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 1 

Row-sensing Templates: A Generic 3D Sensor-based Approach to Robot Localization with 2 

Respect to Orchard Row Centerlines 3 

 4 

Abstract: 5 

Accurate robot localization relative to orchard row centerlines is essential for autonomous 6 

guidance where satellite signals are often obstructed by foliage. Existing sensor-based 7 

approaches rely on various features extracted from images and point clouds. However, any 8 

selected features are not available consistently, because the visual and geometrical characteristics 9 

of orchard rows change drastically when tree types, growth stages, canopy management 10 

practices, seasons, and weather conditions change.  11 

In this work, we introduce a novel localization method that doesn’t rely on features; instead, it 12 

relies on the concept of a row-sensing template, which is the expected observation of a 3D sensor 13 

traveling in an orchard row, when the sensor is anywhere on the centerline and perfectly aligned 14 

with it. First, the template is built using a few measurements, provided that the sensor’s true pose 15 

with respect to the centerline is available. Then, during navigation, the best pose estimate (and its 16 

confidence) is estimated by maximizing the match between the template and the sensed point 17 

cloud using particle-filtering. The method can adapt to various orchards and conditions by re-18 

building the template. Experiments were performed in a vineyard, and in an orchard in different 19 

seasons. Results showed that the lateral mean absolute error (MAE) was less than 3.6% of the 20 

row width, and heading MAE was less than 1.72o. Localization was robust, as errors didn’t 21 

increase when less than 75% of measurement points were missing. The results indicate that 22 

template-based localization can provide a generic approach for accurate and robust localization 23 

in real-world orchards. 24 

 25 

Keywords: Probabilistic, localization, orchards, agriculture 26 

1 Introduction 27 

Labor cost and an increasing farm labor shortage are two main drivers for developing and 28 

deploying mechanization and automation technologies in orchards and vineyards (Zhang, 2017; 29 

Charlton et al., 2019). A third, significant driver is the need to implement precision horticulture, 30 



i.e., executing operations such as spraying,  thinning, pruning, and harvesting while taking into 31 

consideration an orchard’s or vineyard’s spatial and temporal variability. Precision horticulture 32 

can increase the efficiency of resources, and consequently reduce cost and negative ecological 33 

impact (Zude-Sasse et al., 2016). 34 

 35 

Agricultural robots can help ease orchard labor shortages by either replacing workers in labor-36 

intensive tasks like harvesting (e.g., Williams et al., 2020) or assisting human workers in various 37 

orchard production activities (e.g., harvesting, pruning, spraying, and mowing) to increase 38 

working efficiency (Zhang, 2017). For example, the utilization of an autonomous utility vehicle 39 

resulted in efficiency gains of up to 58% (Bergermann et al., 2015) for tasks such as pruning 40 

conducted on the top part of trees when compared with the same task performed on ladders. 41 

Agricultural robots can also provide advanced sensing, computation, and actuation that facilitates 42 

precision horticulture. Example applications include selective spraying, where chemical inputs 43 

are reduced dramatically (Zhang, 2017; Asaei et al., 2019) and selective pruning (Botterill et al., 44 

2017).  45 

 46 

Robot operation in orchards relies on accurate localization inside the rows of orchard blocks, and 47 

at the end-of-block headland spaces (Figure 1a). Inside orchard rows, robots travel along the row 48 

centerlines, and therefore, auto-guidance requires knowledge of the robot’s position along the 49 

row’s centerline, and its lateral displacement and heading offsets relative to this centerline. In 50 

the headlands, robots execute appropriate turning maneuvers to move to another row or move to 51 

another orchard block.  52 

 53 

Unlike localization in open fields where cm-level accurate GNSS (Global Navigation Satellite 54 

System) signals are available, accurate and robust localization inside orchard rows cannot rely 55 

solely – or at all -  on GNSS. The reason is that the foliage of tall trees (Figure 1a, b) often 56 

blocks GNSS signals or introduces multipath effects, rendering satellite-based localization with a 57 

moving GNSS receiver impossible or unreliable. This effect may not be as severe in the 58 

headlands between orchard blocks, although it can be present. Therefore, localization methods 59 

must utilize sensors that take local measurements of the surrounding environment (trees, ground, 60 

sky, irrigation lines, etc.) Visual cameras, depth or RGB-D cameras,  and LiDARs are “3D 61 



sensors” that are commonly used in orchards to collect reflected energy from the surrounding 62 

environment, with high spatial resolution. 63 

 

 

 

 
Figure 1. a) Left: Rows of high-density trellised apple trees belonging to an orchard block; headland space is 
shown in the front (Lodi, California, 2018); b) Right: Rows of almond trees (Winton, California, 2015, courtesy 
of UC ANR).  

 64 

The rows of modern, commercial orchard blocks are characterized – to a large extent - by flat 65 

terrain and uniformity in tree types, shapes and sizes, and placement/spacing. When the sensor 66 

that is used for localization is near the ground level and below the treetops, the spatial 67 

distributions of the sensor measurements of the surrounding environment (referred to as ‘sensor 68 

readings’ for brevity) exhibit two main characteristics.  69 

 70 

The first characteristic is that sensor readings do not change significantly when the sensor’s 71 

reference frame translates along/parallel to the orchard centerline (horizontal translation 72 

“invariance” of sensor readings). A major consequence of this characteristic is that absolute 73 

localization along the centerline - with respect to a reference entry point of the row - does not 74 

seem feasible/practical using local, near-ground sensing (see Shalev & Degani, (2020) for a 75 

different approach). For this reason, in the absence of reliable GNSS signals or artificial 76 

landmarks that could be used for absolute positioning, existing literature (Section 2) shows that 77 

researchers have used various forms of odometry (e.g., wheel, inertial, or vision-based) for 78 

localization along the centerline. The robot position corresponds to the distance traveled by the 79 

robot from a reference starting point on the centerline, i.e., the robot’s entry point in the current 80 



orchard row. It should be stressed that this characteristic becomes weaker as the robot 81 

approaches the end/edge of the current row, when its sensor can “see” and detect . 82 

 83 

The second characteristic is that sensor readings depend on the sensor frame’s rotation or lateral 84 

translation (offset) with respect to the centerline. This characteristic suggests that lateral and 85 

rotational localization with respect to the centerline are possible using only local sensing. In fact, 86 

the published methods for such localization rely on a stronger assumption on this characteristic, 87 

i.e., that selected features of the orchard environment are distributed symmetrically about the 88 

centerline, and that these features can be detected and localized reliably (see detailed literature 89 

review in section 2). These features are used to estimate the robot’s lateral displacement and 90 

heading offsets relative to the centerline. Proposed features include the tree trunks on the left and 91 

right sides of the row, the intersections between trunks and ground, the sky region, the orchard 92 

floor, or the planes of flat, fruiting-wall type tree canopies.  93 

 94 

The main shortcoming of feature-based methods is that they have not been shown to generalize 95 

well or be robust enough in different orchard settings. Orchards constitute diverse, complex, and 96 

dynamic environments. Tree type, age, placement, and architecture, as well as canopy and 97 

orchard floor management practices can severely affect the presence, appearance, and symmetry 98 

(about the centerline) of features. Seasonal variation (e.g., dormant vs. blooming trees), weather, 99 

and illumination conditions, missing trees also introduce variability in feature appearance, 100 

symmetry, or even availability. To the authors’ knowledge, a general approach that does not rely 101 

on specific features, or centerline symmetry assumptions, and can adapt easily to a large range of 102 

orchard environments is not available. 103 

 104 

The main contributions of this paper toward this goal are the following: 105 

1) It introduces the concept of the ‘row-sensing template’ and utilizes it to develop a new generic 106 

and robust sensor-based method to estimate a vehicle’s heading and lateral offset with respect to 107 

the row centerline in orchards; the method capitalizes on characteristic #1, but does not rely on 108 

features and symmetry assumptions.  109 

2) It presents extensive experimental results in two different orchards and various seasons to 110 

evaluate the proposed method’s localization accuracy and robustness, and also analyzes the 111 



method’s performance as the robot approaches the end of the row, where characteristic #1 is 112 

violated to increasing extent, i.e., sensor readings start varying under translation along the 113 

centerline. 114 

 115 

Our localization method adopts a probabilistic framework, uses raw 3D point clouds, instead of 116 

features extracted from the raw data, and is shown to be generic and robust. The proposed 117 

method consists of two stages.  118 

 119 

In its first stage, the method capitalizes on characteristic #1 (sensor data invariance under 120 

translation along an orchard row’s centerline) and builds a uniform 3D grid that stores in each 121 

voxel the probability that this voxel is occupied, when the sensor is anywhere on the row’s 122 

centerline and aligned to it. Essentially, the 3D grid – referred to as a “row-sensing template” or 123 

“template” – represents what the sensor expects to “sense” if it is placed at any point on the 124 

centerline, with its frame aligned with it; it is an occupancy grid (Elfes, 1989) for the space 125 

inside the sensor’s field of view (not the world). The template is built using a small set of point 126 

cloud measurements. The major requirement during the template-building stage is that the 127 

sensor’s lateral and heading offsets (ground truth) are known.  128 

 129 

In its second stage, the method capitalizes on characteristic #2 and uses the template for Monte-130 

Carlo localization in real-time. A static measurement model is implemented that returns the 131 

probability of the current point-cloud measurement given the template and a proposed pose. The 132 

vehicle pose is estimated as the pose that maximizes the probability of getting the observed 133 

measurement. The space of possible poses is searched by generating uniformly distributed 134 

random poses or by integrating the measurement model with a particle filter framework. 135 

 136 

The rest of this paper is organized as follows: In section 2, we present the related works, and in 137 

section 3, we discuss in detail our proposed approach. Next, in section 4, we present the 138 

experimental platform and methods used for the experimental evaluation of the method. The 139 

results from our experiments are presented and discussed in section 5, and in section 6, we 140 

summarize our conclusions and discuss future work. 141 



2 Related Work 142 

Sensor-based localization inside orchard rows has been addressed by many researchers, with 143 

cameras (monocular and stereo) and LiDARs (2D and 3D) being the most commonly used 144 

sensors. The main idea behind the existing methods is to utilize specific visual or geometrical 145 

features or structures to estimate directly or indirectly the row’s centerline and localize the sensor 146 

(robot) with respect to it. Barawid et al. (2007) used a 2D LiDAR scanner to detect tree trunks 147 

and the Hough-transform to extract the left and right tree lines independently; then, he computed 148 

the corresponding centerline to determine the pose of the vehicle. Similarly, He et al. (2010) 149 

proposed a machine vision algorithm to detect tree trunks and the boundaries between the trunks 150 

and the ground, to estimate tree row lines, and the corresponding row centerline. Hamner et al. 151 

(2011) used a 2D LiDAR to detect tree trunks and the Hough transform to detect right and left 152 

lines that are constrained to be parallel; the centerline was computed from them. Marden et al., 153 

(2014) estimated grapevine trunk lines using the RANSAC method and used these lines as 154 

features in a line-based EKF-SLAM framework; their method can simultaneously do localization 155 

and mapping (line map). Bell et al., (2016) used a 3D laser scanner is used to measure the 156 

positions of posts and trunks in pergola-structured orchards (e.g., for kiwis) and calculate the row 157 

direction and centerline.  Lyu et al., (2018) also proposed a method to detect the boundaries 158 

between trunks and the ground and used a naive Bayesian classifier for the free space centerline 159 

detection. Durand-Petiteville et al., (2018) presented a stereo vision-based method to find tree 160 

trunks by detecting their “shadows,” i.e., concavities in the range component of the obtained 161 

point cloud.  162 

 163 

Other researchers have used the ground, sky, or tree foliage as features, and segmented them in 164 

image space to estimate the row’s centerline. Subramanian et al., (2006) proposed to use RGB 165 

thresholding to segment the tree canopy in the image and find boundary lines; their method also 166 

combined a 2D lidar to detect a path using distance thresholding to increase their system 167 

robustness. Torres-Sospedra et al., (2011) used a multi-layer feedforward neural network to 168 

segment land/soil, sky, tree crown, and trunk areas in an image and then applied a Hough 169 

transformation on the borders between land and trees to determine the centerline of the path. 170 

Sharifi et al., (2015) improved the segmentation method by using the mean-shift algorithm to do 171 

clustering, along with a novel classification technique based on graph partitioning theory to 172 



classify clusters. Radcliffe, Cox & Bulanon (2018) used an upward looking camera to detect sky 173 

and tree canopy features for localization.  174 

 175 

Zhang et al., (2013) proposed a method that utilizes 3D point clouds for localization. They 176 

divided the 3D point cloud into a left and a right set. Then, they randomly selected points in both 177 

sets to compute multiple pairs of parallel-line features and used RANSAC to get the pair with the 178 

smallest number of outliers.  The heading was directly computed from the best pair of the 179 

parallel lines. However, the method needed an additional step to segment tree trunks and large 180 

branches from the point cloud to accurately determine the lateral offset, because trunks and 181 

branches generate denser and more stable LiDAR returns than leaves and grass.  182 

 183 

All the above methods are applicable when the corresponding features they rely on are 184 

visible/detectable. As it was explained in Section 1, this may not be true in many cases. For 185 

example, tree trunks or trunk-ground intersections may not be visible; the sky may not be visible, 186 

or the orchard floor may be covered  (Figure 2a, 2b, 2c). Blok et al., (2019) used a 2D LiDAR 187 

and a particle filtering approach for localization in orchard rows, without relying on features. The 188 

methods was found to be accurate and robust when some trees were missing. However, their 189 

probabilistic 2D LiDAR sensor model relied heavily on an a-priori model of the orchard 190 

structure (row and tree spacing and trunk sizes) at each side of the robot, which would have to be 191 

re-developed for different tree architectures and orchard spacings. Furthermore, approaches that 192 

use a 2D LiDAR as the main sensor can only get single-plane information in space. Because tree 193 

canopies are three dimensional and irregular, and ground can be uneven and have grass, methods 194 

using 2D LiDAR are not as robust. 195 

 196 

 

 

 

 

 

 



Figure 2.  Left: The figure shows that apple tree trunks are hidden by foliage, and trunk-ground intersections are 
partially occluded by reflective tarps (Lodi, California, 2019); Center: The figure shows that the sky is not visible 
in an almond orchard (California, 2017);  Right: The figure shows that the orchard floor is covered with patches 
of grass (Vougioukas,  2019).  

 197 

As a conclusion, accurate and robust methods for localization with respect to orchard row 198 

centerlines are still needed. Such methods should not depend on over-simplifying, extensive or 199 

unrealistic assumptions about orchard structure or the presence of features, and should be 200 

applicable and easily adaptable in different types of orchards, and different seasons. 201 

 202 

3 Template-based Localization  203 

 204 

The proposed template-based localization method consists of two main stages. During the first 205 

template-building stage, a 3D sensor template T is constructed that represents what a 3D sensor 206 

would expect to perceive if it was placed on the row’s centerline with zero lateral and heading 207 

offset.  During this phase, point cloud measurements with corresponding known poses are 208 

needed to build the template. In the second phase, a novel template-based sensor measurement 209 

model is used in a particle filter framework for localization in real-time. 210 

 211 

We also make the assumption that the orchard ground is relatively flat, the ground plane can be 212 

extracted in the point cloud measurement, so that the vehicle’s roll and pitch can be easily 213 

recovered. 214 

 215 

Future sensor measurements can correctly align with the template, even with some variations, 216 

because template is built in a probabilistic way, and the overall geometrical shape of the sensor 217 

measurement is taken into account.  218 

 219 

Next, basic terms, symbols, and coordinate frames are introduced that will be used extensively in 220 

the rest of the paper. Let {R} be the frame of the currently traversed orchard row. Its origin lies 221 

on the centerline of the row, between the first pair of trees at the beginning of the row (Figure 3). 222 

Its x-axis is the centerline of the row and points toward the other end of the row (forward), and 223 



its z-axis is perpendicular to the ground and points upward. {V} is the vehicle frame, with its x-224 

axis pointing forward, and the z-axis pointing upward. Let {C} be the 3D sensor frame. In this 225 

work, for simplicity, {C} coincides with {V}, and both may be used interchangeably. (In general, 226 

{C} and {V} are connected via a known rigid body transformation.) 227 

 228 

 229 

 230 
Figure 3 The figure shows the orchard row frame {R}, the vehicle frame {V}, and the template frame {T}. 231 

An orchard row template T represents the expected 3D sensor measurement, when the sensor is 232 

on the centerline, and aligned to the row frame {R}’s x axis. Therefore, the row template frame 233 

{T} – by definition - has the same orientation as {R}, and its origin lies on the centerline, and at 234 

the same x coordinate as {V} with respect to {R}.  235 

 236 

The template is represented as a uniform 3D grid made up of voxels defined over a continuous 237 

space in a template frame {T}; each voxel has a value that represents the occupancy frequency of 238 

that voxel.  Each measurement is a point cloud triangulated from a pair of stereo images. At time 239 

t, let the nth point of the point cloud be denoted as {"}𝑧$%, and the set of all points, i.e., the point 240 

cloud itself be {"}𝑍$. Our goal is to estimate the vehicle’s pose with respect to the row 241 

frame {&}𝑋$ 	= 	 [ {&}𝑥$ ,  {&}𝑦$ ,  {&}𝑧$ ,  {&}𝛼$ ,  {&}𝛽$ ,  {&}𝜃$], where α, β, and θ are roll, pitch, and 242 

yaw, respectively. The distance along the centerline {&}𝑥$ can be obtained by odometry and 243 

hence is outside the scope of this work. The quantities {&}𝑧$ ,  {&}𝛼$ ,  {&}𝛽$ are estimated by finding 244 

the ground plane as in section 3.1. The main focus of this paper is to estimate  {&}𝑦$ and  {&}𝜃$, 245 

using our template-based method. Next, the two stages of our method are presented in detail. 246 

 247 



Stage 1: Given a set of point cloud measurements  {"}𝑍$!,$",⋯ $#  with corresponding known 248 

lateral offsets  {&}𝑦$!,$",⋯ $# and headings  {&}𝜃$!,$",⋯ $# with respect to the centerline, build an 249 

row-sensing template T. 250 

 251 

Stage 2: Given a sequence of point cloud measurements  {"}𝑍$!,$",⋯ $#, visual odometry 252 

information  {&}𝑢$!,$",⋯,$#, and the pre-built orchard row template T, compute the vehicle’s lateral 253 

offset  {&}𝑦$ and heading  {&}𝜃$ with respect to the row’s centerline, at each time step.  254 

 255 

The computational pipelines of both stages are shown in Figure 4. Each individual module is 256 

explained in detail in this section. 257 

 258 
Figure 4 The figure shows two stages of the template-based localization approach (“Template Building” and 259 
“Localization”) and their corresponding computational pipelines.  260 

 261 



3.1 Stage 1: Template Building 262 

The intuition behind using an orchard row template is that different tree-rows in the same 263 

orchard at a specific season share a tunnel-like structure that is invariant along the centerline. So 264 

the template T represents – in a 3D grid - what the sensor would expect to perceive if it were 265 

placed on the row’s centerline with zero lateral and heading errors. Here we propose a way to 266 

build an orchard row template – starting from an empty template - using a set of measurements 267 

 {*}𝑍$!,$",⋯ $# with corresponding known lateral offsets  {&}𝑦$!,$",⋯ $# and headings  {&}𝜃$!,$",⋯ $#.  268 

As a first step, each point cloud measurement  {*}𝑍$	 is input to the Point Cloud Pre-Processing 269 

module (Figure 5).  In this module, the point cloud is first down-sampled using a voxel down-270 

sampling method (Rusu et al., 2011). All points belonging to a voxel are represented by a single 271 

point – their centroid. And the point cloud is transferred into {V}. 272 

 273 
Figure 5 Point cloud pre-processing module 274 

 275 

Then,  RANSAC (Bolles et al., 1981) is used to estimate the ground plane and the vehicle’s roll 276 

𝛼$ , pitch 𝛽$, and z states in {R}. Using the states estimated by RANSAC, the measurements 277 

 {*}𝑍$	 is transformed to the template frame {T}.  278 

 279 

As a second step, all the points that do not belong to the current tree row and are outside the 280 

sensor’s range are discarded by applying a spatial rectangular cutoff filter (CutoffFilter()) of 281 

appropriate dimensions set by the row width, height and sensor maximum range.  282 



The third step (implemented in UpdateTemplate()) updates the contents of the template’s voxels 283 

using the point cloud  {+}𝑍$	by incrementing the current value of each voxel whose volume 284 

contains a point from  {+}𝑍$. Then, the occupancy frequency of each voxel is computed as an 285 

estimate of the voxel’s occupancy probability. The region out of the row range is undefined, 286 

there might be another row next to the current or not, so we fill all voxels within the template but 287 

not in the current row a no information frequency (noInfoFrequency). The entire process is given 288 

in Algorithm 1. Figure 6 shows the visualization of a row template.  289 

 290 

 291 
 292 
Figure 6 Left: An example of a cross-section (y-z) of a template T at distance from the sensor, x = 12 m; the color of 293 
each voxel represents the occupancy frequency; Right: 3D visualization of the template with voxel occupancy 294 
frequency larger than 0.02. 295 

 296 



3.2 Stage 2: Localization using a template 297 

3.2.1 Measurement Model  298 
The measurement model (or sensor model) is the probability P1 

{"}𝑍	2𝑋, 𝐓4 of getting a point 299 

cloud measurement  {"}𝑍,	given the vehicle pose X and the template T (Thrun et al., 2005). This 300 

probability can be obtained as the product of probabilities of all individual points under the 301 

assumption that individual point measurements are independent, given the vehicle pose X and the 302 

template T.  303 

 304 

P1 
{"}𝑍2𝑋, 𝐓4 = Π,-./ P1 

{"}𝑧02𝑋, 𝐓4    (1) 305 

 306 

The template T is built in a way that each voxel is an estimate of the probability of the sensor to 307 

get a measurement in that voxel in frame {T}. So T is used as a likelihood field that can be 308 

indexed to get the individual measurement probability P1 
{+}𝑧02𝐓4. Each individual 309 

measurement probability P1 
{"}𝑧2𝑋, 𝐓4 can be calculated by transforming  {"}𝑧 to  {+}𝑧  and 310 

performing a table lookup for the probability in T. The algorithm of this measurement model is 311 

shown in Algorithm 2. Figure 7 shows P1 
{"}𝑧02𝑋, 𝐓4 for each point in the measurement given a 312 

good pose proposal X and a bad pose proposal; the overall point measurement probability is 313 

higher (brighter) for a good pose proposal. 314 

 315 

 316 



 317 
 318 

319 

 320 
 321 

Figure 7 Top: Top-down view (left) and 3D view (right) of 𝑃" 
{%}𝑧'%𝑋, 𝑇) for all the points in {%}𝑍 of a good pose 322 

proposal. Bottom: Top-down view (left) and 3D view (right) of 𝑃" 
{%}𝑧'%𝑋, 𝑇) for all the points in {%}𝑍 of a bad pose 323 

proposal. The brighter a point, the more likely this measurement point is correct. 324 

  325 

3.2.2 Monte Carlo Localization 326 
 327 

Given the measurement model P1 
{"}𝑍2𝑋, 𝐓4, a template T and a measurement  {"}𝑍$, the Monte 328 

Carlo (aka Particle Filter) Localization framework is used to estimate vehicle pose 𝑋$ (Thrun et 329 

al., 2005).  Under this framework, n multiple possible poses 𝑋$[
2] are sampled from a distribution 330 

D, to generate the set of sampled poses 𝚾4 = 7𝑋$
[.], 𝑋$[

5]… ,𝑋$[
%]
9. The likelihood of each possible 331 

pose in this set is evaluated, and the pose with maximum likelihood is selected. 332 

 333 

𝑋:𝒕 = 𝑎𝑟𝑔	𝑚𝑎𝑥
7∈𝚾𝒕

P1 
{"}𝑍$2𝑋, 𝐓4    (2) 334 

 335 



An obvious choice for D is a uniform distribution in frame {T} (e.g., 𝑦 ∈ U[−0.8𝑚, 0.8𝑚], θ ∈336 

U[−0.6𝑟𝑎𝑑, 0.6𝑟𝑎𝑑]). Figure 8 shows an example of the likelihood field of 𝑋 ∈ 𝐃, where D is a 337 

uniform distribution. 338 

 339 

 340 
 341 

Figure 8 The figure shows a pose likelihood field in y-𝜃 space with 50,000 sampled poses, given a measurement  {%}𝑍 342 
and a template T; brighter color represent higher probability. 343 

 344 
If the vehicle can get other sources of localization or motion information (e.g., control input, 345 

wheel odometry, steering angle sensor, GNSS, and visual odometry), the possible poses can be 346 

sampled from a distribution that is informed by other sensors. In this work, visual odometry was 347 

used as an additional motion information source (Cvišic et al., 2017) because of its accuracy and 348 

the fact that it requires no additional sensor hardware than the already available stereo camera. 349 

Monte Carlo Localization with visual odometry is presented in Algorithm 3. 350 

 351 

The algorithm also estimates the covariance matrix of the estimated lateral offset and yaw by 352 

sampling 1% of the particles with the highest weights before resampling and calculating their 353 

covariance around the best pose estimate. The intuition behind this approach is that if 1% of best 354 

candidate particles are concentrated around the best pose estimate, this best pose estimate is 355 

more likely to be accurate, and the solution uncertainty (variance) is small. If 1% of the best 356 

candidate particles are spread out, the quality of the best pose guess tends to be low. 357 



 358 

 359 
 360 

4 Experimental Design 361 

The goals of the experiments were to evaluate the accuracy of the template-based localization 362 

method in different orchards and seasons (section 5.1); to evaluate the robustness of its accuracy 363 

against different template instances (section 5.2), and against mismatches between a template 364 

and traversed rows due to gaps in the tree rows (from missing or smaller trees) (section 5.3), and 365 

examine the localization accuracy as the sensor reaches the end of the row (section 5.4). Finally, 366 

the effect of the number of measurements used to build the template on the accuracy was 367 

investigated (section 5.5).  368 

 369 

Experiments were conducted using a 3D camera in several rows, in a vineyard (L. Vitis vinifera) 370 

in spring, and in an apricot orchard (L. Prunus armeniaca), in different seasons. The metrics 371 

used to evaluate the accuracy of the lateral offset and heading with respect to the row centerline 372 

were the mean absolute error (MAE), the standard deviation (SD) of the absolute error, and the 373 

95th percentile of the absolute error. Next, the experimental platform, the experimental design, 374 

and the ground truth generation process are presented in detail. 375 

 376 



4.1 Experimental platform  377 

The sensor used in this research was a low-cost ZED stereo camera (Stereolabs Inc, San 378 

Francisco, CA). The field of view of this sensor is 90° (H) x 60° (V) x 110° (D) max, and the 379 

baseline of the stereo camera pair is 120 mm. It can output point clouds produced by stereo 380 

triangulation at 30 frames per second with 1080P resolution, using an NVIDIA GPU; it also 381 

provides visual odometry at the same rate and supports communication via ROS (Robot 382 

Operating System). Our localization method can work with one single 3D camera without other 383 

sensors, which largely simplifies the overall system complexity and reduces the cost. If 384 

additional sensors are available, such as IMU (Inertial Measurement Unit) and wheel odometry, 385 

they can also be integrated with the template-based measurement model, and provide more 386 

informed sampling in the Monte Carlo localization framework. 387 

 388 

A locally developed mobile robot was used as a mobile platform for data collection (Figure 9). 389 

The ZED stereo camera was mounted in the front center of the robot, facing forward. Two RTK-390 

GNSS receivers provided ground truth for the position and heading in the vineyard. Ground truth 391 

in the orchard was measured using a different approach (see Section 3) because GNSS signals or 392 

RTK corrections were not available due to the foliage of large trees.  393 

  394 

 395 
Figure 9 The mobile robot that was used as our experimental platform. 396 



 397 

In all experiments, the robot traveled at a speed of 1 m/s. While traveling inside each row 398 

(vineyard or orchard), the robot was controlled remotely and steered to travel on a sinusoidally-399 

shaped path, in order to sample the widest possible (collision-free) ranges for offset and yaw 400 

deviations from the centerline. 401 

4.2 Experiments in a vineyard 402 

Localization experiments were performed in a vineyard at Davis, California, during the spring 403 

season, 2019 (Figure 10a). Ten random rows were traversed with the robot platform. The 404 

average row spacing was 3 meters, and vines were planted at 1.8 meters apart in average. The 405 

UTM (Universal Traverse Mercator) coordinates of the endpoints of ten vine rows were 406 

measured with an RTK GPS receiver; each row was approximately 90 meters long. Ground truth 407 

for the position and orientation of each row’s centerline was computed from the measured row 408 

endpoints.  409 

 410 

4.3 Experiments in a tree orchard 411 

Localization experiments were also performed inside two rows of apricots trees, at Davis, 412 

California during 2018 and 2019. Experiments included traversal of the rows in the winter when 413 

trees were dormant and had no foliage (Figure 10b); in the summer, with dense foliage (Figure 414 

10c), and in the spring with sparse foliage (Figure 10d). The average row spacing was 5 meters, 415 

and trees were planted at 2.5 meters apart in average; each row was approximately 50 meters 416 

long.  417 

 418 

a)     b)    419 



c)    d)  420 
Figure 10 a) Vineyard in spring; apricot tree orchard in b) winter, c) summer, and d) spring. 421 

 422 

Inside the tree rows, the RTK-GNSS did not provide reliable localization because of tall 423 

canopies and foliage. As an alternative way to generate the ground truth for the sensor’s offset 424 

and yaw with respect to the row’s centerline, a physical centerline was used. A visually 425 

prominent colored rope was placed – and stretched - along the center of the orchard row (Figure 426 

11a), and an image processing pipeline was developed to detect and localize it. The pipeline 427 

included three steps; 1) detect the rope as a line in the camera’s image space (Figure 11b); 2) 428 

project the detected line back onto the physical ground plane in the camera frame, using a well-429 

calibrated camera projection matrix (Figure 11c); 3) compute the lateral offset and heading angle 430 

of the camera relative to the rope-defined centerline. The template-based localization algorithm 431 

does not use any color information, so this colored rope did not affect the algorithm’s 432 

performance. We pre-evaluated the localization accuracy of this rope-based method in a field 433 

where RTK-GNNS was available. The y-offset difference was 0 ±	0.012(SD) m, and the heading 434 

difference was 0 ± 0.00043(SD) rad  between the rope-based method and RTK-GNSS. 435 

 436 

a)  b)  437 



c)  438 
Figure 11 a) The figure shows the red rope in camera’s image view; b) the blue line is the extracted line in the 439 
image space; c) the red line is the extracted line projected onto the ground plane (top-down view of the 440 
corresponding point cloud). 441 

5 Experimental Results 442 

5.1  Localization accuracy 443 

We call a specific orchard at a specific season as an operational scenario. An orchard row 444 

template is valid for a whole operational scenario. We built the template using 100 continuous 445 

measurements (~7 seconds) with ground truth for each operational scenario. Figure 12 shows the 446 

middle slices of the 3D templates generated for our experiments. 447 

 448 

a)  b)  c)  d)  449 
Figure 12 Visualization of the middle slice of templates generated in a) vineyard in spring and apricot tree 450 

orchard in b) winter, c) summer, and d) spring. 451 

 452 

For all experiments, we ran our algorithm offline with and without visual odometry information. 453 

Without visual odometry, our particle filter sampled poses from a uniform distribution in the {T} 454 

frame ( 𝑦 ∈ U[−0.8, 0.8]	m, 𝜃 ∈ U[−0.6, 0.6] rads). With visual odometry, the Monte-Carlo 455 

sampling procedure in algorithm 3 was used. An example of the final localization output in a 456 

vineyard row with visual odometry is shown in Figure 13. 457 



a) b)  458 

c) d)  459 
Figure 13 The localization results of lateral offset (a) and the heading (b) with uniform sampling are overlaid with 460 
ground truth. The localization results of lateral offset (c) and the heading (d) with visual odometry informed 461 
sampling are overlaid with ground truth. 462 

The overall localization results for all operational scenarios and also for each run are reported in 463 

Table 1. 464 
 465 

Operational 

 Scenario 

Visual Odometry Informed Sampling Uniform Sampling 

Y error (meter) Yaw error (rad) Y error (meter) Yaw error (rad) 

MAE†  SD† 95%† 
MAE / 
Row 

spacing† 

95% / 
Row 

spacing 
MAE SD 95% MAE SD 95% 

MAE / 
Row 

spacing 

95% / 
Row 

spacing 
MAE SD 95% 

Vineyard 0.03 0.02 0.07 1.0% 2.5% 0.01 0.01 0.04 0.10 0.07 0.24 3.2% 8.0% 0.02 0.01 0.04 

Apricots Winter 0.09 0.08 0.21 1.8% 4.3% 0.03 0.03 0.07 0.17 0.17 0.47 3.3% 9.4% 0.02 0.03 0.04 

Apricots Spring 0.07 0.06 0.20 1.5% 4.1% 0.02 0.01 0.04 0.18 0.14 0.46 3.5% 9.2% 0.02 0.04 0.04 

Apricots Summer 0.09 0.06 0.20 1.8% 4.0% 0.02 0.02 0.05 0.18 0.14 0.46 3.6% 9.2% 0.02 0.02 0.05 

†  MAE: Mean Absolute Error;         SD: Standard Deviation;           95%: 95th Percentile; 

†  † The average row spacing is 3 meters for the vineyard and 5 meters the apricots orchard 

Table 1 Localization results with and without visual odometry, for each scenario. The average row spacing is 3 466 
meters the vineyard and 5 meters for the apricots orchard. 467 

 468 
In all the operational scenarios, our method localized the vehicle with heading MAE below 0.03 469 

rad and lateral MAE below 5% of the row spacing, without visual odometry. When visual 470 

odometry was used for informed sampling, the lateral MAE dropped below 2% of the row 471 

spacing. The results were consistent across different orchards and seasons. 472 

 473 



5.2 Localization robustness against template instance 474 

An important assumption in the proposed method is that a template built from a set of data from 475 

one or more rows can be used for localization in all rows – in the same orchard - without 476 

significant loss in localization accuracy. To evaluate the validity of this assumption, a template 477 

instance that was generated using 100 consecutive measurements while moving inside row k (for 478 

each k = 0, 1, …, 9) was used to localize the robot  – with and without visual odometry informed 479 

sampling - in evaluation runs inside all the ten rows in the vineyard block. The localization 480 

MAEs - with and without visual odometry - are given in Figure 14a and Figure 14b, respectively. 481 

 482 

  483 
 484 
Figure 14 Localization errors (MAE) when a template generated using data from row k was used to localize the 485 
robot in an evaluation run in row j (0≤ 𝑘, 𝑗 ≤ 9); lighter colors correspond to better accuracy. a) Left: Monte-486 
Carlo localization with uniform sampling. b) Right: Monte-Carlo localization with informed sampling from visual 487 
odometry. 488 

 489 
The elements (k, k) on the main diagonals corresponded to localization errors when the template 490 

that was built with data from row k was used for localization inside the same row k. When using 491 

uniform sampling, the maximum MAE was 0.11 m, whereas the off-diagonal MAE was 0.17 m. 492 

However, when using visual odometry informed sampling, the maximum MAE was 0.07 m for 493 

both the on and off-diagonal elements. Also, some templates resulted in overall slightly better 494 

results than others (e.g., in the right matrix, row #2 is much lighter-colored than row #8),  495 

Table 2 presents detailed localization errors when all vineyard rows were traversed using a 496 

template based on measurements from row #2.  497 

 498 



Run ID 

Visual Odometry Informed Sampling Uniform Sampling 

Y error (meter) Yaw error (rad) Y error (meter) Yaw error (rad) 

MAE† SD† 95%† 
MAE / 
Row 

spacing† 

95% / 
Row 

spacing 
MAE SD 95% MAE SD 95% 

MAE / 
Row 

spacing 

95% / 
Row 

spacing 
MAE SD 95% 

0 0.03 0.02 0.07 0.9% 2.5% 0.01 0.01 0.04 0.10 0.07 0.24 3.2% 7.9% 0.02 0.01 0.04 

1 0.03 0.02 0.08 1.1% 2.6% 0.02 0.01 0.04 0.11 0.08 0.26 3.5% 8.8% 0.02 0.01 0.05 

2† 0.03 0.03 0.08 1.0% 2.7% 0.02 0.01 0.04 0.08 0.07 0.21 2.7% 6.9% 0.02 0.01 0.04 

3 0.05 0.03 0.11 1.6% 3.8% 0.02 0.02 0.05 0.08 0.06 0.20 2.7% 6.7% 0.02 0.02 0.05 

4 0.03 0.03 0.08 1.0% 2.7% 0.02 0.02 0.05 0.08 0.07 0.21 2.8% 7.1% 0.02 0.02 0.05 

5 0.03 0.02 0.07 1.1% 2.5% 0.01 0.01 0.03 0.11 0.09 0.28 3.6% 9.2% 0.01 0.01 0.03 

6 0.03 0.03 0.08 1.2% 2.8% 0.01 0.01 0.03 0.10 0.08 0.25 3.2% 8.3% 0.02 0.01 0.04 

7 0.04 0.03 0.10 1.4% 3.3% 0.02 0.02 0.05 0.10 0.08 0.24 3.3% 8.1% 0.02 0.01 0.05 

8 0.04 0.03 0.11 1.4% 3.6% 0.02 0.02 0.05 0.10 0.08 0.25 3.5% 8.4% 0.02 0.01 0.05 

9 0.03 0.02 0.06 0.8% 2.0% 0.01 0.01 0.03 0.10 0.08 0.25 3.3% 8.4% 0.02 0.01 0.04 

† MAE: Mean Absolute Error;         SD: Standard Deviation;           95%: 95 Percentile; 
† The average row spacing is 3 meters for the vineyard. 
† Template is built using data from run id 2 

 499 
Table 2 The table shows accuracy results when a template that was built from measurements in row #2 of the 500 
vineyard is used for localization in all ten rows of the vineyard. 501 

Overall, the above results suggested that a template developed from one row could be used for 502 

localization in other rows without significant loss of accuracy. 503 

 504 

5.3 Localization robustness against gaps in rows 505 

The template-based localization method is based on the assumption that when the 3D sensor is 506 

on the center line and aligned to it, the spatial distribution of the point cloud sensed anywhere 507 

along an orchard row matches the point cloud distribution of the template. However, in 508 

commercial orchards, it is very common that one or more trees are missing (e.g., due to disease) 509 

or are much smaller (because of replanting), thus creating “gaps” along the tree lines. Such gaps 510 

represent extreme cases/outliers of variability inside a row. Examples of missing trees from our 511 

data can be seen in Figure 15a. In the left image, one tree is missing on the left of the row, and in 512 

the right image, one tree is missing on both sides of the row.  Figure 15b shows the top-down 513 

views of the corresponding 3D point clouds (sliced at 1.5 m height), transformed into the 514 

template frame {T}. 515 

 516 



a)  b)  

c)  d)  
Figure 15 a, b) Camera views of orchard rows with gaps (missing trees) (red ellipses). c, b) Top-down view of the 
point cloud (excluding treetop and ground); black ellipses are gaps. 

 517 

To evaluate the robustness of the template method in the presence of gaps, sets of points in the 518 

measurements were artificially removed, to simulate such gaps. A length of 1 m was used as a 519 

“unit length” for gaps in the point cloud data; this length is referred to as a “unit-tree.” Smaller 520 

trees could result in one unit missing, whereas larger missing trees could result in more than one 521 

consecutive missing units. Since the 3D sensor used in this work had a range of 20 m, each side 522 

of the measurement was split into 20 units, as shown in Figure 16a, where each color 523 

corresponds to one unit-tree. Then, n unit-trees were randomly removed from the measurement, 524 

and the localization error was evaluated using the remaining measurement points (e.g., green 525 

points in Figure 16b).  526 

a)  b)  527 
 528 



Figure 16 a) This figure shows unit-trees in a measurement; each color represents a unit-tree. b) A point-cloud 529 
example when four random unit-trees are removed from each side of the row; green points represent the remaining 530 
points. 531 

 532 
There are C(40, n) different combinations for removing n unit trees from 40 unit trees. Given the 533 

very large number of possible combinations, 100 were sampled randomly to evaluate the 534 

performance of the approach, at a given number of gap units n, as n was increased from 0 to 40. 535 

The lateral offset and heading error results for the vineyard data are shown in Figure 17, and for 536 

the apricot orchard data, in Figure 18.  537 

a)  b)  538 
 539 
Figure 17 a) Offset error curve vs.  the number of missing unit-trees in the vineyard. b) Heading error curve as a 540 
function of the number of missing unit-trees in the vineyard. 541 

 542 

a) b)  543 
Figure 18 a) Offset error curve vs.  the number of missing unit-trees in apricot orchard. b) Heading error curve as a 544 
function of the number of missing unit trees in the apricot orchard. 545 

The localization accuracy remained almost constant until a certain threshold-number of unit trees 546 

were removed from the measurements. After inserting more gaps than this threshold, the errors 547 

grew very fast. In the particular vineyard, the threshold was approximately 30 unit trees (out of 548 

40), i.e., the proposed localization approach performed robustly as long as no more than 75% of 549 

the measurement points were missing. For the apricot orchard, this threshold was approximately 550 

25 (out of 40), i.e., the algorithm was robust as long as no more than 62.5% of the measurements 551 

were missing. The difference in algorithm robustness between the vineyard and the apricot 552 

orchard could be attributed to the fact that apricot trees were spaced farther apart from each other 553 

Commented [SGV1]: Explain  shaded regions around 
curves. 



than grapevines. In real orchards and vineyards, the percentage of missing trees is very small. 554 

Hence, the proposed localization method is not expected to encounter such situations, and its 555 

robustness against gaps in tree rows seems adequate.  556 

 557 
Along with the errors, we also extracted the standard deviation of the offset and heading from the 558 

covariance matrix returned by our localization algorithm in the vineyard case (Figures 18 a, b, 559 

respectively). The standard deviations represent the confidence of the localizer. Our localization 560 

algorithm started reporting high standard deviation in the lateral offset and the heading at the 561 

same time when the localization errors grow. The magnitude of the standard deviation is highly 562 

correlated with the actual error, as shown in Figure 18 c, d). These results showed that our 563 

algorithm could correctly report the uncertainties in lateral offset and yaw. The reported 564 

uncertainties could be used by other robot software modules, such as Bayesian filters or fail-safe 565 

modules, which can act accordingly when the uncertainly becomes large.  566 

a)  b)  567 
 568 
 569 

c) d)  570 
 571 
Figure 19 a) Lateral offset standard deviation curve vs. the number of missing unit trees in the vineyard. b) Heading 572 
standard deviation curve vs. the number of missing unit trees in the vineyard. 573 

 574 

 575 



5.4 Localization accuracy near row boundaries 576 

The template-based method is designed for in-row navigation, but it is important to understand 577 

the method’s behavior when the vehicle approaches a row’s end, in order to integrate this method 578 

in the future into an full orchard navigation system. A simulation experiment was designed to 579 

analyze the localization accuracy when the vehicle approaches the end of the row that it is 580 

traversing. The measurement points that were further than d meters away in the template frame’s 581 

x-axis were removed. The remaining points represent the row end in d meters from the vehicle. 582 

An example of the simulated measurement is shown in Figure 20, and the localization accuracy 583 

as the vehicle “approaches the row end” is shown in Figure 21. 584 

 585 
 586 

Figure 20 This figure shows points farther from the sensor than d meters are removed to simulate row exiting. The red points are 587 
removed points, and the green points are remaining points. 588 

   589 
Figure 21 These figures show the localization accuracy as a  function of the robot distance to the end of the row. The left figure 590 
shows the lateral offset error (Y), and the right figure shows the heading error. 591 

 592 
The row-exiting results indicate that the localization accuracy did not change much until the 593 

vehicle was 5 m away from the row end. The remaining observed measurement points when the 594 

vehicle was 5 m away are shown in Figure 22 a). The overall row-exiting results indicated that 595 

the method could work well for an in-row vehicle until 5 m away from the row-end. The specific 596 

number may change under different situations; however, we can see that the safety margin is 597 



significant. Also, when the vehicle gets too close to the row end, the localization algorithm 598 

reports high localization uncertainty.  599 

 600 
Figure 22 The figure shows remaining measurement points after 75% of points were removed to simulate the robot is 5 m away 601 

from the row end. 602 

5.5 Template data requirements 603 

All the experimental results were generated using templates built by 100 consecutive point-cloud 604 

measurements, which corresponds to approximately 7 seconds or 7 meters of data, as the sensor 605 

moved inside a row. Given that a template should capture the “expected” or “typical” structure of 606 

the orchard row (by storing spatial occupancy probabilities), one important question is, how 607 

many measurements are needed to build a good template. To explore this question, seven 608 

templates were built using 1, 5, 10, 20, 100, 200, and 300 point-clouds from consecutive frames 609 

of data in the vineyard. Then, the localization results - when each one of the seven templates was 610 

used - were evaluated on all vineyard data (Table 3).  611 

Number 
of 

Measurements 

With visual odometry Without visual odometry 

Y error (meter) Yaw error (rad) Y error (meter) Yaw error (rad) 

MAE† SD† 95%† 
MAE / 
Row 

spacing† 

95% / 
Row 

spacing 
MAE SD 95% MAE SD 95% 

MAE / 
Row 

spacing 

95% / 
Row 

spacing 
MAE SD 95% 

1 0.03 0.03 0.08 1.00% 2.80% 0.01 0.01 0.04 0.11 0.09 0.29 3.80% 9.50% 0.02 0.01 0.04 

5 0.03 0.03 0.08 1.00% 2.80% 0.01 0.01 0.04 0.11 0.09 0.28 3.70% 9.30% 0.02 0.01 0.04 

10 0.03 0.02 0.07 1.00% 2.40% 0.01 0.01 0.04 0.11 0.09 0.28 3.70% 9.30% 0.02 0.01 0.04 

20 0.03 0.02 0.07 1.00% 2.20% 0.01 0.01 0.04 0.11 0.08 0.26 3.60% 8.70% 0.02 0.01 0.04 

100 0.03 0.02 0.07 1.00% 2.50% 0.01 0.01 0.04 0.1 0.07 0.24 3.20% 8.00% 0.02 0.01 0.04 

200 0.03 0.02 0.07 0.90% 2.30% 0.01 0.01 0.04 0.1 0.08 0.25 3.30% 8.20% 0.02 0.01 0.04 

300 0.03 0.02 0.07 1.10% 2.50% 0.01 0.01 0.04 0.1 0.08 0.25 3.40% 8.30% 0.02 0.01 0.04 

†  MAE: Mean Absolute Error;         SD: Standard Deviation;           95%: 95 Percentile; 



†  The average row spacing is 3 meters for this vineyard. 

Table 3 Localization results in the vineyard, using templates built with different number of measurements 612 

The results in Table 3 show that even a small number of measurements could build a good 613 

template. The mean absolute error did not change much, and the 95% percentile of the Y error 614 

decreased slightly as the number of measurements increased. After a certain number of 615 

measurements, the improvement saturates. This number was 100 in our vineyard experiments. 616 

 617 

6 Conclusions and discussion 618 

 619 

In this work, we proposed a generic 3D sensor-based method for robot localization with respect 620 

to orchard row centerlines. Instead of relying on assumptions about the presence of features and 621 

their spatial distributions with respect to row centerlines, our method discovers orchard-specific 622 

structure in a data-driven way, encodes it as an orchard row-sensing template, and utilizes the 623 

full 3D measurement information to determine the vehicle pose. We also proposed a way to 624 

estimate the confidence of the template-based localization estimate. Experiments were performed 625 

in a vineyard, and in an orchard in different seasons. Results showed that the method was quite 626 

accurate; lateral mean absolute error (MAE) was less than 3.6% of the row width, and heading 627 

MAE was less than 1.72o. Localization was also robust with respect to gaps in the tree rows, and 628 

the choice of row and number of measurements to build the template. 629 

 630 

One limitation of this method – and actually of all in-row localization methods - is that the error 631 

grows significantly as the robot comes close to the end of the row. This happens because the set 632 

of sensed 3D points that belong to the current row becomes smaller, and the points beyond the 633 

end of the row can have arbitrary spatial distributions, which do not match the distribution of the 634 

points inside the row.  In our approach, this limitation could be overcome to some extent by 635 

using concurrently a front-looking and a rear-looking sensor – with their corresponding template 636 

localization threads -  and fusing their localization outputs based on the estimated confidence 637 

from each one. 638 

 639 



The second limitation is that, in order to build the template, our method needs a set of initial 640 

measurements inside the row, with known ground truth sensor poses with respect to the 641 

centerline, in the absence of GNSS signals. In our experiments, GNSS was used in the vineyard 642 

for evaluation purposes, and a colored rope was used in the orchard, as an easily detectable 643 

physical centerline. Obviously, these methods are not practical for real-world deployment.  One 644 

possibility, could be to setup a small number of permanent, easy-to-sense artificial landmarks in 645 

certain locations inside a few orchard rows, and use them to compute the sensor’s true pose with 646 

respect to the centerline. This could be automated, thus making it easy to adapt/update row-647 

templates when tree geometries/appearance changes because of events such as season changes, 648 

pruning or thinning. 649 

 650 

Overall, the experimental results indicate that the proposed localization method is accurate and 651 

robust, and by re-building the template, the method can adapt to different orchards and dynamic 652 

changes in orchard appearance. Thus, the proposed method presents a generic approach to 653 

localization inside orchard rows, and in principle, inside any agricultural and non-agricultural 654 

structures that exhibit Characteristics #1 and #2; such environments include row-crops, 655 

greenhouse tunnels, corridors, aisles, etc. 656 

 657 
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