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ABSTRACT OF THE THESIS

Applications of LDPC Codes to RF-Optical Hybrid Systems

and the Line Product Code

by

Jonathan Vu Nguyen

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Richard D. Wesel, Chair

This thesis consists of an introduction, four main sections, and conclusion. The intro-

duction gives a quick overview of communication channels and the basics of message passing

algorithms. The first section focuses on the challenges of communicating over a fading chan-

nel using optical transmitters and receivers. Recognizing the limitations of a purely optical

transmission system during environmental fades, the section proposes a hybrid RF-Optical

system. The hybrid system consists of a high-throughput optical link closed by a Low Den-

sity Parity Check (LDPC) code alongside a separate RF link. The section proposes two

different architectures for a hybrid system with varying degrees of mixing between the two

links. For each architecture, their performance was evaluated during on a simulated fading

channel and Additive White Gaussian Noise (AWGN) channel.

The second section of this thesis capitalizes on the recent advancements in deep learning

and applies it to the most popular LDPC decoding process known as message passing. The

section first deconstructs the steps of message passing into nodes that can be interpreted

as a type of Neural Network. Then, utilizing gradient descent methods including Adap-
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tive Movement Estimation (ADAM), multiplicative weights for message passing are found

and optimized. The key contribution of the section is the connection between these multi-

plicative weights and properties intrinsic to the LDPC code structure. By exploiting this

relationship, a weight-sharing paradigm based on node degree is proposed, resulting in a

Neural-Normalized MinSum (N-NMS) decoder which dramatically reduces the complexity

of both training and implementation compared to typical neural network based decoders.

The third section discusses a unique case study involving the Consultative Committee

for Space Data Systems (CCSDS) 141.11-O-1 Line Product Code (LPC). Being such a short

block-length code, two Maximum Likelihood (ML) decoders were evaluated against message

passing decoders including MinSum (MS), Belief Propagation (BP), and Neural-Normalized

MinSum (N-NMS). Analysis was carried out considering both the decoding performance and

resulting hardware complexity of the decoders.

Continuing on this, the fourth and final section aims to give additional insight as to why

the N-NMS decoder performed so well on the LPC. This section proposes that the unique

graph structure of the LPC allowed for key optimizations such as breaking length-4 cycles

that the N-NMS training process capitalized on during its training.
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CHAPTER 1

Introduction

1.1 Overview of Communication Channels

Additive White Gaussian Noise (AWGN) is one of the most fundamental types of noise that

appears in communication channels via background, thermal, or radiation noise. As the

name implies, AWGN channels are applied additively to the signal of interest and follow a

Gaussian probability distribution with mean 0 and variance σ2.

y = x+ n, where n ∼ N (0, σ2) (1.1)

From Equation 1.1, x is the signal of interest, n is the noise, and y is the resulting signal.

As the variance σ2 increases, the range of values that n is likely to take on also increases.

Larger realizations of the noise n cause the signal to become drowned out and for digital

communication schemes, can result in bit errors. A common metric for describing the relative

strength of a signal compared to the noise is known as the Signal to Noise Ratio (SNR). It

is commonly expressed in decibels and is calculated via Equation 1.2. The higher the SNR,

the more resistant the signal of interest is against the present noise. Other common metrics

for describing the quality of a channel are Eb/N0 and Es/N0 where Eb and Es represent

the energy per bit and symbol respectively and N0 represents the noise power. For AWGN

channels N0/2 = σ2.

SNRdB = 10 log10

(
Px

Pn

)
= 10 log10

(
Px

σ2

)
(1.2)
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In Binary Phase Shift Keying (BPSK), one of the most basic forms of digital communica-

tion, the signal of interest x takes on either +1 or −1 depending on whether the original bit

value b was 0 or 1 respectively. Because x is transmitted over a noisy analog channel, by the

time it is received, its value will not remain ±1. Since the noise is additive and x takes on

discrete values, we can succinctly express the probability density function of y conditioned

on the original bit value b over a AWGN channel as:

p(y|b = 0) = N (1, σ2) (1.3)

p(y|b = 1) = N (−1, σ2) (1.4)

Graphically, these conditional probabilities are expressed as:

-5 -4 -3 -2 -1 0 1 2 3 4 5

y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p(
y|
b)

p(yjb = 0)
p(yjb = 1)
data1

Figure 1.1: Conditional Probability Density Function for BPSK signal under AWGN (σ2 = 1)

Because the decoded bits must take on a discrete value, some hard decision must be

made to determine the bit value of the received signal y. Taking the midpoint of the two

possible values of x as a decision boundary, we arrive at the following rule for making a hard

decision. This is also shown in Figure 1.1 as the dotted red line.
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b̂ =


0 if y > 0

1 if y ≤ 0

(1.5)

Every signal starts at either ±1 and through AWGN, ends up somewhere along each p.d.f.

If the signal crosses over the decision boundary at y = 0, then it is decoded incorrectly and

a bit error is made. Lower SNR values cause decision errors to occur more often, effectively

increasing our Bit Error Rate (BER). Figure 1.2 showcases the relationship between SNR

and BER.
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Figure 1.2: Bit Error Rate of BPSK modulated signal over AWGN

1.2 Overview of LDPC codes

Low Density Parity Check (LDPC) codes are a class of linear block codes proposed by Robert

Gallager in his 1962 doctoral dissertation [Gal62]. LDPC codes, like all linear block codes,

provide error detection and correction capabilities by encoding a block of bits such that the

3



result contains additional redundant parity bits. These parity bits allow for bit errors to be

detected and corrected for at the expense of some throughput.

LDPC codes are fully described via the null space of a (n − k) × n parity check matrix

H . To give some context, n is known as the block-length and describes the length of the

encoded block. On the other hand, k is the number of information bits, describing how much

useful information is present in each transmitted block. Therefore, n−k is the number of bits

added on via the encoding process. Lastly, k/n, the proportion of information to transmitted

bits, is known as the code rate. Higher code rates transmit a higher proportion of useful

information but are more prone to errors because their are fewer redundant bits.

The entries of the parity check matrix are elements of GF (2) meaning that they can only

take on values of 0 or 1. The ”low density” part of LDPC codes describes the fact that the

proportion of 1s to 0s in the parity check matrix is small. Below, the parity check matrix of

the 7-4 Hamming Code is shown. Here, n = 7 and k = 4.

H =


1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

 (1.6)

Because we encode k bits to n and k ≤ n, there exist 2n possible codewords and only 2k

codewords that correspond to a valid original message. For LDPC codes, H is constructed

such that, for all valid codewords x, we must have Hx = s = 0 where s is the syndrome of

x. In other words, the syndrome of a valid codeword must be 0.

1.3 Tanner Graphs Construction

Continuing from Gallager’s work, Tanner proposed a graphical representation of LDPC codes

as a bipartite graph, also known as a Tanner Graph [Tan81]. This bipartite graph can be

drawn fairly simply given a code’s parity check matrix.

4



To construct a Tanner Graph from a parity check matrix, we first define two types of

nodes: variable nodes vj and check nodes ci. Each variable node represents a bit in the

received codeword and is represented by each column in the parity check matrix. On the

other hand, each check node represents the rules that define each parity bit, represented in

each row of the parity check matrix. An edge is drawn between variable node vj and check

node ci if hij = 1. Figure 1.3 is the Tanner Graph for the 7-4 Hamming Code shown earlier.

Squares represent a check node and circles represent variable nodes. To satisfy the syndrome

requirement Hx = 0, all variable nodes connected to a check node must XOR to 0 for all

check nodes.

Figure 1.3: Bipartite Graph for the 7-4 Hamming Code

1.4 Message Passing Algorithms

Given the Tanner Graph representation of an LDPC code, the structure of the graph can be

used to perform iterative decoding algorithms known broadly as message passing [KFL01]

[FMI99]. The core principal of message passing is that variable nodes with low confidence

can be corrected by other variable nodes of higher confidence. Through messages passed

between variable and check nodes (and vice versa), this transfer of information and updating

of beliefs can occur. The individual steps of message passing are summarized in each following
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subsection. This section uses the notation as shown in [LC04].

1.4.1 Calculating Log-Likehood Ratios

Firstly, as bits enter the receiver, they are received as analog values. If the channel distri-

bution is known, the conditional probabilities of the received signal given the received signal

can be calculated. Recall from Equation 1.4 the conditional probability density functions of

the received signal given the transmitted bit over a AWGN channel. Given the conditional

probabilities, we can calculate the signal’s Log-Likelihood Ratio (LLR). The LLR gives a

metric of how likely the transmitted bit was 0 vs 1. The more positive the LLR is, the more

confident we are that it was a 0. Negative LLRs represent higher confidence of a transmitted

1. These LLRs are used as the initial variable to check node messages in message passing

decoders.

LLR = log

(
p(y|b = 0)

p(y|b = 1)

)
(1.7)

Lj→i = log

(
p(yj|b = 0)

p(yj|b = 1)

)
(1.8)

1.4.2 Check Node Update

Following this initial broadcast, the check nodes collect their received messages and respond

back to their connected variable nodes. There are two main methods which the outgoing

check to variable message is calculated: Belief Propagation and MinSum.

For Belief Propagation (BP), Equation 1.9 is used to calculate the message Li→j from

check node ci to variable node vj. MinSum is shown in Equation 1.10. Note that N(i) repre-

sents the set of all variable nodes connected to check node ci. Therefore N(i)\{j} represents

all variable nodes connected to ci except for vj. The exclusion of vj in the calculation of

the message back to it ensures that the update is made using extrinsic information. To see
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why extrinsic information is important for decoding, imagine a scenario where one variable

node has an extremely strong belief in its value that is incorrect. If all updates to that

variable node included its own information, the variable node would continuously reinforce

its incorrect belief.

Li→j = 2 tanh−1

 ∏
j∗∈N(i)−{j}

tanh

(
1

2
Lj∗→i

) (1.9)

Li→j =
∏

j∗∈N(i)−{j}

sgn(Lj∗→i) · min
j∗∈N(i)−{j}

|Lj∗→i| (1.10)

Although the Belief Propagation operation is the most theoretically accurate, it is com-

putationally expensive making MinSum the more commonly used operation in practice.

1.4.3 Syndrome Check

In order to determine when to stop the decoding process, each variable node constructs an

estimate of its bit value based on the incoming check node messages. Lj is the initial LLR

estimate of variable node vj.

Ltotal
j = Lj +

∑
i∗∈N(j)−{i}

Li∗→j (1.11)

Given this total estimate, a hard decision is now made according to:

b̂j =


0 if Ltotal

j ≥ 0

1 if Ltotal
j < 0

(1.12)

If H b̂ = 0, then the estimated codeword is valid and the decoding process stops. Other-

wise, repeat all steps until a valid codeword is found or the maximum number of iterations

is reached. By the end of the decoding process, if the received codeword failed to pass the
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syndrome check, the frame is declared to be a detected error and tossed. If the decoding

process terminates but results in the wrong codeword, a undetected error has occurred.

1.4.4 Variable Node Update

Next, each variable node collects all incoming messages from its connected check nodes. The

variable to check node update is calculated using Equation 1.13

Lj→i = Lj +
∑

i∗∈N(j)−{i}

Li∗→j (1.13)

1.5 Pitfalls of Message Passing Algorithms

Recall from earlier how, when calculating a outgoing message to a specific variable or check

node, that node’s incoming message is excluded from the calculation. Additionally, recall

that this is done such that only extrinsic information is passed around to prevent a single

node from reaffirming its own beliefs.

One way that the assumption of extrinsic information can be broken is via cycles in the

Tanner Graph. While excluding the node from message calculations back to itself prevents

direct cycles, a variable node’s incorrect belief can propagate through other check and vari-

able nodes back to itself. The shorter the cycle, the easier it is for a node’s belief to travel

back to itself. The shortest cycle length in a code is called its girth and generally, higher

girths lead to better decoding performance. Generally, high block-length codes will have

more sparse parity check matrices and can avoid short cycles easier, thus explaining why

longer codes perform better than shorter ones. To demonstrate what a cycle looks like, Fig-

ure 1.4 shows one length-4 cycle in red. Note that a length-4 cycle is the shortest possible

cycle and therefore the most detrimental to decoding performance.

As explored in [Ric03], deficiencies in the structure of a code’s Tanner Graph can lead
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Figure 1.4: Length-4 Cycle of the 7-4 Hamming Code

to early error floors. In such a case, the error rate of a code ceases to improve, or improves

much more slowly, after a certain SNR is reached. The authors of [LM07], [LHM09], and

[MSW06] provide an analysis on the relationship between a code’s girth and its trapping

sets. Trapping sets refer to certain input patterns that cause message passing algorithms to

fail. These trapping sets fail due to deficiencies in the code structure and commonly present

themselves as ”near-codewords” or continuous oscillations in variable node estimates.
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CHAPTER 2

Hybrid Radio and Free Space Optical Modem Design

on a Fading Channel

Several prior works [KGJ18] have shown that hybrid systems joining both Radio Frequency

(RF) and Free Space Optical (FSO) transmitters have the ability to harvest the high data

rates possible with optical transmitters while still maintaining a reliable RF link when clouds,

fog, or dust interfere with the FSO channel. This chapter introduces two proposed architec-

tures of such a hybrid system, incorporating Protograph-based Raptor-like (PBRL) LDPC

codes developed at UCLA [CVD15]:

1. Integrated RF/FSO modem with joint physical-layer processing

2. Independent FSO and RF system with separate physical-layer processing assuming an

intelligent IP router to divide data between the two physical layer modems.

2.1 Hybrid Modem Architectures

Both architectures listed above were tested assuming a fixed-rate PBRL Low-Density Parity

Check (LDPC) code with either rate 1/2 or 8/9 on the FSO channel. PBRL codes utilize a

capacity approaching Highest-Rate Code (HRC) whose rate can be adaptively lowered by the

transmission of additional symbols produced by the Incremental Redundancy Code (IRC).

The resulting LDPC code can support multiple code rates that each approach their respective

Shannon Limit. For this project, the protograph formed from the HRC and IRC was lifted to
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obtain much larger parity check matrices for the rate 1/2 and 8/9 codes. The lifting process,

described in [TJV04] aims to maximize the length of short cycles that contribute to trapping

sets. The paper introduces the Extrinsic Message Degree (EMD) metric which describes a

cycle’s propensity to induce decoding errors. By minimizing the EMD in the lifting process,

PBRL codes of blocklength 16,384 and rates 1/2 and 8/9 were formed for this project.

2.1.1 Integrated RF/FSO Modem Design

In the case of the integrated architecture, as shown in Figure 2.1, bits sent over the RF

channel were jointly encoded using the same LDPC code. The RF QPSK modulator is as-

sumed to be 156.25 megasymbols per second, thus modulating 312.5 megabits per second of

LDPC bits. Two baud rates were considered for the FSO on-off keying (OOK) modulator,

156.25 megasymbols per second or 2.5 gigasymbols per second. Thus, the FSO OOK modu-

lator modulates either 156.25 megabits per second or 2.5 gigabits per second of LDPC bits,

depending on the baud rate.

The choice of FSO baud rate affects both the overall data rate of the system and the mix

of FSO and RF bits seen by the LDPC decoder. Higher baud rates correspond more bits

being transmitted in a given period. Therefore, the modem, RF or FSO, with the higher

baud rate will naturally transmit more LDPC encoded bits.

Table 2.1 shows the supported source data rates for various choices of FSO baud rate and

LDPC code rate on the integrated RF/FSO modem. The ratio between FSO and RF bits

has an important effect on system performance. For the system using the 156.25 Megabaud

per second FSO OOK modulator, there are two RF QPSK bits for every one FSO OOK bit

(recall that each QPSK symbol represents 2 bits). This means that the RF channel quality

plays a dominant role in the performance of the hybrid modem in this case. In contrast, for

the system using the 2.5 gigasymbols per second FSO OOK modulator, there are eight FSO

OOK bits for every RF QPSK bit. Thus, the optical channel plays a dominant role in the

performance of the hybrid modem in this case.
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Data
Source

Fixed-rate Joint
RF/FSO LDPC Encoder
(Rate-1/2 or Rate-8/9)

D
E
M
U
X

FSO Modulator: OOK at
156.25 Mbps or 2.5 Gbps

FSO:RF ratio of LDPC encoded
bits for modulation is 1:2 when FSO
modulator is 156.25 Mbps and 8:1
when FSO modulator is 2.5 Gbps

RF Modulator: QPSK
at 156.25 Mbps

Figure 2.1: Transmitter architecture for an integrated RF/FSO design where a single LDPC

encoder provides coded bits to modulators for both the RF and FSO channels.

Channels +

Baud Rates

Source data rate

for LDPC rate-1/2

Source data rate

for LDPC rate-8/9

FSO OOK (156.25 Megabaud) +

RF QPSK (156.25 Megabaud)
234.375 Mbps 416.67 Mbps

FSO OOK (2.5 Gigabaud) +

RF QPSK (156.25 Megabaud)
1.40625 Gbps 2.5 Gbps

Table 2.1: Maximum data rates supported by the four configurations of the proposed inte-

grated RF/FSO modem, assuming both links are closed.

2.1.2 Independent RF/FSO Modem Design

For the independent architecture, shown in Figure 2.2, a LDPC code is again used to encode

bits destined for the FSO channel. However, instead of the LDPC code encoding both RF

and FSO bits, RF bits will be exclusively and independently transmitted using a legacy

64-state rate-1/2 convolutional code operating on a closed QPSK link. In this sense, the RF

link is meant to serve as a stable and constant link independent of fading.

Table 2.2 shows the supported source data rates for the proposed integrated RF/FSO

modem. Unlike the integrated architecture, the RF link is fixed to a rate 1/2 convolutional
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Data
Source

D
E
M
U
X

Fixed-rate
LDPC Encoder
(Rate-1/2 or
Rate-8/9)

FSO Modulator:
OOK at 156.25

Mbps or 2.5 Gbps

CDL Rate-1/2 Con-
volutional Encoder

CDL RF Modulator:
QPSK at 156.25 Mbps

Figure 2.2: Transmitter architecture for an independent RF/FSO design where independent

encoders provide coded bits separately to modulators for the RF and FSO channels.

Channels +

Baud Rates

Source data rate

for LDPC rate-1/2

Source data rate

for LDPC rate-8/9

FSO OOK (156.25 Megabaud) +

RF CDL QPSK (156.25 Megabaud)
234.375 Mbps 295.14 Mbps

FSO OOK (2.5 Gigabaud) +

RF CDL QPSK (156.25 Megabaud)
1.40625 Gbps 2.376 Gbps

Table 2.2: Maximum data rates supported by the four configurations of the proposed inde-

pendent RF/FSO modem, assuming both links are closed.

code in line with the Common Data Link (CDL) radio standard. As a result of this, the

overall throughput of the independent modem is lower than that of the integrated one when

the LDPC code rate is set to 8/9. The trade-off between the integrated and independent

modems now becomes whether the added stability of the independent RF CDL link can

make up for the lost throughput caused by the inflexibility of the CDL radio.
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2.2 Channel Models

2.2.1 RF Channel

The RF channel model is QPSK modulation under additive white Gaussian noise (AWGN).

A QPSK symbol can be modeled as x = (xI , xQ) = (±
√
E,±

√
E) where xI and xQ are the

in-phase and quadrature components respectively. Depending on the channel conditions,

the transmitted symbol can be scaled by fading parameter ρ and/or distorted by Additive

White Gaussian Noise z = (zI , zQ). Both components of the noise are modeled by i.i.d.

Gaussian distributions with zero-mean and variance σ2
z . The corresponding probability den-

sity function (p.d.f) is given by equations 2.1 and 2.2. The p.d.f is visualized in Figure

2.3.

f(zI , zQ) =
1√

2π det(Σ)
exp

(
−1

2
zTΣ−1z

)
(2.1)

where:

Σ =

σ2
z 0

0 σ2
z

 , Σ−1 =

 1
σ2
z

0

0 1
σ2
z

 (2.2)

Therefore, the received bits y are modeled as:

y = ρx+ z (2.3)

Following reception, bit-wise Log Likelihood Ratios (LLRs) of the QPSK symbols are

calculated and fed as inputs into the LDPC decoder. The LLRs are calculated by Equation

2.4.

λI =
2yIρ

√
E

σ2
z

, λQ =
2yQρ

√
E

σ2
z

(2.4)
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Figure 2.3: Probability Density Function of QPSK Symbol

In the independent architecture, the legacy CDL RF link is assumed to be closed providing

a constant data rate of 156.25 megabits per second. For the integrated architecture, the RF

symbols are processed by the PBRL LDPC code and transmitted assuming a Es/N0 of 4

dB and 7 dB at rate 1/2. If the LDPC code solely consisted of bits to be transmitted over

the RF channel, a Es/N0 of 4 dB is sufficient to close the link of a rate-1/2 code. At 7 dB,

a rate-8/9 link can be closed. However, because the LDPC code consists of bits from both

the RF and FSO channels, selecting two different Es/N0 values gives insight on how much

the reliability of the RF bits contributes to correcting errors on the FSO bits. Figure 2.4

shows the Frame Error Rate (FER) of the LDPC code operating solely on the RF channel

for various Es/N0.

2.2.2 FSO Channel

Following [WSW05], simulations of the Free Space Optical channel are based on a Gaussian

model for the avalanche photodiode detector using On-Off Keying (OOK) modulation. Ac-

cording to this model, each OOK slot contains either the signal or background noise, where

both the signal and the background noise are modeled with Gaussian distributions. When
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Figure 2.4: Frame Error Rate on the RF channel with QPSK modulation

the signal is present, the mean is µs and the variance is σ2
s . When the signal is not present,

the background noise has mean µb and the variance is σ2
b .

The bit log likelihood ratios from OOK used by the LDPC decoder are computed as

λ =
1

2
ln

σ2
b

σ2
s

+
(y − µb)

2

2σ2
b

− (y − µs)
2

2σ2
s

. (2.5)

The fading behavior is slow with respect to a codeword length allowing a block fad-

ing model for simulation following [Kol13]. The model generates a sequence of indepen-

dent numbers according to a Gaussian distribution with zero mean and variance of σL
2 =

log (PSI + 1). PSI is the Power Scintillation Index and describes how deep fade scintilla-

tions are. Next, these samples are passed through a low pass filter with frequency response

given below in order to correlate them in time as shown in Equation 2.6.

H (f) =

√
σL

2τ0
√
π exp

[
−1

2
(πτ0f)

2

]
(2.6)
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The variable τ0 is called the turbulence coherence time and describes the time interval

during which the fade characteristics change very little. Finally, the output of the low pass

filter is passed through a non-linear transformation given below:

aTi
= e(xi−σ2

L/2) (2.7)

Fades are generated at a rate according to the turbulence coherence time and interpolated

to provide additional samples. The entire process of generating samples of the fading envi-

ronment is summarized in Figure 2.5. An example of one realization of the fading channel

is shown in Figure 2.6

Figure 2.5: Generation of samples from fading environment

Figure 2.6: FSO Fading Channel Realization
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2.3 Selecting LDPC rate to Maximize Throughput

Let g be the fading channel gain in dB and define g1/2 and g8/9 as the thresholds in channel

gain at which the respective codes close the link. Let B be the rate at which coded bits

are transmitted through the channel. For FSO OOK, this is the same as the baud rate and

independent of the LDPC rate. The approximate throughput T for each of the two LDPC

rates can be expressed as follows:

T 1
2
≈ 1

2
×B × P

(
g > g1/2

)
(2.8)

T 8
9
≈ 8

9
×B × P

(
g > g8/9

)
(2.9)

These equations reveal that T 8
9
> T 1

2
whenever

P(g1/2≤g≤g8/9)
P(g>g8/9)

< 7
9
. Figure 2.7 shows the

empirical probability mass function for each rate. Since each LDPC rate utilizes a different

codeword length, they have different fading processes, but very similar histograms. For

purposes of analysis, let us assume that g8/9 = 0 dB and g1/2 = −3 dB, which are consistent

with our choice of baseline power on detector of -53.9 dB. For both histograms we can see

that the empirical probability that a fade is in the left red box region P
(
g1/2 ≤ g ≤ g8/9

)
is about 0.1524 and the region in the right red box P

(
g > g8/9

)
is about 0.2227. Since

0.1524
0.2227

= 0.6843 < 0.7778 = 7
9
, the long-term average throughput would be optimized by

the rate-8/9 LDPC code rather than the rate-1/2 LDPC code. Specifically, the rate-8/9

code would provide average throughput of 0.198 bits per FSO symbol while the rate-1/2

code would provide 0.1875 bits per symbol. The actual choice of LDPC coding rate would

depend on the specific empirical PMF of fading gains, but the rule that T 8
9
> T 1

2
whenever

P(g1/2≤g≤g8/9)
P(g>g8/9)

< 7
9
should guide the choice.
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Figure 2.7: Histogram of FSO channel fades taken over 10 seconds.

2.4 Results and Conclusion

Figures 2.8 and 2.9 compares the performance of the independent and integrated RF/FSO

modems on an optical fading channel. The top plot shows the instantaneous throughput

of the standalone RF modem for both rate-1/2 and rate-8/9. As expected, the rate-1/2

code closes the link more often. However, when the rate-8/9 link is closed, it provides more

instantaneous throughput compared to the rate-1/2 code.

The second plot shows the instantaneous throughput of the legacy CDL RF modem on
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the RF channel. Recall that this modem is to be used in the independent architecture and

is assumed to always close the link. The third plot shows the throughput of the independent

architecture. Because the FSO and RF modems operate separately, the throughput of the

independent modem is simply the summation of the first two plots.

The fourth and fifth plots from the top show the instantaneous throughput of the pro-

posed integrated modem where RF and FSO bits are jointly encoded using a LDPC code.

As noted in Figure 2.4, for a Es/N0 of 4 dB, only the rate-1/2 code can close the link on the

RF channel. Here, the RF bits cannot provide enough information to support an LDPC code

at rate 8/9. Even for the largest FSO gains in this simulation, the hybrid modem cannot

close the link, indicating that the RF bits are the decoding bottleneck. For Es/N0 of 7 dB,

both rates can consistently maintain the RF link. The decoding benefit of the RF link in the

integrated architecture is most evident in Figure 2.8 around 30 ms for Es/N0 = 4 dB and

60 ms for Es/N0 = 7 dB. Here, the standalone FSO link could not be closed as indicated by

the top plot. However, the introduction of reliable RF bits into the decoder allowed for the

decoder to, albeit sporadically, recover codewords that were not previously decodeable.

Looking at Es/N0 = 7 dB, when the optical channel is favorable, both the independent

and integrated systems achieve the same data rate of 234.375 megabits per second for the

rate-1/2 code. However, when the optical channel is unfavorable, the data on both channels

is lost by the hybrid modem while the architecture with two independent modems can rely

on the stable RF link to provide 156.25 megabits per second. However, when the optical

channel is favorable, the hybrid system has a higher rate of 416.67 megabits per second as

compared to 295.14 megabits per second for the independent RF and FSO modems because

the RF channel can utilize the efficiency of the rate 8/9 code.
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Figure 2.8: Simulation results for FSO Symbol Rate of 156.25 Megabauds per second
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Figure 2.9: Simulation results for FSO Symbol Rate of 2.5 Gigabauds per second
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Figures 2.10 and 2.11 show the average throughput of the various proposed designs for

FSO symbol rates set to 156.25 megasymbols per second and 2.5 gigasymbols per second

respectively. The two architectures achieve similar throughputs in most scenarios. However,

for the low baud rate (156.25 Mbps) FSO system, the 4 dB RF channel forced throughput to

zero for the rate-8/9 integrated RF/FSO architecture. Independent RF and FSO modems

provide good throughput in every scenario while also providing the advantage of maintaining

a reliable RF link rather than losing all communication during the optical fades that cause

link failure in the integrated architecture. The essential throughput gain from utilizing both

an RF and FSO channel can be obtained by deploying independent modems.
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FSO symbol rate set to 156.25 megasymbols per second.
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CHAPTER 3

Finding Optimal LDPC Message Passing Weights via

Neural-Networks

3.1 Introduction

Message passing decoders including belief propagation (BP and Min-Sum alongside its vari-

ations are often used to decode Low Density Parity Check (LDPC) codes. These message

passing algorithms are attractive because their complexity does not scale exponentially with

block-length. This is due in part to the iterative nature of message passing along with the

sparsity of LDPC parity check matrices. In practice, message passing decoders are sub-

optimal because of the existence of cycles in the corresponding Tanner graph. These cycles

break the assumption of extrinsic information when transmitting messages and lead to early

error floors.

Recently, numerous works have proposed improving message passing decoders with neural

networks [NBB16, LG17, NMB17, NML18, LSW18, WJZ18, LG18, LZJ18, XVT19, DB19,

ABS19, BHP20, WWF20, LCH19]. The neural network is created by unfolding the message

passing operations of each decoding iteration [NBB16].

Nachmani et al. in [NBB16] proposed improving BP decoding by assigning unique mul-

tiplicative weights to check-to-variable messages and the channel log-likelihood (LLR) of

variables in each iteration. This so-called ”Neural BP (NBP)” showed better performance

than BP. Nachmani et al. and Lugosch et al. in [NML18, LG17, NBB16] proposed a Neu-

ral Normalized MinSum (N-NMS) decoder and Neural Offset MinSum (N-OMS) decoder to
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improve the performance of the NMS and OMS decoder.

For longer block lengths, these edge-specific neural decoders become impractical because

the number of edges scales rapidly. A possible solution is to share one parameter across all

edges that have some similar property such as across the same iteration, or connecting to

the same check/variable node. For an example, Wang et al. proposed to assign the same pa-

rameters for each check-to-variable layer and variable-to-check layer [WWF20], respectively.

M. Lian et. al. in [LCH19] considered assigning same weight to all messages in one iteration.

With these previous papers, the focus on short block length codes (N < 1000) may

have resulted from the fact that popular deep learning research platforms, such as Pytorch

and Tensorflow, require impractical amounts of memory to calculate the gradient when

the block length is long. However, as demonstrated in [ABS19], it is possible to train

parameters for longer block lengths if resources are handled more efficiently. Abotabl et

al. provided an efficient computation framework for optimizing the offset values in the N-

OMS algorithm[ABS19], and trained an OMS neural network with edge-specific weights,

iteration-specific weights, and a single weight.

This chapter discusses a family of neural 2-dimensional normalized MinSum (N-2D-NMS)

decoders whose weights are optimized by a neural network based on node degree. This

simplification over previous approaches that optimize the weights based on node degree

leads to a much simpler optimization that provides excellent FER performance while still

accommodating large block lengths of practical importance. The main contributions in this

paper are:

• An efficient implementation of the N-NMS architecture. This part is related to the

framework in [ABS19]. We showed that the memory issued for training long LDPC

code faced by Tensorflow [Lug18] can be mitigated by efficiently storing the check-

to-variable node and variable-to-check node messages. Separately, back propagation

memory is also reduced by storing the gradient with respect to check-to-variable node
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and variable-to-check node messages only for the previous iteration rather than all

iterations.

• Empirical N-NMS results that show the dynamic weights exhibit a strong correlation

with check node degree, variable node degree, and iteration.

• A family of N-2D-NMS decoders with various reduced parameter sets showing how

performance varies with the parameter set selected. The N-2D-NMS decoding structure

is a generalization of [JFD05] to allow variation with iteration. Simulation results on

a (3096,1032) PBRL code show that N-2D-NMS decoder can achieve the same FER

as N-NMS with significantly fewer parameters. A N-2D-NMS decoder trained on the

(16200,7200) DVBS-2 LDPC code achieves a lower error floor than belief propagation.

• A hybrid decoding structure that combines a feedforward and recurrent structure that

shows similar decoding performance as a full feedforward structure, but requires sig-

nificantly fewer parameters.

3.2 Efficient implementation of N-NMS

3.2.1 Forward Propagation

Let H be the parity check matrix of an (n, k) LDPC code, where n and k represent the

codeword length and dataword length, respectively. We use vi and cj to denote the ith

variable node and jth check node, respectively. In each iteration, an NMS decoder uses

the same constant value to scale all check-to-variable node messages, whereas an N-NMS

decoder assigns distinct multiplicative parameters for each check-to-variable message in each

iteration. In the tth decoding iteration, N-NMS updates the check-to-variable node message,

u
(t)
cj→vi , the variable-to-check node message, l

(t)
vi→cj , and posterior of each variable node, l

(t)
vi ,
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by:

u(t)
ci→vj

= β
(t)
(ci,vj)

×
∏

vj′∈N(ci)/{vj}

sgn(l(t−1)
vj′→ci

)

× min
vj′∈N(ci)/{vj}

∣∣∣(l(t−1)
vj′→ci

)
∣∣∣ , (3.1)

l(t)vj→ci
= lchvi +

∑
ci′∈N(vj)/{ci}

u(t)
ci′→vj

, (3.2)

l(t)vj
= lchvi +

∑
ci′∈N(vj)

u(t)
ci′→vj

. (3.3)

N(ci) represents the set of the variable nodes that are connected to ci and N(vj) represents

the set of the check nodes that are connected to vj. lchvj is the LLR of channel observation

of vj. β
(t)
(ci,vj)

are multiplicative weights to be trained. The decoding process stops when all

parity checks are satisfied or maximum iteration IT is reached.

3.2.2 Backward Propagation

In this subsection, we derive the gradient of J with respect to the trainable weights, ∂J

∂β
(t)
(vi,cj)

,

the check-to-variable message, ∂J

∂u
(t)
ci→vj

, and variable-to-check message, ∂J

∂l
(t)
vj→ui

. We show that

in order to calculate the desired gradients, it is sufficient only to store, l
(t)
vi ,sgn(l

(t)
vj→ci),

sgn(u
(t)
ci→vj), min1

t
ci
, min2tci , pos1

t
ci
and pos1tci when performing forward propagation, where

min1tci = min
vj′∈N(ci)

|l(t)vj′→ci
|, (3.4)

pos1tci = argmin
vj′∈N(ci)

|l(t)vj′→ci
|, (3.5)

min2tci = min
vj′∈N(ci)/{pos1tci}

|l(t)vj′→ci
|, (3.6)

pos2tci = argmin
vj′∈N(ci)/{pos1tci}

|l(t)vj′→ci
|. (3.7)

In this paper, multi-loss cross entropy [NBB16] is used as loss function. In iteration t,
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∂J

∂l
(t)
vj→ui

is updated as follows:

∂J

∂u
(t)
ci→vj

=
∂J

∂l
(t)
vj

+
∑

ci′∈N(vj)/{ci}

∂J

∂l
(t)
vj→ci′

. (3.8)

∂L

∂β
(t)
ci→vj

is calculated by:

∂J

∂β
(t)
ci→vj

= u(t)∗
ci→vj

∂J

∂u
(t)
ci→vj

, (3.9)

where

u(t)∗
ci→vj

= sgn(u(t)∗
ci→vj

)× |u(t)∗
ci→vj

|, (3.10)

sgn(u(t)∗
ci→vj

) =
∏

vj′∈N(ci)/{vj}

sgn(l(t−1)
vj′→ci

), (3.11)

|u(t)∗
ci→vj

| =

 min2tci , if vj = pos1tci

min1tci , otherwise
. (3.12)

With chain rule, we obtain the following for ∂J

∂|u(t)∗
ci→vj

|
:

∂J

∂|u(t)∗
ci→vj |

= sgn(u(t)∗
ci→vj

)
∂J

∂u
(t)∗
ci→vj

, (3.13)

= sgn(u(t)∗
ci→vj

)β
(t)
(ci,vj)

∂J

∂u
(t)
ci→vj

. (3.14)

For all variable nodes connected to check node ci, only pos1(t)ci
and pos2(t)ci

receive back-

ward information, therefore, ∂J

∂l
(t−1)
vj→ci

can be computed as follows:



sgn(l
(t−1)
vj→ci)

∑
vj′∈N(ci)/vj

∂J

∂|u(t)∗
ci→vj′

|
, vj = pos1(t)ci

sgn(l
(t−1)
vj→ci)

∂J

∂

∣∣∣∣∣u(t)∗

ci→pos1
(t)
ci

∣∣∣∣∣
, vj = pos2(t)ci

0 , otherwise.

(3.15)

Eqs. (3.8-3.15) indicate that ∂J

∂u
(t)
ci→vj

and ∂J

∂l
(t)
vj→ci

can be calculated iteratively. Therefore,

back propagation does not need to store the gradients with respect to uci→vj and lvj→ci for all
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iterations. Both Pytorch and Tensorflow store all iterations of u
(t)
ci→vj , l

(t)
vj→ci and l

(t)
vj , making

them inefficient for this purpose. However, we showed that the neuron values in each hidden

layer can be stored compactly using the parameters l
(t)
vi , sgn

(
l
(t)
vj→ci

)
, sgn

(
u
(t)
ci→vj

)
, min1tci ,

min2tci , pos1
t
ci
and pos1tci , which results in a significant reduction in storage requirements.

Using these two strategies, we resolve the Tensorflow storage obstacle identified by [Lug18].

3.2.3 Simulation Results

In this subsection, we use the efficient implementation described above to train the weights

of N-NMS for a (3096,1032) protograph-based raptor-like (PBRL) LDPC code. The code

we use is taken from [cls] (in [CVD15]). Encoded bits x are modulated by binary phase shift

keying (BPSK) and transmitted through Additive White Gaussian Noise (AWGN) Channel.

The N-NMS decoder is updated on a flooding schedule and the maximum number decoding

iterations is 10. Define β(t,dc) = {β(t)
(ci,vj)

|deg(ci) = dc} and β̄(t,dc) as the mean value of β(t,dc).

(a)
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Figure 3.1: Mean values of messages of FNNMS for a (3096,1032) PBRL code in each

iteration show strong correlations to check and variable node degree.

Fig.3.1a shows β̄(t,dc) versus decoding iteration t with all possible check node degrees. Note
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that the iteration number starts at 2 because most of edges have 0 valued messages in the

first iteration as result of puncturing. The simulation shows a clear relationship between

check node degree and β̄, i.e. larger check node degrees correspond to smaller β̄. This

difference is significant in the first few iterations. Additionally, β̄(t,dc) changes significantly

in first few iterations for all check node degrees dc.

In order to investigate the relationship between weights and variable node degree given

a check node degree and iteration number, we further define β(t,dc,dv) = {β(t)
(ci,vj)

|deg(ci) =

dc, deg(vi) = dv}. We denote β̄(t,dc,dv) to be the average value of β(t,dc,dv). Fig.3.1b gives

the average value of weights corresponding to various check and variable node degrees at

iteration 4. Simulation results show that, given a specific iteration t′ and check node degree

d′c, larger d
′
v correspond to smaller β̄(t′,d′c,d

′
v).

In conclusion, the weights of N-NMS are correlated with check node degree, variable

node degree, and iteration. Thus, node degrees should affect the weighting of messages on

their incident edges when decoding irregular LDPC codes. Inspired by recent neural network

decoders, we propose a family of N-2D-NMS decoders in this paper.

3.3 Neural 2D Normalized MinSum Decoders

Based on the previous discussion, it is intuitive to consider assigning the same weights to

messages with same check node degree and/or variable node degree. In this section, we

propose neural 2-dimensional normalized MimSum (N-2D-NMS) decoders which has the

following form:
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u(t)
ci→vj

= β(t)
∗ ×

∏
vj′∈N(ci)/{vj}

sgn(l(t−1)
vj′→ci

)

× min
vj′∈N(ci)/{vj}

|(l(t−1)
vj′→ci

)|
, (3.16)

l(t)vj→ci
= lchvi + α(t)

∗

∑
ci′∈N(vj)/{ci}

u(t)
ci′→vj

. (3.17)

Type β
(t)
∗ α

(t)
∗

The number of Required

Parameters per Iteration

(16200,7200)

DVBS-2 code

(3096,1032)

PBRL code

No Weight Sharing

0 [1] β
(t)
(ci,vj)

1 4.8 ∗ 105 1.60 ∗ 104

Weight Sharing Based on Node Degree

1 β
(t)
(d.(ci),d.(vj))

1 13 41

2 β
(t)
(deg(ci))

α
(t)
(deg(vj))

8 15

3 β
(t)
(deg(ci))

1 4 8

4 1 α
(t)
(deg(vj))

4 7

Weight Sharing Based on Protomatrix

5 [19] β
(t)

(⌊ i
f ⌋,⌊ j

f ⌋)
1 − 101

6 β
(t)

(⌊ i
f ⌋)

1 − 17

7 1 α
(t)

(⌊ j
f ⌋)

− 25

Weight sharing based on Iteration Lian2019-jh,Abotabl2019-wt

8 β(t) 1 1 1

Table 3.1: Various N-2D-NMS Decoders and

Required Number of Parameters per Iteration
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β
(t)
∗ and α

(t)
∗ are the multiplicative weights assigned to check and variable node messages,

respectively. Table 3.1 lists different types of N-2D-NMS decoders, each identified in the

first column by a type number. As a special case, we denote N-NMS as type 0. Columns 2

and 3 describe how each type assigns β
(t)
∗ and α

(t)
∗ , respectively. The subscript * is replaced

in Table 3.1 with the information needed to identify the specific weight depending on the

weight sharing methodology.

Types 1-4 assign the same weights based on node degree. In particular, Type 1 assigns

the same weight to the edges that have same check node and variable node degree. Type

2 considers the check node degree and variable node degree separately. As a simplification,

type 3 and type 4 only consider variable node degree and check node degree, respectively.

Dai. et. al in [DTS21] studied weight sharing based on the edge type of MET-LDPC

codes, or protograph-based codes. We also consider this metric for types 5, 6, and 7. Type

5 assigns the same weight to edges with the same edge type, i.e. edges that belong to the

same position in protomatrix. In Table. 3.1, f is the lifting factor. Types 6 and 7 assign

parameters based only on the horizontal (protomatrix row) and vertical layers (protomatrix

column), respectively. Finally, type 8 assigns a single weight parameter for each iteration,

as in [LCH19, ABS19].

To further reduce the number of parameters, we consider a hybrid training structure

that utilizes a neural network combining a feedforward module with a recurrent module .

The corresponding decoder uses distinct trained parameters for each of the first I ′ decoder

iterations and reuses the same parameters for the remaining IT−I ′ iterations. The motivation

for the hybrid decoder is that the values of the trainable parameters change negligibly during

the last few iterations, as illustrated in Sec. 3.4. Therefore, using the same parameters for

the last few iterations doesn’t cause a large performance degradation.

A (3096,1032) PBRL code and the (16200,7200) DVBS-2[ETS19] standard LDPC code

are considered in this paper, and the number of parameters per iteration required for various

N-2D-NMS decoders of these two codes are listed in column 4 and 5 in Table. 3.1, respec-
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tively. It is shown that the number of parameters required by node-degree based weight

sharing is less than that required by protomatrix based weight sharing.

3.4 Simulation Results

In this section, we investigate the decoding performance of various N-2D-NMS decoders for

LDPC codes with different block lengths. All encoded bits are modulated by BPSK and

transmitted through the AWGN channel.

FE
R

Figure 3.2: FER performances of various LDPC decoder for (16200,7200) DVBS-2 LDPC

code.

34



3.4.1 (16200,7200) DVBS-2 LDPC code

Fig. 3.2 gives the FER performances of various LDPC decoder for (16200,7200) DVBS-2

LDPC code. All of the decoders are flooding scheduled and maximum decoding iteration

is 50. It is shown that N-NMS decoder outperforms BP at 1.3dB, with a lower error floor.

The N-2D-NMS decoders of types 1 and 2 have a slightly better performance than N-NMS.

Type 4 outperforms type 3, because the variable node weights of investigated code have a

larger dynamic range than check node weights, as shown in Fig. 3.2.

Fig. 3.3 and 3.4 show the β
(t)
(deg(ci))

and α
(t)
(deg(vj))

of type-2 N-2D-NMS decoder, which agree

with our observation in the previous section, i.e., in each decoding iteration, larger degree

node corresponds to a smaller value. Besides, the weights change negligibly after iteration 20.

Thus, the hybrid N-2D-NMS decoder of type 2 with I ′ = 20 delivers comparable performance

to the full feedforward decoding structure, as shown in Fig. 3.4a. Fig. 3.4b shows that the

parameters of type 8 converge to 0.885, which is close to the single weight of NMS decoder.

As shown in Fig. 3.2, by only assigning iteration-specific parameters, N-2D-NMS decoder of

type 8 appears an early error floor at 1.20 dB.
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Figure 3.3: The weights of the Type-2 N-2D-NMS decoder for the (16200,7200) DVBS-2

LDPC code only change significantly in the first 20 iterations.

3.4.2 (3096,1032) PBRL LDPC Code

Fig. 3.5 compares the FER performance of various N-2D-NMS decoders with the N-NMS

(type 0) and NMS. All of the decoders are implemented using a layered schedule with a

maximum of 10 decoding iterations. The simulation results show that N-NMS has more

than 0.5 dB improvement over the NMS decoder. N-2D-NMS decoders of types 1-7 are also

simulated. Note that types 1, 2 and 5 have the same decoding performance as the N-NMS

decoder, but the number of parameters is reduced by 99.7%, 99.9% and 99.3%, respectively.

Thus, weight-sharing metrics based on check and variable node degree, or based on horizontal

and vertical layer deliver lossless performance with respect to N-NMS. N-2D-NMS decoders

of types 4 and 6 have a degradation of around 0.05 dB compared to N-NMS. N-2D-NMS

decoders of types 5 and 7 have a degradation of around 0.2 dB compared with N-NMS. Thus,

for the (3096,1032) PBRL code of Fig. 3.5, assigning weights based only on check nodes can

gain more benefit than assigning weights only based on variable node.
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(a)

Decoding Iter.

0.885

(b)

Figure 3.4: Fig. (a) illustrates that the Hybrid Type-2 N-2D-NMS decoder with I ′ = 20

shows comparable decoding performance to the full feedforward decoder. Fig.(b) shows that

the weights of the Type-8 N-2D-NMS decoder for the (16200,7200) DVBS-2 LDPC code

converge to 0.885.

F
E

R

Figure 3.5: FER performance for various N-2D-NMS decoders for a (3096,1032) PBRL LDPC

code compared with N-NMS (type 0) and NMS.
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3.5 Conclusion

This chapter investigates MinSum LDPC decoders for which the normalization weights are

optimized by a neural network. An initial neural network assigns a different weight to every

edge. The statistics of the trained parameters show that the trained parameters depend on

node degree. In particular, the trained weights have a smaller value for the neurons cor-

responding to a larger check/variable node degree. Neural 2D normalized MinSum (N-2D-

NMS) decoders are introduced in this chapter with various weight-sharing techniques to re-

duce the number of parameters that must be trained. Simulation results on the (16200,7200)

DVBS-2 standard LDPC code and a (3096,1032) PBRL code show that the N-2D-NMS de-

coder achieves comparable decoding performance to a N-NMS decoder but with dramatically

fewer trained parameters. Furthermore, N-2D-NMS decoders can achieve a lower error floor

than BP for some LDPC codes. Finally, this chapter proposes a hybrid neural network with

both feedforward and recurrent modules for further parameter reduction.
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CHAPTER 4

Comparing Viterbi Decoding and Neural-Network

Optimized Message Passing on the CCSDS Line

Product Code

Line codes describe a set of encoding maps used to transmit digital data. The primary

purpose of a line code is to manage the disparity of a transmission, which is defined as the

difference between the number of transmitted 1s and 0s. Managing bit disparity has the

benefit of minimizing DC components in transmissions which cannot be reliably transmitted

over most long-distance communication channels. This chapter references the Consultative

Committee for Space Data Systems’ (CCSDS) 141.11-O-1 proposed line code, known as the

Line Product Code (LPC) [boo08].

4.1 Introduction

While often impractical since their complexity scales at a rate of O(2n), maximum likelihood

(ML) decoders represent the best possible decoding performance. Previous work including

[Wol78] and [PHB98] have proposed methods of reducing the complexity of ML decoding for

linear block codes by representing them as a trellis and performing Viterbi decoding. While

still on the order of O(2n), these methods drastically reduce number of required operations,

enough so that for a short blocklength code such as the LPC, ML decoding is considered.

Message passing algorithms, such as belief propagation or MinSum, are low-complexity
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iterative decoders for linear block codes. However, message passing algorithms are sub-

optimal because they assume that the Tanner graph defined by the parity check matrix

has no cycles. As a result, for short block length codes with short cycles, message passing

decoders do not provide satisfying performance.

Recently, numerous works have focused on improving the performance of message passing

decoders with the aid of neural networks [NBB16, LG17, NMB17, NML18, LSW18, WJZ18,

LG18, LZJ18, WCN21]. Nachmani et al. and Lugosch et al. in [NML18, LG17, NBB16] pro-

posed Neural Normalized MinSum (N-NMS) and Neural Offset MinSum (N-OMS) decoders

to improve the performance of the NMS and OMS decoders. Unlike NMS and OMS, which

use a constant multiplicative or offset weight, N-NMS and N-OMS assign distinct trainable

weights to each edge in each iteration. Simulations in [NML18, LG17, NBB16] show that

N-NMS and N-OMS have the capability to drastically improve the decoding performance of

NMS and OMS for short-blocklength codes. Therefore, this paper aims to reformulate the

LPC as a linear block code to leverage the recent advancements in neural network-based

decoders.

4.2 Line Product Code Encoding

The LPC encoder operates on blocks of 25 bits denoted by LPCEncIn[24:0]. The most sig-

nificant bit LPCEncIn[24] is channel system data denoted as S. The LPC encoder discards

LPCEncIn[23:16] (legacy implementation of the laser communication terminal encoding pro-

cess), and maps LPCEncIn[15:0] to the following 4× 4 matrix:

u(0, 0) u(0, 1) u(0, 2) u(0, 3)

u(1,0) u(1,1) u(1,2) u(1,3)

u(2,0) u(2,1) u(2,2) u(2,3)

u(3,0) u(3,1) u(3,2) u(3,3)

The LPC encoder generates the codewords of 24 bits. The codewords along with S forms
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a 5× 5 matrix:

e∗(0, 0) e∗(0, 1) e∗(0, 2) e∗(0, 3) ph(0)

e∗(1, 0) e∗(1, 1) e∗(1, 2) e∗(1, 3) ph(1)

e∗(2, 0) e∗(2, 1) e∗(2, 2) e∗(2, 3) ph(2)

e∗(3, 0) e∗(3, 1) e∗(3, 2) e∗(3, 3) ph(3)

pv(0) pv(1) pv(2) pv(3) S

The encoding of LPC consists of the following steps:

1. Calculate e(i, j) (i, j = 0, . . . , 3) using LPCEncIn[15:0] via differential encoding. In

particular, we refer to {e(i, j)|i = 0, 1, j = 0, . . . , 3} as sub-block 1 and {e(i, j)|i =

2, 3, j = 0, . . . , 3} as sub-block 2.

2. Calculate the horizontal parity bits ph(i) (i = 0, . . . , 3) and vertical parity bits pv(i)

(i = 0, . . . , 3).

3. Apply bit-wise inversion of sub-block 1 and/or 2 in order to minimize difference between

the number of transmitted ones and zeros, which is also referred as disparity. We denote

e∗(i, j) (i, j = 0, . . . , 3) as the sub-block bits after inversion process.

The following section describes these three steps in detail.

4.2.1 Differential Encoding

Differential encoding is performed on the two sub-blocks separately. For sub-block 1, initial-

ize e(0, 0) = u(0, 0) and e(1, 0) = u(1, 0)⊕ e(0, 3):

e(i, j) = u(i, j)⊕ e(i, j − 1), j > 0 (4.1)
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For sub-block 2, initialize e(2, 0) = u(2, 0) e(2, 0) = u(2, 0) ⊕ e(0, 3) as shown in Fig.

4.1. The remaining bits can be derived using equation (4.1). Fig. 4.1 shows the differential

encoding on sub-block 1.

e(0, 1)

e(0, 0)

e(0, 3)

e(0, 2)

e(1, 1)

e(1, 0)

e(1, 3)

e(1, 2)

u(0, 1)

u(0, 0)

u(0, 3)

u(0, 2)

u(1, 1)

u(1, 0)

u(1, 3)

u(1, 2)

Figure 4.1: Differential encoding to calculate sub-block 1.

where ⊕ = logical XOR

4.2.2 Horizontal Parity bits

After calculating the {e(0, 0) . . . e(3, 3)} bits, the horizontal and vertical parity bits must be

determined. The horizontal parity bit ph(0) is always calculated for odd parity of the first

row, meaning

[
ph(0) +

3∑
k=0

e(0, k)

]
mod2 = 1 (4.2)

The other three parity bits ph(1), ph(2), and ph(3) are determined not only by their
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corresponding rows, but also by e(0, 0). Specifically, if e(0, 0) = 0, then odd parity is used

for ph(1), ph(2), and ph(3) and its corresponding rows. Otherwise, the even parity must be

satisfied. Therefore,

[
ph(i) +

3∑
k=0

e(i, k)

]
mod2 = 1⊕ e(0, 0), i = 1, 2, 3. (4.3)

4.2.3 Vertical Parity Bits

The vertical parity bit pv(0) is always calculated for even parity of the first row, meaning

that

[
pv(0) +

3∑
k=0

e(k, 0)

]
mod2 = 0 (4.4)

The other vertical parity bits, pv(1), pv(2), and pv(3) are calculated using their corre-

sponding rows and e(2, 0). If e(2, 0) = 0, then even parity is used for pv(1), pv(2), and pv(3)

and its corresponding rows. Otherwise, the odd parity must be satisfied. Therefore:

[
pv(i) +

3∑
k=0

e(k, i)

]
mod2 = e(2, 0), i = 1, 2, 3 (4.5)

4.2.4 Minimization of Disparity

The disparity of each sub-block is defined as the difference between the number of transmitted

ones and zeros. The goal of the LPC encoder is to minimize the disparity of each sub-block

so that a relatively equal number of 0s and 1s are transmitted. Consequently, sub-block 1,

sub-block 2, both, or neither are inverted at the encoder’s end depending on the value of

the disparity bits of each sub-block. Define DispSum[i](i = 0, . . . , 3) as the disparity in the

5 × 5 matrix, after the inversion of none, one or both sub-blocks. The following table lists
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inversion rules corresponding to each DispSum[i] bit where i = 0, . . . , 3:

Inversion of

Sub-block 1

Inversion of

Sub-block 2

DispSum[0] No No

DispSum[1] Yes No

DispSum[2] No Yes

DispSum[3] Yes Yes

The LPC encoder performs sub-block inversion based on the rules shown in the previous

table that provide minimum DispSum[i]. Based on these inversion rules, the e∗(i, j)’s are

calculated as follows:

e∗(i, j) =

 1− e(i, j) Inversion

e(i, j) No Inversion
, (4.6)

where i = 0, 1 for sub-block 1, i = 2, 3 for sub-block 2, and j = 0, ..., 3 for both sub-blocks.

4.3 Line Product Code Decoding

As a linear code, LPC can be represented by a parity check matrix H and corresponding

bipartite graph G. Let v be a codeword of LPC, and define s(v) by:

s(v) = HvT . (4.7)

Note that for a conventional linear block code, s(v) is a vector that is independent with

v. However, in this case, there are four distinct s with each one corresponding to a single

inversion rule. One possible solution is to perform the decoding process using four different s

separately. This, however, will inevitably increase the hardware usage and decoding latency.
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The following section shows that the four matrices can be combined into one by intro-

ducing two punctured variable nodes which indicate the inversion rule. As a result, decoding

can be performed using only one matrix. The next sections describes the application of

decoding methods including maximum likelihood and message passing to the LPC.

4.3.1 Parity Check Matrix Representation

Equations (4.2) through (4.5) put eight parity check constraints on e(i, j), horizontal parity

bits and vertical parity bits. The black, solid line portions in Fig. 4.2 represent the bipartite

graph defined by these eight parity checks. The ”box-plus” symbols and circles represent

check nodes and variable nodes, respectively. Circles with a 1 represent a special variable

node whose value is a constant 1. The eight check nodes are denoted as c0, ..., c7. The

bipartite graph is drawn such that the modulo-2 sum of all variable nodes connected to each

check node must equal zero. These are known as the parity checks.

Given a valid codeword, incorrectly inverting one sub-block will cause the new codeword

to fail some parity checks. More specifically, the check nodes that connect to an odd number

of variable nodes in one sub-block will no longer satisfy all parity checks if that sub-block

gets inverted.

Therefore {c1, c2, c3} do not satisfy the parity check condition when sub-block 1 gets

inverted and {c5, c6, c7} do not satisfy the parity check condition when sub-block 2 gets

inverted. Two extra variable nodes punc(1) and punc(2) are introduced in order to make

sure that the check nodes still satisfy the parity check condition after the sub-block inversion.

punc(1) connects the check nodes that have an odd number of variable node neighbors

belonging to sub-block 1. When sub-block 1 gets inverted, punc(1) equals 1 such that for

each check node connected to punc(1), all variable nodes connected to that check node sum

to zero. Similarly, punc(2) connects the check nodes that have an odd number of variable

node neighbors belonging to sub-block 2. Fig. 4.2 shows the complete bipartite graph of

LPC.
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Figure 4.2: Bipartite graph of LPC. The red dashed circles are punctured variable node

which indicate the sub-block inversion.

4.3.2 Maximum Likelihood Decoding via the Parity Check Matrix

In this section, we describe how to utilize Wolf’s work in [Wol78] to represent the Line

Product Code (LPC) as a trellis for performing maximum likelihood (ML) decoding. Since

ML decoding represents the theoretical limit of decoding performance, practical decoders

which achieve frame error rates closer to it are more desirable. Furthermore, because the

LPC is a short blocklength code, reduction in complexity via a trellis representation such as

[Wol78] may be feasible to implement in hardware.

Naive ML decoders simply compare the received codeword against all valid codewords.

As a result, its complexity scales on the order of 2k where k is the number of information

bits in the codeword. According to the bipartite graph for the LPC shown in Figure 4.2,

there are 262, 144 unique codewords making it infeasible in hardware.

As such, we leverage Wolf’s framework in [Wol78] to create a trellis representation of the

LPC. While sacrificing some parallelism, the final trellis contains only 2, 764 edges which
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represents a 94-fold reduction in complexity compared to brute force ML decoding. To

construct the trellis, we follow the procedure in [Wol78], also summarized below.

In the trellis, each row represents a unique syndrome with the all-zeros syndrome being at

the bottom. Beginning at the all-zeros codeword, the trellis attempts to construct the most

likely valid received message one bit at a time. The ith stage of the trellis contains a blue and

red branch for each node, representing whether the ith bit is assumed to be 1 or 0 respectively.

This continues until all n bits of the codeword are constructed. While the number of branches

does indeed grow with O(2n), most branches are pruned away. The pruning process operates

on the principal that only valid codewords have an associated syndrome of 0. Therefore,

any codewords which do not satisfy this condition can be ignored in the deocding process.

With the LPC, we terminate the trellis at the syndrome of (1, 1, 1, 1, 0, 0, 0, 0) instead of the

all-zeros syndrome. This is because the Line Product Code is NOT strictly linear due to the

use of odd parity (XOR with a constant 1). This means that the trellis must terminate at

a syndrome with 1s in the indices whose corresponding check node contains this constant 1,

and 0 elsewhere.

Figure 4.3: LPC Trellis Derived from Wolf’s Method Following Pruning, with 2942 states

and 5372 branches
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4.3.3 Maximum Likelihood Decoding via the Generator Matrix

The trellis representation of a code can also be constructed using a trellis oriented generator

matrix [PHB98]. A code’s generator matrix G can be transformed to become ”trellis ori-

ented” via row operations. A permutation of the columns of G yields a code G′ equivalent to

G on memoryless channels [PHB98]. This permutation may yield a simpler trellis. However,

finding this permutation is known to be an NP-hard problem. Using heuristics, a permuta-

tion that simplifies the trellis may be found. For example, a graph of a trellis obtained with

one such permutation of the LPC yielded a trellis with 1098 states and 1908 branches, down

from 2942 states and 5372 branches of the original code.

Figure 4.4: LPC Trellis Derived from a Generator Matrix Allowing Permutations, with 1098

states and 1908 branches

4.3.4 Message Passing Decoding

Message passing decoding algorithms, such as belief propagation and MinSum, provide an

excellent decoding performance for linear block codes with large girths, defined as length

of the shortest cycle in its Tanner graph. For the LPC, message passing decoders do not

perform well, because its girth is only 4.
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Recently, the neural-network-aided message passing decoders [NML18, LG17, NBB16]

have shown substantial improvements compared to conventional message passing decoders.

Neural-network-aided message passing decoders assign distinct weights to each message in

each iteration, such that the decoder can overcome trapping sets with short cycle lengths.

This paper considers a neural normalized MinSum (N-NMS) decoder with a flooding sched-

ule. In the tth decoding iteration, N-NMS updates the check-to-variable node message, u
(t)
cj→vi ,

the variable-to-check node message, l
(t)
vi→cj , and posterior of each variable node, l

(t)
vi , by:

u(t)
ci→vj

= β
(t)
(ci,vj)

×
∏

vj′∈N (ci)/{vj}

sgn(l(t−1)
vj′→ci

)

× min
vj′∈N (ci)/{vj}

∣∣∣(l(t−1)
vj′→ci

)
∣∣∣ , (4.8)

l(t)vj→ci
= lchvi +

∑
ci′∈N (vj)/{ci}

u(t)
ci′→vj

, (4.9)

l(t)vj
= lchvi +

∑
ci′∈N (vj)

u(t)
ci′→vj

. (4.10)

N (ci) represents the set of the variable nodes connected to ci and N (vj) represents the

set of the check nodes that are connected to vj. l
ch
vj

is the LLR of the channel observation of

vj. β
(t)
(ci,vj)

are multiplicative weights to be trained. The decoding process terminates when

all parity checks are satisfied or when the maximum iteration count, IT , is reached. In this

paper, we follow the steps of [WCN21] to train the neural network.

4.4 Hardware Implementation of Message Passing Decoders

Despite ML decoding being the most optimal, its computational complexity for both the

parity check and generator matrix derived trellises is too high to meet timing constraints

for practical hardware implementation. Table 4.1 shows the worst case number of opera-

tions for each decoding method considered here. An operation is defined as an addition or

multiplication, in the case of belief propagation (BP), we consider arctan, exp, and log as

a single operation since they are typically implemented via a Lookup Table (LUT). Table
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Figure 4.5: Block Diagram of FPGA architecture.

4.1 indicates that message passing algorithms, except belief propagation, utilize significantly

fewer operations than ML decoders, indicating that they are the most feasible to implement

on hardware. It should also be noted that the Table 4.1 assumes that the message passing

decoders always run for 8 iterations. In reality, for higher Eb/N0 (around 7.5 dB for the

LPC), the number of required iterations approaches 1, making message passing even more

attractive. As such, our focus for this section will be on the N-NMS decoder, with MS and

NMS decoders included for the purpose of comparison. The field-programmable gate array

(FPGA) device used for hardware implementation was the Zynq ZCU106 MPSoC.

The overall architecture consists of a bank of registers storing messages between check

and variable nodes, and small modules to perform check node (CN) and variable node (VN)

operations, as seen in Figure 4.5. The overall decoder controls the timing and coordinates the

messages passed between the check and variable node modules for each decoding iteration.

It also controls the terminating point by checking if the codeword estimate is valid or if the

maximum number of iterations has been reached.

The initial FPGA implementation is a simple MinSum decoder, where check nodes search

for the two minimums among its messages, and variable nodes compute simple summations.

MinSum will be used as baseline to compare against the Normalized MinSum (NMS) and
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Neural-Normalized MinSum (N-NMS) implementations.

However, in order to implement the N-NMS decoder, we must dynamically assign edge

weights depending on the iteration of the decoder. This task is divided between 2 modules:

the main decoder and the check node module. The multiplicative edge weights are first

quantized to a 6-2 scheme, meaning the first 6 bits represent the integer part of the number

and the last 2 bits represent the fractional part. Testing and simulations on the LPC showed

that the 6-2 quantization achieved a satisfactory middle ground between accuracy and bit

width.

Once the edge weights are quantized, they are stored in Block RAM (BRAM). The

structure of the BRAM can represented as a 2-D matrix where each element represents a

register that stores an 8-bit quantized edge weight. The index of a certain edge weight in

the matrix also contains information regarding the iteration count and edge number in the

bipartite graph. The main decoder module uses this information to assign weights to the

proper edge depending on the iteration count. After the check node module calculates the

check-to-variable node message, it then multiplies that by the incoming edge weight. The

fixed point FER curves in the following section are generated using C++ simulations. To

match the FPGA implementation, all edge weights and calculated messages are quantized

according to the 6-2 scheme discussed earlier.
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Table 4.1: Comparison of Decoding Complexity via Number of Operations.

Decoder Worst case number of operations

BP* 10,192

standard MS* 3,200

NMS* / N-NMS* 3,616

ML (Brute force) 524,288

ML (Generator matrix trellis) 6,130

* Message passing algorithms are assumed to always run for 8 iterations

4.5 Simulation Results

4.5.1 Frame Error Rates for Various Decoders

In this section, we showcase our floating point simulation results for the Frame Error Rate

(FER) of various decoding methods. The maximum likelihood FER was simulated using the

trellis method described in sections 4.3.2 and 4.3.3. Additionally, in line with practical limi-

tations on actual decoding hardware, we limit the number of decoding iterations to two and

eight. At high Eb/N0, most received codewords are low-noise, making the average number

of iterations approach 1. However, errors involving trapping sets require more iterations to

correct which explains the gap between the 2 and 8 iteration decoders.

The N-NMS decoder performed the closest to Maximum Likelihood out of the three

decoders considered, even beating out Belief Propagation. These results line up with the

findings of [WCN21]. To summarize, via its training process, the N-NMS decoder was able

to adapt its weights to the particular structure of the LPC unlike belief propagation or

normalized MinSum. In particular, the N-NMS weights are specifically trained to mitigate

the decoding loss caused by trapping sets. With the LPC being such a short block-length
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code, its cycles have particularly small girths making N-NMS the ideal decoding method for

it.
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Figure 4.6: FER for various floating point decoding methods capped at 2 and 8 decoding

iterations
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4.5.2 Quantization Loss for Fixed Point Decoders

In Table 4.2, we observe a noticeable increase in the Look Up Tables (LUTs) used by the

N-NMS implementations as compared to the baseline MS and NMS ones. However, it is

important to note that the N-NMS decoders also perform better than their counterparts.

So, essentially, we are trading extra hardware utilization for better performance.

Table 4.2: Decoder FER Performance and Resource Usage

decoder Eb/No (dB)a LUT Reg.

baseline MS (8) 9.93 4953 (100%) 2201 (100%)

NMS 9.63 5205 (105%) 2201 (100%)

N-NMS(1b) 13.36 5793 (117%) 2201 (100%)

N-NMS(2) 10.54 5784 (117%) 2206 (100%)

N-NMS(4) 9.28 5795 (117%) 2201 (100%)

N-NMS(8) 9.17 5796 (117%) 2206 (100%)

aEstimated
(

Eb

No

)
to achieve FER of 10−7.

b(n) number of iterations spent decoding.

The 6-2 quantization used on our FPGA is inherently different than typical software

simulations which utilize 64-bit floating point numbers. Since we utilize fewer bits in our

fixed point implementation, its precision is comparatively diminished to floating point and

we expect some deterioration in FER. The purpose of the simulations shown in Figure 4.7 is

to demonstrate that with the N-NMS decoder, utilizing a fixed point quantization as opposed

to floating point presents an almost negligible loss in frame error rate.
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Figure 4.7: Floating vs fixed point FER for the N-NMS decoder capped at 2 and 8 decoding

iterations

4.5.3 Reed Solomon Frame Error Rate

As noted in the CCSDS specification, the LPC serves as the inner code in conjunction to

a (255,239) Reed-Solomon (RS) operating on GF(256). Since the RS code has 16 parity

bytes, it can correct for up to 8 byte errors. Considering that the LPC encodes 2 bytes of

data at a time, the RS code can correct for up to 4 LPC frame errors. Given the FER of

the LPC, the corresponding FER of the RS code can be modeled via a binomial expression:

PRS(e) = 1− P (X < 5), where X ∼ B(128, PLPC(e)). Figure 4.8 shows the Reed Solomon

FER for the N-NMS fixed and floating point implementations at various Eb/N0 with the

LPC as the inner code.
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Figure 4.8: Reed Solomon Code FER for Floating vs Fixed point N-NMS and Maximum

Likelihood Decoding on the LPC

4.6 Conclusion

This paper compares both the feasibility and decoding performance of maximum likelihood

(ML), belief propagation, MinSum, and Neural Normalized MinSum (NNMS) decoders on

the Line Product Code (LPC). An initial exploration of ML decoding was considered due

to the LPC’s short blocklength. However, simulation on an FPGA showed that, even with

complexity reduction via a trellis, ML decoding failed to meet timing requirements. In lieu of

this, we considered message passing algorithms. While less optimal than ML decoding, they

can be performed iteratively and with fewer operations. Simulation results on the LPC show

that, with sufficient iterations, these message passing algorithms approach the frame error

rate achieved by ML decoding. In particular, the NNMS decoder, with only 8 iterations,

show only a 0.5 dB loss compared to ML making it the most promising decoder considered

here.
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CHAPTER 5

On the Effect of Puncturing for Neural-Network

Optimized Weights

This final chapter is written as a continuation of the findings of [NWH22]. There, we found

that a Neural-Normalized MinSum (N-NMS) decoder achieved frame error rates approach-

ing that of Maximum Likelihood decoders while using drastically fewer computing resources.

The results of the paper were surprising to say the least and further work was done to under-

stand how the N-NMS training process achieved such a drastic improvement over traditional

message passing algorithms. In this chapter, we leverage the training algorithm and decoder

used in [WCN21] to analyze the weights assigned to the N-NMS decoder in the Line Product

Code (LPC).

5.1 The Structure of the CCSDS Line Product Code

The CCSDS Line Product Code offers a unique opportunity to analyze the training process of

the N-NMS decoder. Its short block-length (n = 26) makes it possible to analyze and observe

its graph structure easily. Additionally, as shown in Figure 4.6, it has already been shown

that N-NMS decoding provides substantial coding gain compared to Belief Propagation

(BP) and traditional Normalized Min-Sum (NMS) on the LPC.

Figure 5.1 shows the associated Tanner Graph of the LPC. Note that the LPC was

not designed with message passing based decoding in mind, as evidenced by structural

deficiencies in its graph structure, the most notable of which is the abundance of length-
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4 cycles. As discussed in the introduction chapter and [Ric03], short graph cycles allow for

nodes to influence the messages coming back to it, violating the assumption of only extrinsic

information being transmitted. In particular, length-4 cycles are especially detrimental to

decoding performance because they are the shortest possible length a cycle can have.

e∗(0, 3)e∗(0, 2)e∗(0, 1)e∗(0, 0) e∗(1, 3)e∗(1, 2)e∗(1, 1)e∗(1, 0) e∗(2, 3)e∗(2, 2)e∗(2, 1)e∗(2, 0) e∗(3, 3)e∗(3, 2)e∗(3, 1)e∗(3, 0)
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Figure 5.1: Bipartite Representation of the Line Product Code

5.2 Puncturing in the Line Product Code

Looking to literature, [TJV04] shows that both the length and connectivity of cycles play

significant roles in decoding performance. The authors conclude that because not all short

cycles are equally harmful, design of LDPC codes should focus on the selective treatment of

more harmful cycles. In the case of the Line Product Code, the definition of a ”harmful” cycle

was shown to be these length-4 cycles which include a punctured variable node. Because

punctured variable nodes are not transmitted to increase throughput, the decoder assumes

no information about them. In terms of message passing, punctured variable nodes are

assigned an initial Log-Likelihood Ratio of 0 indicating no confidence in the transmitted bit
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being 0 or 1. This means that, in order to decode punctured nodes, non-punctured nodes in

the graph must have sufficiently strong confidence in their estimates.

Figure 5.2 shows an induced subgraph of the Line Product Code. The subgraph was

formed by analyzing each step of the message passing process for a specific received codeword

which ultimately resulted in a decoding error. The variable nodes included in the subgraph

are those whose estimate was incorrect at any point in the decoding process. Meanwhile,

the check nodes shown are all nodes directly connect to the selected variable nodes.

Figure 5.2: Induced Subgraph of Trapping Set on the LPC (dotted circles represent punc-

tured nodes)

In Figure 5.2, each punctured variable node forms 3 length-4 cycles with a single variable

node. In the case of punctured v0, it forms these cycles with v2. For punctured node v1, these

cycles are formed with v10. In terms of message passing, this means that v2 and v10 exert

high levels of influence on the punctured nodes. For example, if v2, is in error, the incorrect

messages v2 → (c1, c2, c3) → v0 may cause v0 to take on the error. Even if v2 corrects its

estimate, v0 can propagate its original error back using the same edges.
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Figures 5.3 and 5.4 show an example of how errors can propagate back and forth using

short cycles. The color of each node and edge indicates the correctness of it. For example,

a green node indicates that the variable node’s internal estimate corresponds to the correct

initial bit value. A green edge indicates that the message being sent between two nodes

indicates the correct bit value. Red means the node or message represents the wrong bit

value. Finally, yellow represents a message or estimate indicating no confidence towards

either bit value. Yellow nodes and edges are only present in the first step of decoding before

punctured nodes receive any external information.

(a) Decoding Iteration 1 (b) Decoding Iteration 2

Figure 5.3: Example Error Propagation Iterations 1 and 2
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(a) Decoding Iteration 3 (b) Decoding Iteration 4

Figure 5.4: Example Error Propagation Iterations 3 and 4

5.3 Neural-Network Optimized Weights Analysis

With the running hypothesis that short cycles involving punctured nodes v0 and v1 are the

main drivers of decoding errors in the Line Product Code, we can now analyze how the

Neural-Normalized MinSum decoder dynamic weights addresses them. Table 5.1 shows the

weights trained by the N-NMS decoder. We see that 6 weights whose magnitudes are close

to 0 and that that they only involve variable nodes v2 and v10. The effect of zeroing out

these check-to-variable node message has the effect of breaking most of the length-4 cycles

involving the punctured nodes. Figure 5.5 highlights where these near-zero weights appear on

the Tanner Graph and how the length-4 cycles are broken. Recall that the N-NMS decoder

used for this project only weights the check-to-variable node messages. Here, zeroing out

the check-to-variable node messages prevents v2 and v10 from receiving information from

check nodes c1, c2, c3, c5, c6, c7. Also recall that Figure 5.5 only shows the induced subgraph
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of the LPC. There are more variable nodes that connect to these check nodes and that will

contribute to the outgoing messages.

Figure 5.5: Induced Subgraph of the LPC with near-0 check-to-variable edges highlighted

To further convince ourselves that puncturing is the main driving factor in determining

whether a check-to-variable edge weight is zeroed out, let us artificially ”un-puncture” v0 and

v1. If this theory holds, then we should expect fewer near-zero weights for fewer punctured

nodes. Figure 5.6 shows the distribution of N-NMS trained weights assuming both v0 and

v1 are punctured, only v1 is punctured, and no nodes are punctured. As expected, if v0 and

v1 are artificially un-punctured, then the near-zero edges associated with them return to

normal.
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Figure 5.6: From top left, top right, and bottom: LPC N-NMS weight distribution when

both v0 and v1 are punctured, only v1 is punctured, and neither are punctured

5.4 Results

Knowing that the N-NMS decoder trained its weights to break length-4 cycles, the question

now becomes how much of the decoding gain of Neural-Normalized Min-Sum is due to zeroing

out edges vs dynamic weights that can change each decoding iteration. To check this, let us

manually set the 6 near-zero edges to 0. Additionally, let us also fix the non-zero weights

of the N-NMS weights to be some constant factor for all iterations. In terms of computing

complexity, this modified N-NMS uses the same memory and computing resources as a
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traditional MinSum decoder. Through trial and error, an optimal normalization factor was

found. In theory, if the decoding gain on the LPC was due mainly to zeroing out the low-

value edges, the frame error rate of this decoder should be close to that of a standard N-NMS

one.

Figure 5.7: Frame Error Rate of Various Decoders

From Figure 5.7, the decoder formed by simply zeroing out the low-weight edges has

almost identical frame error rate to the standard N-NMS decoder. This implies that, at

least for the LPC, the primary benefit of the N-NMS decoder is this zeroing instead of

dynamic weights. The loss in decoding performance compared to N-NMS is due to the

constant weight not being exactly optimal (N-NMS weights go up to 6 decimal points while

the fixed weight only had 3 decimal places).
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5.5 Future Work

While the results of this chapter showed that the same FER as the N-NMS was achievable

with lower computational complexity and a much simpler training process, the results are

limited to the LPC. Unlike the LPC, more traditional LDPC codes are designed to mitigate

structural graph deficiencies including short cycles and overly connected nodes. When ex-

amining the weights of more actual LDPC codes, the distinction between ”low” and ”high”

edge weight values is not as clear as in the LPC. Figure 5.8 shows the histogram of N-NMS

trained edge weights for a (3225,2193) PBRL code constructed using the lifting process de-

scribed in [TJV04]. While this code also features 129 punctured variable nodes, none of edge

weights approach 0 like the LPC. This indicates that the overall benefit of N-NMS trained

edge weights is not solely in removing short cycles involving punctured nodes. Future con-

tributions to this project would include formulating some lemma or set of rules that define

when to weight graph edges with 0 and the appropriate time to reintroduce the edges into

the decoding process.

Figure 5.8: N-NMS trained weights for a (3225, 2193) PBRL code
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Variable Node Index Check Node Index N-NMS Edge Weight

0 1 0.876696

0 2 0.793429

0 3 0.956476

1 5 0.770802

2 0 0.769365

2 1 -0.10364

2 2 0.04538

2 3 0.029803

2 4 0.98143

10 2 0.610683

10 4 0.610683

10 5 -0.02019

10 6 -0.0495

10 7 0.061089

12 2 0.851966

12 6 0.800699

Table 5.1: N-NMS weights assigned for check-to-variable messages on the LPC (most edges

omitted for brevity)
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CHAPTER 6

Conclusion

This thesis represents the culmination of three years of research, beginning in 2019 as an

undergraduate student and ending in 2022 as a master’s student. While the four projects

discussed in this document cover a broad range of topics, they are all connected by their use

and exploration of Low-Density Parity Check (LDPC) codes for unique applications.

Chapter 2 applied the principals of LDPC decoding to Free Space Optical (FSO) and RF

communication channels. It asked whether the highly unreliable nature of FSO channels can

be mitigated by combining it with a RF channel. In doing so, we hoped to combine the high

throughput of FSO transceivers with the reliability of a RF link. To form this hybrid modem,

bits from both channels were interleaved into a unified LDPC code. Although the interleaving

of bits from different channels resulted in an overall loss of throughput over keeping them

independent, it opens the door for further research. For example, if the interleaving was

performed with more thought as opposed to randomly, perhaps taking advantage of the

LDPC code’s specific structure, could the hybrid modem have performed better? Is there a

ratio of RF to FSO bits that would favor the hybrid modem over independently using the

channels?

Chapter 3 takes a more fundamental approach and examines the way in which LDPC

codes are decoded. By training Neural Networks to optimize the edge weights used in mes-

sage passing algorithms, performance gains up to 0.5 dB were obtained for several codes.

Given the weights trained by the Neural Network, the chapter then analyzes their structure.

By realizing that nodes of the same degree were assigned extremely similar weights, a weight
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sharing paradigm was proposed to drastically reduce decoding and training complexity. Fi-

nally, analyzing how these weights varied with decoding iteration opens the door for further

optimizations and complexity reductions.

Chapters 4 and 5 introduce the unique case study of the Line Product Code (LPC). Orig-

inally only intended to serve as inner code to a Reed Solomon code in the CCSDS standard,

the LPC was not designed with soft decision decoding in mind. However, recognizing the

untapped potential of the parity check already present in the LPC, Chapter 4 reformulated

the LPC as a modified linear block code. Given the derived parity check matrix of the

LPC, it was possible to apply traditional soft decoding techniques to it. These included

reformulation of the LPC into a trellis for Maximum Likelihood decoding as well as message

passing algorithms. By the end, it was shown that Neural-Normalized MinSum (N-NMS)

based message passing achieved the closest Frame Error Rates (FER) to the ML decoder

while taking a fraction of the hardware resources.

Continuing from chapter 4, chapter 5 examined how the N-NMS decoder beat traditional

message passing algorithms by over 0.5 dB while using similar resources. It was found

that edges included in cycles with punctured variable nodes were essentially zeroed out.

More interestingly, by manually zeroing out these edges and applying traditional MinSum

decoding, almost all of the decoding gain of the N-NMS decoder was obtained. This revealed

that the N-NMS training process was able to identify deficiencies in the graph structure and

adjusted it weights accordingly. If these patterns could be understood, the main benefit of

N-NMS decoding could be obtained while bypassing the prohibitively expensive and long

training process.
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