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Actor-Oriented Control System Design:
A Responsible Framework Perspective

Jie Liu, Member, IEEE, Johan Eker, Jörn W. Janneck, Xiaojun Liu, Student Member, IEEE, and
Edward A. Lee, Fellow, IEEE

Abstract—Complex control systems are heterogeneous, in the
sense of discrete computer-based controllers interacting with
continuous physical plants, regular data sampling interleaving
with irregular communication and user interaction, and multi-
layer and multimode control laws. This heterogeneity imposes
great challenges for control system design in terms of end-to-end
control performance modeling and simulation, traceable refine-
ments from algorithms to software/hardware implementation,
and component reuse. This paper presents an actor-oriented
design methodology that tackles these issues by separating the
data-centric computational components (a.k.a. actors) and the
control-flow-centric scheduling and activation mechanisms (a.k.a.
frameworks). Semantically different frameworks are composed
hierarchically to manage heterogeneous models and achieve
actor and framework reuse. We introduce a notion of responsible
frameworks to characterize the property that a framework can
aggregate individual actor’s execution into a well-defined com-
posite execution such that heterogeneous models can be composed.

This methodology is implemented in the Ptolemy II software en-
vironment. We discuss how some of the most useful models for con-
trol system design are implemented as responsible frameworks. As
an example, the methodology and the Ptolemy II software environ-
ment is applied to the design of a distributed, real-time software
implementation of a pendulum inversion and stabilization system.

Index Terms—Actor-oriented design, control system design
methodology, heterogeneous modeling, hierarchical heterogeneity,
Ptolemy II, responsible frameworks.

I. INTRODUCTION

EMBEDDED control system design is a complex and error
prone task, not only because the algorithms implemented

in these systems contain domain-specific expertise, but also
because these systems are heterogeneous. Control systems
interact with the physical world. The nature of the problems
requires that the embedded computer systems be reactive,
real-time, nonterminating, and collaborative. Computer-based
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control systems consist of discrete controllers interacting
with continuous plants, regular sampled-data computation
interleaving with irregular communication and user interaction,
and multilayered multimode tasks with different time scale and
latency requirements. These complexities challenge the design
of control systems in many ways, such as closed-loop control
performance analysis, design modularity and understandability,
component reuse, testing, and debugging.

A classical control system design process is divided into
stages. Working from a conceptualized description of the
control goal, control engineers derive control algorithms based
on high-level plant models, an idealized execution platform,
and simplified performance requirements. The control laws are
usually validated by a combination of mathematical proofs and
continuous-time/mixed-signal simulations. In the next stage,
implementation teams take the control algorithms, typically in
forms of formulas on paper and simulation results, and start
to design system architectures and embedded software. This
team may immediately find that the sensors do not have the
desired sampling rate as required by the control team, that the
controller may have to share hardware resources with other
tasks, or that the delays may not be constants (as typically
assumed by the controller designers) due to computation and
communication jitter. All these problems are eventually solved
by adjusting the algorithm parameters and tweaking priorities
on the underlying real-time operating system (RTOS) in an ad
hoc way, without formal understanding of closed-loop control
performances and their robustness.

The entire development relies on the integrated testing phase
following this design cycle. Errors found at this point usually
indicate that some implementation decisions violated the design
assumptions, but it is often very hard to localize either of them.
This makes the design process time-consuming and fragile: a
slight change of the control specification may require a complete
cycle of redesign.

One problem here is the distinct expertise required in various
stages and the different modeling paradigms used in each stage
and each subsystem. Not many control engineers have sufficient
software engineering experience, and not many software engi-
neers have sufficient experience with control system design. The
consequences are gaps in system modeling and jumps in the de-
sign process. The development was performed as if the different
phases were orthogonal to each other, when in reality they are
very much coupled.

A much more integrated design process is illustrated in Fig. 1,
where the control design team and the system design team both
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Fig. 1. In a more integrated design flow, control designs and system
implementation are tightly coupled, so that design decisions can be quickly
evaluated and fed back between phases.

work on the same model. Design decisions are gradually intro-
duced into the model through iterations, such that it is refined
step-by-step toward final implementation. Changes in the im-
plementation structure are reflected in the control performance
and, similarly, modifications to the control laws are reflected
in the software implementation. Closing the loop between con-
trol engineers and software engineers is not easy. The modeling
technologies developed for each individual field are highly spe-
cialized and the domain engineers have their specific ways of
thinking. We not only need system theories (such as hybrid sys-
tems [1]) that integrate more than one kind of dynamics, but also
need design methodologies and tools that help designers decom-
pose a system into modularized and domain-specific subsystems
and (re-)compose these components into a coherent and realistic
system-level model.

This paper presents an actor-oriented design methodology
for complex control systems. Actor orientation separates the
functionality concerns (modeled as actors) from the compo-
nent interaction concerns (modeled as frameworks), and gives
well-defined scopes for model refinement and system realiza-
tion. In addition, we advocate the use of formal models of com-
putation to guide the interaction styles among actors, and build
hierarchically composable frameworks to enhance the modeling
capability. We introduce a notion of responsible frameworks as a
characterization of hierarchically composable frameworks. Re-
sponsible frameworks guarantee that the execution of an actor,
once started, can always reach a quiescent state, and thus pro-
vide a coarse-grained atomicity of execution and well-defined
system states. Furthermore, a responsible framework itself, to-
gether with the actors under its control, can be treated as a single
component at a higher level of hierarchy, thus the atomicity of
execution can be composed. Using Ptolemy II [2] as a concrete
design environment, we show how some of the widely used
models of computation for control system design—continuous
time (CT), discrete-event (DE), synchronous dataflow (SDF),
timed multitasking (TM), and finite-state machine (FSM)—can
be implemented as responsible frameworks.

The remainder of the paper is organized as follows. Section II
describes the actor-oriented design methodology with a motiva-
tion of hierarchical heterogeneity. Section III introduces the no-
tion of responsible frameworks using a labeled transition system
model of actors and frameworks. In Section IV, we present the
Ptolemy II design environment that supports an actor-oriented

design methodology, and discuss the implementation of some
models of computation as responsible frameworks. An example
of designing a software control system for inversion and capture
of an inverted pendulum is given in Section V. The example is
carefully chosen to include key features of real-world problems,
but to be simple enough to permit a complete description.

II. ACTOR-ORIENTED DESIGN METHODOLOGY

Many aspects of a control system may affect the final
closed-loop control performance. One fundamental problem
is how to decompose a control system into more manageable
and domain-specific subsystems, such that designers can
effectively divide and conquer the problem. Component-based
design methodologies advocate approaches that decompose a
system into components with well-defined interfaces. Each of
these components encapsulates certain functionality, such as
computation and communication.

There are many examples of component-based design
methodologies, which provide different views of components,
such as object orientation, middleware orientation, and actor
orientation [3]. An object-oriented (OO) design manages
complexity in the system through object abstraction, class
hierarchies, and method call interfaces. This methodology
has been adapted to design embedded and real-time software,
emphasizing the use of UML [4] to formally specify systems.
Object-oriented software environments, such as Rational Rose
[5], GME [6], and DOME [7], have been applied in control
system designs.

Noticing that some objects usually work together to provide
a coherent piece of functionality, middleware-oriented design
advocates the encapsulation of one or more objects into concep-
tual services, and the composition of services into a system. The
power of middleware services is more significant in distributed
systems, since the notion of communication may be much
cleaner than remote procedure calls in general OO designs.
Thus, they appear more often in large-scale applications, which
leverage distributed object infrastructures, such as CORBA [8],
DCOM [9], and JINI [10]. The open control platform (OCP)
[11] developed at Boeing is an example of middleware-oriented
design for real-time control systems.

Despite their conceptual differences, the basic structure in ob-
ject-oriented and middleware-oriented systems are objects that
are related to each other by references. Their primary interac-
tion interface is method calls. A method call directly transfers
the flow of control from one object to another. Important system
characteristics, such as concurrency and resource utilization, are
hidden behind the method call interface. As a consequence, both
object-oriented and middleware-oriented design methodologies
emphasize how to decompose a system into components, but the
correctness of component composition is left to designers.

Actor-oriented designs acknowledge the variety of interac-
tion models among components, and express these interaction
styles independently from the functionality of components.

A. Actor Orientation

An actor is an encapsulation of parameterized actions per-
formed on input data to produce output data. Actors may be
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Fig. 2. Actor-oriented view of a control system.

stateless or stateful depending on whether it has internal state.
Input and output data are communicated through well-defined
ports. Ports and parameters are the interface of an actor. A port,
unlike methods in OO designs, does not have to have a call-
return semantics. Essentially, an actor defines local activities
without referencing of other actors.

There are many examples of actor-oriented design envi-
ronments, including Simulink from MathWorks, LabVIEW
from National Instruments, SPW from Cadence, Cocentric
studio from Synopsys, and ROOM (Real-time Object-Oriented
Modeling [12]) from Rational Software (now IBM). In the
academic community, active objects and actors [13], [14],
port-based objects [15], hybrid I/O automata [16], Moses [17],
Polis [18], Ptolemy [19], and Ptolemy II [2] all emphasize actor
orientation.

The behaviors of a set of actors are not well-defined without
a coordination model. A framework is an environment that
actors reside in, and it defines the interaction among actors.
Frameworks also differentiate many actor-oriented modeling
paradigms. For example, ROOM and Agha’s actor models
suggest that actors be “active”; that is, each of them has
its own thread of control. Some others, such as the ones in
Simulink, LabVIEW, and SPW, however, do not have active
actors. Instead, a central scheduler determines the flow of
control among the actors based on the underlying semantic
model. We capture the interaction styles of actors by the
notion of model of computation (MoC). A MoC defines the
communication semantics among ports and the flow of control
among actors. A framework implements a model of computa-
tion. Frameworks and actors together define a system. Most
actor-oriented modeling environments have a unified MoC
and implement a single framework. For example, Simulink
is a continuous-time/mixed-signal framework, and SPW is a
dataflow framework. However, for complex control systems, a
single MoC is usually not enough.

Fig. 2 shows an actor-oriented decomposition of a simple
control system into sensors, a signal processing unit, a state
observer, a state-feedback controller, actuators, and a plant.
Thinking in terms of actors maps well to the actual partition of
a system, and it helps to identify concurrency and communica-
tion issues. For example, the plant operates concurrently with
the controller in the physical world, and within the controller,
the three actors implemented by embedded software may

operate sequentially because of data dependencies. However,
the interaction styles among components are not obvious in
this view. There is no immediate distinction that the plant,
sensors, actuators, and the controller interact in a contin-
uous-time/mixed-signal style, while within the controller, a
dataflow model may be more appropriate.

The MoC that guides the interaction of actors reflects the
dynamics among subsystems, which could be diverse even in
our simple control system—the dynamics of the plant is contin-
uous, whereas the dynamics of the controller is discrete. In more
complicated cases, even within the controller, the dynamics of
control laws, switching logic, real-time scheduling, and com-
munication networks are also different—synchronous or asyn-
chronous, buffered or unbuffered, sequential or parallel, pre-
emptive or nonpreemptive, and so on. While the theories for
each of these separate areas are relatively well understood and
established, the integration of these dynamics brings significant
complexity to the design problem. If a design environment only
supports a single MoC, then it can only model certain part of
a complex system, or at a certain level of abstraction. The cor-
rectness of a final design has to rely on final integrated testing,
which typically leads to long design cycle and high cost.

B. Hierarchical Heterogeneity

A powerful concept to scale up actor-oriented designs is hier-
archy, which suggests that a network of actors can be viewed as
a single actor “from a distance.” Using hierarchy, one can effec-
tively divide a complex model into a tree of nested submodels,
which are composed at each level to form a network of inter-
acting components. Hierarchy is a particular kind of abstraction
that hides the detail of a subsystem from the rest of the system.
It also defines interaction scopes so that modification in a sub-
system are restrained within that level.

Hierarchies can be used in unified models to manage syntactic
complexity, as seen in Simulink. A more effective use of hier-
archy is to mange heterogeneity of MOC, an approach called
hierarchical heterogeneity [20]. This approach constrains each
level of interconnected actors to be locally homogeneous, while
allowing different models of computation to be specified at dif-
ferent levels in the hierarchy. A well-defined model of compu-
tation at the same level improves the understandability of the
system, and may allow certain parts of the system to be correct
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Fig. 3. Hierarchical view of the control system in Fig. 2.

by construction, because of the formal properties obtained by
that specific MoC.

Actor encapsulation and hierarchical heterogeneity are pow-
erful techniques that allow designers to work on different levels
of abstraction but still keep a global view of the system. For ex-
ample, Fig. 3 shows a hierarchical model for the control system
illustrated in Fig. 2. At the beginning of a design, control engi-
neers can work on a model completely in the continuous-time
domain, like the top part of Fig. 3. After obtaining the contin-
uous control law, the software team can refine and replace the
controller actor by a dataflow model that is more suitable for
software implementation. A design environment that supports
hierarchical heterogeneity will allow the software team to con-
tinue to use the same plant model to verify the software deci-
sions.

Building hierarchically composable heterogeneous MoC
frameworks is not trivial. First of all, as the coordinator among
actors, a framework needs to constrain and control the execu-
tion of individual actors so that their overall behavior obey the
specified model of computation. More importantly, a frame-
work needs to aggregate actor executions into a coarse-grained
atomic execution so that at a higher level of hierarchy, the entire
framework can be viewed as an opaque actor. In the next two
sections, we describe the Ptolemy approach of implementing
hierarchical heterogeneity, building on a notion of responsible
frameworks.

III. RESPONSIBLE FRAMEWORKS

The interaction among actors and frameworks can be formu-
lated in a labeled transition system model.

A. Actors and Frameworks

A framework is a labeled transition system
, where

— is a set of framework states;
— is a set of actions;

— is a set of transitions guarded by the
actions in ; for a transition , we also

write ;
— is a set of initial states.
We sometimes write if distinguishing

the frameworks is important. The state of a framework reflects
the information shared among actors in the framework, such as
the notion of iterations or time and the communication seman-
tics. For example, if the communication channels among actors
are first-input–first-output (FIFO) queues, then these queues are
part of the framework state.

In the set of actions, we explicitly define NOP, ,
which enables no transitions or only stutter transitions; i.e.,

.
An actor in a framework is a tuple ,

where

— is a set of actor states;
— is a set of transitions, where

is the power set of ;
— is a set of initial states;
— is a set of quiescent states. Typically .

In a transition , also written as
is called the guard of the transition, and is call the

action of the transition.
The execution of a composition of a framework and a set of

actors has a synchronous, interleaving semantics. At any step, an
actor makes a transition if the current state of the framework is in
the guard of the transition. The action of the actor transition may

change the state of the framework. That is, a transition
is taken only if the current state of the framework .

Futhermore, for any with , there exist
and some , such that . In general, neither

the framework nor the actors have to be deterministic. In cases
where multiple actor transitions are enabled by the framework
state, they are executed nondeterministically.

For any actor transition , we define func-
tions and , which give the source state
and the destination state of the transition. An execution path

of an actor from state to state is a chain of transitions,
i.e., a finite sequence satisfying

, and . Be-
cause of the nondeterminism of the framework and the actors,
there may be more than one path from to . We say that
goes through state if there are two transitions in the path such
that is the destination of one and the source of the other.

A key to achieving hierarchical heterogeneity is to hide inter-
mediate actor execution and expose only “significant states” to
the outside. For this purpose, we define a set of quiescent states
which is a subset of the state space of actors. In theory, the set
of quiescent states can be any subset. In practice, these notions
are typically well defined, such as the state at the termination of
a functional block, the state at the completion of a transaction,
the state of the subsystem at a particular time, or states that can
be represented by a minimum number of variables.

The execution of an actor alternates between two phases: a
quiescent phase and an execution phase. The execution enters
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Fig. 4. Interaction pattern to achieve responsible frameworks. The framework
consults the actor for potential responsible triggers.

the quiescent phase when the actor reaches a quiescent state.
The first transition out of a quiescent state is of special interest
since it indicates that the actor enters a new execution phase.
For this reason, we give these transitions a special name: for a
quiescent state , a transition with is called a
trigger at , denoted by . All triggers at form a set .

B. Responsible Frameworks

Ideally, one would like that an execution phase can eventually
reach another quiescent state, so that from a high level view, the
execution can be abstracted into an atomic transition from one
quiescent state to another. Formally, a precise reaction is
an execution path from to that does not go through
any quiescent states. So, if the state trajectory of the framework
enables all transitions in , then a precise reaction can be
achieved. However, since the evolution of framework states de-
pends not only on the framework, but may also on the execution
of all the actors in the framework, the reasoning about a precise
reaction can be nontrivial.

In general, collaborations between actors and framework are
essential to obtain precise reactions. A trigger is responsible
if it can guarantee that for all possible future states of the frame-
work, subject to the model of computation the framework imple-
ments, the execution starting from will reach some . A
framework is responsible if, given the responsible triggers from
the actors, it can guarantee precise reactions of all actors.

One particular interaction pattern between actors and a
framework is shown Fig. 4, where an explicit trigger action,
labeled as A:trigger is introduced for an actor to signal
the framework for possible precise reactions. The framework
may choose to accept the trigger by making a transition that
allows the actor to proceed its reaction. The choice is mod-
eled as nondeterministic framework transitions such that the
framework may also go to a state to prevent the actor from
execution. This pattern is widely used in practice and all MoCs
in Section IV implement it.

To fully achieve responsibleness, after a framework accepts a
responsible trigger, it needs to control the framework state tran-
sitions to maintain the conditions that the actor assumed for the

Fig. 5. Two actors communicate through ports and a framework.

responsible trigger. This property is very hard to analyze in gen-
eral, however, it is much simpler if the framework implements a
formal model of computation and constrains the interaction pat-
terns among actors. To explain this further, we leverage the sep-
aration of computation and communication in the actor models.

A transition of an actor is an internal transition if
and . That is, the transition can be taken at any

time, and it has no effect on the framework state. Otherwise, the
transition is called an I/O transition. A communication model
defines the guards and actions on I/O transitions. For example,
suppose that the communication from actor to in Fig. 5 is
a FIFO queue with infinite capacity. Then output transitions of
actor are always enabled. Thus, an output transition has
as the guard and has an action that changes the framework state
by adding one more data token to the end of the communica-
tion queue. The guard of the corresponding input transition of ,
however, contains the framework states where there is at least one
token in the queue. Notice that adding more tokens into the queue
will not disable the transition, so the executions of the two ac-
tors connected by the queue are essentially decoupled. Consider
further that is a precise reaction of , and there are input
transitions in that path. If a trigger of guarantees that there
are at least tokens in the queue, then the execution following
that trigger can always reach state . Such a is a responsible
trigger. If in a framework, all communications are FIFO queues,
and the triggers are responsible, then the framework is respon-
sible by simply implementing the triggering pattern in Fig. 4.
This framework implements a dynamic dataflow (DDF) MoC.

Not all frameworks are responsible. In the above example, if
the trigger at in actor , instead of testing for the existence of

input tokens, has a guard , then it is not a responsible
trigger. This framework, which may implement a Kahn–Mac-
Queen process network MoC [21], is not a responsible frame-
work. For another example, suppose that in Fig. 5, the commu-
nication between and has a rendezvous semantics, where
the input transition in has a guard requiring that there be an
output port ready to produce data and the output transition in
has a guard requiring that there be an input port ready to receive
data. Then, there is no way for a trigger at an early quiescent
state to predict whether there will be another actor ready for ren-
dezvous. Thus, at least one of the triggers in or has to be
irresponsible to make any execution of the model. This frame-
work, which may implement communicating sequential process
(CSP)[22], cannot be a responsible framework.

Notice that responsible frameworks do not prevent deadlocks.
In fact, it is possible that at some framework state, none of the
responsible triggers are enabled, such that none of the actors
can execute. However, they do guarantee that even in a deadlock
state, all actors are in their quiescent states.
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C. Compositional Precise Reaction

A composition of a framework and the actors under its
control is called a composite actor. In order for a composite
actor to communicate with other actors at a higher level, more
states and transitions need to be added to the framework .
We call such a framework an open framework, denoted by

.
An open framework should be compatible with the original

framework. Formally, let be the additional states for an open
framework spanned by a set of I/O variables and be the
initial states for these variables, then satisfies:

• ;
• ;

• is compatible with . That is, if in ,

then for any in ;
• .

For a composite execution, additional I/O transitions are
needed to interact with the outside framework. Let be a
composite actor implemented by and a set of actors

, and
be the external framework for . Then, is a tuple

satisfying the following constraints:

• is a set of states. ;
• is a set of transitions, such that the following hold.

— All interactions between and are internal transi-
tions for . That is, if , and

, such that and ,
then for any
and

.
— I/O transitions added to change the states in

should not change the states in or .
That is, if with

, and 1

then , for some .
• ;
• .

So, I/O transitions for a composite actor are completely sepa-
rated from the interaction between the framework and the actors
inside. In this way, the inside of a composite actor will still obey
the model of computation the framework implements, and the
interaction at the boundary can be studied between frameworks
without involving the behaviors of individual actors.

A key property for responsible frameworks is that precise re-
actions of individual actors can be aggregated into a precise re-
action of the composite actor. As defined above, at a quiescent
state of a composite actor, all internal actors must be at their
quiescent states. For a responsible framework, this is relatively
easy to achieve, since all executions from quiescent states of
individual actors will reach another quiescent state in a finite
number of transitions.

Another important issue for building compositional precise
reactions is to define responsible triggers for the composite
actor. Generally, how many individual precise reactions to
aggregate into one composite precise reaction could be domain

1Here we expand � = (� ; � ), similarly for s .

Fig. 6. Hierarchical model in Ptolemy II.

dependent. In practice, time and data dependencies usually
play a central role. We will discuss them more specifically in
Section IV.

IV. PRACTICE IN PTOLEMY II

Ptolemy II is a graphical modeling and design environment
implementing an actor-oriented design methodology and hier-
archical heterogeneity.

The basic building blocks in a Ptolemy II model are atomic
actors. Atomic actors encapsulate basic computation, from
simple arithmetic operations to more complex ones like an
FFT. Actors have input and output ports and can be composed
by connecting corresponding ports. A composition of actors is
guided by a director, which represents a model of computation.
In Ptolemy II, a model of computation is also called a domain.
A director may control the execution of actors through an
Executable interface.2 The communication mechanisms
among actors are implemented by receivers, contained by
input ports. A director, together with all receivers, defines a
framework. To obey a specific model of computation, a director
and receivers must match.

A model is a hierarchical composition of actors, for example,
shown in Fig. 6. Atomic actors, such as A1 and B1, appear at the
bottom of the hierarchy. Composite actors, such as the A2, can
be further contained by other composite actors, so the hierarchy
can be arbitrarily nested. Hierarchical heterogeneity is achieved
by having different directors at different levels of the model.

Directors and receivers, when possible, are carefully imple-
mented as responsible frameworks. A precise reaction of atomic
actors is achieved by defining a multiphase execution of actors.
While an actor has a fire() method implementing its main
functionality, it also provides a prefire() method that, with
the help of receivers, may be used to implement responsible trig-
gers. To implement the trigger pattern in Fig. 4, a director first
invokes the prefire() method, and then fires the actor only

2For certain frameworks, such as PN or CSP discussed in Section III-B, where
the triggers are always irresponsible, an actor can also be active, having its own
thread of control.
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if the prefire() method returns true. Compositional precise
reaction is achieved through a notion of iteration defined for
each domain. A firing of a composite actor executes an itera-
tion of the contained subsystem, and the prefire() method
of the composite actor delegates to its local director to com-
pute whether an iteration can be finished. In this section, we dis-
cuss some of the most useful models of computation for control
system design and describe how responsible frameworks and
compositional precise reactions are implemented for them.

A. Dataflow Models

In dataflow models [23], connections represent data streams,
and actors compute their output data streams from input
streams. The execution order of the actors is only constrained
by the data dependency among them. This makes dataflow
models amenable to optimized execution, for example to min-
imize memory requirements, or to achieve a higher degree of
parallelism [24]. Dataflow models are very useful in designing
signal processing algorithms and sampled data control laws.

There are many variants of dataflow models, of which syn-
chronous dataflow (SDF) [25] is a particularly restricted spe-
cial case. A precise reaction of an actor in the SDF framework
consumes a fixed number of data tokens from each input port,
and produces a fixed number of tokens to each output port. The
framework state is the number of tokens in the FIFO queues that
mediate the communication among actors. For a composite SDF
model, an iteration is required to start and end in the same frame-
work state, so that it can be repeated indefinitely in bounded
memory and without deadlock. An iteration of an SDF model
is a precise reaction of the model. Whether a precise reaction
exists for a given SDF model can be statically determined, and
if it exists, it can be composed as a fixed sequence of precise re-
actions of the component actors. The SDF scheduler in Ptolemy
II performs this analysis. For algorithms with a fixed structure,
SDF can produce very efficient schedules.

B. Continuous Time

Continuous-time (CT) models, such as ordinary differen-
tial equations (ODEs) and differential algebraic expressions
(DAEs), are widely used in control system designs for modeling
physical dynamics and continuous control laws. The state of a
CT system is stored in continuous state variables represented
by integrators. An ODE can be modeled as a feedback of
integrators with stateless functional actors. Algebraic equations
themselves are stateless.

A significant meaning that a CT framework imposes is the
notion of time, and the state of a CT model evolves with re-
spect to that. The execution of a CT model computes a numer-
ical solution for the differential equations at a discrete set of time
points. A CT framework, especially when interacting with dis-
crete models, needs to carefully control the progression of time
to comply with system causality and numerical accuracy.

After choosing a numerical integration step size, the entire CT
model is reduced to an algebraic system at that time instant, and
the responsible triggers for each actor can simply be obtained
through analyzing data dependency. Noticing that there are no
system states being stored in the communication channels from
one time instant to the next, a CT receiver is implemented simply

as a buffer that holds one data token and can be overwritten by
new tokens.

An iteration in a CT model is defined as successfully re-
solving the system state and producing the outputs at a particular
time instant. Although a numerical integration method can be
fairly complicated, involving firing actors multiple times within
an iteration, these intermediate steps are not seen from the out-
side of a CT composite actor. When contained by discrete, timed
domains (such as the DE domain), where there could be two no-
tions of time across the hierarchy, a compositional responsible
trigger is achieved by examining the time difference and pos-
sibly performing a rollback if the causality constraints between
models are violated. A detailed discussion on this topic can be
found in [26].

C. DE

In a DE model, actors share a global notion of time and com-
municate through events that are placed on a (continuous) time
line. Each event has a value and a time stamp. Actors process
events in chronological order. The output events produced by an
actor are required to be no earlier in time than the input events
that were consumed. In other words, DE models are causal. Dis-
crete event models, having the continuous notion of time and the
discrete notion of events, are widely used in modeling hardware
and software timing properties, communication networks, and
queuing systems.

To implement a DE framework, a global event queue is used
to sort events into a chronological order. Receivers in this do-
main are proxies for actors to put events into the global event
queue. The DE director manages the notion of time and takes
the first event from the queue to trigger the corresponding actor.
The execution of an actor is only triggered when there is an event
for it. An actor may provide a responsible trigger by examining
its internal requirements and the value of the event. For example,
if the actor is internally a dataflow actor that requires more than
one event to complete an iteration, then the composite actor can
refuse to fire until enough tokens are accumulated.

An iteration of a DE domain is defined as the processing all
events at a particular time stamp. This notion is consistent with
the CT domain in the sense that time only progresses between
iterations.

D. Timed Multitasking

The timed multitasking (TM) model [27] is a programming
model for time deterministic multitasking embedded software.
As a simulation model, it also allows designers to explore
priority-based scheduling policies such as those found in a
real-time operating system and their effects on real-time soft-
ware. In this model, actors are software tasks with priorities.
The framework of a TM model implements a prioritized event
dispatching mechanism and invokes tasks according to their
feasibility and priority. Both preemptive and nonpreemptive
scheduling, as well as static and dynamic priority assignment,
can be modeled.

The execution model for the TM domain is not very different
from that of the DE domain. In fact, TM receivers are inher-
ited from DE receivers to serve as proxies for the global event
queue. However, in addition to sorting events in their chronolog-



LIU et al.: ACTOR-ORIENTED CONTROL SYSTEM DESIGN 257

ical order, simultaneous events are also sorted by their priorities.
Conceptually, an actor is triggered only when the trigger event
has the highest priority among all current events.

In the TM domain, an actor can specify its execution time,
which is the amount of time it needs to finish its execution once
triggered. The output of the actor is produced only when the
simulated time reaches the execution finish time. To simulate
preemptive execution, an actor is not actually executed when
it receives a trigger event. In fact, the progression of time is
monitored, such that the actor is only fired when its execution
finish time is reached.

An iteration of a TM domain also corresponds to processing
all events at a time stamp. However, depending on the actors’
execution time, not all iterations produce new events.

E. Modal Models

Modal models are built using the finite state machine (FSM)
domain. FSMs are used extensively in designing sequential con-
trol logic and operation modes. FSM models are amenable to
in-depth formal analysis and verification. In Ptolemy II, they
can be used to specify the behavior of atomic actors, or they can
be hierarchically composed with other models of computation
as modal models.

When the behavior of an atomic actor is specified by a state
machine, it can be straightforwardly mapped to the actor defi-
nition given in Section III-A. All states are quiescent. A precise
reaction consists of reading at most one token from each input
port, evaluating the transitions from the current state, making an
enabled transition if one exists, and producing output tokens as
specified by the actions on the enabled transition.

Modal models extend Statecharts [28] by allowing FSMs to
be hierarchically composed with a variety of models of com-
putation. For example, hybrid systems are modal models that
compose the FSM and CT domains. A modal model consists of
a state machine that captures the modes and mode transitions,
and mode refinements, which are composite actors specifying
the behavior in each mode. Responsible frameworks make it
possible for composite actors to serve as refinements for state
machines. Compositional precise reactions allow the system to
have a well-defined quiescent state when mode switching oc-
curs between iterations.

A precise reaction of a modal model consists of evaluating
the discrete transitions from the current mode, conditionally ex-
ecuting one iteration of the refinement of the current mode, and
making an enabled mode transition. All refinements of a modal
model must support well defined iterations that start and end
in quiescent states of the refinements. The modal model frame-
work maintains the invariant that all refinements are quiescent
when the model is in the quiescent phase.

V. EXAMPLE

The inverted pendulum is a classic control problem that has
been extensively studied in the literature. However, as a control
problem, these studies typically stop at designing a continuous
or discrete-time control law, without touching the implementa-
tion issues.

Fig. 7. Furuta pendulum from the Department of Automatic Control at Lund
University, Lund, Sweden. The input signal is the torqueto motor controlling the
arm, and the output signals are theposition and speed of the arm (�; _�) and the
position and speed of thependulum (�; _�).

The inherent instability of the inverted pendulum makes it a
suitable demonstrator for real-time control software, since only
if the timing of the controller is correct and the latency is short
will it be able to control the pendulum. In this section, we use
a pendulum controller implemented in real-time software on a
distributed platform to demonstrate how an actor-oriented de-
sign methodology, realized through Ptolemy II, may help the
design process and reuse components in different phases. We
will start with a simple continuous controller and step by step
extend its behavior until we reach a description that captures
important properties that arises in an actual implementation. In
the final iteration, the model will, for example, include timing
variations that are due to the fact that the controller executes as a
task in an RTOS, and latencies due to the fact that the controller
system is distributed. The point we make is that the refinements
and component reuse are only possible due to the concepts of
domains, MoCs, and responsible frameworks.

A picture of the Furuta pendulum [29] is shown in Fig. 7. The
pendulum consists of two moving parts, an arm that moves in
the horizontal plane and a pendulum that moves in the vertical
plane. The goal of this controller design is to swing up and sta-
bilize the pendulum.

Using an actor-oriented design methodology, we may go
through a design process in the following steps:

1) continuous-time pendulum modeling;
2) continuous-time controller design for stabilization;
3) discrete-time controller design for stabilization with zero

execution delay;
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Fig. 8. Continuous-time pendulum controller.

4) discrete-time modal controller design with three control
modes—swing-up, catch, and stabilize;

5) discrete controller design with RTOS scheduling;
6) discrete controller design with network integrated sensors

and actuators;
7) software-in-the-loop simulation with embedded imple-

mentation;
8) deployed realization.
Note that, in steps 1)–6), we mainly enrich the design by

adding new concerns and components to the system model.
Steps 7) and 8) realize part or all systems physically. While
the modeling and design within Ptolemy II has been achieved,
systematically supporting software-in-the-loop simulation is
still ongoing work.

The first step is to create a dynamic model for the inverted
pendulum, as developed in [30]

(1)

where , and are constants, and are the
state variables representing the angle of the horizontal arm,
the angle of the vertical arm, and their derivatives. The Dif-
ferentialSystem actor in Ptolemy II allows us to enter the
ODE in the form of (1). The angleConversion composite

Fig. 9. Simulation results for a continuous-time stabilizing controller. Plot y
shows the angle � of the upper pendulum, and plot u shows the control signal.

actor3 restricts the angle of the horizontal arm to . After
verifying the correctness of the model with various inputs, such
as step functions, we close the control loop with a linearized
state feedback controller, as shown in Fig. 8. An execution re-
sult is shown in Fig. 9.

The next step is to discretize the continuous plants and calcu-
late a discrete sample-data controller. As in many paper designs,
the discrete controller is considered to have no delay, i.e., the ac-
tual execution time from sampling to actuation is neglected. In
terms of the design process, this step is primarily a combination
of the following operations: refining the continuous controller
interface into sampling, discrete controller, and zero-order hold
specifications (this step is currently done in the designer’s mind
or informally on paper); implementing the three specifications
by executable components (in this case, choosing components
from Ptolemy II actor libraries); composing the components

3This is a transparent composite actor, which does not have a director but
leverages the director on a level up (the CT Director, in this case).
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Fig. 10. Hierarchical model for the discrete-time stabilization controller.

with the continuous pendulum model, through CT and SDF
models of computation; choosing the sampling rate and the con-
troller parameters to achieve desirable closed-loop control per-
formance.

The Ptolemy II model at the end of this step is shown in
Fig. 10. The PeriodicSampler actor and the Zero-
OrderHold actor convert between continuous signals and
sampled data. The SDF domain inside the discrete controller
composite actor executes entirely on discrete sequences of data.
Note that many components, including the pendulum model
and the structure of the control law, are reused from the pre-
vious pure CT model. In particular, the angleConversion
actor and the expression actor work both on continuous-time
signals (in Fig. 8) and discrete data (in Fig. 10), a property
called domain polymorphism.

The stabilizing controller only works when the pendulum al-
ready has an initial position close to the upward equilibrium.
This is due to linearization. To swing up the pendulum from the
initial downward position, we use a modal controller with three
discrete states: swing-up, catch, and stabilize.

To achieve this, a swing-up controller and a catch controller
are separately specified, implemented, and composed with the
existing controller. Like the stabilization controller, the catch
controller is a state feedback controller that tries to reduce the
angle velocity of the vertical arm after it is swung up. The
swing-up controller, however, is an energy-based controller
[31], which injects the energy needed for the pendulum to
move from the downward to the upward equilibrium, i.e.,

where and are the mass and length of the

pendulum. In every sample step, the controller computes the
current energy of the pendulum and produces a control output
that increases (or decreases) the energy of the pendulum, so
that it eventually reaches the top position with little or no extra
energy (if the speed is too high the catch controller cannot take
over). The three controllers are then composed through the
FSM domain in Ptolemy II, as shown in Fig. 11. This controller
now replaces the discrete controller actor in Fig. 10. Note that
since the angleConversion actor is used in all modes, it
is pulled out to a higher level than the state machine. Again,
many of the components in previous designs are reused.

The model so far, although fairly complicated already, still
has many idealized assumptions. For example, there is no com-
putational delay, and sensing and actuating are instantaneous.
The next steps in the design process will gradually add real-
istic concerns, like timing and precision. We first consider ex-
ecution delays of the control algorithm, which will be realized
on an embedded processor with a RTOS. The TM domain in
Ptolemy II allows us to model the execution time of the con-
troller, and its prioritized execution together with other actors on
the same platform. Under the TM domain, we compose the ide-
alized controller in Fig. 11 with the Discard actor that models
other tasks in the system, as shown in Fig. 12. The Discard
actor, triggered by a Poisson clock, discards the input data value,
but affects execution time of the controller. Fig. 13(a) and (b)
show the differences before and after adding execution delays.
The original control law, after adding delays, leads to an un-
stable system, and fails to swing up the pendulum. The delay
can be compensated by deriving new controller parameters. For
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Fig. 11. Multimode, discrete-time controller for swinging up and stabilizing the pendulum. Implemented in a hierarchical and heterogeneous fashion.

Fig. 12. Further refinement of the models includes timing and latency
properties, that simulate that the controller is executing on a real CPU in a
prioritized multitasking environment.

example, using another set of parameters, the controller is again
able to swing up the pendulum [Fig. 13(c)], but it now needs
almost five seconds and several attempts to swing up the pen-
dulum, and the performance decreases due to the delays.

Next, we consider a distributed implementation of the system,
where the controller is connected to the sensors and the actu-
ator through a network. At the network level, all communication
packets can be treated as events, which may occur at any point in
time. So, we use the discrete-event domain to model the message
passing between the actors that model the sensors, the actuator,
and the controller. The sensors and the actuator are modeled as
a pure time delays, indicating that they introduce a little delay

during sensing and actuating. The network composite actor is in-
ternally implemented by pairs of transmitters and receivers and
a shared communication media. Other devices on the network
are modeled using a single “disturbance” node. Fig. 14 shows
the part of the final controller model where a CSMA/CD style
media access protocol (e.g., Ethernet) is used. The transmitters
try to send packets and listen for possible collisions. Only when
no collision occurs during the entire sending period will a packet
reach the receiver. The receiver filters the packets and outputs
only the ones that are directed to the corresponding actor. Sim-
ilarly to the discussion above, adding the communication net-
work introduces more delays and delay variations to the con-
trol path. This again requires an exploration of control laws and
mode transition conditions.

Software-in-the-loop simulation enables the real computer
platform and embedded software to be integrated with simu-
lated continuous dynamics of the plant. This is a particularly
useful step for safety-critical systems where a failure in direct
system deployment may cost too much. A real controller and
a real network realizing the embedded hardware and software
replaces the controller block at the top level of Fig. 10. The dy-
namics of the pendulum, together with sampling and zero-order
hold circuits, are still implemented in the Ptolemy II model. The
actor-oriented modeling tool defines a clear boundary for such
integration.
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Fig. 13. Execution results with and without delay. (a) Original parameters
without execution delay. (b) Original parameters withexecution delay.
(c) Compensated parameters with execution delay.

Fig. 14. Network part of a distributed controller model.

VI. CONCLUSION

This paper suggests an actor-oriented design methodology for
developing complex control systems, and demonstrates the im-
portance of responsible frameworks to enable hierarchical com-
position of heterogeneous models. Actor orientation localizes
interactions among the components of a system. Hierarchies of
models of computation effectively manage heterogeneity in the
system, and precise reactions and responsible frameworks allow
these models to be composable. This methodology is imple-
mented through the Ptolemy II software environment. A pen-
dulum swinging-up control system is used as an example to
illustrate the step-by-step refinement of a design. Design con-
cerns are gradually added to enrich the model and bring it closer
to realization. Closed-loop control performance can be simu-
lated and quickly fed back to designers at each step.
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