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Spatially Augmented Reality (SAR), also known as projection mapping, uses multiple pro-

jectors to illuminate surfaces of arbitrary shape and size and create seamless, large-scale

displays. Traditional SAR assumes that the projection surface is static and rigid. This re-

striction was partially addressed by Dynamic-SAR, where the surface is rigid and of known

shape but can be moved around. However, no prior work has addressed SAR using multiple

projectors on deformable surfaces, where the shape is unknown and constantly changing.

Thus, multi-projector SAR on deformable surfaces introduces several challenges, including

projector-camera calibration on a deformable surface, real-time surface shape recovery and

real-time multi-projector warping and blending. My thesis is the first attempt to develop

a comprehensive framework for achieving seamless multi-projector displays on deformable

surfaces. Furthermore, I will also be presenting its applications in the medical domain to

enable remote surgical guidance by using SAR to illuminate surgical stencils on a physical

surgical site precisely.
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Chapter 1

Introduction

Spatially Augmented Reality (SAR), also known as projection mapping, offers a unique way

to augment the real-world with virtual data, modifying the appearance of physical objects

using digital imagery. Unlike Augmented Reality and Virtual Reality (AR/VR) systems

that require users to wear cumbersome headsets to provide an individual experience, SAR

eliminates the need for any wearables by transforming the visual appearance of surfaces,

providing a shared experience for all viewers. Thus, SAR systems enable novel applications

such as surgical guidance, visualization, design and entertainment. Traditionally, SAR has

been performed on static and rigid surfaces using one or more projectors and cameras, and is

known as static SAR. It requires a one-time calibration step, and is followed by a warp-and-

blend correction step that combines all the projectors into one unified and seamless display.

However, static SAR systems have a major limitation: if the surface moves, the entire system

has to be disrupted for recalibration.

This limitation gave rise to Dynamic SAR (D-SAR) systems, where the surface may be

dynamic. The dynamic nature of the surface can mean the following, mentioned in order of

increasing complexity: (i) the surface may be a rigid body, but can be moved around and
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rotated, (ii) the surface could be deformable, like a sheet of paper, and (iii), the surface can

additionally be stretchable, like an elastic fabric. The goal is to project on such surfaces,

whether rigid, deformable and/or stretchable, such that the projection continuously conforms

to the changing surface shape, appearing as if it is part of the object. Thus, unlike SAR on

static objects, SAR on dynamic and deformable objects presents several challenges, including

accurate and high-speed reconstruction of the surface geometry, high-speed parameterization

of the display surface and low-latency adaptive projection.

To meet the above challenges in realtime, D-SAR systems typically employ RGB-D cameras

to assist with the shape recovery process, which in addition to RGB images, provide realtime

depth of a scene. The depth map from the RGB-D camera is used to recover the surface

shape, which in turn is used to warp the display content accordingly based on the system

calibration parameters. The projector then projects this image on the display surface making

it appear conformal to the surface shape.

In order to achieve scale for a more immersive experience, SAR systems use multiple projec-

tors to illuminate large surfaces. However, using multiple projectors on deformable surfaces

introduce additional challenges, such as realtime surface reconstruction from multiple cam-

eras and realtime multi-projector blending. Below, we list the main challenges for achieving

a realtime, seamless multi-projector display on defomrable surfaces using SAR.

1.1 Main Challenges

1. Accurate Geometric Calibration: Geometric calibration in the context of SAR

systems entails recovering the parameters of all devices i.e. projectors and cameras,

being used. The parameters consist of the intrinsics i.e. focal length, principal point

and distortion coefficients, and the extrinsics i.e. the rotation and translation of the

device with respect to the world origin. Accurate calibration of devices is crucial for
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SAR to achieve a seamless display; errors in calibration manifest as misalignments in

the projector overlapping regions, breaking the seamlessness of the display. Current

SAR calibration methods assume the surface to be static and rigid and therefore,

cannot be used for a deformable surface. Furthermore, these methods may return

calibration parameters that do not match the physical arrangement of the devices even

if they work for that particular 3D arrangement of devices and surface. However,

D-SAR requires the calibration parameters to match the physical arrangement of the

devices otherwise misalignments in the projections become clearly visible when the

surface moves. Therefore, we require a method to accurately calibrate the multi-

projector, multi-camera rig which does not require a rigid and static surface.

2. Real-time Surface Reconstruction: Achieving large-scale displays requires the D-

SAR system to use multiple cameras, each observing only part of the surface. There-

fore, each camera provides the depth of only part of the surface. For a multi-projector

D-SAR system, the depth from all the cameras must be combined in real-time to re-

cover the full surface 3D shape accurately. This 3D shape is then used for geometric

correction of the display content.

3. Real-time Content Warp: The 3D shape recovered and the geometric calibration

from the previous steps is then used for warping the display content for every projector.

Since the surface shape is constantly changing, the warping also has to change and

therefore, must be performed in realtime.

4. Real-time Projector Blending: When multiple projectors overlap, the overlapping

regions becomes much brighter. Even with geometric correction that aligns the con-

tent in the overlapping regions, the viewer will see brightness seams in the overlapping

regions. In order to remove these brightness seams for a seamless display, the over-

lapping projectors are blended by gradually dimming the brightness contribution at

every surface point from each projector. Static SAR systems only need to perform this
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blending once based on the surface shape. However, D-SAR systems require blending

to be performed continuously based on the changing surface shape. This is because

the deforming surface shape changes the shape of the overlapping region of the pro-

jectors. Additionally, the blending algorithm must be fast and efficient for realtime

implementation.

5. Quick and Automated Setup: Manually correcting, warping and blending projec-

tors for a seamless multi-projector display is very cumbersome and time consuming

and can take several days for perfect alignment of projectors in a static SAR system.

Thus, automating the entire SAR pipeline i.e. calibration, warping and blending, has

been one of the main focuses of SAR research. For a dynamic SAR system, manual cor-

rection, warp and blend is not possible since the surface shape is changing in realtime.

We want a system that completely takes away the need for any manual intervention

at any step in the D-SAR system and does not require a trained user to set up the

display. Ideally, a lay user should be able to casually place the projectors and cameras

and with the push of a button, be able to calibrate, warp and blend a multi-projector

display on a deformable surface.

In this thesis, we address all the above challenges to achieve a seamless, realtime multi-

projector display on deformable surfaces. In Chapter-2, we explain a method for achieving

SAR on a deformable surface using a single projector-camera pair. In Chapter-3, we address

the problem of geometric calibration for D-SAR by proposing a counterintuitive method that

leverages the dynamic nature of the surface to calibrate a single projector-camera pair.

Depth cameras used in D-SAR systems show a lot of noise in the depth map. This manifests

as a jittery projection which is unpleasant to view and can leave viewers fatigued. Further-

more, any objects that may occlude the projection surface cause the display to glitch. In

Chapter-4, we discuss solutions for both these problems to achieve a practical and deployable

D-SAR system.
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In Chapter-5, we extend the methods in the previous chapters and propose a scalable method

to achieve D-SAR on deformable surfaces using multiple projectors. This includes accurate

geometric calibration of a multi-camera, multi-projector system, a realtime surface recon-

struction method and a realtime multi-projector blending method.

Finally, in Chapter-6, we present an application of our research in D-SAR for remote surgical

guidance using projectors to illuminate surgical stencils on patients.
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Chapter 2

Single PDC Deformable-SAR

In this chapter, we propose a general framework for efficiently performing dynamic pro-

jection mapping of deformable, stretchable materials that is also backward compatible to

non-deformable rigid materials using a single calibrated PDC, or Projector-Depth Camera

pair. Specifically, the main contributions in this chapter are as follows:

1. Surface geometry representation: We use rational B-spline patches to model the

projection surface without explicitly modeling the deformation. This allows for in-

tegrating the modeling and updating of surface geometry, as well as warping of the

projection image in a computationally efficient representation that lends itself for effi-

cient GPU-based parallelization.

2. Boundary-based tracking: Distortions in the middle of deformable materials are less

perceptible than at the boundaries [23]. We leverage this to track only the boundary of

the material using simple markers (e.g. black dots) or depth-features with no explicit

markers leading to projection mapping with or without markers.
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3. Mapping stretchable materials: Using B-spline patch-based representations enable

constrained projection mapping (e.g. length preserving mapping) to allow realistic

mapping on stretchable materials.

4. Using consumer-grade hardware: Our system uses a consumer-grade time-of-flight

(ToF) based depth camera (e.g. Azure Kinect, Pico Flexx) to achieve real-time map-

ping of the projected image on the deformable material such that it appears to be

printed on the object. Further, we show that the computation speed is limited by the

capture time, demonstrating that our method will be faster with higher speed cameras

and projectors.

2.1 Related Work

Projection mapping deals with altering appearances of 3D objects by projecting light on them

using projectors, enabling large-scale displays that can be used to visualize high resolution

content [37, 38, 132]. A large body of literature exists on projection mapping on static objects

[118, 90, 101, 102, 99, 88, 11, 49, 93, 89, 50]. More recently, dynamic projection mapping

(DPM), that allows mapping projected light on moving objects, has received much attention

[18, 114, 110, 77, 139, 111, 63, 78, 72, 71, 2, 58, 53, 128, 94, 27, 109, 62, 98, 5, 113, 87]. Prior

work on dynamic projection mapping can be categorized based on the following: (a) rigid

vs. deformable materials, (b) projection on surfaces vs. objects, (c) display on textured

(e.g. using markers or patterns) vs. texture-less materials, and (d) using consumer-grade

components vs. specialized hardware like a coaxial projector-camera setup.
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2.1.1 Rigid Surfaces

When considering projection mapping on dynamic rigid bodies [114, 110, 139, 63, 71, 2,

53, 128, 94, 27, 109, 62], a large body of literature focuses only on rigid, planar surfaces.

[71, 53, 128] use a specialized high-speed projector and camera in a co-axial manner to map

the planar surface.

Texture-less surfaces: While [71] uses a high-speed color camera, [128] uses a high-speed

depth camera and adjusts the focus based on the captured depth to keep the image focused

on the plane as it moves back and forth.

Textured surfaces: [53] uses specialized digital micromirror device (DMD) hardware to

project animated content onto textured, planar surfaces. The DMD allows projection of

special patterns in an imperceptible way between projection frames to recover the four corners

of the planar display and track them.

2.1.2 Rigid Objects

Texture-less objects: Projection mapping on moving, rigid, non-planar objects requires

computing the orientation and geometry of the objects, also known as shape and pose recov-

ery, in addition to tracking the moving object. [114] uses an expensive, high-speed coaxial

projector-camera pair to bypass shape recovery and performs projection mapping without

any perceptible latency by segmenting the dynamic object from a retro-reflective background.

[139, 2, 94, 27] use dynamic objects of known shapes while proposing different tracking

methods using different kinds of consumer-grade components. [27] detects edges of known

shapes and tracks them in real-time using a single IR camera to recover the object pose. [94]

uses a sparse ICP registration technique to register 2D feature points detected by a standard

RGB camera with a known 3D shape to track the object. However, the latency is not low

enough to allow fast movement of the 3D object.
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[110, 63, 58, 109, 62] perform dynamic projection mapping on rigid 3D objects using multiple

projectors. [110, 63] use a tightly calibrated system of 2-3 projectors with a single RGB-D

camera to map a dynamic, complex 3D object whose shape has been recovered accurately

apriori. Using a light-transport based optimization, key features of the point cloud captured

by the RGB-D camera are detected and matched to the high-quality, known 3D shape.

Though this method handles dynamic objects, it has high latency and therefore, the object

can only move slowly. This system is extended in [109] to handle stray illumination due to

geometric features and inter-reflections in a content-specific manner. Finally, [58] removes

the requirement of tight calibration of the devices apriori by auto-calibrating devices while

mapping projected images on the dynamic object.

Textured objects: [2] embeds 3D features as markers in the object during 3D printing

that provide the features to be tracked in real-time. These embedded markers are made

imperceptible during tracking via radiometric compensation.

In summary, all works addressing rigid dynamic objects assume a known, accurate 3D shape

and cannot be used to project on dynamic, deformable and stretchable materials.

2.1.3 Deformable Surfaces

Texture-less surfaces: [18] embeds retro-reflective markers in a surface that are only visible

to an IR camera when an IR light source is shined onto it. They use the marker positions

to determine the shape to project onto the surface. Similarly, [84, 85] paint markers with

IR ink and embed them in various gel-like substances. These markers are visible to an IR

camera under IR lighting and are used to determine the deformation of the gel to perform

projection mapping. Unlike [18], [84, 85] are able to handle interactive movement and update

the projection in real-time. However, the gel-like substances are small and lie on a flat surface,

restricting projection mapping to only those regions.
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[118] presents a scalable system that can accommodate any number of projectors and cameras

and can handle surfaces with any 3D shape without any prior system calibration. Therefore,

the system recalibrates with deformations. However, this system can only achieve fast non-

real-time recalibration and therefore cannot handle dynamic objects.

[87, 54] use an image of a deformable fabric captured by an RGB camera and use prior

techniques [10, 8] to process the image properties (e.g. optical flow) to create an enhanced

image that alter the perceived motion or stiffness of the fabric. However, these methods

work with precise known motions of the deformable surfaces and do not attempt to capture

either the motion or the actual geometry of the deformable surface.

[113] addresses deformable surfaces using a projector and RGB-D camera pair. They model

the surface deformations (rather than shape) and recover the deformation parameters from

the captured point cloud using GPU-based optimizations. However, the deformation model

used does not allow stretchable surfaces and the optimizations cannot achieve real-time up-

dates to accommodate fast moving materials.

Textured surfaces: [77, 78] achieve projection mapping on dynamic, deformable and

stretchable materials using a specialized, tightly calibrated, expensive, high-frame rate (∼500fps)

projector-IR camera system that tracks dot cluster markers printed in the material with in-

visible IR ink. This results in conformal projection with imperceptible lag that can handle

partial occlusion of the surface as well.

2.1.4 Deformable Objects

Texture-less objects: [72] uses a specialized, high-speed projector along with three high

speed cameras, all arranged in a co-axial manner using mirrors so that they share the same

center of projection. Three NIR light sources of different bands are used to illuminate the

object. The three cameras are equipped with color filters to sense each of these three light
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Figure 2.1: Various surfaces that can be represented by a cubic B-Spline patch, including
(bottom-row) surfaces stretched down the middle, at the upper two corners and outward
from the center.

sources of different bands. The light sources and cameras together use photometric stereo to

detect the normals at every pixel location in the camera space. These normals are then used

to compute the illumination augmentation required to change the appearance of the object

to that of a material with different normals. Due to co-axial arrangements of the projector-

camera setup, the correction can be achieved in real time in the camera space irrespective

of the dynamic object that is being mapped – either rigid, deformable or fluids – without

perceptible lag.

[111, 5] specifically address faces. [5] uses a specialized co-axial fast projector-camera system

along with LED-based lighting to track facial features in IR. The tracked 2D facial features

are used to compute the deformation parameters of the 2D mesh of a face. [111] uses multiple

projectors and an RGB-D camera in a tightly calibrated system to accurately estimate the

3D mesh of a face. During projection mapping, they update the deformation parameters of

the mesh in real-time to register it with the depth camera output. Use of fast cameras in [5]

allows imperceptible lag while [111] achieves almost real-time performance with low latency.

[98] uses a Kinect in a specific retail dressing room kind of setting to segment multiple users

using depth and projects different T-shirt designs on each person. However, the accuracy
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of projection is extremely low and therefore, the projection does not stick to the objects

precisely and flickers continuously.

Prior work on tracking deformable objects in real-time using an RGB-D camera [81, 64, 79,

84] cannot be used with dynamic projection mapping since the projection on the surface

interferes with the tracking. Therefore, IR camera-based tracking is typically used for dy-

namic deformable objects. Thus, most works that perform dynamic projection mapping on

deformable, texture-less objects either use specialized hardware [72, 5] or are limited to a

specific class of deformable objects (e.g. faces) as in [111].

2.1.5 Comparison to Prior Work

The work in this chapter is closest to [113] but instead of modeling deformations, we model

the surface geometry using a rational B-spline patch (see Figure 2.1). We use rational

B-spline patches because they (i) provide a framework to represent all kinds of smooth,

deformable surfaces, including stretchable elastics, (ii) offer a convenient way to parameterize

the surface, (iii) lend themselves to accurate computation on GPU for real-time performance,

and (iv) provide the flexibility to change the surface representation (e.g. linear to quadratic

etc.) at run-time without any changes to the system.

Additionally, unlike [114, 77, 72, 71, 53, 5], we don’t need specialized hardware such as

co-axial projector-camera pairs, or high-speed, expensive equipment. Instead, we achieve

real-time performance using consumer-grade hardware. While consumer-grade hardware is

more accessible and affordable, they provide noisier data at lower spatial resolutions and

frame-rates. This puts further demands on the system, which must perform projection

mapping faster than the hardware frame-rate to avoid lag, from lower resolution data while

being robust to noise.
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Despite these limitations of consumer-grade hardware, our system is able to achieve the

above objectives with a standard ToF depth camera that is augmented with a registered

IR camera calibrated together with a projector. Using an IR-Depth camera enables us to

track simple markers (e.g. black dots) leading to a marker-based system, or to track depth

features leading to a marker-less system. Like [27], we use boundary-based features (e.g.

edges or corners), but to determine the deformable, stretchable surface geometry rather

than deformation as in [43, 104]. Therefore, we present the first general framework for

projection mapping of deformable materials, including stretchable elastics, using a single

projector-camera system in real-time, operating at speeds up to 45fps. Since we depend on

per frame surface representation using B-spline patches, we can handle rigid materials as

well.

2.2 System Overview

The goal of our projection mapping system is to compute a texture-mapping function Ω(q) =

p that maps a texture coordinate q ∈ R2 of a target image IT to a texture coordinate p ∈ R2

of a source image IS such that IT conforms to the shape of the projection surface when it

gets projected:

IT (q) = IS(Ω(q)). (2.1)

In this section, we explain how we compute Ω(·) by tracking the boundaries of a deformable,

stretchable display surface with or without markers, in real-time. The complete pipeline of

our method is shown in Figure 6.2.
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Figure 2.2: Pipeline of our system, showing the marker-based and marker-less algorithms.

2.2.1 System Hardware

Our dynamic projection mapping system consists of a projector, an IR camera and a depth

camera (Figure 2.3) that have been geometrically calibrated for their intrinsic and extrinsic

parameters using the software implementation of [76, 75]. We assume our projection surface

to be a smooth, deformable, elastic rectangle that is visible to the camera without occlusion.

Each frame of the IR-depth camera is used to track feature points on the boundary of the

deformable projection surface. These features can be explicitly marked using color (e.g. black

dots) or by tracking depth features at the boundary of the projection surface. The former

results in a system with visible boundary markers (Section 2.2.3), while the latter yields

a marker-less system (Section 2.2.5). These features are used to compute the parameters

of a rational B-spline patch representing the deformable surface shape. The fitted patch is

then used to determine the texture-mapping function Ω(·). Finally, the projection image is
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Table 2.1: Important notation used for B-spline patch in Chapter-2

Variable Definition
H Number of B-spline patch control points
T B-spline knot vector

(Mu,Mv) Number of markers in the horizontal and vertical directions respectively
(n,m) Degree of B-spline patch
(u, v) B-spline patch parameters
Q̄(u, v) 3D homogeneous point on the B-spline patch at (u, v)
q̄(u, v) 2D homogeneous point corresponding to Q̄(u, v)
Q(u, v) 3D point on the B-spline patch at (u, v)
q(u, v) 2D projector pixel corresponding to Q(u, v)
N (u, v) B-spline patch basis function evaluated at (u, v)

C R4×H matrix of 3D homogeneous B-spline patch control points
C̄p R3×H matrix of 2D homogeneous B-spline patch control points

warped accordingly and projected onto the display surface in a manner that conforms to the

deformable shape.

2.2.2 B-spline Patch Based Model

A rational B-spline patch of degree (n,m) in d dimensions is defined in parameters (u, v)

by a set of H = (r + 1) × (s + 1) control points C0,0, C0,1, . . . , C(r,s−1), C(r,s) and weights

W0,0,W0,1, . . . ,W(r,s−1),W(r,s) as:

Q(u, v) =
r∑

i=0

s∑
j=0

Pi,j(u, v)Ci,j,

Pi,j(u, v) =
Ni,n(u)Nj,m(v)Wi,j∑r

k=0

∑s
l=0Nk,n(u)Nl,m(v)Wk,l

,

(2.2)

where Wi,j ∈ R, Ci,j, Q(u, v) ∈ Rd. Ni,n(u) is the B-spline basis function of degree n. It is

defined by a non-decreasing knot vector T = {t0, t1, ..., th} as:
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Figure 2.3: Our setup: a geometrically calibrated projector (blue) and IR/Depth camera
(red) pair along with the display surface (green).

Ni,0(u) =


1, ti ≤ u < ti+1

0, otherwise

,

Ni,n(u) =
u− ti
ti+n − ti

Ni,n−1(u) + . . .

ti+n+1 − u

ti+n+1 − ti+1

Ni+1,n−1(u).

(2.3)

Note that the number of control points r, the B-spline degree n and the size of the knot

vector h must satisfy the identity h = r+n+1 for both directions (u, v). Thus, by changing

the B-spline degree and/or the size of the knot vector, one can change the number of control

points of the B-spline.

In our work, we model our projection surface as an open, uniform, rational B-spline patch

of degree (n,m). In an open uniform B-spline of degree n, the first n+ 1 knots and the last

n + 1 knots are equal, while the remaining, internal knots are non-decreasing and equally

spaced. In a non-rational B-spline, the weights of each control point are the same, limiting
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their ability to represent more complex shapes such as circles, conics and tori. These shapes

can be accurately modeled with a rational B-spline, where the weights may not be equal.

Furthermore, rational B-splines produce correct results under projective transformation,

a property we leverage when computing Ω(·) to render the image for projection. Thus,

a B-spline patch can be used to represent various shapes as shown in Figure-2.1 and is

parameterized by (u, v) in the horizontal and vertical directions respectively (Figure-2.4). In

matrix form, a rational B-spline patch in 3D can be expressed as:

Q̄(u, v) =



X(u, v) W (u, v)

Y (u, v) W (u, v)

Z(u, v) W (u, v)

W (u, v)


= C N(u, v)

C̄ =



X00W00 X01W01 . . . XrsWrs

Y00W00 Y01W01 . . . YrsWrs

Z00W00 Z01W01 . . . ZrsWrs

W00 W01 . . . Wrs


∈ R4×H ,

N (u, v) =



N0,n(u)N0,m(v)

N0,n(u)N1,m(v)

...

Nr,n(u)Ns,m(v)


∈ RH×1,

(2.4)

where H = (r+ 1)× (s+ 1). Here,

[
XijWij YijWij ZijWij Wij

]
is a 3D B-spline control

point in homogeneous coordinates, and Q(u, v) =

[
X(u, v) Y (u, v) Z(u, v)

]
is a 3D point

on the B-spline patch.
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Representing the display surface using a B-spline patch lets us express Ω(·) as a function of

the (u, v) parameters. Using the control points C̄, we can compute Q(u, v) for any (u, v)

parameters. Since our system is geometrically calibrated, we can project Q(u, v) onto the

projector image plane to determine the 2D projector pixel q(u, v). This creates a mapping

between the projector pixel q(u, v) and the display surface parameters (u, v):

Ω(q(u, v)) = (u, v), (2.5)

i.e. every pixel q(u, v) in Ω(·) maps to a display surface parameter (u, v). Substituting

Equation 2.5 into Equation 2.1, we get:

IT (q(u, v)) = IS(u, v). (2.6)

Thus, our goal is to compute q(u, v) for any (u, v) display parameter. We achieve this by

computing the control points of the B-spline patch that represent the display surface using

a system of linear equations. The key challenge of our work is: (i) tracking the deformable,

stretchable surface, (ii) determining the (u, v) parameters of 3D points on the surface, (iii)

setting up a system of linear equations using these 3D points, (iv) solving the system to

compute the control points, (v) using the control points to compute q(u, v), and (vi) perform

texture-mapping for projection, all in real-time.

A method to track stretchable display surfaces using markers and determining the (u, v)

parameters for the tracked points is detailed Section 2.2.3, while a method for markerless

tracking is elaborated in Section 2.2.5. Setting up the system of linear equations and solving it
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Figure 2.4: Illustration of a deformable surface with dots as markers. The iso-parametric
boundary curves at u = 0 (top), u = 1 (bottom), v = 0 (left) and v = 1 (right) are shown
along with the boundary labels for each marker (Ti,Bi,Lj,Rj). The (u, v) parameterization
of the top-left corner is (0, 0) and bottom-right corner is (1, 1).

to compute the control points of the B-spline patch is explained in Section 2.2.4. Computing

q(u, v) and performing texture-mapping is explained in Section 2.2.6.

2.2.3 Marker-based Tracking of Stretchable Surface

Marker Placement

Our projection surface is a smooth rectangle made of a diffuse, deformable and elastic mate-

rial. We define the boundaries of our surface with markers such that: (i) four markers specify

the four corners of this rectangle, (ii) a fixed number of markers, known apriori, are placed

equally spaced along each edge, (iii) including the corners, the top and bottom edges have

equal number of markersMu, and the left and right edges have equal number of markersMv.

We denote markers on the top and bottom edges with Ti and Bi, 1 ≤ i ≤ Mu and markers
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on the left and right edges with Lj and Rj, 1 ≤ j ≤ Mv respectively. Figure-2.4 shows an

example of our surface, where three markers are placed along each edge in addition to the

corner markers. Note that the shape recovery does not depend on the surface being white

and will therefore work for textured surfaces as well. However, this work does not focus on

photometric corrections for textured surfaces. Therefore, any flat colored surface will yield

acceptable projections.

Since the markers Ti,Bi,Lj and Rj are equally spaced on each edge, we can pre-compute

their (u, v) parameters as (ui, 0), (ui, 1), (0, vj) and (1, vj) respectively, where ui =
i−1

Mu−1
, vj =

j−1
Mv−1

. This arrangement gives us clear matches between the boundary markers and their

(u, v) parameters on the B-spline patch.

Marker Detection and Tracking

The markers are tracked every frame and used to compute the 3-D control points of the

B-spline patch. We use IR imagery in order to avoid interference caused by the visible

projection. The markers, being black, are usually well-visible in the IR camera against the

surface. In the first frame, we use a simple blob detector on the IR image to detect the

markers. In subsequent frames, each detected marker is tracked using KLT feature tracking

[67, 120, 107]. This results in fast and robust tracking of the markers. If tracking fails, we

retract back to marker detection and repeat the procedure.

Assigning (u, v) Parameters to Markers

The detection and tracking step provides marker locations in the camera image space. How-

ever, this is not sufficient to establish the (u, v) parameters for each marker. This objective

is achieved in the marker (u, v) assignment step, detailed as follows.
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Sort by Angle: Let IIR denote the IR-camera image and IPC denote the point cloud image

from the depth camera. Let Q denote the set of boundary markers and Qi = {qi, Qi} denote

i-th marker, where qi ∈ R2 is the 2D location of the marker in IIR and Qi = IPC(qi) ∈ R3

is the corresponding 3D point in the point cloud image. We compute the centroid of all the

detected markers, Qavg, as:

Qavg = {qavg, Qavg} =
1

|Q|

|Q|∑
i=1

{qi, Qi} (2.7)

The first step is to sort the detected markers by the angle along the (u, v) surface, denoted by

θ, from a reference vector connecting Qavg to Q1. Note that the closest approximation of the

(u, v) space is available in the 2D IR camera space. Despite perspective projection, the angle

of the (u, v) coordinate of a marker from the reference vector will increase monotonically in

the IR camera space as we move clockwise from one marker to the next. This invariance can

be violated when using 3D coordinates (illustrated in Figure 2.5). Therefore, we perform

this sorting by angle in the 2-D IR camera space.

Labeling Corner and Edge Points: Sorting by θ provides the ordering of the markers

around the surface, with which we can determine the adjacent markers for each marker.

Therefore, if we can assign the (u, v) parameters of any one marker correctly, we can de-

termine the parameters for all the remaining ones. So first, we identify the marker that

corresponds to the top-left corner and assign (u, v) = (0, 0) to it. We compute, for every

marker Qi, the angle ϕi in 3D between the edges connecting it to its two adjacent neighbors

Qi−1 and Qi+1 (Figure 2.5):
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Figure 2.5: Determining the top-left corner for a surface that is folded inward. Qavg is marked
in green. Initially, the detections are not ordered. Note that θi < θj when using 2D image
coordinates. However, using 3D coordinates, the angle θ

′
j between the two vectors spans

the plane connecting them rather than along the (u, v) surface. This causes θ
′
j < θi which

is incorrect. While 2D image coordinates work better than 3D coordinates when relative
ordering of angles is required, 3D coordinates are used to label a corner such as Qk (blue
marker, bottom-left) for which ϕk ≈ 90◦, which may not be recognizable in 2D camera image
space due to perspective distortion.

ϕi = Γ(α⃗i, β⃗i),

α⃗i = Qi−1 −Qi,

β⃗i = Qi+1 −Qi,

(2.8)

where Γ(α⃗, β⃗) computes the angle between vectors α⃗, β⃗.

By construction, corner points make an angle close to 90° with their neighbors and edge

points make an angle close to 180°, resulting in two clusters of points where the number of

points in the cluster ϕi ≈ 90◦ would be four, corresponding to the four corners of the display.

However, due to surface deformations, we may not get exactly four corners. Theoretically, if
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Figure 2.6: Estimating interior points of the surface by normal interpolation. Markers used
to compute the plane normals are labeled. The green region on the surface is the area
scanned by the plane as it is interpolated between t̂32 and b̂32, while ê2,2 is shown in solid

green. The red region is the area scanned by the plane as it is interpolated between l̂21 and

r̂21, while f̂3,1 is shown in solid red. The ray k⃗32 generated by intersecting ê2,2 and f̂3,1 is used
to estimate the interior point Q32 (blue-yellow point).

the stretching distortion is extreme at a corner, the corner marker can have an angle close to

180° between its horizontal and vertical edge neighbors leading to false negatives, and if the

folding distortion is extreme, then an edge marker can have close to 90° with its neighbors

along the same edge leading to false positives. We note that the stretching distortion is

unrealistic and hence we can ass ume that there are no false negatives. With respect to

the folding distortion and hence false positives, we can eliminate false positives and find the

correct corners using the invariance that there are alternately (Mu−2) and (Mv−2) markers

between the corner markers.

Note that any corner can be considered the top-left corner (with (u, v) = (0, 0)) as long

as it is tracked in subsequent frames and other corners are labeled correctly with respect

to the top-left corner. Let the four corners be Ck, 1 ≤ k ≤ 4. To determine the top-left

corner, we approximate the distance along the surface between Ck and its adjacent clockwise
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corner Ck+1 by summing the Euclidean distances between neighboring markers from Ck to

Ck+1. This results in two corners with a larger distance (the longer edges of the display)

compared to the other two (the shorter edges of the display). From the corners with the two

largest distances, the corner closest to the camera origin is labeled as the top-left corner and

(u, v) = (0, 0) is assigned to that marker. Then, the (u, v) parameters for all markers are

assigned using the cyclic order of markers computed earlier.

All markers are labeled once during the initialization phase. In subsequent frames, each

marker and its label is tracked, allowing our projection display to maintain correct orientation

even when the surface is rotated upside down.

Estimating Interior Points

Boundary markers and their (u, v) assignments are not enough to compute the B-spline patch.

We need additional 3D points and their (u, v) parameters in the interior of the projection

surface where no markers exist. Therefore, we estimate an additional (Mu − 2) × (Mv − 2)

interior 3D points and assign their (u, v) parameters at ( i−1
Mu−1

, j−1
Mv−1

), where 2 ≤ i ≤ (Mu −

1), 2 ≤ j ≤ (Mv − 1).

In order to estimate these 3D points, we assume a piece-wise linear representation of the

boundary curves, which are also iso-parametric (see Figure-2.4). Let ti, bi, lj, rj ∈ R2 denote

the 2D coordinates of these markers in IR-camera space, and Ti, Bi, Lj, Rj ∈ R3 denote

their 3D coordinates. Let the markers along each edge be denoted by Ti = {ti, Ti},Bi =

{bi, Bi},Lj = {lj, Lj} and Rj = {rj, Rj}. We compute the normals of the planes passing

through every adjacent pair of these markers and the camera center of projection:
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t̂i+1
i = ζ(Ti, Ti+1), l̂j+1

j = ζ(Lj, Lj+1),

b̂i+1
i = ζ(Bi, Bi+1), r̂j+1

j = ζ(Rj, Rj+1),

1 ≤ i ≤ (Mu − 1), 1 ≤ j ≤ (Mv − 1),

(2.9)

where ζ(K1, K2) computes the normal of the plane passing through 3D points K1, K2 and

the camera center of projection. This leads to (Mu − 1) normals for each of the top and

bottom curves, and (Mv − 1) normals for the left and right curves. Note that while the

boundary markers are tracked every frame, the interior points and their (u, v) parameters

are estimated for each frame.

We interpolate between each t̂i+1
i and b̂i+1

i to estimate the normals êi,j for iso-parametric

curves vj =
j−1

Mv−1
:

êi,j = t̂i+1
i (1− vj) + b̂i+1

i vj. (2.10)

In Figure-2.6, the green region shows the area scanned by the plane as its normal is in-

terpolated between t̂32 and b̂32, while the interpolated plane ê2,2 at v2 = 1
3
is shown in solid

green. Similarly, we interpolate between l̂j+1
j and r̂j+1

j to estimate the normals f̂i,j that pass

through ui =
i−1

Mu−1
:

f̂i,j = l̂j+1
j (1− ui) + r̂j+1

j ui. (2.11)
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(a) (b) (c)

Figure 2.7: Distance-based marker-less tracking. (a) The depth map. (b) The segmented
point cloud along with the results of corner detection (the top-left corner is highlighted in
red). (c) The boundary point cloud IB. T2 is the point on the top edge that is at a distance
1
3
ΨT from T1 (red circle) and 2

3
ΨT from T4 (green circle).

The red region in Figure-2.6 shows the area scanned by the plane as its normal is interpolated

between l̂21 and r̂21, while the interpolated plane f̂3,1 at u3 =
2
3
is shown in solid red.

These interpolated normals are used to estimate the interior 3D points at (ui, vj) for 2 ≤

i ≤ (Mu − 1), 2 ≤ j ≤ (Mv − 1). We compute the ray k⃗ij by intersecting the interpolated

horizontal and vertical planes ê(i−1,j) and f̂(i,j−1). Figure-2.6 shows k⃗32, the intersection of

ê2,2 and f̂3,1 as a black line. Since k⃗ij passes through the camera center of projection (COP),

we find the 2D coordinate qij by projecting it onto the IR camera image plane. The 3D

point at (ui, vj) can be determined from the depth camera as Qij = IPC(qij). This step is

performed in every iteration.

Note that whenever a stretch is applied to the display surface, the distances between markers

change in 3D but the distances in (u, v)-space do not. This allows a B-spline patch to model

stretches to the surface.
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2.2.4 Computing Control Points

Once we have determined 3D points on the surface and their (u, v) assignments, we can

compute the control points by solving the following system of linear equations for the control

points C̄:

Q̄ = C̄A,

Q̄ =



X(u1, v1) X(u2, v2) . . . X(uF , vF )

Y (u1, v1) Y (u2, v2) . . . Y (uF , vF )

Z(u1, v1) Z(u2, v2) . . . Z(uF , vF )

1 1 . . . 1


,

C̄ =



X00 X01 . . . Xrs

Y00 Y01 . . . Yrs

Z00 Z01 . . . Zrs

1 1 . . . 1


,

A =

[
N (u1, v1) N (u2, v2) . . . N (uF , vF )

]
,

(2.12)

where F is the number of (u, v) assignments, Q̄ ∈ R4×F , C̄ ∈ R4×H , N (u, v) ∈ RH×1 and

A ∈ RH×F . Note that all the weights Wij are set to 1, making this a non-rational B-spline.

In order to solve Eq-2.12, the condition F ≥ H must be met. While F = (Mu×Mv), depends

on the number of markers, the number of control points, H, depends on the B-spline degree

and the size of the knot vector (see Sec-2.2.2). By changing these two parameters, we can

change the number of control points and use different B-spline models even if the number of

markers remains the same (see Sec-2.2.6 and Figure-2.15).
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2.2.5 Marker-less Tracking of Stretchable Surface

In our display, the distance between adjacent markers is the same when no stretch is applied.

However, in the absence of explicit markers, the geodesic distance between 3D points can be

used to assign the (u, v) parameters. A geodesic is a curve representing the shortest path

between two points on a surface and the geodesic distance is the length of that curve. In

this section, we outline how we use this concept to create projection displays for marker-less,

deformable and stretchable surfaces.

In each frame, we segment out the display surface from the point cloud image assuming

there is no occlusion of the surface. This provides a mask that corresponds to the segmented

surface (Figure 2.7b). We extract the boundary mask by taking the difference of the surface

segmentation mask with its morphological erosion and compute the boundary point cloud

IB (highlighted in blue in Figure 2.7c).

While the markers provided explicit brightness features in our marked display, for a marker-

less display, the only implicit features are the four corners of the display. We find them using

the Harris corner detector [26] on the segmented mask and track them using the KLT feature

tracker. Then, we assign the (u, v) parameters to these corners as outlined in Section 2.2.3.

Distance-based Edge Marker Estimation

Recall that the parameters for a marker on the top edge, denoted by Ti, is (ui, 0), where

ui =
i−1

Mu−1
. For the marker-less display, the goal is to find all Tis, even though they are not

explicitly marked on the surface. From the corner detection step, we already have T1 and

TMu . Let ΨT denote the length of the top edge. Other Tis are found such that (i) they

are along the top edge, (ii) their geodesic distance from T1 is uiΨT , and (iii) their geodesic

distance from TMu is (1− ui)ΨT .
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Let G denote the set of 3D points (from the point cloud image) on the geodesic between

two points G1 and GMG
, where MG is the number of points in G. Let Gi denote the i-th 3D

point on the geodesic. The geodesic distance, σ(G) of G is:

σ(G) =

MG∑
i=2

||Gi −Gi−1|| (2.13)

However, computing σ(G) is a time consuming step that can not exploit GPU-based paral-

lelism. This increases the end-to-end latency of our system and causes a visible lag during

projection mapping. To overcome this, we approximate the geodesic distance by comput-

ing the Euclidean distance between points on the surface instead, which can be computed

rapidly on the GPU. The Euclidean distance ψ(G) is:

ψ(G) = ||GMG
−G1|| (2.14)

Figure 2.7c shows the point T2 on the top edge at a Euclidean distance 1
3
ΨT from T1 (the

top-left corner) and 2
3
ΨT from T4 (top-right corner).

Searching for 3D points in the boundary point cloud image IB that are at specific Euclidean

distances from the edge corners to assign their (u, v) parameters is slow and cannot exploit

GPU-based parallelism. Instead, we compute distance maps that can be efficiently computed

on the GPU. Let STL, STR, SBL, SBR denote these distance maps containing the Euclidean

distance of each 3D point in IB from the corners top-left, top-right, bottom-left and bottom-

right respectively:
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STL = ψ(IB − T1), STR = ψ(IB − TMu),

SBL = ψ(IB −B1), SBR = ψ(IB −BMu).

(2.15)

Let ΨT ,ΨL,ΨB,ΨR denote the lengths of the top, left, bottom and right edges of the display

surface. Finally, let ωT (ui), ωB(ui) denote the cost maps of assigning parameter ui to each

3D point along the top and bottom edges respectively and ωL(vj), ωR(vj) denote the cost

maps of assigning parameter vj to each 3D point along the left and right edges respectively,

where vj =
j−1

Mv−1
. We compute these cost maps as:

ωT (ui) = |STL − uiΨT |+ |STR − (1− ui)ΨT |,

ωB(ui) = |SBL − uiΨB|+ |SBR − (1− ui)ΨB|,

ωL(vj) = |STL − vjΨL|+ |SBL − (1− vj)ΨL|,

ωR(vj) = |STR − vjΨR|+ |SBR − (1− vj)ΨR|.

(2.16)

The markers Ti,Bi,Lj and Rj are the points with the minimum cost and are computed as:

ti = argmin(ωT (ui)), Ti = IPC(ti),

bi = argmin(ωB(ui)), Bi = IPC(bi),

lj = argmin(ωL(vj)), Lj = IPC(lj),

rj = argmin(ωR(vj)), Rj = IPC(rj).

(2.17)
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In Figure 2.7c, T2 is the 3D point where ωT (u2) is the least. Note that the cost maps, and

the resulting edge markers computed using Euclidean distance will not be as accurate than

when using geodesic distance. However, this difference is not visually perceptible in the

final projected image. Instead, the lag caused due to computing the geodesic distance is

significantly more perceptible. Hence, we trade off accuracy of the edge markers for faster

computation time.

Thus, the 3D points of markers along all four edges are computed and the appropriate (u, v)

parameters for each of these markers is assigned. The remaining 3D points i.e. those interior

to the surface, are determined by the same method mentioned in Section 2.2.3. Control

points are computed as described in Section 2.2.4.

2.2.6 Projection Mapping

To achieve projection mapping, we need to compute the projector pixel q(u, v) and warp

the projection image according to Equation 2.6. We sample the display surface densely by

evaluating the B-spline patch at different (u, v) coordinates using the control points C̄ to

get Q̄(u, v), a 3D homogeneous point on the B-spline patch:

Q̄(u, v) = C N (u, v) (2.18)

Then, this 3D homogeneous point is projected onto the 2D projector image plane using the

projection matrixMp ∈ R3×4 to get q̄(u, v), the 2D homogeneous projector pixel coordinates:

q̄(u, v) =


x(u, v) w(u, v)

y(u, v) w(u, v)

w(u, v)

 = Mp Q̄(u, v) (2.19)
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However, applying a projective transformation to a large number of 3D points as in Equation-

2.19 is a time-consuming operation, increasing the end-to-end latency of our system. This is

where we exploit the properties of rational B-splines to improve the efficiency of our system.

Instead of applying a projective transformation to the 3D homogeneous points Q̄(u, v), we

apply the same transformation to the control points C̄ to get C̄p, the 2D homogeneous

control points. Substituting Q̄(u, v) from Equation-2.18 into Equation-2.19:

q̄(u, v) = Mp C̄ N (u, v)

q̄(u, v) = C̄p N (u, v)

C̄p =


x00w00 x01w01 . . . xrswrs

y00w00 y01w01 . . . yrswrs

w00 w01 . . . wrs

 ∈ R3×H

(2.20)

The 2D projector pixel is q(u, v) = [x(u, v) y(u, v)]. Then, we warp the projection image IS

according to Equation-2.6 to get IT , which gets projected.

Improving B-spline Approximation

Since the display surface is deformable, it is possible that a B-spline patch with fixed param-

eters i.e. the degree and number of control points, may not be able to represent it accurately.

Thus, we designed our system to automatically change the B-spline parameters if the current

model does not accurately register the display surface geometry. We do this by measuring the

registration error between the 3D display surface as measured by the depth camera and its

B-spline representation using the control points computed in Section 2.2.4 at different (u, v)

values. If the error is beyond a certain threshold, we increase the degree and/or number

of control points. It is important to note that the maximum degree and number of control
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(a) Before interpolation

(b) After interpolation

Figure 2.8: Performing length-preserving mapping. (a) A stretch away from the center
causes λ2 ̸= λ3 ̸= λ4. (b) By interpolating T2, T3 along the line {T2, T3} to T ′

2, T
′
3 respectively,

λ′2 ≈ λ′3 ≈ λ′4 ≈ ΛT

3
, resulting in length-preserving mapping.

points of the B-spline patch is limited by the number of markers on each edge. Figure-2.15

shows projection mapping onto a deformable surface with different B-spline models: planar,

quadratic, piece-wise planar and cubic.

Free-form Mapping on Stretchable Surfaces

Typically, the stretch applied to elastic surfaces is isometric i.e. the stretch is applied evenly.

This increases the distances between adjacent markers along an edge evenly as well. However,

when a non-isometric stretch is applied to the surface, stretching the surface unevenly, the

distances between adjacent markers may not be the same. Since we do not constrain the

B-spline patch to preserve distances, the projection expands to accommodate the part of

the surface that gets stretched. This is known as free-form mapping. Figure 2.11 (top

row) demonstrates the noticeable distortion of the projection when a non-isometric stretch

is applied to the middle two boundary points while the corners remain fixed.
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While the marker-based implementation lends itself naturally to free-form mapping, to

achieve the same for the marker-less case, the edge lengths ΨT ,ΨB,ΨL,ΨR in Equation

2.16 are used to denote the surface edge lengths at rest. As a result, when a non-isometric

stretch is applied, the distances between edge and corner points remain the same, but the

distances between adjacent edge points do not.

Length Preserving Mapping on Stretchable Surfaces

However, we can constrain the B-spline patch to preserve distances, enabling a length-

preserving mapping, even when non-isometric stretches are applied to the surface by moving

the 3D point of each marker along each edge (except for the corners) such that the distances

between all adjacent 3D points along that edge become equal. Let Ei denote the 3D point

of the i-th marker on an edge E with number of markers ME. Let λi denote the distance

between adjacent markers {Ei−1, Ei} and ΛE the total estimated length of the edge E:

λi = ∥Ei − Ei−1∥, 2 ≤ i ≤ME

ΛE =

ME∑
j=2

λj

λ′E =
ΛE

ME − 1

(2.21)

Here, λ′E denotes the distance between two adjacent markers if all Ei’s were equally spaced

along E. So, if λi < λ′E, Ei is closer to Ei−1 than if they were equally spaced along E.

To perform length-preserving mapping, the goal is to find, for each non-corner point Ei, a

point E ′
i along the edge E such that λ′i ≈ λ′E, where λ

′
i = ∥E ′

i − Ei−1∥. For e.g. if λi < λ′E,

the point Ei is closer to Ei−1 and should be moved away from Ei−1 toward Ei+1.
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Depending on λi, each non-corner Ei is either linearly interpolated toward Ei−1 or Ei+1.

If λi < λ′E, E
′
i is determined by linear interpolation along the line {Ei, Ei+1}, moving it

away from Ei−1 and increasing λ′i. Similarly, if λi > λ′E, then E ′
i is determined by linear

interpolation between {Ei−1, Ei}, reducing its length. This algorithm, that processes each

segment between the markers in sequence, is summarized in Algorithm-1.
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Algorithm 1 Length Preserving Mapping

procedure MakeLengthPreserving(EdgePoints E)

Compute edge lengths

Λ = 0,M = len(E)

for i = 2 to M do

λi = ∥Ei − Ei−1∥

Λ = Λ + λi

end

λ′ = Λ
M−1

Update edge points

for i = 2 to (M − 1) do

if λi < λ′ then

t = λ′−λi

λ(i+1)

Ei = (1− t)Ei + tEi+1

end

else if λi > λ′ then

t = λ′

λi

Ei = tEi−1 + (1− t)Ei

end

λi = ∥Ei − Ei−1∥

λi+1 = ∥Ei+1 − Ei∥

end

return E

end procedure

Linearly interpolating Ei’s between its two neighbors in this way ensures that the resulting

E ′
i’s are approximately equally spaced along E. Figure 2.8 shows an example of T2 and T3
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being moved to new positions T
′
2 and T

′
3 using the aforementioned technique. Figure 2.11

(left-column) compares the grid squares with and without length-preserving mapping.

Note that the marker-less implementation lends itself naturally to length-preserving mapping

when the edge lengths ΨT ,ΨB,ΨL,ΨR in Equation 2.16 are used to denote the current surface

edge lengths instead of edge lengths at rest.

2.3 Implementation Details

Our hardware setup consists of a standard desktop workstation with an Intel Core i7-9700K

CPU @ 3.6GHz with 64GB of RAM and an NVIDIA GeForce RTX 2080 SUPER GPU. We

used OpenCV’s CUDA implementation to track the markers, compute the distance maps

and cost maps. OpenGL was used for texture-mapping and rendering the final display.

Estimating (u, v) assignments for 3D display surface points and computing the B-spline

control points is performed on the CPU. Both the marker-based and marker-less systems

can run at close to camera frame rates.

In our implementation, we used Optoma DLP Projector. We tested our system using two

different cameras: the Microsoft Azure Kinect and the CamBoard Pico-Flexx. Both cameras

provide registered IR and point cloud images, while the Azure Kinect additionally provides

a registered RGB image as well. However, we only use the IR and point cloud images. The

Azure Kinect depth camera resolution is 320x288 @ 30fps. The Pico-Flexx provides depth

images at 224x171 resolution when run at 45fps. Notice the low spatial resolutions of both

cameras.

To reduce the run-time of our system, we pre-compute the coefficient matrix A (Section

2.2.4) once for different combinations of B-spline parameters i.e. degree, knot vector and

number of control points. This also allows us to dynamically modify the number of markers
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(a) (b)

Figure 2.9: (a) Projection onto a non-planar surface without any mapping applied. (b)
Projection mapping onto marker-based (top row) and marker-less (bottom row) surface.

as well. Depending on the B-spline model parameters and the number of markers, the

corresponding matrix A is used to compute the control points every iteration using linear

least-squares. This means that the system must assign the 3D points to the correct (u, v)

parameters used to compute A. These assumptions allow fast computation of the control

points.

From our experiments, for changing the B-spline parameters, the registration error threshold

is set to 10%.

Computing distance maps and cost maps (see Section 2.2.5) for the marker-less display is

computationally intensive. Thus, we made some important design decisions to speed up the

computation without sacrificing accuracy of conforming to the deformable surface.

1. Down-sizing distance and cost maps: We compute the distance maps and cost

maps using point cloud images with half resolution in both horizontal and vertical

directions for the high-resolution Azure Kinect camera. We do not perform this step

for the Pico-Flexx camera since it already has low resolution.
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2. 16-bit signed integer representation: We perform calculations on 16-bit signed

integer arrays instead of floating-point arrays. If the depth camera provides point cloud

data in meters, we convert it to millimeters and then store it as 16-bit signed integer.

This gives a big performance boost (∼100ms/frame) without compromising the shape

conformity of the final display.

3. Temporal coherency for localized calculations: We exploit temporal coherency

between successive point cloud images to further reduce the time to compute edge

markers. Instead of computing the distance maps and cost maps along all edges, we

compute them in local windows (31 × 31) centered on the marker locations in the

previous depth frame. Initially, the window centers are linearly interpolated between

adjacent corners. When a new depth frame is available, the distance maps and costs

maps are computed for 3D points on the edges inside these windows only. These cost

map ”windows” are used to determine the new edge markers. The window centers are

also updated to the location of the new markers in the depth camera.

4. Noise and jitter removal: Searching for the 3D point with the minimum cost ω (see

Equation 2.17) is a time-consuming step even for small windows. Further, noise in the

point cloud image introduces errors in the estimation of the edge markers, resulting

in a jittery projection. Although applying a smoothing filter to the point cloud image

can reduce noise, it adds extra operations and increases the latency. To avoid the

additional time taken by pixel-level search and noise smoothing without adding more

operations, we average 3D points inside the windows, weighted by the inverse of their

costs ω i.e. a 3D point with a lower cost has a higher weight. This results in faster

computation of the edge markers while smoothing out errors in the point cloud image

and removing jitter.
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Figure 2.10: A checkerboard pattern projected onto (top-row) marker-based and (bottom-
row) marker-less display surface. Note that when the surface is stretched, the tiles in the
stretched region also expand.

2.4 Results

Figure-2.9b shows the results of our projection mapping system on a marked and marker-

less surface undergoing different non-elastic deformations. Note how the projection con-

forms to the shape of the surface for all different deformations, especially when compared

to Figure-2.9a, which shows the same images without any mapping applied. Please see the

accompanying video for demonstrations on dynamic movement of the surface.

Figure 2.10 demonstrates that our method can adapt to stretchable materials for marker-

based and marker-less surfaces. Similar effects are also demonstrated for stretches from both

directions when projecting a checkerboard pattern (see video).

Figure 2.11 shows the difference between free-form mapping and length-preserving mapping.

When the two interior points of a boundary edge are stretched away from each other while

keeping the corners fixed, in the former the stretch is visually perceptible from the movement

of the content. But, with length-preserving correction, the stretch becomes imperceptible

giving an impression that the material is not elastic. Note that the length preserving mapping

provides perceptually pleasing results for common contents like faces, scenery and buildings

(Figure 2.11).
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Figure 2.11: Free-form mapping (top-row) vs. length-preserving mapping (bottom-row).
Note how the vertical grid lines follow the dots in free-form mapping but evenly space
out with length preserving mapping. The same stretch is applied to the middle and right
columns. Note the distortion caused by the stretch makes the images with free-form mapping
look unnatural (e.g. Mona Lisa’s forehead). Using length-preserving mapping, the images
look less distorted while still conforming to the surface shape.

Figure 2.12 shows some applications of our system. The top row shows our system being

used for T-shirt design. A user can project designs of their choice onto the T-shirt and

interact with the fabric to see how it will look. The bottom row shows how our system can

be used to view volumetric data (e.g. MRI/CT scans of the human body). By moving the

display towards and away from the camera, the user can view slices through the volume.

Additionally, non-planar, curved cross-sections of the surface can be used to compare different

slices at the same time. The video shows dynamic results. Figure-2.13 shows our system being

used for scientific visualization on a markerless, rigid, dynamic surface.

2.4.1 Performance and Evaluation

We evaluated our system by varying different parameters, such as the number of markers

along the edges and the number of control points, and measuring (i) the surface registration

between the B-spline patch and the actual surface geometry, and (ii) the end-to-end latency.
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Figure 2.12: Two applications of our system. The top row shows our system being used for
designing a t-shirt while the user interacts with the fabric. The bottom row shows the user
deforming the surface to view volumetric data at curved cross-sectional slices and comparing
them.

Figure 2.13: Marker-less display on a rigid, dynamic surface.

Furthermore, we also tested the accuracy of the internal 3D points for various shapes since

that directly affects the B-spline patch that gets computed.

To evaluate surface registration, we compute the distances between the B-spline 3D points

and the point cloud image. The misregistered surface area is the ratio of the number of

points whose distance is greater than 10mm to the total number of points. We measured

the surface misregistration for three different shapes: a curve, an S-shape and a wave as

shown in Figure-2.14. Figure-2.14d shows the effect of increasing the control points on the

surface misregistration for all three shapes, while keeping the number of markers constant at
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(a) Curve (b) S-shape (c) Wave

(d)

(e)

Figure 2.14: Effect of various parameters on the surface registration. (a)-(c): the surface
profiles used to study the effect on the registration error by (d) the number of control points,
and (e) the number of markers.

(Mu,Mv) = (8, 8). For the curve shape, four control points are not sufficient to represent it,

therefore we see a high (∼80%) misregistration. However, increasing the control points to

9 or more results in excellent registration since the B-spline patch can represent the shape

accurately. We see a similar significant decrease in misregistration for the S-shape: from
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(a) Planar (H = 4) (b) Quadratic B-spline (H = 9)

(c) Piece-wise planar (H = 16) (d) Cubic B-spline (H = 16)

Figure 2.15: Projection mapping on a surface deformed as an S-shape while changing the
B-spline model. Notice that although (c) and (d) conform to the surface well and have the
same number of control points (H = 16), the projection mapping is not identical. This is
visible at the top edge, where (c) has visible discontinuities compared to (d).

80% with 9 control points to 20% with 16 control points. As for the wave, since it is more

complex, it requires an even larger number of control points (49) to represent the shape

accurately.

Figure-2.14e shows the effect of increasing the number of markers on the surface misregis-

tration for the three shapes. In this experiment, we modeled the surface using a degree-3

B-spline patch with 16 control points while changing the number of markers. Since 16 control

points are sufficient to represent the curved shape, its surface misregistration is close to zero.
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Figure 2.16: Effect of the number of markers on the end-to-end latency for marker-based
and marker-less systems.

However, for the S-shape and the wave, we only see a slight decrease in the misregistration

as we increase the number of markers. This is because it is the number of control points,

rather than the number of samples, that limits the ability of the B-spline patch to represent

those shapes. Therefore, to improve surface registration, the number of control points must

be increased, an observation that is confirmed by Figure-2.14d.

The surface misregistration can be visually observed as well. Figure-2.15 shows projection

mapping on an S-shape surface while changing the number of control points. Notice that

both planar and quadratic models (Figure-2.15 (a)-(b)) are not rich enough to adequately

represent the surface shape and therefore, do not conform to the boundaries well. This

is also confirmed by Figure-2.14d, where they have a high misregistration for the S-shape.

However, the piece-wise planar and cubic models (Figure-2.15 (c)-(d)) are able to represent

the shape well and hence, projection mapping conforms to the boundaries. Also notice

that while both the piece-wise planar and cubic models have the same number of control

points (H = 16), they represent two different shapes since they are of two different degrees

((n,m) = (1, 1) and (3, 3) respectively). This is why the projections do not appear identical.
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The difference is especially visible at the top edge, where the piece-wise planar model has

visible discontinuities.

Figure-2.16 shows the end-to-end latency, i.e. the time from when a new camera frame

is available till the final rendering and display, for both the marker-based and marker-less

systems, for different number of edge markers. Note that increasing the number of markers

results in an insignificant increase in the latency for the marker-based system, which consis-

tently runs close to 5 ms/frame. On the other hand, the number of markers has a significant

effect on the end-to-end latency for the markerless system. This is because increasing the

number of markers increases the number of cost maps that need to be computed, a computa-

tionally intensive step. Despite that, the markerless system performs faster than the camera

frame-rate (33.33 ms) for up to seven markers on each edge. As such, the end-to-end latency

becomes limited by the camera frame rate.

Figures-2.14 and 2.16 also reveal an interesting trade-off of our system. Figure-2.14 suggests

that one should increase the number of control points to achieve better surface registration,

but that can only be done by increasing the number of markers. However, the number of

markers has a direct impact on the end-to-end latency, as shown in Figure-2.16, especially for

the marker-less system, which increases at a rate of 4.5ms/marker. Therefore, the number of

markers required depends on the demands of the application in terms of speed and accuracy of

registration. In general, 5 ≤ (Mu,Mv) ≤ 7 and 25 ≤ H ≤ 49 leads to excellent performance (

in both speed and accuracy) for the marker-based and marker-less systems for a large variety

of applications.

Our marker-based system requires the user to place markers on the surface. Therefore, we

investigated how accurate the user must be when placing these markers. For this experiment,

the surface had four markers on each edge, was shaped like a curve (Figure-2.14a) and

modeled by a quadratic B-spline (with 9 control points). We moved the marker T2 towards

T1 and measured the distances between T2 and its two adjacent neighbors. For each such
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(a) Surface misregistration for various marker positions

(b) Effect on projection mapping on marker placement

Figure 2.17: (a) Effect of marker placement on the surface area misregistration. When the
distance ratio (x-axis) is 1, the marker is at its ideal position while smaller values mean
increasing deviation from the ideal. (b) shows the projection when moving the marker T2
(in red) from its ideal position (middle) towards T1 (left) or towards T3 (right).

position, we calculated the surface misregistration as a function of the ratio of the larger

distance to the smaller distance. A distance ratio of 1 means T2 is placed directly between

its two neighbors (its ideal position), whereas a value of 0.5 means T2 is twice as far away

from one neighbor compared to the other.

The effect of marker placement on the surface misregistration is shown in Figure-2.17a.

Notice that as the distance ratio decreases (i.e. larger deviation from ideal position), the

surface misregistration increases. This can be visibly confirmed in Figure-2.17b, which shows

the projection becoming quite distorted when T2 is moved too close to either of its neighbors
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(a) Planar (b) Curved inward

(c) Curved outward (d) Sinusoidal wave

Figure 2.18: Error when computing internal 3D points. The red and black markers (ground
truth points) are compared with the white overlayed markers (points estimated by our sys-
tem). The error for each shape is (a) 2.59mm. (b) 2.27mm, (c) 4.99mm, (d) 6.59mm.

(left and right) compared to when it is at its ideal position (middle). Figure-2.17a also shows

that even if a marker is placed twice as close to one of its neighbors compared to the other

(a ratio of 0.5), the surface misregistration still remains relatively low (< 5%). This means

that, for a standard A4-size paper (21.×29.7 cm), a marker needs to be within ∼3cm of

its ideal position to yield good registration. This gives the user significant flexibility when

placing markers, even if they are not precisely equidistant from each other.

To measure the accuracy of the internal 3D points, we compute the average error between

the points estimated by our system and their ground truth points. The ground truth internal

points are obtained by a display surface with the full marker grid printed. We measured this

48



error for different shapes of the surface. As shown in Figure-2.18, the largest error is around

6.59mm, which is not perceivable by viewers.
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Chapter 3

Auto-calibration of Single PDC

In the previous chapter, we explained a D-sAR system that does not use any custom so-

lutions. A consumer projector is paired with a off-the-shelf RGB-D camera (e.g. Kinect)

to create a PDC unit which is used to achieve D-SAR that adapts the projection on the

dynamic, deformable surface. The RGB-D camera captures the depth of the moving de-

formable surface which is leveraged by the projector to appropriately distort the display

content to continuously conform to the dynamically changing surface shape. However, such

a D-SAR system needs to be fully calibrated (i.e. the intrinsic and extrinsic parameters of

the devices need to be estimated accurately) before it is deployed. This calibration is usually

done using a static rigid object. Therefore, anytime the projector or camera is moved with

respect to the other device, this static rigid object has to be brought back for recalibration.

In this chapter, we explain a method that achieves an automated projector-camera pair cal-

ibration using the dynamic, deformable surface itself. We project a set of ArUco markers on

the moving surface which is captured by the RGB-D camera. We use an optimization tech-

nique that starts by computing a coarse estimate of the projector instrinsics and extrinsics,

and refines them over a number of frames to get accurate intrinsic and extrinsic for both the
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projector and camera. Since this removes the use of any static props for calibration, anytime

the projector-camera pair is moved it can be recalibrated quickly using the same dynamic

and deformable surface that is being used for projection. Furthermore, our method does not

require the camera and projector to be synchronized either.

3.1 Related Work

Projector-camera calibration: There has been enormous work done in the domain of

projector-camera calibration. Not all of them are used for DPM, but are germane to our

work nevertheless. Most prior works use an RGB camera. Some, like ours, use an RGB-

D camera (e.g. Kinect) and is considered as a single unit since the RGB and the Depth

cameras are calibrated by the manufacturers to provide registered depth and color images.

Further, there are different types of calibration methods. In some methods [3, 134], projector

calibration is dependent on the results of camera calibration and therefore error in camera

calibration is propagated to the projector parameters. However, other methods [76, 135]

perform camera and projector calibration independently.

Single Projector-RGB camera System: Most single projector-camera systems use structured

light scanning of a known calibration object to establish pixel correspondences between the

projector and camera followed by calibration [76, 3, 29, 30, 135, 106, 52, 17, 95, 134]. The

structured light scanning might be a single-pattern scanning or multi-pattern scanning. In

[17, 29, 30, 52, 76], the calibration object is a checkerboard pattern printed on a planar

surface. The checkerboard is used to calibrate the camera using Zhang’s method [137]. The

projector is treated like an inverse camera and is calibrated like a camera but using the

projector-camera pixel correspondences generated from the structured light scan.
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Methods that use only planar projection surface [3, 106, 135] need not rely on structured

light scanning to generate pixel correspondences. Instead, they estimate a homography

between the camera and projector using a rigid planar calibration board by pre-warping

the projected image to align with a printed pattern on the calibration board. For example,

Audet et.al [3] capture images of a checkerboard grid of specific markers called BCH markers

[122] printed on a planar board. By detecting the corners of the markers, they are able to

compute the homography between the camera and the calibration board. They also compute

another homography to pre-warp an image of another BCH marker checkerboard grid such

that the projected markers align with the empty spaces in the checkerboard marker grid on

the board. Using these homographies, they perform the projector-camera calibration. Yang

et.al [135] compute a pre-warp using a random dot marker grid, while Shahpaski et.al [106]

perform both geometric and radiometric calibration by computing a pre-warp for a planar

checkerboard pattern.

Other methods [131, 65, 134] lift the restriction of a planar calibration object, instead relying

on objects of arbitrary geometry to perform calibration. This also allows these methods to

project on non-planar surfaces.

Single Projector, RGB-D camera System: Resch et.al [95] use structured light scanning and

a precise 3D mesh of an arbitrary object (that can be obtained by a laser scan) to iteratively

refine the calibration parameters of the projector-camera system.

Multi-Projector, Single RGB camera System: Using measured priors (e.g. aspect ratio, size

of radius) for specific non-planar surfaces (e.g. vertically extruded surfaces, swept surfaces

or spherical surfaces) [99, 101, 103, 100] use a single uncalibrated camera to find the device

parameters in a multi-projector system. The knowledge of the particular type of the shape

and its measured priors help in constraining the optimization thereby removing the use of

any special calibration pattern.
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Multi-Projector, Single RGB-D camera System: Kurth et.al [59] use a depth camera to

calibrate their multi-projector rig used for dynamic projection mapping. They use a precise

3D mesh of an arbitrary complex object (e.g. a human bust) recovered via a laser scan to

constrain the optimization process to achieve the parameters for the devices.

Multi-Projector, Multi RGB-Camera Systems: When using multi-projector systems on pla-

nar screens, explicit calibration of the devices are avoided by using homography based meth-

ods [14, 7, 6]. When handling non-planar surfaces, the most common way to calibrate multi-

projector systems has been to use one of the single projector-camera calibration methods

to calibrate different device pairs separately and then connect them in a tree like fashion to

calibrate all the devices [92, 91]. However, errors creep in due to each device being calibrated

separately and getting sub-pixel accuracy in registration becomes impossible. Further, any-

time the devices are moved, a new calibration has to be performed bringing in the rigid

2D/3D calibration pattern.

Comparison with prior work

For creating a comprehensible display on a moving deformable surface, a D-SAR system

requires automatic and accurate calibration of the PDC unit. [131, 118] are the only works

that achieve an automated calibration (without the use of specific 2D or 3D calibration

objects) of multiple projectors and RGB cameras in a system that projects on a complex

rigid 3D shape. In this chapter, we explain a method that achieves the same for moving

display surfaces.
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Figure 3.1: Our setup, comprising a RGB-D camera and a projector positioned towards a
dynamic, deformable surface.

3.2 Method

Our setup consists of a projector and an RGB-D camera positioned to project on and capture

a surface respectively that may be dynamic and deformable (Figure 5.1). For screen we use

an elastic tendo screen and for movement we use two fans from two sides that can be set

to three different speeds from slow to fast. We assume that the RGB-D camera provides us

with registered RGB image and depth mesh, in keeping with the norm for consumer RGB-D

cameras. Further, we assume a rough estimate of the projector focal length, which can be

estimated using methods such as [9, 28], or by using the calibration toolbox provided by

Moreno et al. [76]. While [76] requires a planar calibration pattern to estimate the focal

length, [28] works for non-planar 2D-3D correspondences. Focal length can be estimated

just once for a projector of the same brand and make, before adding the projector in the

DPM setup and need not be re-estimated after that. For the camera, usually metadata or

54



Figure 3.2: (Left) The depth map (in mm), (Middle) the projected image and (Right) the
camera image. The corresponding pixels at the corners of the ArUCo markers between the
projector, depth map and camera image are shown by the red and green lines respectively.
Markers that were not detected in the camera image are highlighted in red.

API provides the intrinsics, which we can used as an initial estimate for quick convergence

of optimizations, although we do not require it.

3.2.1 Background

We model both the projector and the camera with a pinhole camera model extended with

radial and tangential distortion. We assume that the RGB-D camera’s center of projection

(COP) is at the origin, its pose is aligned with the XYZ axis with the principal axis being

along the positive Z axis. Let c ∈ R2 represent the image of the 3D point d = [X Y Z]T ∈ R3

in the camera image plane. Then d and c are related by c = Kc ·Λ(c̃) where c̃ = [c̃x c̃y 1]T =

[X
Z

Y
Z
1]T and Kc ∈ R3×3 is the camera intrinsic matrix and Λ(·) ∈ R3×1 is the lens distortion

function. The (3 × 4) extrinsic parameter matrix is identity. Mathematically, Kc and Λ(c̃)
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are given by:

Kc =


fx 0 nx

0 fy ny

0 0 1

 ; (3.1)

Λ(c̃;Dc) =

c̃ · ρ(c̃) + τ(c̃)

1

 ; (3.2)

ρ(c̃) = (1 + k1r
2 + k2r

4 + k3r
6) (3.3)

τ(c̃) =

2k4c̃xc̃y + k5(r
2 + 2c̃x

2)

k4(r
2 + 2c̃y

2) + 2k5c̃xc̃y

 ; (3.4)

r2 = c̃x
2 + c̃y

2; (3.5)

where (fx, fy) is the focal length, (nx, ny) is the camera principle point,Dc = {k1, k2, k3, k4, k5}

are the distortion coefficients where (k1, k2, k3) are radial distortion coefficients and (k4, k5)

are the tangential distortion coefficients.

We assume the same pinhole camera model for the projector. However, we assume its rotation

and translation with respect to the camera to be Rp ∈ R3×3 and Tp ∈ R3×1 respectively. Let

p denote the projector pixel that illuminates the 3D point d. Then:

d′ =

[
X ′ Y ′ Z ′

]T
= Rp · d+ Tp (3.6)

p̃ =

[
p̃x p̃y 1

]T
=

[
X′

Z′
Y ′

Z′ 1

]T
(3.7)

p = Kp · Λ(p̃;Dp) (3.8)

where Kp, Dp are the projector intrinsic matrix and distortion coefficients respectively.
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3.2.2 Image Acquisition

Calibration of the project-camera unit requires finding correspondences between 3D coor-

dinate di, the 2D camera pixel ci that images it, and the corresponding 2D projector pixel

pi that illuminates it. Traditional systems usually use multi-frame structured light scan

(SLS) methods to find the correspondences between ci and pi from which di is deciphered.

However, in the proposed method, RGB-D camera directly provides us the correspondence

between di and ci. And, we use a pattern akin to single-shot SLS patterns [29, 30] to link

these correspondences to pi.

Our pattern is based on ArUCo markers [20]. Each ArUCo marker comprises of a black

and white square with a unique pattern and ID. When captured by a camera, an image

containing the ArUCo markers can be decoded to find the IDs and the four corners of the

markers. We project a sequence of grids of ArUCo markers with known IDs and corners

onto a dynamic, deformable surface. The RGB-D camera captures the projected sequence

and the ArUCo marker detection algorithm detects the locations and IDs of the markers in

that image and establish the correspondence between the detected ci, its corresponding di

and the known location of the detected points in the projector pi. (Figure 3.2).

Each image in the sequence is projected for several frames. Since dynamic projection surface

can move during these frames, even when using a single grid of ArUCo markers, we can obtain

a large number of ci → di correspondences. Across different grids, we design the location

of the corners and the IDs of the ArUCo markers to be different to increase the number of

correspondences even further. Unique ID across grids also prevents incorrect correspondences

due to asynchronous projection and capture of the patterns if the camera and projector are

not synchronized. We perform marker corner detection at sub-pixel accuracy in all the images

captured by the RGB camera and use the depth from the depth camera at the registered

location to establish the correspondence between ci, di and pi.
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3.2.3 Camera Calibration

As mentioned before, our camera extrinsic matrix is identity and we need to only determine

the camera intrinsic matrix and distortion coefficients using the correspondences. Let {cti, dti}

denote the i-th correspondence at time t. Let Kt
c and Dt

c denote the intrinsic matrix and

distortion coefficients at time t. We optimize for Kc, Dc by minimizing the reprojection error

Et
c given by:

arg min
Kt

c,D
t
c

Et
c =

1

2

∑
i

(|cti −Kt
c · Λ(c̃ti;Dt

c)|)2 (3.9)

c̃ti =
dti
Zt

i

=

[
X t

i/Z
t
i Y t

i /Z
t
i 1

]T
(3.10)

The camera parameters are optimized every frame using per frame correspondences, initializ-

ing the optimization with the parameters from the previous frame. For the first frame t = 1,

we assume the distortion coefficients to be zero, and compute the intrinsic matrix K1
c di-

rectly from the 2D-3D correspondences. If the camera API provides an initial estimate of the

intrinsics, we only use the intrinsic matrix and ignore the distortion coefficients. We assume

the optimization for a frame t has converged when any one of the two conditions are met:

(1) the number of iterations is greater than 1000, or (2) the absolute difference between the

reprojection errors in two successive iterations is less than a threshold, i.e. |Et−Et−1| ≤ ∆c.

3.2.4 Projector Calibration

For the projector, we need to estimate both the projector intrisics and the extrinsics (i.e.

rotation and translation with respect to the camera). Let {pti, dti} denote the i-th correspon-

dence between a 2D projector coordinate pti and 3D point dti at time t. Let Kt
p, D

t
p denote

the intrinsic matrix and distortion coefficients, and Rt
p, T

t
p denote the extrinsic rotation and
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translation at time t. We optimize for Kp, Dp, Rp, Tp by minimizing the reprojection error

Et
p as

arg min
Kt

p,D
t
p,R

t
p,T

t
p

Et
p =

1

2

∑
i

(|pti −Kt
p · Λ(p̃ti;Dt

p)|)2 (3.11)
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We optimize the projector parameters using Equation-3.11 considering correspondences from

each frame separately, moving on to the next frame when convergence for the current frame

is reached. Optimizing likewise across multiple frames averages out random noise providing

an accurate calibration despite noise in the depth camera.

However, Equation-3.11 is sensitive to initialization of the projector parameters. Poor initial-

ization can result in the optimization getting stuck in local minima, resulting in a projection

that will align with the surface only within a narrow depth range. For DPM systems where

the surface may be moving in a large range, this can be problematic. Therefore, we devise

a new method to obtain an initial estimate of the projector parameters to initialize the

optimization in Equation-3.11 assuring robust convergence in optimization.

Coarse Projector Parameter Estimation: Pixels on any straight line in the projector

coordinates correspond to a plane in 3D (Figure 3.3). Leveraging this property, we fit a plane

through the 3D points corresponding to 2D pixel locations of ArUCo marker corners along
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Figure 3.3: Illustration of plane fitting through 3D points of ArUCo marker corners on the
surface that correspond to the same projector pixel rows. Intersecting all row planes gives
the X-axis of the projector. Intersecting all column planes gives the Y-axis of the projector.
The Z-axis is the cross product of the two. The projector COP is obtained by intersecting
all row, column and diagonal planes.

every row, column and diagonal across all grids of markers. Intersecting all the planes along

rows results in a line whose direction corresponds to the projector’s X-axis. Intersection

of all planes along columns results in a line along the projector’s Y-axis. Taking the cross

product of these two vectors gives the Z-axis. Thus, we determine the projector orientation

R0
p with respect to the camera. The projector center-of-projection (COP) T 0

p is estimated

by finding the intersection of all the planes along the row, column and diagonals. Using

this initial estimate of the projector orientation and COP, we compute K0
p , assuming zero

distortion.

Projector Parameter Refinement: We begin the optimization in Equation-3.11 with this

more reasonable initialization. Note that if we assume that the 3D location of the projected

points corresponding to markers along any row, column or diagonal are collinear, it will

present a degenerate case to the plane fitting method. Therefore, this method will fail for

static planar projection surface. In our setup (Figure 5.1) using a hanging fabric screen
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Figure 3.4: The flowchart of the proposed system.

(a) Projector reprojection error (b) Camera reprojection error

Figure 3.5: Effect of the surface speed on the projector and camera calibration accuracy for
different types of projectors.

that becomes planar when static, we have to run this initialization only when the screen is

moving.

3.3 Implementation and Results

Figure-5.2 shows the flowchart of our method. First, we calibrate the projector-camera pair.

We project and detect ArUCo markers in the RGB-D capture to determine the 2D-3D corre-

spondences for camera calibration. Next, we fit planes through the 3D points that correspond
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(a) Marker-based surface

(b) DPM outside calibration volume

Figure 3.6: DPM on (a) a marker-based and (b) a markerless deformable surface using our
calibration. Note how the projection remains aligned with the markerless surface in (b)
despite moving out of the calibration volume.

to the same projector row, column and diagonal to get a coarse estimate of the projector

parameters. Finally, we refine the projector parameters to get an accurate calibration. Using

the calibration parameters, we perform D-SAR using the methods proposed in the previous

chapters.

We implemented the proposed system in C++. We used OpenCV’s APIs for detecting

ArUCo markers with sub-pixel accuracy and Levenberg-Marquadt optimization to implement

our calibration routines. For the camera, we used an Azure Kinect. We tested our method

on three different kinds of projectors - regular throw (Optoma ML750), short throw (Optoma

EH200ST) and ultra-short throw (Optoma GT5600). The Azure Kinect itself comprises of

two cameras: a time-of-flight IR/depth camera and an RGB camera. Although the depth

camera resolution is coarser than the RGB camera i.e. (640 × 576) vs. (3840 × 2160), its
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API provides an interpolated point cloud rendered from the RGB camera view, similar to

other consumer-grade depth cameras like the Intel RealSense Depth Cameras [42]. In our

calibration routine, we used 3D points from this interpolated point cloud. The projector

resolution was (1920 × 1080). We projected a grid of ArUCo markers for 20 frames before

switching to another grid layout.

3.3.1 Projector-Camera Calibration Accuracy

We tested our proposed calibration method on a dynamic, deformable surface. The projector-

camera system was placed around 864mm away from the screen. The width and height of

the projection was 1270mm and 762mm respectively. This gives us a working volume of

around 1270W x 760H x 865D cubic mm. We placed two fans on either side of the surface

which would generate random waves and ripples across the surface and tested our calibration

for various speeds of the fans (see Figure-5.1). This helped us to study the impact of the

movement of the surface on the accuracy of our calibration technique and the quality of our

display. In order to estimate the surface speed, we took the difference between two successive

depth maps to measure the velocity and took the average value. We quantified calibration

accuracy using reprojection error onto camera and projector images using the calibration

parameters (Figure-3.5). Note that the camera reprojection error is less than 0.5 pixel and

does not get impacted by the movement of the surface (see Figure-3.5b). A error of less

then 0.5 pixel is considered good calibration as per best practices [76]. Even at the highest

speed, our projector reprojection error is less than 4 pixels – less than 0.4% when considering

the size of the projection image (see Figure-3.5a). The maximum 3D reconstruction error

is 3.7mm which is less than 0.4% considering the size of the volume we are operating in.

Considering the variation of the different parameters estimated by the calibration process

(including projector and camera focal length, translation and rotation), we had an average

standard deviation of less than 5%.
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Finally, we used the calibration parameters generated by our method to perform DPM on

a dynamic, deformable surface. Figure-5.3a-5.3b show the DPM display using calibration

parameters generated by our method. Our calibration method is robust and able to gener-

ate calibration parameters that are valid even outside the calibration volume. Figure-5.3b

shows a user moving a markerless display surface very close to the projector, well out of the

calibration volume, which was approximately 34 inches away from the projector. Notice how

the projection still remains well aligned within the surface using our calibration parameters.

As for the number of frames used for the calibration, we did not see any significant im-

provement to the calibration accuracy for more than 100 frames. In general, we capture

around 15-25 frames for a successful calibration irrespective of the surface speed, which

takes approximately 30 seconds to complete.
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Chapter 4

Jitter Removal and Occlusion

Handling

In the previous chapter, we presented the first work on accurate calibration of a projector-

RGB-D camera pair using a dynamic and deformable surface.

However, even after proper calibration, D-SAR for dynamic, deformable surfaces must deal

with other challenges, such as noisy depth cameras and surface occlusion. In this chapter,

we discuss these challenges and explain methods to solve them.

Unlike rigid objects where the shape is known apriori, D-SAR on deformable surfaces rely

on the depth camera to reconstruct the changing shape of the surface every frame. How-

ever, the depth data is usually noisy, and introduces tiny perturbations in the reconstructed

shape, even if it is completely static. Since the projection adapts itself to this continuously

changing noisy shape, it creates a jitter that can impede comprehension of projected content

in addition to being simply annoying. Additionally, occlusion of the surface, for example, by

a person walking in front of the projected display, substantially changes the reconstructed

shape of the surface as the occluding object gets captured instead of the dynamic projec-
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tion surface. This results in a significant distortion of the projected content even in the

unoccluded regions, completely disrupting the viewer experience. Our DPM system is mo-

tivated by creation of visualizations on the inside walls of tents in remote austere locations

during emergency management or military operations. In any such real-world deployment

of DPM systems, the issues of jitter and occlusion should be addressed adequately to create

comprehensible displays.

In this chapter, we explain methods to address jitter and occlusion when the D-SAR system

is in action. For jitter, we employ Kalman filtering on the depth samples of the surface

and smooth them over time to determine the surface shape. The Kalman filter is an effi-

cient, recursive filter that uses a series of measurements over time to produce estimates and

predictions of unknown variables (in our case, the true surface depth). This results in a

comprehensible and perceptibly pleasing display, which we verify through two user studies.

Leveraging the depth prediction by the Kalman filter, we devise an algorithm to handle oc-

clusion of the surface by obstructing objects. Therefore, the methods in this chapter provide

solutions to important practical challenges in deploying D-SAR systems in the real-world:

correcting for jitter resulting from noisy depth cameras and handling surface occlusion.

4.1 Related Work

Jitter Correction: Jitter noise has always been a problem in video captures. Tiny, high

frequency motion caused by unstable camera support equipment or the user’s hand manifests

as jitter which severely degradres the quality of videos. Therefore, most video stabilization

techniques serve as a post-processing step to remove the jitter while preserving and smoothing

the intentional motion of the camera. They do so by estimating the motion vectors in an

image sequence, which can be achieved by pixel-based, block-matching or feature-based

algorithms. The interested reader is referred to [24] for more information.
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Jang et al. [44, 45] use the Kalman filter to remove jitter noise from a sequence of images

captured at various focuses for shape recovery, or shape-from-focus. Kwon et al. [61] compute

motion vectors in an image sequence using phase correlation and smooth them over time using

the Kalman filter. Yaman et al. [133] use the constant velocity Kalman filter for smoothing

motion vector trajectories for image stabilization. More recently, some works [138, 15] have

used deep learning to stabilize videos.

For DPM, the jitter reduction algorithm must be real-time, and not rely on the projected

content to compute motion vectors. Furthermore, it must be online i.e. smooth frames as

they come in and not rely on future frames. Some methods are efficient enough to perform

video stabilization in real-time [48, 51]. Jia et al. [48] perform online video stabilization by

implementing a constrained constant velocity Kalman filter. We take a similar approach in

our work.

Occlusion Handling in Projection Displays: Methods for occlusion handling for pro-

jection mapping displays differ based on whether the display surface is static-rigid, dynamic-

rigid or dynamic-deformable. For static-rigid and dynamic-rigid surfaces, the shape of the

surface is known apriori and remains unaffected by occlusion. Therefore, prior works on

multi-projector displays typically focus on identifying occluders for shadow removal by in-

creasing the contribution of one or more projectors to compensate for an occluded projector

in an overlapping region. However, for dynamic-deformable surfaces, the system must extract

the surface shape every frame which can get affected by an occluder.

In [47, 46], Jayens et al. render an expected projection display image for each camera in

a calibrated, multi-projector display. They compare this expected image with the actual

camera capture to identify shadows and remove them. Sukthankar et al. [115] also use a

similar approach by comparing a reference image to the current camera capture for dynamic

shadow compensation. However, these systems are not suitable for complex, deformable

surfaces. Lange et al. [63] perform DPM using multiple projectors on a rigid object whose
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3D shape is known apriori. In order to remove shadows on the object caused by occlusions,

they track occluding objects in the projection volume using a depth camera and adjust the

blend weights of other projectors to compensate for the blocked projector. The Pmomo

system [139] detects occluding objects in a single projector DPM system for rigid objects to

cull projection on the occluder for a more realistic experience.

Flexpad [113] performs DPM on a deformable, non-stretchable surface that a user can in-

teract with. They use optical surface material analysis on the raw IR image from Kinect to

identify skin pixels (e.g. the user’s hand) that may be occluding the surface. Narita et al.

[78] perform DPM on a non-rigid object by printing a precise deformable dot cluster marker

(DDCM) pattern on a surface using IR ink. This pattern consists of clusters of dots, num-

bering from 1-4, arranged in a grid across the entire surface. At each frame, the dot clusters

are extracted and identified. In a separate thread, they track each dot cluster across frames.

Since they use a high-speed camera (∼1000fps), the displacement of a dot cluster between

frames is small. Therefore, they detect the dot cluster in a window around its previously

detected location. If a dot cluster is not detected in that region, they use linear interpolation

and extrapolation of tracked neighboring clusters to estimate its position.

4.1.1 Comparison to Prior Work

Prior D-SAR systems do not focus on delivering a high quality display where the projection

”sticks” to the moving surface making detailed high resolution content (e.g text) to be

readable and comprehensible. The goal is to create the perception of the content to be printed

on to the moving and deformable projection surface. The proposed jitter and occlusion

handling methods take us quite close to this difficult goal resulting in highly comprehensible

displays even in the presence of fast and large movements and deformations.
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Driven by the application of creating high quality visualizations on inside walls of tents in the

presence of environmentals (e.g. wind), we have provided several quantitative evaluations

as well as initial user studies to show that the display created by the proposed DPM system

indeed is a practical viable solution.

4.2 Method

4.2.1 Jitter Reduction

Following calibration, we use the recovered system parameters to adapt the projection to the

dynamic, deformable surface using the method in Chapter-2. At each frame, we find the 3D

location of the equi-distant black markers marking the desired rectangular area of projection

and fit a B-spline to the detected 3D region. Using the recovered projector parameters,

we then warp the projected image by projecting the B-spline surface into projector image

plane. However, noise in the depth camera results in small perturbations in the fitted B-

spline surface and the warped projection has jitters i.e. a small, high frequency motion. This

jitter is perceptually annoying and, more importantly, can render the display unreadable or

incomprehensible. Therefore, we employ Kalman filtering on the 3D B-spline surface to

account for the depth camera noise and reduce jitter.

The Kalman filter uses a series of measurements observed over time and produces estimates

and predictions of the system state by taking into account the uncertainties of the system

and the measurements. This results in a more accurate estimate of the system state than by

considering a single measurement only. It consists of a predict-correct loop. Once initialized,

it predicts the system state, denoted by x ∈ RNx×1 and uncertainties in the prediction at

the next timestep. When a measurement, denoted by z ∈ RNz×1 is received, it updates (or

corrects) the prediction of the current state to produce a new estimate. Mathematically, the
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predict step can be written as

x̂t+1,t = Fx̂t,t (4.1)

Pt+1,t = F Pt,tF
T +Q (4.2)

where x̂t+1,t is the predicted state vector at time t + 1, x̂t,t is the estimated state at time t.

F ∈ RNx×Nx is the state transition matrix that extrapolates the current state to the next

timestep. P ∈ RNx×Nx is a covariance matrix and represents the estimate uncertainty. A

higher estimate of uncertainty will cause the Kalman filter to favor the measurement more

than the current state in the estimatiion. Q ∈ RNx×Nx is the process noise uncertainty.

In the update step, the Kalman filter computes the Kalman gain which weights the pre-

diction and the current measurement to compute an estimate for the current system state.

Mathematically,

Kt = Pt,t−1H
T (HPt,t−1H

T +Rt)
−1 (4.3)

xt,t = xt,t−1 +Kt(zt −Hxt,t−1) (4.4)

Pt,t = (I−KtH)Pt,t−1(I−KtH)−1 +KtRtK
T
t (4.5)

whereK ∈ RNx×Nx is the Kalman gain,H ∈ RNz×Nx is the observation matrix that maps the

state vector to measurement vector space and R ∈ RNz×Nx is the measurement uncertainty

while I is the identity matrix. The subscript t denotes the timestep.

In our case, the measurements z are the 3D points on the surface from the depth camera

that is used to compute the B-spline surface. Our goal is to compute a more accurate

estimate of these 3D points. Therefore, our system state vector x consist of all the 3D

points used to compute the B-spline surface. We have implemented three different Kalman

filter models based on the assumptions made by the prediction step: the constant velocity,
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Figure 4.1: Kalman filter smoothing for a stationary 3D point over 250 frames. Note the
amount of noise in the data from the depth caemra (black). While all three models smooth
it out, the constant velocity filtering (red) varies the least compared to the other two.

constant acceleration and constant jerk. Depending on the model being used, the system

state also comprises the velocity, acceleration or jerk of each 3D point. The constant velocity

model assumes that the predicted location only relies on the velocity of the 3D point that

does not change between successive frames. The constant acceleration model accounts for

acceleration and velocity to predict the 3D location assuming that the predicted acceleration

remains constant. The constant jerk model adds the jerk to the prediction, assuming that the

predicted jerk remains constant. These three models therefore have different system states

and state transition matrices. The constant velocity model has only the location and velocity

of the 3D point in the state vector, while the constant acceleration and constant jerk models

additionally include acceleration and jerk respectively. Irrespective of the model used, we

only use the estimated location from the state vector at each timestep. The state transition

matrix implements the equations of motion. At each frame, we acquire measurements of the

surface from the depth camera. These measurements are fed into the Kalman filter which
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(a) (b) (c) (d)

Figure 4.2: Occlusion of a moving surface by a hand moving across it. (a) shows the distorted
projection without any occlusion handling. (b)-(d) Green points are detected points while
red points are estimated points due to occlusion. Notice that sometimes, even unoccluded
points are not detected by the camera (points on the right edge in (d)) but our algorithm
is able to determine their position accurately.

produces a more accurate estimate of each sampled 3D point on the surface which are then

used to compute the B-spline and warp the content for projection.

4.2.2 Occlusion Handling

We leverage the Kalman filter prediction of the 3D points on the B-spline surface during

jitter reduction to handle surface occlusion. We first use the method in Chapter-2 to detect

the 3D location of markers at the boundary of the projection region and all the 3D points

within the desired boundary and compute the B-spline surface. In occlusion handling step

we identify the region of the surface that is occluded by detecting the occluded points from

the 3D points used for the B-spline surface. These occluded points are then replaced by the

Kalman filter prediction. Assuming that an occluding object will always have depth that is

less than that of the projection surface, we compute the minimum depth that was sampled in

B-spline region in the previous frame. In the current frame, we mask out any regions whose

depth is less than the minimum depth (from the previous frame) by a certain threshold.

Detecting Occluded Markers: In order to determine which sampled points are occluded,

we first start with the surface boundary. Our goal is to match each boundary point in the

current frame with the detected boundary points in the previous frame. We do this by
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matching each boundary point in the previous frame to the closest 3D point in the current

frame. If a boundary marker in previous frame is not matched, it is labeled as occluded and

replaced by its Kalman filter prediction from the previous frame.

Accounting for global movement: Detecting occluding markers alone cannot take into

account changes to the global position of the entire surface in the current frame. For exam-

ple, the surface may move forward in unison. This global movement may not be correctly

predicted by the Kalman filter and can cause the display to become distorted. Therefore,

we additionally compute a rigid transform that transforms 3D points in the previous frame

to the points in the current frame in a least-squares sense. For this, we use all the points

– both unoccluded and also the occluded ones that are predicted by the Kalman filter. We

then apply this rigid transform to points in the previous frame corresponding to occluded

points in the current frame to get an estimate of the occluded 3D points in the current

frame. Though not very accurate, computing a rigid transform is fast and efficient, does not

result in extrapolation artifacts that nonlinear transforms may, and does not compromise

the real-time performance of the display.

4.3 Results

Jitter Removal

The results with jitter correction are visibly less jittery compared to the display generated

using the raw depth measurements. Figure-4.1 shows how the three filter types smooth

out a jittery trajectory of a stationary 3D point. Figure-4.3 shows the average absolute

difference maps over successive frames for each model when projecting static content on a

stationary surface. Additionally, we conducted a user study to examine the impact of the
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(a) No jitter correction (6.13) (b) Const. Velocity (0.56)

(c) Const. Acceleration (2.77) (d) Const. Jerk (3.83)

Figure 4.3: Maps of average absolute difference across a number of successive frames when
projecting a static text image on a stationary projection surface. The average absolute
differences are (a) 6.13, (b) 0.56, (c) 2.77 and (d) 3.83. Note how the difference is very low
for constant velocity model shown in (b).

three jitter reduction models on the projection display quality and compared them to the

display rendered without jitter reduction. The results are discussed in Section-4.3.1.

Figure-4.2 shows the occlusion of a rapidly moving surface by a hand. Notice how the

projection gets severely distorted without any occlusion handling. However, our occlusion

handling algorithm estimates the locations of the occluded points reasonably well to keep

the projection coherent. Also notice that some points may not get detected by the camera

even though they are unoccluded (see Figure-4.2d). These points are treated as occluded

points and our algorithm estimates their positions.
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Figure 4.4: Average error between 3D points predicted using our occlusion handling method
with their ground truth locations at various surface speeds.

Occlusion Handling

To evaluate the accuracy of our occlusion handling method, we programmatically occluded

some surface markers that were detected by our algorithm, estimated their locations using

our occlusion handling method and then computed the distance from their true locations. We

computed the average distance over multiple frames for several points. Figure-4.4 shows the

error between the true locations and the estimated locations using our method for different

surface speeds. Note that the error for a static surface is 1.2mm, which is not perceptible

to viewers. With higher surface speeds, the error increases, reaching a maximum of 7.5mm

when the surface movement resembles a strong gust of wind. Even at such high speeds, the

mean error is less than a centimeter and viewers do not perceive it in the final display.

4.3.1 User Study

In order to study the effect of the various jitter reduction models, we conducted a qualitative

and quantitative user study. Both user studies asked users to evaluate the display for 16
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(a) Votes for perceptually most pleasing display (b) Votes for perceptually least pleasing display

(c) Effect of fan speed and jitter on reading speed (d) Effect of fan speed and jitter on clicking time

Figure 4.5: Results of our user study. (a)-(b) show the votes for the jitter model with the
perceptually most pleasing least pleasing display respectively. (c)-(d) show the effect of the
surface speed and jitter correction model on the reading speed and average clicking time.

cases in total i.e. four fan speeds (off, low, medium, and high) for four jitter models (none,

constant velocity, constant acceleration and constant jerk). For the qualitative study, there

was one image for each fan speed, while for the quatitative study, there was one image for

each case i.e. 16. All images used were different. Viewers were seated approximately 7 feet

away, looking directly at a 3.5′ × 2′ projection area. In total, there were 12 participants (7

males, 5 females), ranging from 20-55 years old.

For the qualitatitve study, users were shown dynamic projections of static text images pro-

jected on the surface and were asked to rate the perceptually best and worst display based

76



on the jitter. They could dynamically switch between the projection display rendered using

the four jitter correction models by using four buttons on a keyboard. They were not told

which model they are evaluating to remove bias – the models were named Model A, B, C

and D. Before voting for each case, the keys were randomized so that users could not be

aware which key corresponds to which model type used for rendering. They were instructed

to switch between the four models and rate the perceptually best and the perceptually worst

display. The experiments were conducted for four different fan speeds.

For the quantitative study, we measured users’ reading speed and their tracking speed when

using the display at different fan speeds with various jitter models. For measuring the reading

speeds, users were timed while reading a short piece of text, approximately 35-40 words long,

that was projected on the dynamic display. They were timed while reading different texts,

of similar difficulty level, for each of the 16 cases. This removed bias that can be created

by repeated reading of the same text. We computed the reading speeds for each user for

each case. In order to correct for variations in reading speeds across users, we normalized

the reading speeds for each user by their baseline reading speed i.e. when the display was

static and without any jitter correction. Then, the normalized reading speeds were averaged

across users.

To measure their tracking speeds, users were shown a (2×3) grid of small black squares on

a white image at the start of the experiment. Upon starting, one of the 6 black squares

would turn red and users were instructed to use the mouse pointer to click it. Every time

the user clicked a red square correctly, that square would turn black and another square

would randomly turn red. At the same time, the mouse position was reset to the center of

the display to ensure it travels the same distance in each experiment. This would continue

until all 6 squares had been clicked. We recorded the mean time each user took to click a

red square for all 16 cases.
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Figure-4.5 shows the results of our user study. Users overwhelmingly found the constant

velocity model to be the perceptually most pleasing across all speeds (Figure-4.5a), while

no jitter correction was considered the worst (Figure-4.5b). However, we noticed that at

higher fan speeds, users were having a harder time deciding between their preference for

constant velocity and constant acceleration models, sometimes ranking them equally. This

is because the motion of the rapid surface started masking the jitter more. Figure-4.5c shows

the result of the quantitative study comparing normalized reading speeds. We noticed that

jitter correction did not make a significant impact on the reading speed at lower fan speeds.

This is because the text was still relatively localized. However, at higher fan speeds, having

some form of jitter correction significantly improved reading speeds. Figure-4.5d shows the

effect of the fan speed and jitter model on the clicking time. Users consistently performed

better at tracking for the constant velocity model across all fan speeds compared to without

jitter correction. Overall, users indicated that any form of jitter correction made reading

and tracking easier, irrespective of fan speeds. Combining the results of the user study, we

recommend the constant velocity jitter correction model.
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Chapter 5

Multi-PDC Deformable-SAR

The previous chapters of this thesis focus only on D-SAR using a single PDC unit. In this

chapter, we explain in detail the first end-to-end solution for achieving a real-time, seamless

display on deformable surfaces using multiple unsynchronized projectors without requiring

any prior knowledge of the surface or device parameters. The system first accurately cali-

brates multiple RGB-D cameras and projectors using the deformable display surface itself,

and then using those calibrated devices, tracks the continuous changes in the surface shape.

Based on the deformation and projector calibration, the system warps and blends the im-

age content in real-time to create a seamless display on a surface that continuously changes

shape. Using multiple projectors and RGB-D cameras, we provide the much desired aspect

of scale to the displays on deformable surfaces.

Most prior dynamic multi-projector systems assume rigid objects and depend critically on

the constancy of surface normals and non-existence of local shape deformations. These as-

sumptions break in deformable surfaces making prior techniques inapplicable. Point-based

correspondences become inadequate for calibration, exacerbated with no synchronization be-

tween the projectors.A few works address non-rigid objects with several restrictions like tar-
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(a) Display Setup (b) Uncalibrated display

(c) PDC unit (d) Calibrated display

Figure 5.1: (a) Our setup, comprising 3 PDCs with overlapping projection covering a 18’
× 4’ (5.5m×1.2m) deformable surface. (b) The uncalibrated display without any warp and
blend. (c) A single PDC unit. (d) The final seamless display.

geting semi-deformable surfaces (e.g. human face), or using single coaxial (optically aligned)

projector-camera pairs, or temporally synchronized cameras.

In this chapter, we show how we break loose from such restrictions and handle multiple pro-

jector systems for dynamic deformable fabric-like objects using temporally unsynchronized

devices. We devise novel methods using ray and plane-based constraints imposed by the

pinhole camera model to address these issues and design new blending methods dependent

on 3D distances suitable for deformable surfaces. Finally, unlike all prior work with rigid

dynamic surfaces that use a single RGB-D camera, we devise a method that involve all

RGB-D cameras for tracking since the surface is not seen completely by a single camera.

These methods enable a seamless display at scale in the presence of continuous movements

and deformations.
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5.1 Background

Multi-projector displays are an easy way to create seamless displays at scale without under-

taking massive engineering feats of tiling LCD/LED panels together. Though multi-projector

displays on rigid objects (static or dynamic) have been explored extensively, expeditionary

or mobile systems often demand such displays on surfaces that continuously move and de-

form. Examples include emergency management or military tents in austere locations where

large data demand large visualizations for command and control, decision making, mission

rehearsal and even training during long idle periods. The easiest way to setup such displays

is to use projectors on the tent walls. However, such fabric based surfaces suffer continuous

movement and deformations from environmentals like wind and vibrations. Similar situa-

tion is faced in commercial domain when mobile and inflatable displays need to be setup on

tradeshow floors in the presence of ventilation systems blowing air or vibrations nearby from

other demonstrations. Mobile educational systems (e.g. mobile planetariums) that travel

to serve geographically under-served population can also benefit from displays on moving

deforming surfaces.

Except for [111, 1], all multi-projector systems explored so far focus on rigid objects, either

static [118] or dynamic [110, 80]. Any rigid object offers constant surface normals and no

local deformation of the surface. Assuming prior knowledge of the 3D surface along with

these invariants, [109] performed precise device calibration on a static rigid object for a

dynamic projection mapping setup. Note that the precision required is rather exacting – if

the physical set up and its estimation do not match, misregistrations result. To achieve the

precision in the presence of movement, the rigid object is usually tracked by a single RGB-D

camera. Note again, high accuracy tracking is essential to create a seamless display in which

the projected image ”sticks” to the rigid object as it moves. Finally, the blending between

two overlapping projectors on the rigid object is achieved in real-time leveraging the fact that

surface normals do not change with movement. [111] uses multiple projectors to project on
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a human face by fitting a parametric face model to the depth camera output. The changing

surface normals of the tracked face are used to select the projector rays with the highest

illumination quality only. This effectively narrows the blend width in the overlapping region

to reduce the visibility of misregistration artifacts.

Ahmed et al. [1] is the only multi-projector system that handles deformable surfaces like

fabrics. They use two projectors and two temporally synchronized IR cameras, each pro-

cam pair being individually coaxial to achieve a super-imposed display. They calibrate each

coaxial pair separately, establishing pixel-to-pixel correspondences between the camera and

its corresponding coaxial projector. During projection, each IR camera separately tracks

fiducials on an IR grid painted on the deformable surface and using calibration parame-

ters of its corresponding projector, warps the display content for projection, resulting in a

superimposed display that does not require realtime blending.

However, when the projection surface is deformable (like a moving fabric), the devices are not

temporally synchronized or optically aligned, all the previously mentioned conditions that

are leveraged to deliver a seamless display break. The surface normals change continuously

and local deformations of the surface are significant. This renders most of the techniques

involved (e.g. calibration, blending) inapplicable. In order to scale, single RGB-D camera

based tracking is inadequate since the entire deformable surface is not seen by a single

RGB-D camera.

5.1.1 Main Contributions

In this chapter, we present novel calibration, tracking and blending methods that enable

seamless multi-projector displays at scale on deformable dynamic surfaces. Following are

the main contributions in this chapter.
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1. Calibration: In the absence of point based correspondences in a moving deformable

surface, we use ray or plane based constraints imposed by the pinhole camera model on the

moving surface to achieve highly precise device calibration.

2. Multi-camera Surface Tracking: Our method takes partial information from each RGB-D

camera to generate highly accurate tracking of every location of the deformable projection

surface.

3. Multi-projector Blending: In the absence of constant surface normals, we present a new

distance based blending method that can work with deformable dynamic surface.

4. Complete System Pipeline: Using the above information we warp and blend the con-

tent from multiple projectors that adapts in real time to the changing deformations and

movements in the projection surface creating a stable seamless display. To the best of our

knowledge, this is the first end-to-end pipeline that allows multiple, temporally unsynchro-

nized projectors and cameras to adapt to the changes in a moving deformable projection

surface to create a registered, stable and seamless display.

5.2 Related Work

Although there has been a significant amount of work in single projector systems, the primary

focus of this section is on multi-projector systems that are most relevant to us. We consider

the prior work in three categories here, Rigid Static Surfaces, Rigid Dynamic Surfaces and

Deformable (Dynamic) Surfaces.
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5.2.1 Rigid Static Surfaces

When multi-projector displays are used on planar surfaces, the device calibration is avoided

by using homography based methods for registration [14, 7, 6, 96]. [99, 101, 103, 100] shows

that registration can be achieved without precise device calibration if a prior on the category

of shape (e.g. vertically extruded, swept or spherical surfaces) and measurements (e.g. aspect

ratio of a cylindrical surface, radius of a spherical surface) of the display surface is known.

When an arbitrary geometry is used, some works use projectors and cameras separately.

[92, 91, 90, 123] use a single camera to calibrate different devices separately and combine the

results in a tree-like fashion. However, errors across device pairs make it nearly impossible

to achieve sub-pixel accuracy in registration. Others calibrate a pro-cam unit (i.e. a unit

made of a projector and a RGB camera) together and use these pro-cam units as building

blocks for creating a display that has the same number of projectors and cameras. Single

pro-cam systems typically employ structured light scanning of a known calibration object

to establish pixel correspondences between the projector and camera followed by calibration

[76, 3, 29, 30, 135, 106, 52, 17, 95, 134]. The calibration object can be a checkerboard pattern

[17, 29, 30, 52, 76] or fiducials (e.g. QR codes) printed on a planar board [3, 135, 106], or even

objects of arbitrary geometry to perform calibration, the latter of which allows projection

mapping on non-planar surfaces. Such methods capture the static calibration object in

several different poses, model the projector like an inverse camera [105] and use the camera

calibration method by Zhang [137] to achieve full calibration. [131, 118] are the only works

that achieve automated calibration (without the use of specific 2D or 3D props) of multiple

projectors and RGB cameras projecting on a complex rigid 3D shape.

In terms of blending, systems with rigid static surface need to compute a blend mask only

once. As noted by [108], the simplest approach to intensity blending in multi-projector

displays is to illuminate each surface point from only one projector. However, this approach
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can make misregistrations due to calibration errors as well as color and intensity differences

between projectors clearly visible. [90, 93, 136] implement blending across multiple projectors

by feathering the blend mask in the overlapping regions. However, the blend weights are

computed in 2D projector-image space and does not consider the 3D geometry of the surface.

Therefore, these methods are restricted to surfaces with simpler geometry (e.g. planes).

There exist more advanced methods that approach blending as a part of the overall color

non-uniformity of the multi-projector display. They compute blend maps that make color

variations imperceptible while maximizing display quality, for planar [68] or arbitrary surface

geometry [119].

5.2.2 Rigid Dynamic Surfaces

More recently, with the advent of RGB-D cameras, a few works explore the advantage of

having an additional depth camera, albeit noisy and low-latency, in handling dynamic rigid

objects. Use of PDC units (i.e. a unit made of a Projector, a Depth camera and a RGB

Camera) became common in such systems. A large body of work focus on a single PDC

unit and completely avoid calibration or shape recovery using a coaxial setup with highly

specialized high-speed RGB-D devices [71, 53, 128, 114] that can additionally alleviate both

the noise and latency issues. [139, 2, 94, 27, 95] calibrate a single PDC unit with prior

knowledge of a precise 3D mesh of an object that serves as the calibration object. [110, 63, 59,

109, 62, 80] use multiple projectors to illuminate a moving rigid object. [110, 63, 59, 109, 62]

use a single depth camera to tie all the projectors together via an object with known 3D

shape. [80] uses several motion capture cameras to track markers on the target object. These

works focus on illuminating small 3D objects (e.g. a bust) that can be contained within the

field of view of a single RGB-D camera.
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Kurth et al. [60] then advance to systems with multiple RGB-D cameras to allow 360 degree

surround illumination of rigid moving objects. Multiple RGB-D cameras are required for

covering the surround field of view created by all the projectors. This work proposes a

calibration method that supports multiple RGB-D cameras and projectors, however still

uses a single RGB-D camera for tracking. Since the rigid object does not change shape, as it

moves the part visible to the RGB-D camera can be matched to the known rigid geometry

via iterative closest points (ICP) based techniques to find the pose and orientation.

In a dynamic system, the overlapping regions of the projected imagery from multiple projec-

tors change continuously due to the movement of the projection surface. Therefore, blend

masks for each projector need to be recomputed in real-time. [66] proposes a method to

compute blend masks for dynamic rigid objects using the dot product between the surface

normal at a point on the object and the unit-rays from each projector. However, they do

not take the 3D distance into account. [80] introduces a blending method that considers the

surface geometry, distance to the surface as well as the pixel size on the surface to compute

blend weights across projectors. By constructing a light transport matrix, [110, 111] solve a

global optimization problem using a GPU-based solver to achieve real-time content depen-

dent projector blending on a dynamic, rigid object. However, this solution does not scale

as the light transport matrix becomes too large with more projectors. [60] proposes a high-

performance distributed solver to achieve real-time performance in small systems. Although

blending techniques that respect surface discontinuities have been proposed [4], they are not

real-time and used for a different purpose of illuminating an animatronic head with limited

local motions to render different expressions and manipulating the projection images on it

to enhance its expressiveness.
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5.2.3 Deformable Dynamic Surfaces

The rigid 3D object of known shape provides the critical anchor for all the devices in a system

that illuminates rigid dynamic objects. The biggest challenge when moving to deformable

objects is the constantly changing shape of the object that removes any way to anchor

the system. The changing shape of the surface has to be tracked continuously and the

projection has to adapt to these changes in real-time. This challenge becomes multi-fold

when considering geometrically stitching images projected from multiple PDCs to achieve

a seamless display, especially when the PDCs are not synchronized. Therefore, most prior

work skirts around the problem of device calibration and surface recovery by using coaxial

pro-cam units [87, 54, 10, 8]. Some works embed retroreflective markers [18, 73] or markers

painted with IR ink [84, 86] on the deformable surface to track it and recover its shape.

[77, 78] annotate the display surface with a precisely printed dot cluster marker grid using

IR ink.

Some highly specialized systems like the MIDAS system [72] use a specialized, high-speed

projector, three high speed cameras and three near-IR light sources of different bands, all

setup in a co-axial arrangement using mirrors so that they have the same center of projection.

Each of them is equipped with color filters to sense each of the three NIR light sources. This

setup enables them to use photometric stereo to compute the object normals at every camera

pixel. With this information, they render their projection image to change the appearance

of the object to a different material. Due to the use of coaxial high-speed setup, this system

can achieve dynamic projection mapping without much perceptible lag.

Ahmed et al. [1] implement a two-projector superimposed display on a deformable surface.

Each projector is coaxially aligned with an IR camera. Although they calibrate each coaxial

pair separately, they do not calibrate all the devices together and hence, do not reconstruct
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the 3D surface geometry. Instead, each camera tracks an IR grid painted on the surface and

the display content is warped separately for each projector.

The method proposed in Chapter-3 is the only method that calibrates a consumer-grade

non-coaxial single PDC unit on a dynamic, deformable surface without using any embedded

markers. The projector projects a grid of ArUCo markers to establish projector-camera

pixel correspondences on a moving surface before calibrating the PDC unit. However, that

method cannot be used to calibrate multiple PDCs.

5.2.4 Comparison

The work in this chapter is closest to [1], but is significantly different from their work in the

following respects. (i) We calibrate all our devices and align them in world space instead of

using coaxial pro-cam pairs that are not calibrated with respect to each other. This allows us

to (ii) place our cameras and projectors so each device need not view/illuminate the entire

surface, enabling large-scale displays unlike [1]. Additionally, (iii) unlike [1], we reconstruct

the entire 3D surface geometry, (iv) without requiring temporal synchronization of the

cameras. Finally, (v) our display requires real-time blending based on the reconstructed

surface shape, unlike [1] who implement a two-projector superimposed setup and hence, do

not require it.

Multi-PDC systems have not been explored in the context of deformable dynamic objects.

Therefore, blending techniques are non-existent for this scenario. The normal-based blending

applied for rigid dynamic system are not applicable since surface normals change continu-

ously in a deformable dynamic object. Instead, we propose a novel blending technique

dependent on distances between the devices, their view frusta and the changing projection

surface. Finally, since no single RGB-D camera sees the entire projection surface, we devise

a new tracking method that combines the information from multiple unsynchronized RGB-D
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Figure 5.2: The flowchart of the proposed system.

cameras to provide acceptable tracking updates. However, for calibration, our method starts

from the solutions proposed for single PDC units in Chapters 2-4 and design more compre-

hensive methods based on ray or plane-based constraints imposed by the pin-hole camera

model to achieve accurate device calibration for multiple PDC units.

5.3 Proposed System

The system setup consists of N PDCs projecting on a large, continuous and smooth de-

formable surface in a tiled manner such that the projections overlap (see Figure 5.1 (a)-(b)).

The boundary of the display region is marked on the surface by black dots placed equidis-

tant along each edge, resulting in a final display. Each projector has a corresponding RGB-D

camera that observes part of the surface, such that the camera fields of view also overlap. We

assume that the color camera and the depth camera in each RGB-D camera are temporally

synchronized and geometrically registered, which is common for almost all consumer RGB-D
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cameras. Further, we do not require any knowledge of the projector or camera intrinsics or

extrinsics.

Our method begins by each projector projecting ArUCo patterns on the moving deformable

surface while all RGB-D cameras capture those patterns and decode them to generate pixel

correspondences. Then, we proceed to camera calibration, followed by projector calibration.

Using the calibration parameters, we track the surface shape and perform intensity blending

in real-time to adapt to the changing surface shape and create a stable seamless multi-

projector display on a dynamic, deformable surface.

The goal of a single-projector projection mapping system is to determine a texture-mapping

function Ω(·) that warps the source image Isrc to a target image Itgt such that Itgt conforms

to the surface shape when it gets projected out. The texture mapping function is defined

as: Ω(p) = s, which maps a projector pixel p ∈ R2 in Itgt to a texture coordinate s ∈ R2

in Isrc, i.e. Itgt(p) = Isrc(Ω(p)). In our multi-projector system, each projector j has its

own texture mapping function, denoted by Ωj(p) = s which must be computed based on

the current surface shape. Therefore, in order to compute the correct Ωj(p) and render a

registered multi-projector display, we need the following information: the texture coordinate

s = (u, v), the 3D point d on the surface that it maps to and the projector pixel pj in

projector j that will illuminate the surface at that point. Since there are multiple cameras,

each observing a part of the surface, we require accurate camera calibration in order to merge

their depth in a unified world space. In order to map the 3D point d to its correct projector

pixel pj in projector j, we require accurate projector calibration.

Finally, to render a seamless display, we must blend the projectors in their overlapping

regions. This is achieved by computing a per-projector intensity mask, denoted by αj(p), 0 ≤

αj(·) ≤ 1. Therefore, for the i-th point on the surface illuminated by projector j, we require

the following tuple of correspondences: f j
i = (si, di, p

j
i , α

j
i ), where si = Ω(pij), and di is

the 3D point on which pixel pji gets projected on. The final image that is rendered by
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projector j in a multi-projector setup is Ijtgt(p) = αj(p)Isrc(Ω
j(p)). Note that for systems

handling deformable dynamic surfaces that continuously change in shape, αj(·) and Ωj(·)

are additionally functions of time. However, we omit that for the sake of brevity.

Figure 5.2 gives an overview of the complete pipeline of our system. First, we perform

calibration, which recovers accurate projector and camera calibration parameters. Next,

we use the cameras to capture and track the surface shape. With the camera calibration

parameters, we align the surface depth from each camera to the world space and reconstruct

the surface. Using the projector parameters, we compute the blend weights αj(·) for each

sampled point on the surface and reproject it to the projector to determine its corresponding

projector pixel. This enables us to compute the texture mapping functions Ωj(·). Finally,

we render the display by passing all this information to a shader. In subsequent sections,

we describe in detail our calibration, surface tracking and intensity blending methods that

come together in the above pipeline to create a seamless, real-time display on a dynamic,

deformable surface.

5.4 Calibration

The first step in achieving a registered multi-projector display on a dynamic, deformable

surface is to calibrate every projector and camera in the system. As noted in Chapter-3,

we model the projectors and cameras with a pinhole camera model extended with radial

and tangential distortion, where a 2d point p (of a projector or camera) corresponds to a 3D

point d on the surface. The calibration process needs to determine the intrinsics that include

the intrinsic matrix K ∈ R3×3 and distortion coefficients D ∈ R5×1, and the extrinsics that

include the rotation R ∈ R3×3 and translation T ∈ R3×1. Thus, for each device, we have

nine intrinsic parameters (two for focal length, two for principal point and five distortion

coefficients) and six extrinsic parameters (three each for rotation and translation) resulting
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in a total of fifteen parameters per device. We denote the projection function M i that

takes a 3D point d and maps it to a pixel p using the calibration parameters of device i as

p =M i(d; {Ki, Di, Ri, T i}).

In order to calibrate a multi-PDC system, we require correspondences between the cameras

and projectors. In static projection mapping systems, this is achieved by structured light

scanning, where each projector projects known patterns, while all the cameras capture them.

The patterns are decoded to establish pixel correspondences between the projectors and

cameras, and are triangulated using multi-view geometry.

However, in a moving deformable surface that changes shape continuously, this approach is

inapplicable, especially when the devices are not synchronized. There is no guarantee that

the surface shape remained the same when computing camera pixels corresponding to the

same projector pixel across multiple cameras. In fact, in all likelihood, the correspondences

belong to two different surface shapes. This lack of synchronization implies that the surface

cannot be triangulated even if they are correctly decoded. Therefore, the system cannot

be accurately calibrated to match the physical setup, a critical requirement for creating a

registered display.

In the absence of inter-camera correspondences, we devise a method that leverages the depth

from each camera via ray and plane based constraints offered by the pinhole model to achieve

accurate calibration despite the surface motion. For this we need to acquire images of some

projected patterns. We project a grid of ArUCo patterns as in the method proposed in

Chapter-3. Note that the movement of the deformable surface is important for this step.

Each projector projects several sequences of ArUCo grids one at a time for a few camera

frames, while all cameras capture it. The captured images are then decoded to determine the

camera pixels of the ArUCo pattern corners, while the corresponding 3D point is obtained

from the depth map. Thus, for the k-th ArUCo pattern mi
k detected in camera i, we have a

3D point dik, the camera pixel cik and the projector pixel pik.
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5.4.1 Camera Intrinsic Calibration

The first step in achieving full calibration is to estimate the camera intrinsics. For each

camera, we fix the extrinsics to be at the origin, with the camera looking down the positive

Z-axis. Thus, for each camera i, we optimize its intrinsic parameters denoted by {Ki
c, D

i
c}

using the correspondences (cik, d
i
k) from all markersmi

k detected in that camera. We minimize

the reprojection error Ei
c, as:

arg min
Ki

c,D
i
c

Ei
c =

1

2

∑
k

(|cik −M i
c(d

i
k; {Ki

c, D
i
c,0,0}))2. (5.1)

We initialize the optimization assuming the distortion coefficients to be zero, and compute

the intrinsic matrix Ki
c directly from the 2D-3D correspondences. Each camera’s intrinsics

are optimized separately. If the camera API provides the camera intrinsics, we use them to

initialize the optimization instead. We continue optimizing the parameters until convergence.

5.4.2 Camera Extrinsic Calibration

The largest impact of the absence of inter camera correspondences in an unsynchronized

system is estimating the camera extrinsic parameters. Traditional multi-view geometry

methods that assume a static surface become inapplicable. We present a new method to

estimate the camera extrinsics that uses 3D depth captured by each camera instead of the

2D pixel correspondences.

Consider only the set of pattern corners that lie on the same row of pixels in the projector

image when it is displaying a grid of ArUCo patterns on the moving deformable surface. This

row of 2D pixels forms a plane in 3D. Each camera captures this ArUCo grid and records

the 3D points corresponding to the pixel row of pattern corners. If we fit a plane through
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(a) Camera Local Space (b) World Space

Figure 5.3: Illustration of camera extrinsic calibration. Cameras C1 and C2 both capture
the world from their local origin and view the same projector at different locations (P1 and
P1’). (a) They capture 3D points corresponding to the same projector pixel in their local
spaces, giving points along ray L (red) and L’ (green). However, in world space, points along
ray L’ must align with points along ray L. (b) Our camera extrinsic calibration finds a rigid
transform that aligns points on ray L’ along the ray L to determine the camera pose.

each set of 3D points acquired by each camera, we will get two different plane parameters,

even though they are the same 3D plane in world space. Similarly, consider only 3D points

captured by two cameras that correspond to the same projector pixel i.e. ArUCo marker

corner. If we fit a line through each of these sets of 3D points, we will get two different line

parameters, even though they correspond to the same 3D ray in world space.

Therefore, we need to transform the point clouds such that 3D points from different cameras

corresponding to the same projector row/column pixels lie on the same 3D plane, and 3D

points from different cameras corresponding to the same projector pixel lie on the same 3D

ray. This transform implicitly gives us the camera extrinsics. Figure 5.3 illustrates this

concept using points along a ray.
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Thus, we perform an optimization that computes a rigid transform by minimizing the error

between corresponding 3D lines and 3D planes in the point clouds captured by multiple

cameras. We minimize the error, Ei
ray, E

i
row, E

i
col, between corresponding lines, row planes

and column planes respectively in the 3D point cloud captured by the reference camera and

the point cloud captured by the i-th camera transformed by the camera pose Ri
c, T

i
c given

by:

arg min
Ri

c,T
i
c

Ei
t = Ei

ray(d
i, dref ; {Ri

c, T
i
c})

+Ei
row(d

i, dref ; {Ri
c, T

i
c}) + Ei

col(d
i, dref ; {Ri

c, T
i
c})

(5.2)

The error is computed as the distance between the points in the transformed point cloud

and their projection on the corresponding ray/plane in the reference point cloud. Once we

have each camera’s extrinsics, we transform the point cloud from each camera to the world

space.

Note that standard 3D point cloud alignment algorithms like ICP (Iterative Closest Point)

cannot be used here. Due to the dynamic nature of the surface, the 3D points corresponding

to the same pattern corner lie on a straight line. One camera may have captured more 3D

points of that pattern than another. Since ICP computes point matches every iteration, it

may converge to the incorrect solution because of incorrect matches. Therefore, while ICP

serves as a good initialization to the optimization, it does not result in a precise alignment

of the point clouds.

5.4.3 Coarse Projector Calibration

At this point, the cameras in the system are fully calibrated. Next, we perform projector

calibration. We use the method in Chapter-3 that uses the point cloud to perform a coarse
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projector calibration. This is used as an initialization to an optimization that refines the

projector parameters.

To calibrate a particular projector, we use all the 3D points corresponding to it that have

been captured by all cameras and transform them to world space using the camera extrinsics.

Next, we again use the plane based constraint imposed by the pinhole camera model to fit a

plane through each set of 3D points that correspond to a row of pixels in the projector image.

This gives us a set of row planes. As dictated by the pin hole camera model, we intersect all

the row planes to form a 3D line that contains the projector location in world space and find

the direction of this 3D line to estimate the projector’s X-axis in world space. We repeat

this procedure for the set of 3D points that correspond to the same column pixels in the

projector image, fitting planes and intersecting them to get the projector’s Y-axis direction.

Taking a cross product of the X and Y-axes gives the projector’s Z-axis. Finally, we intersect

the 3D lines corresponding to the X- and Y-axes to get an estimate of the projector’s center

of projection (aka location).

We also estimate the intrinsic matrix of the projector using the pose estimate and the 2D-3D

correspondences of that projector. This coarse projector calibration serves as an initialization

to the optimization that refines each projector’s parameters.

5.4.4 Fine Projector Calibration

Let (pjk, d̃k
j
) denote the k-th correspondence between a 2D projector coordinate pjk and its

transformed 3D point d̃k
j
for the j-th projector. Let {Kj

p , D
j
p, R

j
p, T

j
p} denote projector

parameters. We optimize these parameters and minimize the reprojection error Ej
p:

arg min
Kj

p,D
j
p,R

j
p,T

j
p

Ej
p =

1

2

∑
k

(|pjk −M j
p (d̃k

j
; {Kj

p , D
j
p, R

j
p, T

j
p}))2 (5.3)
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Figure 5.4: The calibration results from our method. The cameras are shown in black, while
the three projectors and their corresponding depth data are colored in red, green and blue.

We initialize the projector parameters from the coarse projector calibration in the previous

step, assuming distortion coefficients are zero. The optimization is then performed until

convergence. Figure 5.4 shows the final, fully calibrated system.

5.5 Multi-camera Surface Tracking

Surface tracking is achieved by a realtime 3D reconstruction of the continuously changing

surface shape. The goal of the surface reconstruction step is to determine 3D points on the

surface that correspond to the uniformly sampled texture grid, where each texture coordinate

is denoted by sk = (uk, vk). Each black marker on the surface corresponds to a known texture

coordinate. However, because they are all identical (to keep the system simple for deployment

for lay users), we must first determine the (u, v) coordinate of each marker in every camera

frame. We employ the method in Chapter-2 to track the surface, but adapt it to handle

multiple depth cameras, each observing only part of the surface.
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We start by detecting the border markers in the IR frame of each camera and determine the

corresponding 3D point from the depth map. Since each 3D point is in the local space of

the camera that detected it, we use the corresponding extrinsics to transform each 3D point

to world space. However, because the camera FOVs overlap, some markers are detected

by multiple cameras. In order to reconstruct the surface accurately, we must identify these

duplicate detections and merge them.

Note that while all the 3D points are in world space, they are randomly ordered. To remove

this random ordering, we compute the average 3D point of all the points in world space and

then sort them all in a clockwise fashion around the average 3D point. This arranges each 3D

point with its adjacent neighbor around the display boundary. Next, we proceed to merging

markers detected by multiple cameras. For each 3D point, we compare the distances with

its left and right neighbors. If the distance between a pair of points is less than a threshold

(≤ 50mm), we mark those points as duplicates. Each set of duplicate detections is assigned

a unique ID and after all duplicates have been detected, the 3D points in each set are merged

by averaging them.

Now that we have one 3D point for each marker in world space, we identify the four corners

of the display region by computing the angle each marker makes with its two adjacent

neighbors. Four markers with angles close to 90◦ are determined as the display corners.

From these four corners, we determine the top-left corner and assign its texture coordinate

(u, v) = (0, 0). Since all the markers are sorted in a clockwise fashion, we can assign each

marker its corresponding (u, v) starting from the top-left corner, going clockwise around the

display boundary.

Next, we compute correspondences inside the display region. Instead of interpolating nor-

mals like the method in Chapter-2, we use bilinear interpolation to estimate the internal

correspondences. These interpolated 3D points are not guaranteed to be on the surface

and using them for rendering will result in visible misregistrations. Assuming a calibrated
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multi-PDC rig, we reproject the internal 3D points back into every camera and re-sample

the depth at that pixel location if it is valid (see Figure 5.5). We transform these re-sampled

3D points back into world space and average any points that were seen by multiple cameras.

Thus, by tracking the markers from each camera, resampling the surface shape and combining

all 3D points in world space, we are able to achieve multi-camera surface tracking. At this

point, the entire texture grid has a corresponding 3D point. Finally, we use the projector

calibration parameters to determine the corresponding 2D pixels in every projector and

compute the function Ωj(·).

Note that calibration errors could introduce misregistration artifacts when we transform the

points back into world space. However, misregistrations will only be visible in the projector

overlapping regions. Since the overlapping regions are seen by multiple cameras and we

average the 3D points seen by each camera, this mitigates the misregistration artifacts caused

by imperfect calibration.

5.5.1 Extension to Marker-less Display

The proposed method in this chapter can be extended to remove the border markers com-

pletely for a marker-less multi-projector display. Note that the border markers have two func-

tions: (i) they demarcate the displayable boundary, and (ii) they assist with parameterizing

the surface. Therefore, any marker-less algorithm must provide these two functionalities for

the system to work.

For computing the display boundary, we determine the bounding box of the 3D points of the

ArUCo marker corners acquired during calibration. The limits of this bounding box are set

to the boundaries of the (u, v) parameter space. Then, each depth camera samples the 3D

surface in world space. The (u, v) values corresponding to the these 3D points are computed.
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Figure 5.5: Surface sampling by the multi-camera rig. The filled black markers represent
the surface border. Points are estimated by linear interpolation between the markers (empty
black circles). These points are reprojected into the cameras, which measure the 3D surface
at that pixel (colored circles). Points seen by multiple cameras are averaged (striped circles).

Figure 5.6: The projector blend masks in (u, v) space. Note that each mask represents the
entire display region.

Then, the (u, v) space is uniformly sampled to compute the 3D points on the surface. These

3D points are then used to warp the projector images accordingly.
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5.6 Projector Intensity Blending

To blend the contributions from different projectors in the overlapping region, we need to

determine the contribution by each projector to all 3D points. The challenge in a system

with dynamic deformable projection surface stems from the fact that these regions are con-

tinuously changing. Therefore, the projector blend masks need to be computed every frame

efficiently to maintain a real-time FPS (frames per second) of the display.

Prior works on multi-projector dynamic systems only handle rigid objects where the projector

light completely floods the target object. In such a rigid object, the surface normals at each

3D point are known apriori. This allows such methods to use the angle of the surface normal

with respect to the projector locations (by computing the dot product) to determine the

blend weights for each projector. Thus, if the surface normal is at a grazing angle with

respect to a projector, the blend weight is close to zero. During runtime, the normals

are transformed based on the current object pose to determine the blend weights for each

projector contributing to a 3D point. The 3D distance of contributing projectors is also

included in the blend weights to account for distance attenuation. Such methods are well

suited to handle sharp edges and occlusions of rigid object with respect to projectors.

On the other hand, projector intensity blending on deformable surfaces cannot assume static

surface normals and hence, have to be recomputed every frame. However, surface normals

are not well suited for blending in our case. Aside from the added latency to compute them

every frame, surface normal based blending weights do not feather off the masks to zero at

the edges of a projector since the projector rays do not hit the surface at grazing angles,

resulting in visible brightness seams. Additionally, noise in the depth camera can impact

surface normal computation, resulting in artifacts in the blend masks. The mandate is for

the projection intensity mask to fall off gradually to zero the closer it gets to the projection

edge in the overlapping region. At the same time, we want to account for the distance of a
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3D point to the projectors as well, with the closer projector having a higher contribution.

Therefore, we compute distance-based blending weights using the correspondences generated

in Section 5.5.

First, for each projector, we pre-compute the 3D planes forming its view frustum using its

calibration parameters. Next, for each 3D point dk on the surface, we check whether its

reprojection in projector j is valid. If not, its blend weight is automatically set to zero.

Otherwise, we compute (a) the 3D distance between the 3D point and its closest view

frustum planes for that projector, and (b) the 3D distance of the corresponding 3D point

to that projector. Finally, the blend weight at the k-th 3D point in projector j, denoted by

αj
k, is computed as:

αj
k =

wj
kL(dk)∑N

q w
q
kL(dk)

, L(d) =
G(d)2

H(d)2
, (5.4)

where dk is a 3D point on the reconstructed surface, N is the number of projectors, G(d)

computes the 3D distance between the 3D point dk and its closest view frustum plane in

projector j, and H(d) computes its 3D distance to the projector location. wj
k is 1 if the

reprojected 3D point is valid in projector j, and 0 otherwise. In other words, if a 3D point

in the overlapping region is closer to a projector, that projector has a higher contribution to

that point. At the same time, if that 3D point is close to the projection edge, its contribution

is reduced.

The result is a blend mask for each projector where the pixel intensities in the non-overlapping

regions are one, but gradually fall off to zero in the overlapping regions as they approach

the projector edges, resulting in a smooth display. Figure 5.6 shows the blend masks for the

three projectors in (u, v) space. Note that each mask represents the entire display region.

Therefore, while the falloffs look small in the image, they span 2’ (0.7m) on the 3D surface.
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Figure 5.7: The final multi-projector display on a moving, deformable surface.

5.7 Results

Figure 5.1 and Figure 5.7 show the full seamless multi-projector display on a deformable

fabric achieved by our method. Figure 5.9 shows the markerless multi-projector display

on the same fabric. We used three PDCs that illuminated a display surface of size 18’×4’

(5.5m×1.2m). The display surface comprises a loosely hanging white fabric. Ten boundary

markers annotate the top and bottom edges across, while four markers annotate the left

and right edges down the fabric. The PDCs are placed approximately 4’ (1.2m) away from

the display surface and 6.5’ (2m) apart from each other to have a reasonable overlap while

still covering the entire display area. Two powerful fans placed on either side of the surface
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Figure 5.8: Results of our calibration, rendering and display method. Left column: No
calibration. Middle column: Calibrated result without blending. Note the accuracy of our
registration. Right column: Our final blended result.

are used to simulate surface motion of varying intensities. Figure 5.8 shows the seamless

registration and blending of overlapping projectors.

We used three Azure Kinect RGB-D cameras. The Azure Kinect is a time-of-flight IR/depth

camera that provides registered RGB and depth images. It provides multiple operating res-

olutions. In our work, we used the Azure Kinect in the wide field-of-view setting, capturing

1280×720 RGB-D images at 30fps. This enables us to cover a large display. At this setting,

the depth camera resolution is 512×512, significantly smaller than the RGB camera resolu-

tion. However, the camera API provides methods that transform and interpolate the depth
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Figure 5.9: The markerless multi-projector display from three PDCs.

Figure 5.10: Plot of the misregistered surface area (%) vs. surface speed (cm/s), showing
the effect of surface motion on the 3D surface reconstruction.

map to the RGB camera space, similar to other consumer-grade depth cameras like the Intel

RealSense Depth Cameras [42]. In our work, we use 3D points from this interpolated depth

map. For the projectors, we used three Optoma ZH406STx short-throw projectors, operat-

ing at 1920×1080 resolution. At a time, only one projector projects an ArUCo marker grid

while all cameras capture in parallel. We capture approximately 25 frames per projector.

Although the Kinect API provides camera intrinsic and distortion parameters, we have found
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(a) Registration Accuracy versus Surface Motion (b) Momentary misregis-
trations

Figure 5.11: Effect of surface motion on registration accuracy. (a) The graph shows the SSIM
score of a video of the overlapping projection compared to the original text image. The images
underneath show the projected frames with the lowest SSIM scores at the corresponding
surface speeds. (b) shows momentary misregistrations for other types of display content.

them to be inaccurate for our application. Therefore, we always refine camera intrinsic and

distortion parameters. Note that the cameras are not temporally synchronized, either during

calibration or during real-time display. We tested the robustness of our system by placing

the PDCs in different positions and orientations with respect to the surface, such as tilted

upwards or sideways. So long as each border marker is visible to at least one camera and

the display area is completely illuminated by the combined projections, our system operates

smoothly.

The proposed system was implemented in MATLAB and C++. Our machine had an Intel

Core i7 CPU, with 32GB RAM with a nVidia Quadro P4000 GPU. We used OpenCV APIs

for detecting ArUCo markers with sub-pixel accuracy. We used Levenberg-Marquadt opti-

mization to implement our calibration routines. All calibration routines were implemented

in C++, except the camera extrinsics calibration, which was in MATLAB. Calibration rou-

tines run until convergence, which happens when any one of the following two conditions are
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Table 5.1: Reprojection error (in pixels) for the 3-PDC system

Camera Reproj. Error Projector Reproj. Error
0.113 1.156
0.126 1.234
0.124 1.249

Table 5.2: Display run-time breakdown for the 3-PDC system to render a single frame.

Step Time (ms)
Border detection 3.78
Surface Reconstruction 3.37
Blending 3.56
Warping 10.65
Total 21.36

met: (1) the number of iterations exceeds a user-defined limit (typically 1000), or (2) the

absolute difference between the errors in two successive iterations is less than a threshold

∆ = 10−4. It takes approximately 20 minutes to fully calibrate a 3-PDC system, of which

ArUCo acquisition takes 40 secions, camera extrinsics calibration takes 11 minutes and pro-

jector calibration takes 7 minutes. Note that our code is not optimized and calibration is

done only once for the system. The calibration parameters are then used to achieve the

real-time seamless projection on the deformable surface. We used OpenGL for rendering.

5.7.1 Evaluation

We evaluated four main aspects of our system: (i) calibration accuracy, (ii) run-time effi-

ciency, (iii) accuracy of the 3D surface reconstruction and (iv) display registration quality.

Calibration Accuracy : Table 5.1 shows the reprojection error achieved using our calibration

method for each camera and projector in our system. The reprojection error for all cameras

is less than 0.2 pixels, whereas for projectors, it averages around 1.5 pixels. The reason for

the relatively higher reprojection error for the projectors is due to noise in the depth capture

by the Kinects.
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Existing calibration methods require the surface to be static, rigid and/or of known shape,

none of which apply to our case. The calibration parameters provided by such methods

are accurate only for a specific surface geometry. If the surface then moves, we will see

misregistrations immediately. In contrast, our method can exploit the surface movement to

provide a more accurate calibration.

Runtime Efficiency : Table 5.2 shows the runtime breakdown of our system to render a

single frame for the display with 3 PDCs after each RGB-D camera has provided a frame

for processing. Note that the total time taken by our system to render a single frame for

the deformable surface is 22ms, which is less than the camera frame rate (33ms/frame).

Therefore, our system is limited by the camera frame rate and theoretically, we can support

cameras where each frame is rendered in 22ms or higher (i.e. maximum of 45 fps).

Surface Reconstruction Accuracy : To evaluate the surface reconstruction accuracy, we com-

puted the surface area of the reconstructed surface that where the depth differed from the

surface reconstructed from the dense depth maps by more than 1cm. We captured data at

various surface speeds, ranging from stationary to motion mimicking strong gusts of wind.

Figure 5.10 shows these areas of the reconstructed surface as a percentage of the total surface

area. Notice that with increasing surface speed, the error increases only slightly, reaching

a maximum of 4.25%. This amounts to an area of 3 sq. ft. distributed across the total 72

sq. ft. display (0.25m2 of 7m2) and is imperceptible. Notice also that there is still some

error even when the surface is stationary. This is not due to calibration errors (which would

result in visible misregistrations of the display) but the small wrinkles in the fabric which

our reconstruction method interpolates over.

Display Registration Quality : We captured a video of the overlapping regions of the final

display when projecting text at various surface speeds and compared it to the original image

using the Structural Similarity Index Measure (SSIM) [129]. The SSIM score ranges from

0 to 1, with lower values corresponding to poorer quality, while a score of 1 indicates an
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exact match. Figure 5.11 shows the variation in the SSIM score over 300 video frames.

For smaller surface movements, the SSIM score remains generally high, greater than 0.94.

However, as expected, with increasing surface speed, the SSIM score decreases, going below

0.9 for a few frames which is when misregistrations become obvious. This is confirmed by a

visual analysis of the overlapping projections as well. The images of the text in Figure 5.11a

show the display registration in the video frame with lowest SSIM score for each surface

speed across the 300 frames. It is important to note that these misregistrations are only

momentary as the display continues to adapt to the changing surface geometry.

5.7.2 Discussion and Limitations

Latency : Although our calibration and surface reconstruction is quite accurate even in strong

winds, we still see misregistrations in the final display at high surface speeds (Figure 5.11).

This is mainly due to the lag caused by our system. It takes 22ms to render a single frame

for a 3-PDC system and this lag is enough to see minor misregistrations in the overlapping

regions for a brief moment. One possible hardware solution is to use higher speed RGB-D

cameras e.g. 45fps to mitigate these misregistrations. A possible algorithmic solution is to

use motion prediction. While prior work has used motion prediction for rigid bodies in a

multi-projector DPM setup [110], these techniques are not applicable in our case where the

surface is deformable and the movements are random and complex.

Depth Camera Noise: A problem with using commercial depth cameras such as the Azure

Kinect is noise in the captured depth map. Using noisy depth for calibrating the system

can result in calibration errors. However, our novel calibration method uses ray and plane

-based constraints to mitigate those effects. During display runtime however, noise in the

depth map manifests as a jittery display. Although the method in Chapter-3 addresses this

jitter in the context of DPM by using the Kalman filter to smooth the points, the Kalman

109



filter introduces some lag which can manifest as misregistrations in the overlapping regions.

Therefore, in the future, we would like to explore other more accurate noise removal methods.

Border Markers : We place border markers on the surface to serve as features demarcating

the display boundary. This is necessary for deformable surfaces as the projection areas

change based on the surface movement. While we have explained a marker-less method of

performing DPM in Chapter-2, it relies on a clear depth discontinuity between the surface

and the background. This is not guaranteed in our case and we would like to explore methods

that do not require any boundary features to perform DPM on deformable surfaces in the

future.

Display Readability at High Surface Speeds : Our goal was to create a projection display that

conforms to the surface shape as it is perceptibly pleasing for viewers. However, with high

surface speeds, the display readability may be compromised due to the rapid surface motion.

In the future, we would like to study this effect of rapid surface motion on display readability

by conducting user studies and exploring algorithms that can stabilize the projection at high

surface speeds.

Display Color Quality : As shown in Figure 5.1(d), Figure 5.7 and Figure 5.8, our distance-

based blending method is able to blend the overlapping regions to create a seamless display

in real-time. Though normal based blending does not work in this scenario, we would like to

explore adapting other color calibration methods such as [119, 60] for deformable dynamic

surfaces in the future.
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Chapter 6

Applications - Surgical Stencils

In this chapter, we propose an application of D-SAR using the previously mentioned work:

a system that provides real-time guidance to surgeons by illuminating salient markings (e.g.

points, lines and curves) on the physical surgical site using a projector. In addition to the

projector, the system uses a RGB-D camera (e.g. Kinect) for feedback and is driven by a

PC. The RGB-D camera provides depth information in addition to an image at video frame

rates. This unit is called the projector-depth-camera or PDC unit. The goal is to capture

a high resolution mesh of the surgical site using the PDC unit initially. During surgery

planning or execution, this digital model can be marked by appropriate incision markings on

a tablet or monitor using touch based or mouse based interface, locally or remotely. These

markings will then be illuminated at high precision via the PDC unit on the surgical site

in real time. If the surgical site moves during the process, the movement will be tracked by

the same system and updated quickly on the moved surgical site. This system overcomes

the limitations of AR/VR headsets which can overlay information through a display, but

are obtrusive and provides visualization only for the surgeons excluding others in the room.

Overlaying information, at high precision, directly on the physical surgical site that can be
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seen by everyone in the operating room can become an useful tool for skill transfer, expert

consultation or training.

6.1 Introduction

Augmented Reality (AR) headsets are being used to assist surgeons in overlaying patient

scans (like CT, MRI etc) on the human body [56, 55, 57]. In addition to visualization, this

overlay can also aid in pre-operative surgical planning. Instead of marking the incisions and

blood vessels by referring to CT scans separately, AR/VR headsets allow marking using

cues from the overlaid digital information coming from the headset increasing the accuracy

of the markings [56]. Though immersive, wearables are cumbersome and become a barrier

to accessing the surgical site directly. Further, the overlaid information is only visible to the

surgeon and not to other people (e.g. surgical staff, residents etc.) making communication

or collaboration difficult amongst the team. In contrast, our digital overlay via the projector

appears directly on the patient’s body, making the information visible to everyone. Our

projection conforms to the shape of the surgical site putting the digital data in physical

alignment with the 3D shape of the surgical site providing the best possible context to

improve surgical understanding. It can also be used in preoperative planning for iterative

revision of the incision marks that is currently achieved by drawing directly on the surgical

site using a marker and erasing and redrawing for changes. This process is not only time-

consuming and cumbersome, but often leads to a ’dirty’ surgical site where legibility of

markings are impacted.

The proposed system falls in the broad umbrella of Projection-based Augmented Reality

(PAR) where projectors are used to augment real objects to create visualizations that can

be seen together by multiple people [119]. Use of display-based AR (DAR) where a user has

to look at a tablet, monitor or headsets to surgical assistance, navigation and visualization
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have been explored in recent years. However, prior PAR systems have been explored in a very

limited manner. They are usually heavily engineered using custom devices, need preoperative

specialized scans of the surgical site which are usually registered manually using fiducials

or markers in the operating room (OR). In some cases, 3D shapes are not even taken into

account resulting in a loosely registered projection. No practical method exists to bind the

projection accurately with movement of the surgical site.

We first use the PDC for a structured light scan to create a high-resolution digital model

of the surgical area in the pre-processing stage in around 3 minutes. This model is then

loaded in an GUI on another machine (desktop, tablet or laptop) being used remotely or

locally by an expert. The expert surgeon then marks the 3D model in the GUI using

touch-based or pen-based or mouse based interactions in a tablet or computer (Figure-5.1).

The high resolution model is registered to the lower-resolution depth camera frame capture

throughout the entire session of the interaction. Any markings made on the digital model

shows up at a high precision at the surgical site in real time. Movements of the surgical site

is common during the surgery. Therefore, we track the moving surgical area and update the

projection quickly so that the digital overlay binds to the surgical site accurately even after

the movement.

We demonstrate the PDC based surgical guidance capability on a cleft lip clinical model

focusing on craniofacial surgery. The choice of craniofacial surgery for initial demonstration

and testing is driven by the computational challenges posed by enabling precise 3D projection

on a very a small and richly three-dimensional surgical site of infants. Cleft surgery, in

particular, is one of the most challenging and impactful surgeries that require precision

preoperative planning in order to ensure a correct and balanced repaired lip. Errors in

preoperative planning can result in imbalanced and asymmetric repair which requires follow-

up corrective surgeries. Due to the sensitive nature of the preoperative planning for cleft

repair, surgeons often have to revisit and revise the surgical markings, a process that can
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take 20-30% of OR time (e.g. 1.5-2 hours in a 5-7 hour surgery) due to repeated erasing

and redrawing the markings. Using optics based marking from the proposed system also

eliminates the special care and attention that has to be devoted to the sterility of the markers

and the erasers. Figure-6.1 shows the anthropometric landmarks for a unilateral nasolabial

repair. Note that a real surgical site on a 1-3 month old infant will be smaller than the size

of this image on a A8 letter-sized paper.

Every step of this work has been done in collaboration two renowned reconstructive surgeons,

Dr. Raj M. Vyas and Dr. Lohrasb R. Sayadi, who were the motivation for the application of

the PAR technology in this domain. Dr. Vyas is the Chief of Plastic Surgery at CHOC Chil-

dren’s Hospital and Professor of Plastic Surgery and Neurosurgery at the School of Medicine,

University of California, Irvine. He specializes in adult and pediatric facial reconstruction

of congenital, traumatic and oncologic conditions. Dr. Sayadi is a resident physician in

the Plastic and Reconstructive Surgery Department at the University of California, Irvine.

Both Dr. Vyas and Dr. Sayadi have been working with us by providing us the models for

development of our system and in marking the models with accurate real surgical stencils

which are used for evaluation. The system we present has undergone multiple rounds of

testing and evaluation by the doctors themselves and their comments are documented in the

results section.

Main Contributions: The main contributions of the proposed work are as follows.

1. To the best of our knowledge, we have built the first end to end system that allows digital

surgical guidance markings on a 3D model to be transferred accurately on a physical object

via a PDC unit at high accuracy in real time;

2. We have developed a method that uses a combination of computer vision and optimization

techniques to compute the camera pixel to projector pixel correspondence at the precision

required in surgical applications;

3. We have developed a method that uses the PDC unit to project precision surgical markings
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Figure 6.1: (Left) Anthropometric landmarks on a unilateral cleft patient. (Right) Unilateral
cleft model.

that is updated quickly with movement;

4. We have designed a user-friendly GUI that is readily usable by surgeons for skill transfer;

5. We have tested and validated our system using feedback from real surgeons who played

with the developed prototype. We have evaluated the system efficiency and functionality

using two reputed reconstructive surgeons who anticipate using this system in the OR. Their

initial feedback on the accuracy and effectiveness is documented in the results section and

is extremely encouraging in terms of scaling the system towards other types of surgeries.
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Table 6.1: This table shows the comparison of our method with existing PAR sytems.

Method
Projection Automatic Handles 3D-shape

Markerless
based Calibration Movement Reconstruction

[117] ✓ N/A ✓
[21] ✓ ✓ ✓

[116, 121, 112, 31, 32] ✓
[130] ✓ ✓ ✓ ✓
[16] ✓ ✓ ✓
[13] ✓ ✓
[19] ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓

6.2 Related Work

6.2.1 Display-based AR (DAR)

DAR systems overlay information on a digital representation of the surgical site (e.g. image,

video, 3D mesh) and show it on a dedicated display device (e.g. a tablet or monitor or 3D

display). Wang et.al [127] uses a regular tablet or monitor display to visualize a needle as it

is inserted into a patient’s teeth during an oral and maxillofacial (OMS) surgery. They use

a calibrated stereo camera pair to track the contours of the patient’s teeth and reconstruct

the 3D model in real time. By tracking the needle using a set of dot markers and registering

the reconstructed teeth with a preoperative model, they can visualize the position of the

needle tip as it is inserted into the patient on the display. In [124] and [125], Wang et.al

extend their work by using 3D display device (i.e. a lens array monitor) through which

the patient can be seen. The 3D display is used to overlay and visualize the teeth model

on the patient seen through the display. The teeth contours are tracked every frame by

a stereo camera setup so that the teeth model realigns with patient movement. However,

the visualizations are only visible when viewed through the 3D display. In [126], Wang

et.al improve the tracking system by using a single monochrome camera (instead of stereo
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cameras) and a novel image registration technique [128] to achieve the digital overlay. In

these systems, since the digital representation and the physical object are not overlaid, error

in geometry recovery or registration between them, especially with patient movement, cannot

be evaluated robustly. Further, while DAR systems are useful to visualize 3D models, on a

surgical area, they require users to look into a display. This constant context switch from

surgical site to the display impedes the hand eye coordination increasing the time for surgery

[? ].

6.2.2 Projection-based Augmented Reality (PAR)

The limitations of DAR systems can be overcome by projection-based augment reality (PAR)

systems. When describing PAR systems we don’t consider systems that use projectors only

for structured light scanning purposes and not for augmenting physical objects. For example,

Edgecumbe et.al [16] develop a small device using a pico projector, called the PicoLantern,

for use in laproscopic surgeries. Using the camera in an endoscope and the pic projector,

they can perform structured light scanning of organs inside the body. However, the projector

is not used to add information on to the 3D surface.

When considering information augmentation by projectors on surgical sites, Tardif et.al

[117] propose a rudimentary system to project content on a patient. Using a camera atop

the surgical site, they first obtain projector-camera pixel correspondences using structured

light patterns. These correspondences are used to warp the content to look correct from the

camera’s viewpoint. Since the 3D shape of the surgical site is not considered, it can only be

useful for projecting on roughly flat areas of the body (e.g. abdomen) and will look correct

only from the single view of the camera. Also, since they do not calibrate the projector and

camera pair, they cannot bind the projection with patient movement when they repeat the

process to find new projector-camera correspondences. Chae et.al [13] proposes another basic
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system to project CT scan data on the patient using a pico projector. They assume that

the projector is looking directly down on the patient and adjust the height manually until

the projection aligns correctly. Fukuhara et.al [19] use a pre-calibrated projector-camera

pair to project blood vessels on the abdomen. They compute the camera and projector pose

by matching the outline of the abdomen model in the camera image to the CT scan of the

abdomen.

Gavaghan et.al [21] design a handheld projector device called an Image Overlay Device (IOD)

which they use to project onto a static surgical area. The 3D shape of the surgical site is

scanned apriori using a custom high resolution depth camera. The scan is also registered

with a camera atop the surgical site apriori. The IOD has a 3D tracker attached to it which

is tracked by the aforementioned camera. The same camera is also used to detect markers

on the surgical site to align to the digital 3D shape with the physical surgical site. Using the

tracked projector pose and orientation and the marker-based alignment of the digital shape

with the physical, correct projections can be achieved on the surgical site. Since the camera

atop the surgical site, the 3D model and the markers are all tightly calibrated apriori, the

system must be recalibrated if the camera, surgical site or the markers move.

Wen et.al [130] propose a projection-based visual guidance system to assist with radiofre-

quency (RF) ablation needle insertion. The surgical site, i.e. the abdomen, is surrounded

by a rig of pre-calibrated stereo cameras and a projector. Structured light is used to find the

3D shape of the abdomen from the calibrated rig. Then, they project the critical structures

of the inside of the abdomen on the abdomen itself, including the tumor and the needle tra-

jectory in a view-dependent manner by tracking the viewer’s position. In case of movement

of the abdomen, the system must be re-calibrated. Other similar systems include Tabrizi

et.al [116] for neuronavigation and image-guided neurosurgery. They compute the warping

for the projector image by manually registering the projection using five fiducial markers

placed on the patient head.
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Other works [121, 112] project slices of a CT scan on the body to visualize the internal

body structures. They manually align the projection to match physical features on the body

e.g. abdomen or breast, and mark important structures inside the body on the skin using a

pen/marker. Hummelink et al. [31] also project CT scans on the human body by manually

aligning the projector while [32] make projector registration easier by marking four points

on the CT scan and placing markers at the corresponding physical locations on the body.

In contrast, our system does not require any markers or pre-calibration and can bind to

the surgical site with movement. We achieve this by designing methods that can leverage

the low-resolution depth information provided by consumer RGB-D camera (e.g. Kinect) in

addition to high resolution color information at video rates. Table-6.1 shows all the PAR

systems compared with our proposed system.

6.3 System Overview

Our setup (see Figure-5.1) consists of the PDC unit driven by a PC arranged in a manner

such that the surgical area is covered by the field of view of both devices. We assume

that the depth camera provides registered color and depth images, as is available in most

consumer devices (e.g. Kinect). The user (local or remote) is anticipated to use the system

via a graphical user interface (GUI) on a tablet or desktop i.e. a client connected to the

PC server. The GUI shows a high resolution 3D digital twin of the surgical site. The

user draws surgical guidance marks or stencils (e.g. points, lines, curves, areas) on this

digital twin using a preferred interaction modality (e.g. mouse, pen or touch) which are then

illuminated precisely on the physical surgical site using the PDC unit in real-time. Also, if

the surgical site moves, the stencils bind accurately to it even after movement. Formally,

the main objective of our method is to determine the set of projector pixels Ω at each time

step which when turned on, illuminate the intended stencils on the surgical site. We assume
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Figure 6.2: The flowchart of our system.
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uncalibrated projector and camera with no apriori knowledge of the 3D shape of the surgical

site.

Figure-6.2 summarizes our system in a flowchart. It consists of five different modules. First,

in the System Parameter Reconstruction module, we reconstruct the shape of the surgical

site (i.e. digital twin) and recover the parameters of the uncalibrated projector and depth

camera in the PDC. The digital twin is then displayed by the Graphical User Interface

that presents it to the user and allows them to inspect it (via different transformations

like rotation and zoom) and mark the surgical stencils on it. The marked stencils and

recovered device parameters are fed to the Illumination Module that finds the desired Ω in

real time and projects it appropriately to illuminate the surgical site accurately by with the

appropriate projector image generation module. The surgical area is continuously monitored

by the PDC unit. If it moves, the Tracking Module, running in parallel with the illumination

module, recovers the new location of the surgical site and projects an updated imagery for

the illumination module to bind the stencils to the moved surgical site quickly (i.e. within

seconds). This is achieved by computing a transformation that takes the structured light

reconstruction of the surgical site to its moved location and orientation. The following

sections explain each of the above modules in detail.

6.4 System Parameter Reconstruction

The system parameter reconstruction module uses well known structured light reconstruction

(SLR) techniques [22, 97, 140] for shape reconstruction. Known patterns are projected from

a projector on the surgical site and captured by a camera. The captured patterns are decoded

to compute the projector to camera pixel correspondence at every 3D location. These pixel

correspondences are triangulated to generate a 3D model (see Figure-6.2). Thus, structured

light scanning techniques differ mainly on the pattern design and the decoding algorithm.
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(a) (b)

Figure 6.3: Comparison of the depth camera output with the reconstruction using a cali-
brated PDC unit and structured light. (a) The structured light point cloud (cyan) is shown
superimposed with the depth camera point cloud (yellow). The red circles highlight some
of the mismatched regions. (b) The distance (in mm) between the structured light recon-
struction and the depth map of the cleft face. Notice how the depth map does not reflect
the face geometry accurately, especially in non-planar regions like the lips.

In our work, we use Micro phase-shift (MPS) technique [25] that uses multiple high-frequency

sinusoidal patterns in a narrow frequency range. MPS is robust to global illumination effects,

inter-reflections and projector defocus, all of which are challenges associated with scanning

the human body, especially in a surgical setting. However, it is important to note that our

method is independent of the SLR technique used and can be replaced with other methods

like Embedded Phase Shift [74].

6.4.1 PDC calibration

The reconstruction of the model can only be as accurate as the SLR pixel correspondence

decoding and the projector-camera calibration parameters. Since we start from an uncal-
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ibrated PDC unit, we need to calibrate it first. In order to compute the PDC calibration

parameters, we again use the pixel correspondence decoding from SLR and approximate

the 3D model/depth given by the RGB-D camera available in the PDC unit. We cap-

ture the depth map ID of the surgical area using the RGB-D to get the corresponding 3D

point di = ID(ci) ∈ R3 at the camera pixel ci. Most RGB-D cameras provide this infor-

mation via their API. Thus, we establish correspondences between the camera, projector

and 3D points as a 3-tuple {ci, pi = L(ci), di = ID(ci)} which we use to refine the calibra-

tion parameters of the projector-camera pair. The camera calibration parameters, denoted

by M c = {f c,oc,kc} include the focal length f c = (f c
x, f

c
y), principal point oc = (ocx, o

c
y)

and radial distortion coefficients kc = (kc1, k
c
2). For the projector, the calibration parame-

ters include the intrinsics Mp = {fp,op,kp} along with the pose (Rp,T p) relative to the

camera.

We assume that the RGB camera is at the origin and looking down the positive Z-axis.

Thus, we only need to determine the camera intrinsics. While most RGB-D camera intrinsics

are provided by the manufacturer, we noticed that they may not always be accurate and

therefore, we optimize for the camera intrinsics using di = ID(ci) and a standard reprojection

solver.

We start with an initial estimate of the projector intrinsics, which can be obtained from [76].

Using the pixel correspondences {pi, di} established during the SLR, we get an initial estimate

of the extrinsics using the Perspective n-Point algorithm [69]. Note that the extrinsics have

the correct scale since we use depth information from the depth camera. Then, we use

a standard reprojection solver to optimize the projector parameters. Finally, we perform

bundle adjustment using the pixel correspondences and refine the projector extrinsics further

by fixing the camera extrinsics. This gives us a good set of calibration parameters which we

use for triangulating the SLR pixel correspondences and obtain an accurate 3D digital twin

of the surgical area.
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Discussion: Despite the presence of the depth camera in the PDC unit, we perform a

SLR for the digital twin motivated by the following. (a) While depth cameras are becoming

increasingly accurate, they do not capture complex surfaces (e.g. the human face) accurately

enough, primarily due to their lower resolution (e.g. the depth camera in Kinect has a

resolution of (640×576) that is much lower than the RGB camera at (4096×3072)). Figure-

6.3 compares the 3D shape from the structured light scan reconstruction and the depth

camera output. Note how the nose is extra pointy in the depth camera, while some parts of

the cheek have high error. In order to project precisely onto the surgical area, we need to

have an accurate digital twin at the inception to prevent errors due to the inaccurate shape

from creeping in. (b) Aside from accuracy, depth cameras also show high quantization errors.

The depth at each point is quantized to a whole number instead of a floating point. This loss

of precision shows up as inaccuracies in the final projection. SLR solves both these problems.

By determining the pixel correspondences and triangulating them, we get an accurate, high

resolution 3D shape reconstruction of the surgical site at a high precision.

6.5 Graphical User Interface (GUI)

The high resolution precise digital twin of the surgical area is presented to the user (remote

or local) through a GUI, where they can inspect the model by zooming in and rotating it.

Additionally, the user can mark points or curves directly on the digital twin. The GUI adds

the 3D coordinates corresponding to the marked points and curves in two sets P ∈ RN×3

and Q ∈ RL×Q×3 respectively, where N is the number of points, L is the number of curves

and Q is the number of points per curve.

Marking Points: To mark points, the user hovers the mouse pointer over the 3D surface.

We cast a ray into the 3D scene from the rendering camera center through the 2D mouse

position. The point where the ray intersects the 3D model is highlighted for the user by
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rendering a small sphere. When the user clicks, the sphere is anchored at that point on the

3D model and the 3D coordinates are added to the set P . Figure-6.4 shows an example

of a user having marked several points (green spheres) on the model. In order to modify

an existing point, a user clicks on an existing sphere and can place it anywhere else on the

model. The corresponding 3D point is updated in P . In order to remove a point, a user

right-clicks on an existing sphere and the corresponding point in P is removed.

Drawing Curves: When drawing curves, our goal is to draw geodesic curves so that it also

lies on the surface of the reconstructed digital twin. We use a piecewise linear representation

of the geodesic curve and decipher it in two steps. First, the user clicks and drags the

mouse across the model surface. The camera shoots rays into the 3D scene at equal intervals

between the start and end points of the curve inclusive. Let there be R such rays, and let

ri denotes the 3D point where the i-th ray intersects the 3D model. We render a sphere at

each ri (red and yellow spheres in Figure-6.4) and fit a 3D Bezier curve of degree (r − 1)

through all ri’s. If we render this Bezier curve as is, there is no guarantee that it will conform

to the surface. Parts of the curve may be below or above the 3D model. The former ones

will not even be visible to the user. Therefore, we evaluate the Bezier curve for Q >> R

points densely spaced along the curve and project each 3D point onto the 3D model. Let

qi denote each projected 3D point. Then, we render a line between each consecutive pair of

the projected points {qi, qi+1}. This ensures that the final rendered curve is geodesic to the

surface geometry. The set of projected points qi comprising the curve are added to the set

Q. Figure-6.4 shows an example of a user drawing a curve. In order to modify an existing

curve, the user can select and move any of the points ri that the Bezier curve passes through.

Upon changing any ri, all qi’s are updated each frame while the rendered curve is displayed

to user. Once satisfied, the user clicks again to finalize the changes. The corresponding

curve in Q is also updated. If a user right-click’s on an existing curve, the curve is deleted

from the model as well as from Q. Please watch the anonymous video at [? ] for a

demonstration of the proposed system .
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Figure 6.4: A screenshot of our UI. The user can mark points (green spheres) and/or draw
curves and lines (red curve).

126



Table 6.2: Projection accuracy evaluation in mm. θ (in degrees) and δ (in mm) are the
rotation and translation of the model from its original position. Nomenclature: c’ : cleft
side, nc’ : non-cleft side, m’ : medial, l’ : lateral.

Keypoint
θ = 0 θ = 0 θ = 15 θ = 15 θ = 30
δ = 0 δ = 30 δ = 50 δ = 100 δ = 200

prn 0 0.16 0.42 0.38 0.19
sn 0 0.26 0.21 0.28 0.25
nc’sbal 0 0.10 0.22 0.12 0.15
c’sbal 0 0.15 0.35 0.13 0.18
m’cphi 0 0.23 0.11 0.25 0.15
l’cphi 0 0.16 0.18 0.40 0.10
c’cphi 0 0.39 0.15 0.40 0.25
nc’ch 0 0.40 0.50 0.58 0.68
c’ch 0 0.47 0.48 0.46 0.48

6.6 Illumination Module

The 3D points marked by the user {P , Q} and the projector parameters {Mp,Rp,T p}

are used to determine the final set of pixels Ω that must be illuminated to project on the

intended regions on the surgical area using

W̄i =

RP TP

0 1


Wi

1


ωi = project(W̄i;M

p)

(6.1)

whereWi is a point in {P ,Q}, W̄i is the same 3D point after applying the projector extrinsics,

ωi ∈ R2×1 is the i-th point in Ω and 0 ∈ R1×3. All pixels Ω are illuminated in the final image

which is then projected onto the surgical area.
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6.7 Surgical Area Tracking

During surgery or planning thereof, it is likely that the surgical area will move with respect

to the PDC unit. Therefore, we track the surgical area in 3D space using the depth camera.

We determine the rigid transformation that minimizes the error between the current depth

map from the camera and the depth map captured at the time of SLR. In order to achieve

this we use the Iterative Closest Point (ICP) algorithm represented by:

ϵkICP =
∑
i

∑
j

vkij||dki − Sk · dk−1
j || (6.2)

where dki is a 3D point in the depth map at frame k, vkij is a binary variable that is 1 only

if ICP matches points dki to dk−1
j , and Sk ∈ R3×4 is the rigid transformation computed at

frame k. In order to adapt to the movement we modify the projection mapping equation

(Equation 6.1) to include Sk as:

W̄i =

RP TP

0 1

Sk

Wi

1


ωi = project(W̄i;M

p)

(6.3)

where Wi is a point in {P ,Q}, W̄i is the same 3D point after applying the rigid transform

and the projector extrinsics, ωi ∈ R2×1 is the i-th point in Ω and 0 ∈ R1×3. All pixels Ω are

illuminated in the final image which is then projected onto the surgical area.

To achieve this efficiently, we use the lower resolution depth map captured during the SLR

rather than the high resolution model recovered by the SLR, even though the latter is a

more accurate representation of the surgical area. This density of the point cloud from the

SLR is much more than the point cloud captured by the depth camera. This results in

ICP computing incorrect matches resulting in imprecise Sk as well as becoming inefficient.
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Further, when trying to match the depth camera point cloud with the high resolution point

cloud from SLR, the noise between consecutive depth camera frame manifests itself in noisy

computation of Sk. This results in jittery projection. Using the depth map captured during

SLR avoids all these aforementioned issues.

6.8 Implementation and Results

In our setup, we used the Microsoft Azure Kinect RGB-D camera along with an Optoma

Technology ML750 DLP projector. The Azure Kinect consists of a depth camera and a RGB

camera. It provides different operating modes depending on the capture resolution [70]. Note

that the highest RGB camera resolution (4096×3072) is much higher than the corresponding

depth camera resolution (640 × 576). We used the highest resolution (4096 × 3072) during

SLR for a high resolution model. However, for ICP, we use the lowest resolution of the

Kinect RGB i.e. (1280 × 720). The projector resolution is (1920 × 1080). The surgical

models were typically placed around 1.5-2 feet away from the PDC unit to accommodate for

the projector focus and Kinect depth sensor limitations, which can measure the depth for

objects more than 1.5 feet away.

The intrinsics and extrinsics of the RGB and depth cameras can be accessed through the

Kinect API. We use the RGB camera intrinsics to initialize the camera parameter optimiza-

tion. The Kinect has a depth resolution of upto a millimeter and provides a low resolution

raw depth data as well as a higher resolution interpolated depth map rendered from the RGB

camera’s viewpoint. During calibration, we use the raw depth map since the interpolated

depth map has interpolation artifacts like depth quantization. The PDC calibration opti-

mizations were implemented in MATLAB. For computing an initial estimate of the projector

intrinsics, we used the projector-camera calibration technique proposed in this thesis i.e. pro-

jecting ArUCO markers on a deformable surface to compute calibration parameters. The
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Figure 6.5: Anthropometric landmarks and the Tennison-Randall pattern marked on the
SLS through the UI and projected onto the model using our system

130



GUI and 3D model interaction was developed using Unity rendering engine. For tracking the

surgical area, we used OpenCV and the ICP implementation provided by libpointmatcher

[82, 83].

Figure-6.5 shows the projection of the 21 anthropomorphic landmarks and the Tennison-

Randall pattern on the cleft model. The user marks the points and curves on the SLS

through the UI. Notice how the projection illuminates the models at the marked points

precisely. Figure-6.6 shows the projection of the Mulliken pattern marked through the UI by

the user. Even after the model is rotated and translated, the projection realigns to illuminate

the correct areas. Figure-6.7 shows the frame-by-frame movement of the projection after the

model is moved. We strongly encourage the reader to watch the anonymous video

at [? ] to see the complete system in action .

The proposed system can also be used for other surgeries. Figure-6.8 shows the proposed

system being used to projecting patterns for face reconstruction and breast reduction surg-

eries. The system reconstructs the surgical area from the SLR, the user marks the points

and curves on it and the system projects onto the surgical areas.

6.8.1 Performance and Evaluation

Timing: On average, the image acquisition for SLR took 1 minute while decoding took

3 minutes. The entire calibration and reconstruction process following decoding took 1.5

minutes. Thus, the one-time SLR and calibration took 5-6 minutes. The average time taken

to compute a rigid transformation with movement is 0.75 seconds.

Projector Calibration Accuracy: In order to verify the projector-camera calibration

accuracy, we performed SLR of a planar board and compared the 3D reconstruction with

the depth camera output. The average error was 2.11mm. This was in part due to errors in
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the depth camera. The mean reprojection error in the projector after calibration was 0.1821

pixels. This sub-pixel error shows the accuracy of our calibration and 3D reconstruction

methods, enabling precise projection on the actual surgical site.

Projection Accuracy: To verify the accuracy of the projection, we marked the 21 anthro-

pomorphic landmarks on the cleft model with a black pen and ran the calibration pipeline.

This resulted in the black markers showing up in the digital twin recovered by SLR. Then,

we marked those 21 points on the digital twin and measured the distance between the actual

marked surface points and their corresponding projections using a digital caliper for different

positions of the model. Table-6.2 shows the average error (in mm) for 9 of the 21 landmarks.

In general, we noticed that the error for all 21 points was less than 0.5mm, even after rota-

tion and translation. This satisfies the requirements of surgeons, who want sub-millimeter

accuracy of the projections and is similar to the accuracy reported by DAR systems as well

[125]. However, we did notice a higher error of 0.5-0.6mm for c′ch and nc′ch keypoints. This

is because the edges of the lip have more error in the SLR decoding and the depth camera.

Note that the error is less than the maximum resolution of 1mm that can be detected by

the depth camera. This shows that our method yields extremely accurate results limited by

the resolution of the depth camera.

Tracking Accuracy: To verify the accuracy of the model tracking, we attached a board

printed with several ArUCo markers to the cleft model. We tracked the ArUCo markers

as the model was moved and compared the transforms provided by ICP and the transform

computed using the ArUCo markers. The rotation error was 0.1◦ and the translation error

was 0.47 mm.
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6.8.2 Domain Validation

We have been working closely with two reconstructive surgeons, Dr. Raj M. Vyas and Dr.

Lohrasb Sayadi, who have many years of experience with craniofacial surgery. They have

been providing feedback at every level of the development process. All the markings shown

in the aforementioned images were performed by the doctors on the computer monitor using

our UI and projected on the model by our system. Thus, we received feedback on all salient

aspects of the system – ease of use, accuracy of projection and so on. Their comments are

as follows:

1. In the field of plastic and reconstructive surgery, cleft lip repair marking require the

greatest degree of precision and accuracy. These markings are defined by both specific

anatomical landmarks of the lip as well as geometrical considerations. To make things

even more rigorous these points must be placed in the anatomically complex three di-

mensional space of the child’s lip in an area of less than 10 cm2. The aforementioned

technology presented in this manuscript can accurately place these markings with con-

sistency and with minimal error fit by our standards for the operating room. The ability

to project on the complex contour of the lip opens up this technology to the whole human

body.

2. In its current state, this technology is useful for a variety of plastic surgery procedures

spanning from the head to the toes. Once we find the ability to project onto surfaces

other than the skin (i.e. fat, fluid) in addition to projecting within crevices, then

we can expand the technology to intra-thoracic and intra-abdominal surgeries. What

sets this technology apart is the lack of headsets which are cumbersome, ergonomically

disadvantageous and intrusive to the surgeon. The fact that everyone in the operating

room can see the projection allows for better communication between surgical team

members. We are looking forward to test this technology is the operating room.
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3. The accuracy the PAR system achieves is phenomenal. Cleft lip surgery has perhaps the

most rigorous surgical markings given the number of markings in such small anatomical

confines. The demonstrated ability to achieve low error rates in cleft lip markings bodes

well for the clinical translation of this technology to a wide variety of surgical procedures

on the surface of the human body. We have not tested the device in the operating room.

However, our colleagues who have seen the mannequin projections are amazed by the

technology and see a clear room for its application in plastic surgery for a wide variety

of surgeries including craniofacial, hand and microsurgery.

6.9 Limitations and Future Work

The proposed work is just the beginning of an effort to build a device that can be integrated

in the OR (for example with the OR lights) to project surgical guidance directly on surgical

sites. Such a system can be integrated with AI-based predictive surgical landmark systems

such as [12] to completely automate the projection of surgical guidance. However, there are

several important technical challenges that have to be overcome which are not addressed by

the proposed system.

In the OR, we will have to deal with occlusion of projection due to obstruction by surgeons.

Detecting occlusion and compensating for it from other non-obstructing projectors is a pos-

sible solution. This builds the motivation to design a system that scales to multiple PDC

units. Another limitation of the proposed system is the depth camera, whose limited resolu-

tion and noisy reconstruction can cause minor errors in tracking the surgical site. Using noise

removal methods and super-resolution techniques to combine depth from multiple PDCs can

be a way to alleviate this issue. Finally, the proposed system assumes that the surgical site

is semi-rigid and retains its shape. Therefore, it cannot handle soft tissue whose shape can

change.
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Figure 6.6: Our system can handle movement of the surgical area as well. The projection
of the Mulliken pattern marked through the UI and projected onto the model realigns after
the model is moved.

Figure 6.7: This figure shows some frames of the Mulliken projection realigning after it is
moved (from left to right).
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Figure 6.8: The proposed system can be used for other surgical areas as well e.g. the face
projected with the rhomboid pattern and a model of a human breast for breast reduction
surgery.
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Chapter 7

Conclusion

In this thesis, I presented the first end-to-end solution for achieving D-SAR on deformable

surfaces. I began by presenting a general B-spline patch-based framework to achieve projec-

tion mapping on dynamic deformable stretchable materials using consumer-grade ToF depth

camera and the registered IR camera accompanying it. Then, I addressed the problem of

accurate geometric calibration and presented the first work on calibration of a projector-

RGB-D camera pair using a dynamic and deformable surface. I also addressed important

practical challenges in a D-SAR system i.e. a jittery display due to noisy depth cameras and

display glitching due to occlusion of the surface. I used a Kalman filter to remove the jitter

and handle occluding objects.

Extending this work to multiple projectors, I presented the first a real-time, seamless display

on deformable surfaces using mutliple unsychronized projectors without requiring any prior

knowledge of the surface or device parameters. The system first accurately calibrates multiple

RGB-D cameras and projectors using the deformable display surface itself, and then using

those calibrated devices, tracks the continuous changes in the surface shape. Based on the

deformation and projector calibration, the system warps and blends the image content in
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real-time to create a seamless display on a surface that continuously changes shape. Using

multiple projectors and RGB-D cameras, we can provide the much desired aspect of scale to

the displays on deformable surfaces.
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[20] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Maŕın-Jiménez.
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