‘z, <j>) (f3’1;<('>) - L ({2,1 )
1 1
2,1 » i 12 L})
{J}) ot 2 | ™
-t G-t
12
(:fl:l) ﬂ') — (‘tz’{ <J->) (tijl,(i)) +— (t s ﬁ)
1 .
2P r. )
£ (3 N
(i -t!.,o)
¢, 2 5) (M0 <id) (£ <3») | + 2
1 1
(t* {i}) /~ ", {i)
4 1
Y 0
¢ #) L)

(t1.°’<.f,>) t 91 <J>)

F1GURE A




- 31-

from the decision node 1, 2. That is,
Pi(f. t, By = [Vi(m)do/"h(m). (4.4)

(Recall that o/*(n) concentrates mass on only finitely many n°s.)

Like the classical duel, our multistage duel has a continuum of subgames, one corresponding to each
decision node. The subgame associated with the node (1, h) is simply the multistage duel played on the in-
terval {1, 2), in which agents start out with an endowment vector of b(h). That is, the endowment vector for
this subgame is determined by subtracting from each agent’s initial endowment of bullets the number that he

has fired in to the history h. We can now define subgame perfection in the usual way. For each decision

node, we will say that f is a Nash equilibrium for the subgame beginning at (¢, h) if for all /, and all £/,

Pif, t, k) 2 P.((F7, F=i) t, h). A profile f is a subgame perfect equilibrium if f is a Nash equilibrium for

every subgame.

V. Construction of equilibrium strategies.

In this section, we construct a pair of equilibrium strategies, f*, for the multi-stage duel with parame-
ters (B*, m*, c*). As usual, we assume that this duel passes our numerical test specified in section II. We
will specify an inductive procedure for defining a family of classical duels, one corresponding to each phase
of our multi-stage game. The equilibrium profiles for each classical duel will be used to define other duels,
corresponding to "earlier” phases of the game. The procedure is delicate because we must choose our profiles
so that the duels they define will satisfy conditions (A1)-(A4), allowing us to invoke Proposition IV. Once
we have defined and solved the classical duels comresponding to eacfa phase of the multi-stage duel, we define
f* simply by paiching together. the equilibriufﬁ proﬁies for .each of thé dﬁeis. |

The conditions that requires particular care are assumptions (A2.b) and (A4): we need to ensure that in
the relevant region, following is preferable to firing simultaneously (A4) but not so attractive that it is prefer-

32,33

able to leading, in which case (A2.b) would be violated. Fortunately, there is a simple way to resolve

32 The folowing example illustrates how condition (Ad) can fail. Let x* = 16, ¢* = I, 1 = % and supposc that each player has a
large number of bullets remaining. Suppose that at time 15, § intends to fire as many as three bullets in immediate succession, if his car-
lier bullets miss. I j waits in the hope that all threc bullets miss, his payoff must be strictly less than (1B x16x(2-¥%)-1=2. On
the other hand, if he fires at the same instant that § fires his first shot, j's payoff will be at least Vax 16 x(2- “By-1=5
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this difficulty. For a duopoly phase, B, let IS(B) denote the set of immediate successors of B. IS(B) con-

sists of the phases (8,—1.8;). (B,.B;—1) and (B8;-1,8,~1). These are the phases that are directly relevant for
the purposes of defining CD#. From Proposition IV, we know that for any 8’ € IS(B) and any subduel of
CD# that begins beyond the firing time 17" for CD?’, there are three kinds of equilibria. For each 1, there is
one kind that 1 strictly prefers. The third kind, involving randomization, is bad for both players. According-
ly, we can use these different equilibria 10 reward following and punish firing simultaneously, when we define

the payoffs for CD#. For example, if agents in CDP fire simultaneously at = 2 1R e will determine

their payoffs by playing the equilibrium profile that is bad for both of them in the subduel CD Pmlbml gy 3
Similarly i leads and j follows at 7, payoffs will be determined by playing the equilibrium that j strictly
prefers in cDPPi(1). Tt wms out that this construction strikes just the riéht balance: in classical duels
defined by this procedure, following will be preferable to firing simultaneously, but leading will be preferable
to following in the regions where these inequalities are important.

We now construct the strategy pair f*. As usual, we begin with the monopoly phases of the game.

Fix B, > 0 and let 7 be a phase-(8;,0) history. Set f;(v, h)=0 and define Ffi(, h) by, for r € [0, 2), '

. 1 ifr <P 5.0 .
fit, by = where 17" is defined on p. 4. Now, for each firing state e, define the

0 2P0

continuation payoff functions W(-: a; (8,,0) = (¥,(:; o; (8,01, ¥l o (B:,0))). (The role of o will be

explained later.) That is, ¥,(7; a; (B ,0)) denotes i's monopoly payoff if he plays f ¢ starting from the deci-

sion node {r, #). Note that for each B, and ¢ < P2 . (r; a; (B,.0), ‘Pj(r; o (B;.0)) = (I‘I‘,B"B, 0).

Beyond this time, ¥;(-; & (B,,0)) will be strictly decreasing.

¥ In an asymmelric game, it is difficult to guarantee existence unless (Ad) is satisfied. To see this, suppose that for each i, Li{-} is
strictly increasing, and that beyond the finng time T, L) > 5, » Fi{-) while I.j(-) > Fj(-) > Sj(-). For reasons cxplained above, i will
be willing to fire at ¢ only if j fires with positive probability cither at or immediately after . However, if the inequalities are as
specified for i, then i never be indifferent between firing and following, and ¢, in equilibrium, will fire at ¢ with probability either zero
or unity, However, if i fires with probability one, j prefers foliowing to moving simuliancousty, Thus it is impossible to construct an
equilibrium profile in which any agent moves with positive probability at any time.

M Obviously, if they fire simultaneously before (P77 hen their continuation payoffs are uniquely determined.
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Once we have defined f* for all the monopoly phases, we can proceed inductively. We will solve all

the phases in which one player has only one bullet, ie., (1,1}, (2,1),..., {B°.1) then proceed to phasé (2,2),
3,2, eic. Fix a duopoly phase, B. Assume that for each
B’ € {(nB=1),1<n< B’} U {(nB), 1S n<p), the classical duel CD® has been defined and its
payoffs satisfy conditions (A1)-(A4). [This hypothesis is certainly satisfied when B = (2,1): in this case, the
only B’ in the above set is (1,1), and CD'', defined on p. 16 certainly satisfies (A1)-(A4)] To define
payoffs for CDF, we will need continuation payoff functions, ¥(-; o B, for each & and each immediate
successor, B°, of B. If B’ is a monopoly phase, the ¥(-; o B’)'s have already been defined. Otherwise, we
will define them by constructing an equilibrium profile, £(% = #(:), for the subduel CDF'(7) and setting
¥(r; o B’) equal to the payoffs generated by playing this profile in that subduel.

The profile £'% % #7)(.) is defined as follows. For each ¢ € [z, 2) and each firing state o, we define:>>

(0 if 1 € [z, ")
1 ift =1 >rand B < B,
0 ifr =" >rand B’ 2B,
gmabByy = |1 ift=r2*anda=1{j} . (5.1)
L ’
0 ifr=121¢% and e = {i}

LF@) - Ff'w)
LF(t) - SF'w)
Lf'(y - FF()
ka'(r) - Sf'w)

ift =12¢% and @ = {i,j}

ift > max(r,tﬂ')

Now for each ¢, define the continuation payoff W(r; c; B) to be the outcome generated by playing the
profile £ = B() in the subduel CDP(r). It is straightforward to verify that ¥(r; &; B°) has the following

values:

{

WP ), LFuPy)  ifre [ 1f)
(FF (1), LF (1) if 2 +# and & = {i)
Y(m o B = ), . : , (5.2
(LF' (D), FF () if 2% and @ = {j}
(FF'(z), FF' (7)) if 72 P and @ = {i,j)

\

35 There is, here, a potential source of confusion. In section II, we constructed the strategy profite £°'; Now, we define the profile




-34.

We can now specify the payoffs that define CD?. For each 1 € {0, 2).

LAty = m* @ =) —c* + (1- 0¥ () (Bi-1.B)) (5.3.a)
FRy = (1 - (5 j): BuBi~-1 (5.3.b)
Sky = 1 -1 [r:r*(2 ~-c* + (- 0¥ {jh (B;—l,ﬁj—l))] - 1c* {(5.3.0)
LR = m*Q2-1n-c* + (1 - 0¥ ) BiBi~D (5.3.4)
FRa) = (1= ¥ (i} (Bi-1.8) (5.3.€)
SE) = (1—1) [m*(Z-r)—c* PN FONINIT (,s,-—x.pj-l))] - 1c* (5.3.6)

To complete the inductive step, we need to prove that these payoffs satisfy conditions (A1)-(A4). Once this

is established, we can define duels corresponding to phase (8,",8;), for each B = B > B,. Finally, we can
use the equilibrium profiles obtained in prior steps to define the duel corresponding to (8;+1,8;+1). In this
way, we can define classical duels corresponding to each duopoly phase of the game.

We can now define our profile f* for the monopoly phases of the game. For each duopoly phase histo-
ry h # h®, we define f*(-, h) = ke =B For the zero-length history 12, choose o arbiwarily
from among the firing-states, and define f*(-, k%) = &%= Our final result is:

Th’m V: Fix a wmiple (B*, =%, c*). If this triple sausfies the test specified in Proposition IV,

then the strategy profile f* is a subgame perfect equilibrium profile for the multistage
duel with these parameters.

As we have indicated, the delicate step in the proof is the verification that the classical duels defined
above satisfy conditions (A1)-(A4). Once this is established, the theorem follows easily from Proposition IV.
. We will outline the proof that condition (Ad) is.satisﬁed for player j. The remainder of the proof is relegat-
ed 10 the appendix.

First suppose that J fires in DB at © < tP7"%_ If he misses, the bullet in phase (8,~1,8;) will not be

fired umil 270, Suppose that j follows at 7. 1f i misses, j has the option of leading at T in phase

é(" B A, The superscripts 1 and {1} indicate very different things: 1 signals that 1 will firc immediately at = {1] indicates that 1
has just fired, and now it is =i ’s tumn to fire.
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(Bi—1.8;). The probability that i will miss and j will then hit at 7 is 7(1 — 7). 1f 7 and j fire simultaneously
at , the probability that j alone will score is, once again, ¥(l - 7). On the other hand, the cost of firing
simultaneously exceeds the expected cost of following: if j fires simultaneously, he incurs the cost of the bul-
let whather { hits or misses; if j follows, he incurs this cost only if i misses. Finally, if i's bullet and j’'s

both miss, then phase (B,—1,3;-1) will be reached. The bullet in this phase ‘will not be fired until

Pl BV Thus, s payoff conditional on reaching phase (8;-1,8;-1) will be the same, ie,

Lf"’ Erl( BBy whether he follows or fires simultaneously at 7 in phase B. Therefore, j can do strictly

better than firing simultaneously at T in phase B by following at 7 and then firing immediately in phase
(B;—1,B,) if i misses. This establishes that Ff(r) > S}’(«:).36

Now suppose that { fires at T € (BB P ~18=1y If j follows and i misses, then f* has j leading
immediately in phase (B;-1,8;) and, if he misses, firing again at max(r, A1y Repeat the argument just
given to establish that j does strictly better by following. Finaily, suppose that / fires at 7 2 (Pim1 Pt 37
Once again, f* has j leading immediately if phase (B;—1,8;) is reached. The difference here is that if j also
misses, the bullet in phase (8;-1,8;-1) will be fired immediately. If j follows in phase B and phase
(B;—1,8;—1) is reached, f* has i leading. If j fires simultaneously with i in phase B and phase (B:~1,B;-1)

is reached, f* has both players randomizing in phase (8,-1,8;-1). In either case, j’s payoff conditional on

phase (B,—1,8,—1) being reached is Ff i~1B;=1 P18~y Therefore, once again, he strictly prefers following

to fiing simultaneously. This completes our verification that condition (A4) is satisfied.

36 Of course, j chooses not to fire immediately at ¢, but waits until 1?7195 before fiing. This fact does not our argument however:
it only means that the advantage 1o following is even greater than we indicated.
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APPENDIX.
We first prove that the conclusions of Theorems 1I and III hold for the "test firing times” (1 #)pgpe and

“test payoff vectors” (f1° )pspe. defined by the algorithm on pp. -12. We then prove existence (Theorem V), in

the following way. We fix a triple (B*, m*, c*) that satisfies our test. We show that for every duopoly phase

B, the phase B classical duel defined by playing f* beyond phase B cotncides on {0, T'B'hl"a’) with the "test
payoff functions” defined by (2.6.d)-(2.6.d") above. By assumption, the lead and follow functions for this
phase intersect in the above interval. Moreover, when the definition of the payoff functions is completed by
playing f¥ starting from beyond 7F .—l.ﬂ,, the classical duel will satisfy conditions (Al}-(A4). We can con-
clude from Proposition IV, therefore, that for any phase B history k, and any ¢, f* is an equilibrium for
subgame that begins at (¢, k). It follows immediately that the conclusions of Theorems I and III hold for
the particular equilibrium profile f*. Finally, we prove the uniqueness parts of Theorems IT and I, and
simultaneously prove Proposition 1, in the following way. We establish that for any equilibrium profile f,
and any duopoly phase, B, the lead and follow payoffs for the phase p classical duel defined by playing f
beyond phase B coincide with the lead and follow payoffs defined by playing f*. (This is an immediate
consequence of our assumption F5 on strategies.) The payoffs to firing simultaneously may differ. We
show, however, that this difference does not matter, i.e., f and f* are effectively equivalent. The unigueness

results now follow immediately.

VI. Proof of Theorems II and IN: the first step.

In this subsection, we prove that the conclusions of Theorems 1I and III hold for the "test firing times®
(75)‘55‘3. and “test payoff vectors” (ﬁﬁ)“;,., defined by the algorithm on pp. -12. As usual, we will always
assume that 7 has at Ieast as many bullets remaining as j. We shall sometimes refer to j as the "weak” and i

as the "strong” player.

The Monopolist’s problem

Recall from expression (2.1) that the monopolist with B, bullets has to maximize:

PO = @ -0 - et + (- nfff ™’ {A.1)
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i’ = B,m1.0 =89 7o i ”
Now 28 =2ne(1—n)-H77, so that L77() is maximized at ™ = 1-—ro=. Let
nt=r BoG ﬁ"o). Substituting for 7%%in (A.1), we have
2° = 2002 =779 + (1 -TPHEPT® - o A
~B.=10 4 =B-10
(ay I gpe
= (1~ ———)n* + D = e
( ype yr ot i C
(ﬁ_ﬂ.’"l-o)z
= ﬂ.‘*-— * + :
( €*) 4m*
B
e, @Y
- 4o

We will show that i’s expected profit increases with the number of bullets he has remaining. We have

=B~1,02
=0 ~B-10 _ =, E‘I.__i ~B-10
i - fif 0 —— -

It is straightforward to check that the solutions fo this system are 2\[;*(«/;* + e* ).38

. s . . = B-10 . =0 =810 - .
Since I1>? is a convex function of ]'l? , the difference dee - l'lf3 ) must be positive on the interval

[0, 24m*(Na* — Ne*)). Moreover, since f1}0 = (Vr* + Yoo )(Wr* - dc*), we bave:
2rrme — N - 10 = [oae - e+ o) (e - o) = e - e

so that Ti2° € {0, 24m*(Jr* ~ c*)). This establishes that T1} is increasing in B; over the region that

CONCErns us.

3 For cxample, when ﬂ?'—w = 2\,;'(\{;' - Jr‘_'). we have:
B.~1.0

aoy =B-1,0
ﬁ}.ﬁ + _4;'— - l'l?‘

(x* —c*) + ﬁﬁ:‘%}.};—_@ - 2.\[;:(.\[;:_5)

(70 = oty + (Vo - o ydns - 2n + 2n0cr

(2* = c*) + K%+ % = 29K ¥4t - 2x% + IxEct = 0.

L3
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The following property of the monopolists” decision problem plays an important role in our subsequent
proof that the monopolist always fires later than the duopolists in the corresponding phase. The result is a
bound on the rate at which the unopposed player’s expected profits increase with the number of bullets he has

remaining. The result is stated here for convenience:
e - m00] - -7 Pie - 19 o (a3
To verify (A.3), first observe that

~ 50 ~=B-10 (ﬁ?l-lp)z 2.0 = 8!
(1 -7 5HIT; = - 2120 - 119). (A4)

Therefore,

[21"'13-" - ﬁf"*""] - a-7AY [21"'1:-“ - ﬁf-"}

= {2ﬁ3'° - ﬁf‘”'o] + 2[ﬁ?‘*"° - ﬁ}"’] - 21 - TP

g4l =20

1A 0 _ 1.0 i

= fif 2010
Bi+1.0 i

~ B i

= AR *

= II; 2(nr c*) e

. BP0 5 0

The first equality follows from (A.4); The first inequality holds because n* > ¢c*; the second because
ﬁiﬁ,ﬁ.o - ﬁ'zo
The duopoly phases.

We will establish that the following statements are true, for all 1 < B/ < ,Bj' and all B/ < B’ < B

The proof is induction on B/, i.e., the number of buliets that j has available.
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?pa""pj'vo - ?ﬂ'; [App-sa-(p,',ﬁ;)]
3 AARCRIRS s S i s (£ [App.5b.(8,",8,)]
player j fires the bullet in phase (B/'+1.8/'): [App.5c.(B,.B)]
PR S PRI, | [App.50.(8,.8,]

We first prove that [App.5a.(B,".1)}-[App.5d.(8/",1)] are true, for every B;' 2 1. We then proceed inductively.

Fix 8; > 1 and assume that for every v 2 B;-1, statements [App.5a.(B,",B;—1)]-{App.5d.(B/,B;~1)] are true.
For every B/ <p; and every B’ > B/, [App.5a.(B).8))-[App.5d.(B/.B;)] are wue. We will prove
[App,Sa.(B,-',,Bj)]-[App.Sd.(ﬁ,-’,ﬁ_,-)}, for every B 2 B;.

Proof of [App.5a.(1,1)l-{App.5d.(1,1)].

Recall that the payoffs L,"'(-) and F () are defined as follows:

LM

-

FMO)

m*(2 - t) - c*

1 - niil®.

Since L1() - F() is strictly increasing in ¢, we need only show that L1F2oy - FAEM P Prly s 0.

We have:
[19G0 - FABMEAerly - 7200 -T2 o0 - 1 - T3

f2° - a - PO - a - 79L°

20 _ 4[ﬁ;.o _ ﬁ‘:_;o] -

mn

afl® - 32

ey
e 4(n* - c*) — 3[(,;* - %) + M]
4n*

> (m* — ¢c*) — Ya(x* — c¥%) > 0.

The first identity follows from (App.1) and the second from (App.2); the two strict inequalities follow from
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n* > ¥,

We next consider [A.5b.(1,1)]. Since ﬁ} = 0, we need to prove that 120 > 2f11". Now 7?° maxim-

izes £2%0) = m*@ -0 —-c* + A= = MO+ FY(). Necessarily, therefore,
il > IME M+ F@ Y = 211, Since 72°() is strictly concave in ¢ and 72° = ¢ ', it follows
thal the above inequality is strict.

Statement [A.5c.(1,1)]--j fires the buliet in phase (2,1)--was proved in section II above.

Now fix B; > 1 and assume that statements [A.5a.(8,—1,1)}-]A.5c.(B;—1,1)] are true. We will show that

[A.58.(8:,1)]-[A.5¢.(B,,1)] are true. We first show that 7 #*'° > 77 From [A.5c.(8,~1,1)], we know that j

fires the bullet in phase (B,,1). Since E,F "1(-) - ?f"‘](-) is swrictly increasing, we need only check that

LA B8y _ BT P10 i positive. We have:
EEB'J(T'G'HD) _ Fﬂ, ( ~B.+1] 0) = vt—'ﬂj-fl.ﬂn*(z _ ?-p,--t-l.ﬁ) —c* + (1 _ ?ﬁ,-+1 O}mlﬂ -1,1 _ ﬁ?o)
= p,+1 O”*(z ﬂ,-H 0) ot + (l _ ?p,-+1.0) [(1 _ ?5,-—1,1)1-.1‘5,-1.0 _ ﬁ?o]
> TP TP oy - TR [(1 - TP - n“’]
= [ﬁ._B,—ﬂ.D _ (1 _ }-B;+1.ﬁ}ﬁ?,o] (l -7 ~ B.41 0) [ﬁ?.‘) _ (1 _ -t-p,-,o)ﬁp,-i.o]
o /0 4 oo [T - -7 °>{ 0 4 2l ]|
= [ - 0] - a-7y e - 59
> 0.
The first inequality follows because TP 5 7RI The next three identities: follow from (A.1), (A4) and

(A.3). The second inequality follows from (A.3).

Statement [A.5b.(B;,1)] now follows easily. Since 1'[’B ‘HO-O, we need 10 prove that
P10 i 4 ﬁ?"l. As before, 7 Ao maximizes

..p‘+10() = m2--c* + (1- t)I'I" = f"1(;) + ff"‘(.)‘ Necessarily, therefore,
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~B+10 | =B

~-1~1- Pl . Pia H B+ L
1o 5 IPATAy 4 FEAGEPY). since IP() is stricily concave in ¢ and 1 £ 77 it follows

i
that the above inequality is strict.

We now prove statement [A.5¢.(8;,1)]. We have:

EP0) = @2 —1)—c* + (1- nfif!
F,-p"“'l(’) = (1- t)l'I'B‘“o

Z}B‘H'l(t) = %2 - 1) - c*

Fry = (1= nfit

To show that j fires, we need only check that ﬁf‘_l'i + ﬁ? =L o ﬁf‘o. As before, since 7%° was chosen to

maximize L2y + F f =110, we have ﬁf‘_l" + fiP™ < 112°. Repeating our earlier argument, the ine-
quality mast bold strictly.

Now fix B; 2 1. If B; > 1, assume [A.5d.(8;—1,1)] is true. We will show [A.5d.(8;,1)} is true. We

have
LP™ ) = m*@ -1~ c* + (1= ofif™
FfHey = - nfif™
IP20y = mr@ -1y - c* + (1= nfP?

FA2(py = (1 - pit*™

1 ~§ . . ~=B.+1,1 42,0 : 41,1
To establish ¢ Thal 7P '“'2, it is sufficient to show I'If R 1’1'3 * Hf - ﬂf” ,i.e.,

s A n”'*“ ' (A.6)

By [A.5c.(8.D)], j fires in phase (B;+1,1), so i is indifferent between firing and following. Therefore,

fiPt o pAAG Ay = FR G RN g1 B, = 1, then from [A.Sc.(8;,1)), 17! = L}(G™Y), so that
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AP - i3 = 2 M a2 -T2 - + 200 - PO - T2 -1 - o
= T3 T3y - ox + 201 - TEHA
< T2 -7 —c* + (1 - 2HII*
D < 7302 -73% - c* + (1 = 7O

3.0
3 n,' .

The first inequality follows from [A.5b.(1,1)], the second from [A.52.(2,1)]. If B, > 1, we have:

B,+1.1 ~ B2 =B+1.1 ~ B+1,1 o2 ’ +11 ~ Bial)
AP _ P2 g [PV T ANy _ FRAGERY & BRTYIERY
= }-ﬂ,--r-l.in_*(z - ?£,+1.1) - + (1 _ ﬁ+1 I)ﬁﬁ Jd

~ B+l

- - TPHRM o - TR

7Bl

< ﬂ*(z p+|1

)'—C* + (i _ Tﬂ,-+! i)nﬂ-v-!o

Bi+20 ~Bi42D

- ~BA20
< 7T R*2 -1 Pt

Y- % + (1 = 7RIS

~ B 43
- i

The weak inequality holds because by [ASc.(B.DL J fires in phase (B;+1,1), so that

ﬁ'? i Z,P"H‘] (r ﬁ"“'l) = ﬁf i+l ’ 7 Pl ]), while l'lﬁ' z F; FP2 (: ). The first strict inequality holds because

by [A.54.(B,-L1)], 7 TEH L TA2 o that (1 — TAINERT - (1 - TP < 0; the second strict inequality
holds because 7‘6" 20 maximizes m*2 - ) —c* + (1 - t)l'['e e and by [A.5d.(8;~1.1}], ¢ TR 4 ?'ﬂ'+2'°_

The Inductive Step.
Now fix 8; > 1 and assume that for every B; 2 B;-1, [A.Sa.(ﬁ‘-,ﬁj—l)]-[A.Sd.(,Bj,,Bj-1)] are true. We
will show that for .every.,B‘-' 2 ﬁj, [A.Sa.(ﬁ,-,ﬁj)}-'[A.Sd.(,B,-,'ﬁj')} are true. To prove [A.5a.(B;,B))], we need to

~ B+p; 0

verify that f,-‘B(-) intersects F ,P(-) at a time strictly before ¢ . Since ff’(-) - F f(-) is strictly increasing,

we need onty show that LP(T #**% - FP P 7 AP0 5 0. We have:
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LATPP0y o FP i AvRY | (A7)

?5i+ﬁ;'ox*(2 - ?Bi+ﬁ;-o) - ct + (l - ?ﬁl’"ﬂ;-o)(ﬁjﬂi-lvﬁ; - ﬁ?nﬁj-l)

A o~ - . - - [ ﬂ L -_— F el - — - ﬁ, — * f -
TBBO wy _ TP | e 4 (1 - TPRO H A= TA 0 ZTATNERT Tl -7 B8/ 20
B/=2 B/=2

L

]

-

s e a ot e B, et s
@ -7 T a- 7" - 7" MO T a - TR
ﬂ_,'=2 B=2

}'ﬁﬁ-ﬁ,-on* 2 - ;'ﬂi+.8,.0) — ot

v
+

b

~ B 0 ~B4+B 0
7 Bi+B;. a*(2— 1 Bi+B; )= c*

+

it

a-7TPPOTa -7 [(1 - TATMHERTO - n?'°]
8= '

o — . — . . ﬁ} — i o Lo . S~ ey A
s PO S TAEO e 4 (1 - TP (- T [(1 _ RO _ n:,.o]
B/=2

. B; . - -
[21'1}'0 _ ﬁ:ﬂ.-+§,-.0] _ H -7 B+ ,0) [211‘1,0 _ n‘g.o]
B;/=1

B, o T s
N [2ﬁ3‘° _ rlf'*ﬁf"’] _a _-l-a.-w,.o)l—’l ) [21—13.0 _ nf"””]

B/=2

> [Zﬁ}‘o _ ﬁ?.--t-ﬁ,‘o] - __-;'ﬁj+ﬂ,.0)(l __';ﬁmﬂ,——l.ﬂ) [21-1‘1_,0 - ﬁ?ﬁﬂj-i.ﬂ]

pj _.,p__i.p' B, o-vﬁ"p-'—! . .
The first inequality will be true if [T (L = 777*) 2 T] 1 = 7). But this inequality is satisfied be-
B=2 Bi=2

cause if B = B; then TP% = TPV wnite if B/ < B,, then by [A.5d.(8;~2,8/~1)], the equality holds

strictly. The second inequality holds because by [A.5d.(8,.B/-1)}, TAATLO L TRLE ot by

~B8,0

[A5a.(8;—-1,1}], ¢ > Tp‘-i'l. The next identity is obtained by substitution, using {(A.D anﬁ (Ad4). The last

several inequalities follow from repeated application of (A.3).
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We now prove {A.Sb.(ﬁ,,ﬁj)} and [A.5¢.(B..B;)], for B, 2 B;. If B, > B,, assume that [A.5b.(8,-1,B;)]

= B+1.8;~1

and [A.5c.(B,~1,8;)] have already been proved. We first show that 17 + fif < 11, + {2777 From

[A.5d.(B;,8,~1)], j fires in phase (Bi+1,8;-1), so that:

ﬁ?,ﬂ,ﬁ,—l - f?‘“'p’_l(?ﬁ‘ﬂ'ﬂ’_l) = qQ _-‘-p‘n.p,-:)ﬁ?,u.p,-z

ﬁfﬁ},ﬁl-l = E}§;+1,ﬂj-1(7ﬁ,+l.ﬁf-l) - ?ﬁ,ﬁ-i,ﬁj—]n*(z - ;‘5.-1’1,'8)-1) —c* + (1- ?ﬁ,+!.ﬁj~1)ﬁ?i+l.ﬂ}—2

Also, the payoffs to leading and following in phase (B;,B;) are equal, while if B; > 8;, we know from

[A.5b.(8;-1,8,)] that j leads in phase B. Therefore

fif = FFGP = a -7k

TErr2 - TPy — c* + (1 = TN

f?

reTh
Lj(f )

Combining these expressions yields

=]
™
+
=
W
[}

TRar@ - TP - cx + (- TEIT + 11797

< TPar@-TP - c* + (1-THATE2 LAl

l

FPori@ly + LP790GP)
FATIATIGETISSYy | [AIATIFALAY

= B+1,8~1 o~ Bi+1.8,-1
58 T

+

The first inequality follows from [A.5b.(B;.B;—1)}: the following identity holds because by [A.5¢.(B;.8,—-1)], j

- pl*'i ‘pj-l

fires in phase (B;+1,8;—1); the next inequality follows because from [A.5d.(8;—1,8;-1}], ¢ > 15

while from [A.52.(8+1,8;-D], 7PH° = FANATIS TR

, and because aggregate payoffs are a
strictly concave function of time. profits are higher when the firing time is closer o the optimum.

We now prove [A.5c.(8;,B))], i.e., that j fires in phase (8;+1,5;). By the usual manipulations, we need

to show that

fif + 0F < P 4 fiPVS

But this inequality follows immediately from step [A.5b.(B;.B;)] above.
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Now assume that for every B;" 2 B;, [A.5b.(8.8,)] and [A5c.(B/.B;)] are true. Fix B, 2 B; and, if
B, > B;, assume that [A.5d.(8;~1,8,)] is true. We will prove [A.5d.(B,.8;)). We need to show that wh-enever
i weakly prefers following to leading in phase (B;+1,5;+1), he strictly prefers following to leading at this
time in phase (B;+2,B;).

As usual, i's payoffs 1o leading and following in the relevant phases are:

= B+1.B;

P = me@ - —c* + (1 -0ff;

FP¥y = - nft?™h
PPy = me2— ) —c* + (1 - nilP?”

+1,8,+1

FPHPM gy = (1 - nftt

- ~ B+1.5,+1
To show that ¢ B+28, > ! PH1B+

, it is sufficient to show that
i_-lfx,-ﬂ,p,- _ ﬁf;+zﬁj-1 < ﬁ,?,ﬁj+1 _ ﬁ?,.n,pj’
i.e., that
fiPH 5 ofif P (A.6)

We have:

ﬁ?i+laﬂj _ ﬁfnﬂj‘” + ﬁﬁﬁ'ioﬂj

i

f‘._a;"'l!ﬂ;(}-ﬁr"'l-ﬂj} - fl‘ﬂrﬁj+‘(‘t-”lcnj+l) + f‘_ﬁn“']oﬁ;(;’ﬁ-*l-ﬁ;)

';'ﬂf*'l-ﬁjxg{g _ }-pjﬂ,ﬁ,) —c* + (1 — ‘i'ﬁ,*—l-ﬁJ)ﬁ?

i

- - TP 4 - TATEASTAT

TEB o TRy e 4 1 o TROVERACIAT

N

~ - -~ s -~ AR 1 = -
<7 B+1.B; !x*(Z -7 B.+2.5; l} —c* + (1 - tﬂ.+ B 1)1'1?'*1'”’ i

ﬁ‘pf+2.pj-1

The first weak inequality holds because by [A.5c.(B,.8,)], J fires in phases (B8,+1,8;) and (B,.B;+1), so that

ﬁf"“'p’ =L ,-ﬁ A G ﬁ‘”'p’) =F ,'B ‘+1"8’(? 'B"H’ﬂ"), while ﬁ?“p"ﬂ > F ,ﬁ Byt 't ‘B"B’“). The second weak inequality
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holds because if B; =ﬁjs then r-‘ﬂ"’]"a-' E?ﬁ..ﬂ,ﬂ‘ so that (I — ;-.a,+1.s,)ﬁ?= a = ;ﬁ..ﬁ,ﬂ)ﬁ& i B, > ﬁj,
then by [A.5d.(B~1B)1 725 > TAP o thar 1 - TP <1 - 7P PP, The strict inequali-

ty holds because by [A.5d.(B,.8,~1)] and [A.5a.(B,+2,8,-D)}, T%"¥ < TRA2RY (TRARBTIO hile for

-;' Bi+24B8,-10

=g+l 51 | . . L .
t < , 2 —-1)-c* + {1 - t)l'i,“ #; is strictly increasing in f. This completes our

verification of [A.5d.(B,.B;)] and completes the proof.

Proof of Theorem V.,

Fix a triple (8%, n%, c*) and assume that these parameters pass the test specified in Proposition 1. The
following facts are either obvious or have been checked in the text. (i) for each monopoly phase history h,
the profile f*(-, ) is the unique equilibrium profile for every subgame beginning at (r, k), t 2 t"'Ch); (i)
for each B, N7°= f1%° and 75° = &% (i) ¢! =7 (iv) for any phase (1,1) history sﬁch that
t97(h) <t we have P(f*, t*(h), k) = 1" = {1, where I'"' and f''! were defined, respectively on
p- and p. .

Now fix a duopoly phase B, and a phase B history, A, such that B, 2 B, > 0 and 1'27(py < 1B, Assume
that for each B’ € {(nB;~1), 0% n < B} \U {(n,B). 0< n < B}, the following facts have been esta-
plished: (ay (# =7%; () for any phase B’  history h such that Ty <t ?,
P(F*, t''(h), k) =T1¥ = i (c) if B’ is a duopoly phase, then the payoff functions for the duel cb¥
satisfy conditions (A1)-(A4). We will establish that (a), (b) and (c) are true for B. It will then follow im-
mediately from Proposition IV that for each o and 7, the profile E(7 @ B() is a subgame perfect equilibrlium
for the subduel CD#(7). In turn, it will follows immediately from expressions (4.2) and (4.3) and the com-
ment m fo.otnot.e .30. tha; if m the mulﬁ-swge duel, either ageﬁt of .bo.th. fires at some deciéioh node (1, h),
where # < 727"% and k is a phase B history, agents’ expected payoffs will be exactly the same as if the
same set of agents had fired at ¢ in CD#. Finally, we can conclude that from any decision node (7, &) such

that ) is a phase B history, f* is a Nash equilibrium for the subgame beginning at this node.

Since (B*, m*, c¥) passes our test, 78 < 7% 50 that CDP has an equilibrium in which the bullet is
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fired at T2 =P, yiclding payoffs Ti?. Since by assumption, the functions defined by expressions
(2.6.2")-(2.6.d") and those defined by (2.6.2)-(2.6.d}, it follows immediately that fif = n*.

We now check that the payoffs in CD# satisfy conditions (A1)-(A4). It follows from expression (5.2}
that for each B’ € IS{B), the ¥,(-; c; B’)'s will be right continuous, piecewise polynomials, provided that
LF'(1) and FF'(1) are also functions of this form. But this is true by assumption. Now set T = 2 i as-
sumption (A3) above. We will argue that LB() is strictly increasing and continuous on [0, T). The argument
for j is similar. For each r € 0, BV (e (i) (B;-1,B;)) = ‘i’,:(tﬁ"!'p"; {i}; (B;i—1.8;)). Therefore,
LEG) = 2@ — 1) — c* + (1 = 02, (P (i}; (B;~1.B;)) on [0, T). Next, observe that, obviously,
¥ (A7 i ); (B-1,8;)) < Wi(0; {i}; (Bi+B;0)), where the right hand side is i's payoff when he is the
monopolist in the monopoly phase that corresponds to phase (8;—1,5;). Now the monopolist chooses gPrere
to maximize m*(2—1)-c* + (1- D¥(0; {i}; (B+B,0)), From [ASa). 1% <**%° 5o that

e (2 — t) — ¢*)
o9t

%(m*('l - -c* + (- 0FL0 i} Bi+80N = ( = W0 {i}; BB 00> 0

aLP(r) Am*(2 - 1) — %)
B G
on [0, t?). Therefore 3 ( 3

— W, (P (i ); (B,-1,8,))) must also be positive
on the same interval. Next, note that because (B*, n*, c*) passes our test, the payoff functions defined by
(5.3.2)-(5.3.f) coincide with the "test functions” defined in expression (2.6.a"), which, by assumption, intersect
before T. Moreover, these functions are certainly continuous on [0, T). We have now verified, therefore,
that these payoffs satisfy conditions (A1), (A2a) and (A3).

We now check condition (A2.b), i.e., that beyond tP, each agent strictly prefers leading to following.
To prove this, we must consider the explicit values of the “continuation payoff functions,”
w5 (i) (Bi-1.8)) and ¥;(s {j }: (B; .B;~1)), on this interval. There are three cases to consider, depenciing
on whether the game is symmetric and, if it is not, whether i is the weak or the strong player.

First assume that i is the weak player, ie., B; < B;,. Note that from [A.5a], we have P8 < (P "B’,

j.e., the firing time in the "less asymmetric” successor phase, (B;,8;,—1), occurs earlier than in the "more

asymmetric” phase, (8,~1,8,). If i fires and misses at t € 17, 1%}, he will the next bullet with probabili-
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ty one at P18 Therefore, for each such ¢ in this interval, ¥,(r; {i }: (Bi—LB;)) = LPVR PV
fires and misses in this interval, then either i fires at 17" or, if §; = §,~1 they both randomize immediate-

ly after this time. In either case, ¥;(z; {j}; (B.8;—1) = LPP7' (%P7,

8-,

If i fires and misses at r € [+P#7, t%7P)), then he will, once again, fire again at ¢ . Therefore,

once again, ¥, (s; {1 }; (ﬁ,-—l,ﬁ_,-)) = Lf"l'ﬂ"'(rn"]'ﬁl). If j fires and misses in this interval, then { will fire the

next bullet immediately, In this case, ¥{(t; {j}; (8:,8;=1) = LFP'(1).
If i fires and misses at ¢ € {zﬁf"fl'ﬁ", #7187y then j will fire immediately afterwards; if j’s bullet

(818,

misses, i gets 10 fire again at Therefore, on this interval,

W,(5; i) (Bi=1LB)) = FP9@y = (1 = LB M7 (BT, I fires, then i fires immediately after-

IB.*I.ﬂ,-l'

wards; if i’s bullet misses, j gets to fire again at Therefore,

W,(r: 1} BoB-D) = LA @) = m*@ - ) - e* + (1- nFPTATEPTET,
Finally, if i fires and misses at ¢ > PB4 fires immediately, and, if j misses, i fires again im-

mediately. Similarly, if j fires and misses in this interval, 7 fires immediately, and, if / misses, j fires again
immediately. Therefore, for re (P77, 2), (s {i} Bi-L.Bp) = FEVoy = (1 - L,

while ¥i(r; {j1; (BuB~1) = LEPT' () = m* 2~ ) = c* + = oFf77 ),

Substituting for W, {£; {¢); (B;—-L.8;)) and ¥, (5 {j}; (B:.8;—1)) in (A.3.a) and (A.3.b), we have
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[ [ 3
LP(:)\ 2 - 1) ~ ¢ + (1= LB PPy
if 1 € (18, 1Py, . = 5.5l BBl (A.8.2)
\F, (I)J S = DL )
(180 ( B-18,, =18,
, LP(1) 2 - =-c* + (1=-0DL7 70"
if 1 € [PV BBy ] = 5t (A.8.b)
\F* (t)} \(1 - I)L,' " (I) ),
f 3 f _
LA @ = 1) = c* + (1= RLPTPTIEATIAT
if g (PO BTVRTTY . = . L (Aaso
FAW) (- Dm*2-n-c* + (1- R FPVR (BVET
f \ ( -
, LA w2 -1 -c* + (1= 0P
if 1 € (B ), 5 = et (A.8.d)
FP)) (1= D@ -1 —c* + (1- 12 FEE T

We will show that L() > FF(-) beyond 1%,

First, consider ¢ € [+?, t*#"), In this interval,
LEG) — FRU) = @ -1y —c* + (1~ DILPT2aPT 0y - PP BaT)

There are two cases to consider. If L,P"'l"ﬂ'(tp‘_l‘p") 2 L,P P, ""](rﬁ B "'“‘), it is immediate that L} > FA(-)on

L8, BBy Suppose  therefore  that L,P""B’(tg"l‘ﬂ’) < L,P“ﬂf'l(tﬂ“s"_l). In this  case,

HLP() - FA(» tm*(2 — t) — c*) B=1.B,, . Bi—18
% 3 - [L ( ) —

L,P"ﬁf"](zp"ﬂ""l)] >0 on [/%, tﬁ"p"'!). By

[A.5c], we know that LE(r®) > FP(18); it therefore follows that LE() > FP()on [¢%, BBy,

Next, consider ¢ € [¢7 B~ (P=lPy  On this interval,
LAY — FBu) = 3@ - 1) —c* + (1= LB PP Py o PRy (A.9)

Now I_.,-ﬂ"ﬁ'*l(t) = m*2=t)—¢c* + (1 - t)lﬂ.,—‘s =185~ (4P 18~y Moreover, the second term on the right

hand side is just FP7"P(s). Substituting in (A.9) and rearranging terms, we have

LAG) - FB() = nnx@ -1 -t + (1= DILE By - PP

. . . -1 B-~1.
Once again, there are two cases to consider. First suppose that for some s€ [P 1P,

LPTVB (P FP"8:(5). For this s, we have
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HLF(s) - FPs)) T (2 — 5) - ¢*) —aF‘_ﬁ‘—}'BJ(S)
g = AHELDD 4 gy

+ [FPTsy - LATRPTR)

Since all_ three terms are positive, it follows that (LP() - FP()) is swiclly increasing at every
3 € [rp"‘a"’, t51P1) such that Lf"l'si(z‘a"l“ﬁf) < Ff""ﬂ’(s). Moreover, we have already established that
LF(;‘B"ﬂJ']) > F,ﬁ(zﬂ"‘ﬂ"'l). It follows that LA(s) > FP(s) for each such s. Now assume that there exists
s € [t's"'ﬁ b= P18y such that l.}ﬂ"l"sf(t'8 =18y FP? "i'ﬂJ(s). Since 1'-‘,-'3 18 is strictly decreasing before

rﬁ"l‘sf, the expression [-] must be positive on the interval |s, tﬂ"l‘al). so that LP() > FF(-) on this interval

also.

For ¢ 2 #7%7 the inequality follows immediately from our hypothesis that the payoffs for

cD P81 gatisfy (A2.b), so that L? ""'ﬂ"'](-) > A1y beyond PP This completes our verification
of assumption (A2.b) when 7 is the weak player.

Condition {(A2.c) is easy to check. This is the requirement that at any discontinuity point  of either

LB() or FF()) beyond r?, i can do at least as well by leading just before ¢ as he can by following at 1. From
(A.8.2)-(A.8.0), it is clear that FF()) is continuous on [P, P71y (because LPP7() is continuous on
[0, tﬂ""‘ﬂ"‘]). On other other hand, LP(:) is continuous on this interval except at PP Since LF()
exceeds FA() at t#7"% and LP() jumps down at this point, condition (A2.c) is certainly satisfied. Beyond

PP~y (A2 ¢) follows from our hypothesis that the same condition is satisfied for I.,P"""""'(-).

We now assume that i is the strong player, ie., that §; > B;. In this case, the ordering of the firing

times is reversed, ie., t? LB < t_ﬁ"_‘ﬁ"". If i fires and misses at ¢ € [¢?, ¢P~VPr) then either j fires at Pl b

or, if pB-1=5; both players randomize immediately after this time. In either case,
¥ (s (il B-1.8)) = LA =18, Pi-1Biy If j fires and misses at ¢ in this interval then he will not fire again
until #9750 that ¥,(r; {j); Bi.B;-1) = FPPT (P,

Now suppose that i fires and misses at 1 € {tﬂ =18 P8y In this case, j will fire immediately, so

that ¥, {r; {j}: (B—1.B))) = F,—p"“w"(t). If j fires and misses in this interval, then he again hold his fire until
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$P571 50 that, again, Wi(t; {j); BuBy-1) = FP7 0557,

Beyond :ﬂ"w’-.l, the definitions of ¥;(r; {i}; (B,—1,8;)) and ¥A1; (j): (B..B;—1) are independent of
whether i is strong or weak, 50 we can ignore this case.

Once again, we substitute for W,(s; {i}: (Bi—1.8))) and ¥;(; {j};_(ﬁ,—,ﬁj—l)) in (App.3.a) and

{App.3.b) to obtain:

!/ ‘ /
L, A mre-n-e s a-npTPEET)
if t € [P, flaa .ﬂj), e - S
\ '(I)J \(1 —)F }
[ (
Lf ) (2 — 1) — c* + (1 - HFF Py
i ﬁj—.! 31 ﬂuﬂj"l -
ifrelr .t I = o st st
\F; (’)J \(1 - ’)Fi - (: B, )

We now show that L8() > FP() on the interval ¢, t%#™"). Observe that LP(-) is concave on this
interval while FF(.) is affine. Therefore, (LP() — FP()) is concave. Also, LP(tP) = FF(+?) while
L‘ﬁ(:ﬁuﬁj"1) - F,p(rp“ﬂ"l) = Iﬁi-ﬁj‘!x*(z - ,ﬂ..ﬂj—l) —c*+(1- tﬁ;-ﬂj“')[p‘_ﬁ.'"].ﬁj(tﬂnﬂ_i"‘) - L‘P..Bj"l(tﬂj'lcﬁj)]

= ‘55-51-1155-%"1“*(2 _ rﬁs-ﬂj'l) —c*+ (1 - Ipi-pj"])Z[F‘Pi-l-pj'l(tﬁj_lﬁj"]) - F‘Pi"'ispj_](rﬂi"i‘p;-‘}}

= ‘ﬂi-ﬂj-ltpivpj_‘“*(z _ tﬁuﬁj"‘) —c*>0

‘Therefore, {LP() — FP(-)) must be strictly positive throughout (18, P "ﬁ"“’). This completes our verification
P

of éssumption (A2.b) when i is the strong player.

Condition (A2.c) is immediate in this case, because both LP() and Ff() are continuous on
[rB, P71y (becanse F,P ~1#i() is continzous on [0, tﬁ"'z'ﬁ"] o [0, A1y, Beyond P18y (A2.0)
again follows from our hypothesis that the same condition is satisfied for Lf"""”j‘_‘(-).

Finally, we need to check the symmetric case in which §; = B;. To verify this case, we need only
patch together the easier parts of the arguments given above. First note in this case, tP'% is identically
equal to t%#', Beyond A1 (1 By — FP(9) is strictly positive for the reasons that we gave before.

Between tP and (*7'%, &P - FB()) is a concave function which is zero at one end point and positive at

the other. It must therefore be positive thronghout the interval. This completes our verification that for each
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B, LE() - FP() is strictly positive on the interval (¢#, 2) and so completes our verification of assumption

(A2.b). Condition (A2.c) is again immediate in this case.
We now check condition (A4), ie., that FP() exceeds SP() beyond P. Substituting for

¥.(r; 1) BiB;j-1) and ¥;(s; {i.j}; (Bi—1,B;—1)) in (A.3.b) and (A.3.c), we have
Ffy - S = (-1 [‘1‘,—(:; {j}; (B.B;i-1) ~ (m*(z- t)—c* + (1 - )0 lijh (,B,—l,ﬁj—I}))] - %
As usual, there are three regions to consider. If ¢ € [£P, rﬂ"ﬁf’]), the term between the square brackets can

be written as (LEPTNPETYy - LAy, which is strictly positive for all ¢ < PPl I

te [rﬂ"'a -1 P18 J"‘), then this term becomes (I_;B B, J"’(t"3 P f“) - L,-"‘“8 J"(r"""ﬂ J‘")) = 0. In either case, there-

P11

fore, the whole expression is positive. Finally, if ¢ > ¢ , then [.] expands to

(m‘*(Z -D=-c*+Q-¥(s; (i} (,B,-—i,ﬁj—l))) - [m*(?. -n—c*+ (- (e; {iJ ) (ﬁ;—i,ﬁj—l)) - IC*) .

In this case, W,(s {j}; (B;=1,B;,—1)) equals ¥,(5 {i,j}; (B—1,B;-1)), so that [] = tc* beyond PrrET

This is because if & = {i,j}, then g = Bif)( pas each agent randomizing both at and immediately after
t. As we have seen, the expected value for i of the random outcome will be FP'%7 (1), On the other
hand, if & = {i}, then % % ¥~y hag j firing with probability one at 1, so that once again, i’s payoff is

FA VA,

Proof of Proposition 1.

We have established that if (B¥, &*, c*) passes our test, then there exists an equilibrium for the multi-

stage game that has the properties described in Theorem II. To proiré Proposition I, we need 1o establish that

this equilibrium is unique. To establish this, we first show that the payoffs to leading and following in CDP

must agree with the payoffs in the classical duel induced by f*. We can then prove that there is a unique

equilibrium to this phase.
By assumption, if agent i leads at any %1% the next bullet must be fired immediately. Similarly, if

agent j fires beyond 7hP “'t, the next bullet must be fired immediately. But by restriction (F5), if ¢ fires at ¢
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in phase B, then he cannot fire at the first instant that the next phase is entered. From Proposition IV, there-

fore, it must be the case that player 1 fires with probability one at this instant. That is, /s continuation

payoff if he leads at £ must be L& %P7, for 1 < 18, and FP7' (1), for 1 2 1P, But these are exactly
the payoffs defined generated by playing f* beyond phase B. Similar comparisons can be made for the
remaining payoffs. Conclude that beyond 8, conditions (A1)-(A3) are satisfied. It follows from the argu-

ments that we used to prove Proposition IV (in the text) that if there is an equilibrium in which agents wait

until some ¢ > ¢# before firing, they both must fire with probability one, earning payoffs (SP(1), S8(t). To
complete the proof, we must show that such an equilibrium cannot exist. It is, obviously, sufficient to show
that at every f, at least one agent must strictly prefer following to firing simultaneously.

This condition is certainly satisfied in phase (1,1). Now assume that this is true for every phase

B’ S B. From arguments given in the text, if 1 fires at 1, - will necessarily strictly prefer following at ¢ to
firing simultaneously, whenever the next firing time (if 1 misses) is strictly greater than ¢. Assume therefore
that the next bullet is fired immediately. By assumption, in. the equilibrium for the next phase, at least one
agent fires with probability less than one, and is weakly prefers following to firing. By inspection of

{A.8.2)-(A.8.d), this agent strictly prefers following to firing in phase B.




Qct-87
RECENT ISSUES OF THE WORXING PAPER SERIES
OF THE DEPARTMENT QF ECONQOMICS
UNIVERSITY OF CALIFORNIA, BERKELEY

Copies may be obtained from the Institute of Business and Economic
Research. See the inside cover for further details.

8743 Roger Craine
ARBITRAGE g: AN EQUILIBRIUM THEQRY OF INVESTMENT

Jun-87.

8744 Jeffrey A. Frankel and Katharine E. Rockett
INTERNATIONAL MACROECONOMIC POLICY COORDINATION
WHEN POLICY-MAKERS DISAGREE ON THEE MODEL
Jul-87.

8745 Leo K. Simon
BASIC TIMING GAMES
Jui-87.

8746 Leo K. Simon and Maxwell B. Stinchcombe
EXTENSIVE FORM GAMES IN CONTINUOQUS TIME:

PURE STRATEGIES
Jul-87.

8747 Joseph Farrell
INFORMATION AND THE COASE THEOREM

Jul-87.

8748 Philippe Aghion, Patrick Bolton and Bruno Jul
LEARNING THROUGH PRICE EXPERIMENTATION BY A MONOPQOLIST FACING UNKNCWN DEMAND

Aug-87.

8749 Patrick Bolton
THE PRINCIPLE QOF MAXIMUM DETERRENCE REVISITED

Aug=-87.




8750

8751

8752

8733

8754

8755

[b¢]

~]
mn
o)}

8757

Oct—87
RECENT ISSUES OF THE WORKING PAPER SERIES
OF TEE DEPARTMENT OF ECQONOMICS
UNIVERSITY OF CALIFORNIA, BERKELEY

s may be obtained from the Institute of Business and Economic
rch. See the inside cover for further details.

Jeffrey A. Frankel, Kenneth A. Froot

CREDIBILITY, THE OPTIMAL SPEED OF TRADE LIBERALIZATION, REAL INTEREST RATES,
AND THE LATIN AMERICAN DEBT

Aug-87.

Barry Eichengreen
DID INTERNATIONAL ECONOMIC FORCES CAUSE THE GREAT DEPRESSION?

Sep-87.

Jeffrey A. Frankel
MONETARY AND PORTFOLIO-BALANCE MODELS OF EXCHANGE RATE DETERMINATION

Sep-87.

Albert Fishlow

MARKET FQORCES OR GROUP INTERESTS: INCONVERTIBLE CURRENCY
IN PRE-1914 LATIN AMERICA

Sep-87.

Albert Fishlow

SOME REFLECTIONS ON COMPARATIVE LATIN AMERICAN
ECONOMIC PERFORMANCE AND POLICY

Sep-87.

Barry Eichengreen = .. .
REAI EXCHANGE RATE BEHAVIOR UNDER ALTERNATIVE
INTERNATIONAL MONETARY REGIMES: INTERWAR EVIDENCE
Sep-87.

Len K. Simon and William R. Zame
DISCONTINUOUS GAMES AND ENDOGENQUS SHARING RULES

Qct-87.

Leo K. Simon
A MULTISTAGE DUEL IN CONTINUQUS TIME

Oct-87.






