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Abstract 
Joint pick and place tasks occur in many interpersonal 
scenarios, such as when two people pick up and pass dishes. 
Previous studies have demonstrated that low-dimensional 
models can accurately capture the dynamics of pick and place 
motor behaviors in a controlled 2D environment. The current 
study models the dynamics of pick-up and pass decisions 
within a less restrictive virtual reality mediated 3D joint pick 
and place task. Findings indicate that reach-normalized 
distance measures, between participants and objects/targets, 
could accurately predict pick-up and pass decisions. Findings 
also reveal that participants took longer to pick-up objects 
where division of labor boundaries were less obvious and 
tended to pass in locations maximizing the dyad’s efficiency. 
This study supports the notion that individuals are more likely 
to engage in interpersonal behavior when a task goal is 
perceived as difficult or unattainable (i.e., not afforded). 
Implications of findings for human-artificial agent interactions 
are discussed.  

Keywords: affordances; joint action; pick and place tasks; 
decision making; virtual reality; 

Introduction 
An essential issue in understanding interpersonal human 
behavior is determining how individuals spontaneously 
coordinate their actions to achieve a common task goal. Many 
everyday tasks involve coordinated actions between 
individuals, without requiring explicit communication or a 
priori planning, to effectively meet shared goals (Allsop et 
al., 2016; Nalepka et al., 2019). A commonality between such 
tasks, such as setting the dinner table or industrial operations 
(including assembly line production and product delivery), is 
that they often involve pick and place behaviors, which entail 
selecting an object from a group of objects and moving it to 
a particular location (Lamb et al., 2017). 

An ecological dynamics perspective of interpersonal 
behavior posits that motor behavior spontaneously emerges 

from intertwining social, biological, and cognitive systems in 
which the individuals are embedded (Newell, 1986; 
Richardson, Dale, & Marsh, 2014). Specifically, the primary 
assumption of the ecological dynamics framework is that the 
interaction between individual, task, and environmental 
constraints leads to the emergence of different action 
possibilities available to individuals (termed “affordances”), 
which drive individuals’ action decisions (Lopresti-
Goodman et al., 2009; Newell, 1986). These affordances 
(e.g., “climability” of stairs) can be captured by body-scaled 
ratios, typically measured as a ratio between action relevant 
properties of the task environment and the individual’s 
capabilities (Michaels, 2003; Warren, 1984). 

Pick and Place Tasks 
Pick and place behaviors have been extensively studied 
within fields of cognitive and human movement sciences, to 
examine individual (e.g., Flash & Hogan, 1985; Rosenbaum, 
et al., 1990) and interpersonal performance (e.g., Meyer, van 
der Wel, & Hunnius, 2016; Richardson et al., 2007). Much of 
this research has focused on analyzing the movement 
trajectories and velocities produced during these tasks, with 
experimental studies demonstrating differences in the 
behavioral dynamics when performed individually versus in 
pairs (e.g., Becchio et al., 2008; Georgiou et al., 2007). 
Recently, studies by Lamb et al. (2017, 2019) developed a 
highly controlled 2D virtual reality (VR) mediated joint pick 
and place task, involving participants moving and passing 
disk-shaped objects by sliding them across a tabletop. Using 
this task, Lamb et al. (2017, 2019) effectively demonstrated 
not only that pick and place movements can be modelled by 
dynamical primitives of human movement behaviors but also 
that action decisions can be modelled using low-dimensional 
models of fundamental task-relevant constraints (see Lamb et 
al., 2019 for action selection equations). 
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By experimentally manipulating the appearance and target 
location of the objects, Lamb et al. (2017, 2019) also 
determined that object pick-up and pass decisions in a 2D VR 
environment could be effectively explained by 2D body-
scaled ratios of affordances. Specifically, pick-up decisions 
were accurately predicted by how close an object was from 
the participant’s and their co-actor’s hand and passing 
decisions were predicted by how far the object’s target 
location was from the participant’s hand (normalized by 
reach). Lamb et al. (2017, 2019) also revealed that the 
location that the participants passed the objects tended to 
cluster in two regions, with one cluster per pass direction.  

A limitation of the task environment used by Lamb et al. 
(2017, 2019) was that participants’ movements were 
restricted through limited pick-up range of objects, limiting 
hand movements to a 2D horizontal plane, and requiring 
participants to keep their hand stationary (near their body) 
between trials. Consequently, while these studies 
successfully modelled the interpersonal decision dynamics 
with regard to the 2D distances of objects and target locations 
from participants’ hands, in reality, these affordance 
measures are more likely to be a function of individuals' 
overall body and limb measurements and positions. 

The Current Study 
The current study aimed to extend the previous research of 
Lamb et al. (2017, 2019) by identifying and modelling the 
behavioral dynamics of action decisions (pick-up and pass 
decisions) within a less restrictive 3D joint pick and place 
task. The study also examined the effect of increasing the 
complexity of the pick and place task (via increasing number 
of decisions) on the behavioral dynamics. To achieve these 
aims, this study used a modified version of Lamb et al. 
(2017)’s joint pick and place task, adapted to a 3D VR 
environment, and manipulated the number of objects 
(single/multiple) available to be picked up at any given time. 

Methods 

Participants 
32 participants (21 female and one non-binary; 28 right-
handed) ranging from 17 to 35 years of age (M = 20.72 years, 
SD = 5.29 years) were recruited from an Australian 
university. There was ample variability in participants’ height 
(range = 159.00 – 202.00 cm, M = 170.00 cm, SD = 8.63 cm) 
and arm length (range = 67.00 – 84.00 cm, M = 71.63 cm, SD 

= 3.78 cm). All participants gave written informed consent, 
and the ethical aspects of this study were approved by the 
Macquarie University Human Research Ethics Committee.  

Materials 
The Pick and Place Task The experimental task used in the 
current study required participants to pick up virtual 
cylindrical objects (height = 15 cm, radius = 5 cm) appearing 
through dispenser tubes and drop them off in collector tubes 
on the opposite end of the table (see Figure 1). Objects were 
colored (yellow, purple, green, blue, or red) and needed to be 
dropped off in the correspondingly colored collector tube. 
After an object appeared, any participant could pick it up and 
either drop it off or pass it to their co-actor. All participants 
worked in pairs and performed simple, single object (SO) and 
complex, multiple object (MO) versions of the task. In SO 
trials a new object appeared when the previous was dropped 
off, however in MO trials, a new object could appear at any 
time (with ≤ five objects available at once). In MO trials, 
participants could swap their objects if they were both 
holding one, resulting in both objects passed simultaneously.   
 
Experimental Setup The experiment took place in a 2.8 m x 
4.1 m laboratory room at an Australian university, where 
participants stood on opposite sides of a 2.2 m x 1.2 m table 
with a height of 0.81 m. The laboratory table and room were 
simulated within the virtual environment in their true location 
and size. The VR environment was designed using Unity 
(Unity Technologies, 2021) and SteamVR (Valve 
Corporation, 2021) and was presented to the participants 
through HTC Vive Tobii VR Integration headsets and hand 
controllers (HTC Vive & Tobii Pro, 2017). Participants wore 
one headset and held one controller each, which appeared 
within the virtual environment in their true location and size. 
Participants’ bodies were represented as simple red avatars in 
the virtual environment (see Figure 1) and the avatars’ height 
was calibrated to match the height of participants by 
matching the locations of their headsets. Objects were picked 
up when they contacted the controllers and could not be 
released unless dropped off or passed. Objects were dropped 
off by placing them under the correct collector tube.  

Before the experimental trials began, participants were 
allowed to familiarize themselves with the VR environment 
in a short practice block, where they were informed on how 
to complete the task. Participants were instructed to refrain 
from talking and complete trials as quickly as possible and 
were free to move around as needed. Participants completed 

Figure 1: 3D virtual task setup. (Left) diagrammatic of setup from top view; (Right) virtual task space from above. X-axis, 
Y-axis (measured from ground), and Z-axis coordinates are given (in meters) for the center of collector and dispenser tubes.  
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four groups of trials: 2 x 40 SO and 2 x 80 MO trials, apart 
from the first pair who completed a longer version of the task: 
300 trials in total (trials were subsequently shortened to 
minimize any possible fatigue). SO and MO blocks were of 
different length to balance the total time taken per block. The 
order of SO/MO trials were counterbalanced across pairs to 
counteract any order effects, such as practice effects.  
 
Measures and Design This study used a nested repeated 
measures experimental design. Primary measures were: (1) 
pick-up (which participant in the pair: north/south, picked up 
the object); (2) object pick-up time (how many seconds after 
being dispensed was the object picked up, normalized by 
distance of object at appearance); (3) pass (did the participant 
pass the object to their co-actor after pick-up: yes/no); and (4) 
pass location. Independent variables were: (1) task version 
(SO/MO); (2) object appearance location (which dispenser 
the object appeared in); (3) object target location (which 
collector tube the object was to be dropped-off in); (4) 
standing location to object (standing-object) distance; and (5) 
standing location to target (standing-target) distance. (4) and 
(5) were measured as planar distances (top view) from the 
participants' headsets to the location of the object and target, 
respectively. Distances were normalized by participants' 
reach, quantified by their arm length, similar to the measures 
used by Lamb et al. (2017, 2019). 

Results 
Analyses were conducted using Stata/MP 17.0 and 
MATLAB (MathWorks, 2020). Multiple models predicting 
decision dynamics were tested, however, only the most 
robust findings are presented for sake of brevity. Specifically, 
while adding other affordance measures to Lamb et al. (2017, 
2019)’s proposed pick-up and pass models sometimes 
yielded marginally significant increases in Pseudo-R2, adding 
such predictors tended not to markedly increase the models’ 
predictive power, often exhibiting severe multicollinearity. 

Pick-Up Decisions 
Pick-ups were evenly distributed across north and south 
players, in SO and MO trials. Participants picked up objects 
dispensed on their side of the table in 99.73% of SO trials and 
98.42% of MO trials. Participants also more frequently 
picked up objects with target locations on their side of the 
table. This disparity in pick-up rate was slightly less apparent 
in the MO trials versus SO trials. To examine if the original 
model from Lamb et al. (2019) could predict pick-up 
decisions, a multilevel logistic regression model was fitted 
with pair identifier as a random factor for both players and 
the results are presented in the following subsections. 

SO Trials The original model classified 91.91% of pick-up 
decisions, exhibiting almost perfect discrimination of pick-
ups by north and south players and strong concordance 
between observed pick-ups and those predicted by the model 
(see Table 1). Due to large symmetry of task set-up between 
players, two separate multilevel logistic regression models 
were run for north and south players, which indicated that 
standing-object distance was a strong significant predictor of 
pick-up decisions. Specifically, every 1-unit decrease in 
standing-object distance significantly predicted 4.07e+11% 
and 9.34e+5% increased odds of pick-up for north (z = 16.28, 
p < .001) and south players (z = –17.33, p < .001).  

Post hoc analyses revealed that for the objects dispensed in 
the central tube (i.e., dispenser no. 3), standing-target 
distance significantly predicted pick-up over and above 
standing-object distance. Specifically, 1-unit decrease in 
standing-target distance led to 4.07e+11% and 9.44e+5% 
increased odds of pick-up for north (z = –7.56, p < .001) and 
south players (z = –3.13, p = < .001). Similarly, for green 
objects (requiring drop-off in the central collector tube), 
standing-object distance significantly predicted pick-up over 
and above standing-target distance, where 1-unit decrease in 
standing-target distance led to 1.16e+5% and 1.57e+3% 
increased odds of pick-up for north (z = –3.97, p < .001) and 
south players (z = –6.36, p < .001), respectively.  
 
MO Trials Multilevel analyses on MO Trials yielded similar 
results. The original model classified 92.80% of total pick-up 
decisions, with almost perfect discrimination of pick-ups by 
north and south players and strong concordance (see Table 
1). Standing-object distance was a strong significant 
predictor of pick-up decisions, where a 1-unit decrease 
resulted in 3.37e+3% and 4.20e+4% greater odds of pick-up 

SO Trials 

MO Trials 

Figure 2: Pick-up proportions for north and south players. 
 

Table 1: Logistic regression coefficients for the model adapted from Lamb et al. (2019) predicting pick-up in (1) SO 
and (2) MO trials. Pseudo-R2 = McFadden’s R2. 
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by north (z = –14.36, p < .001), and south players (z = –15.62, 
p < .001). Post hoc multilevel logistic regression analyses 
again revealed that for the objects dispensed in the central 
tube, standing-target distance significantly predicted pick-up 
over and above standing-object distance. Specifically, 1-unit 
decrease in standing-target distance led to 592.94% and 
570.92% increased odds of pick-up for north (z = –2.64, p = 
.008) and south players (z = –2.50, p = .013). Similarly, for 
green objects, standing-object distance significantly 
predicted pick-up over and above standing-target distance, 
where 1-unit decrease in standing-target distance led to 
1.30e+6% and 1.80e+5% increased odds of pick-up for north 
(z = –4.91, p < .001) and south players (z = –3.96, p < .001). 

Object Pick-up Time 
Object pick-up time was significantly shorter in the second 
block of SO (M = 0.95 seconds, SD = 0.24) and MO trials (M 
= 2.86 seconds, SD = 0.79) than the first block of SO (M = 
1.15 seconds, SD = 0.30) and MO (M = 3.62 seconds, SD = 
0.93) trials (z = 2.33, p = .018; z = 3.15, p = .002, 
respectively), suggesting pairs improved their performance 
efficiency with practice. Moreover, object pick-up time was 
greater in MO trials (M = 4.78 seconds, SD = 2.38) versus SO 
trials (M = 1.05 seconds, SD = 0.22), z = 3.46, p < .001. 

SO Trials Multilevel linear regression models, with pair 
identifier as a random factor, indicated that object appearance 
location significantly predicted object pick-up time, Wald 
χ2(4) = 295.67, p < .001 (see Table 2). Here, the further away 
the object was dispensed from the table’s center (dispenser 
no. 3), the quicker the object was picked up. 

 
MO Trials Similar to SO trials, there was a significant effect 
of object appearance location on object pick-up time, with 
objects dispensed further from the middle picked up quicker, 
Wald χ2(4) = 84.91, p < .001 (see Table 3). Unlike SO trials, 
target location was also a significant predictor, where object 
pick-up time increased as target locations moved from the 
center of the table to the ends, Wald χ2(4) =17.54, p = .002. 
There was also a significant interaction between object 
appearance and target location on object pick-up time, χ2 (16) 
= 36.75, p = .002, where objects were picked up slower when 

Table 2: Regression and contrast coefficients for pick-up time 
by object appearance location, in SO trials. *p < .05. **p < .001. 

SO Trials

MO Trials 

Figure 4: Pass proportions for north and south players. 
 

SO Trials 

MO Trials 

Figure 3: Predicted margins for object pick-up time. 

Table 3: Regression and contrast coefficients for pick-up 
time by (1) object appearance location and (2) target location, 

in MO trials. *p < .05. **p < .001. 
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division of labor boundaries (i.e., who should pick-up/drop-
off the object) appeared less obvious (see Figure 3). For 
example, slower pick-up times were more typical for blue 
objects in dispensers 1 and 2 (versus 4 and 5), and purple 
objects in dispensers 4 and 5 (versus 1 and 2). 

Pass Decisions 
On average, a pass occurred in 33.82% of SO and 36.12% of 
MO trials, where 74.95% of MO passes were part of a swap. 
Pass rate was equally distributed within pairs, and differences 
in pass rate between SO and MO trials were non-significant, 
t(15) = 1.22, p = .241. Participants passed 96.20% and 
87.31% of objects requiring drop-off on their co-actor side of 
the table, and < 10% and < 11.80% of the green objects in SO 
and MO trials, respectively. Similarly, participants tended to 
drop-off objects with target locations closer to them. To 
examine if the Lamb et al. (2017) model could predict 
passing, multilevel logistic regression models were fitted 
with pair identifier as a random factor for each player. 

 
SO Trials The original model correctly classified 94.62% 
and 93.97% of total pass decisions in north and south players, 
respectively, demonstrating useful discrimination of pass 
decisions and strong concordance (see Table 4). Standing-
target distance was a strong significant predictor of pass 

decisions, where a 1-unit increase resulted in 4.09e+7% and 
3.85e+6% greater odds of passing by north (z = 9.79, p < 
.001) and south players (z = 10.11, p < .001), respectively. 

 
MO Trials The original model correctly classified 81.56% 
and 84.40% of total pass decisions in north and south players, 
respectively, demonstrating useful discrimination of pass 
decisions, but substantially lower concordance than SO trials 
(see Table 4). Hierarchical analysis revealed that the addition 
of standing-object distance for the co-actor, significantly and 
substantially improved model fit, demonstrating almost 
perfect discrimination, and correctly classifying 87.04% and 
88.39% of total pass decisions in north and south players, 
respectively. Standing-target distances were both significant 
predictors, where increasing distance for the participant and 
decreasing distance for the co-actor predicted greater odds of 
passing in north players (OR = 7.60e+2, z = 14.21, p < .001; 
OR = 4.29e–3, z = –12.08, p < .001), and south players (OR 
= 7.64e+3, z = 14.88, p < .001; OR = 4.92e–3, z = –11.16, p 
< .001), respectively.  

Pass Locations 
A k-means cluster analysis using Monte Carlo sampling of 
randomized reference distributions was performed to identify 
patterns in the location at which participants passed objects.  

Figure 5: Prototypical examples of clustering of pass locations for a pair in the (left) SO and (right) MO task. 
 

SO Trials

North Player South Player 

North Player South Player 
Collector Tubes 

Dispenser Tubes 

Collector Tubes 

Dispenser Tubes 

Table 4: Logistic regression coefficients for models predicting pass decisions in (1) SO and (2) MO trials. Pseudo-R2 
= McFadden’s R2. *p < .05. **p < .001. 

 

MO Trials

ls 
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SO Trials The analysis revealed that the optimal number of 
clusters across pairs, was two clusters: a north and a south 
cluster, such that participants passed the objects at a location 
closer to their co-actor’s side of the table. Clusters 
significantly differed in their Z-axis coordinates, t(15) = 9.10, 
p < .001, d = 2.52, and were approximately located in midway 
between the dispensers and the collectors (see Figure 5). 

 
MO Trials Unlike SO trials, cluster analysis on MO trials 
revealed only one central passing cluster. This could be a 
consequence of a large proportion of swaps, indicating that 
participants tended to coordinate object passes and pass 
locations to increase the efficiency of the task (see Figure 5). 

Discussion 
The purpose of this study was to investigate the behavioral 
dynamics underpinning action decisions in 3D joint pick and 
place tasks to eventually result in a parsimonious affordance-
based model predicting interpersonal pick-up and pass 
decisions. In that regard, the study was able to demonstrate 
the efficacy of low-dimensional models based on affordances 
in capturing multidimensional pick and place action 
decisions with varying complexity. This was achieved 
through utilizing body-scaled measures and manipulating 
task constraints through an experimental design. 

Modelling Action Decisions  
Participants’ pick-up decisions were driven almost 
completely by object distance, and in cases where the object 
appeared equidistant from both agents, by target location. 
Specifically, participants were more likely to pick up an 
object when it was closer to them (i.e., more “graspable”) and 
further from their partner (controlling for reach). Conversely, 
pass decisions were driven primarily by the distance of the 
target location, where participants were more likely to pass 
the object when the drop-off location was further away from 
them (i.e., less “placeable”) and closer to their co-actor in the 
complex task. Consistent with affordance literature (Lamb et 
al., 2017, 2019; Richardson et al., 2007), this implies that 
individuals are more likely to employ their co-actor’s help 
when task achievement becomes difficult to attain by oneself. 
In the complex task, participants’ pass decisions were also 
driven by the co-actor’s location. Moreover, participants 
more frequently dropped off objects on their co-actor’s side 
of the table, thus extending the drop-off affordance boundary. 
We posit that with greater task demands, individuals’ may be 
more likely to take on more uncomfortable tasks, prioritizing 
overall speed of task completion.  

Pick-up and pass action decision findings were consistent 
with the ecological dynamics framework and validated the 
accuracy of 2D pick and place action selection models (Lamb 
et al., 2017, 2019) within a 3D task environment. However, 
for valid integration of pick and place models in practical 
contexts, future research must verify this study’s findings in 
more life-like environments, as the virtual task design (whilst 
strengthened the study’s internal validity) could not simulate 
the full complexities of real-life pick and place environments. 

Object Pick-up Time 
Findings revealed that objects appearing in the middle of both 
participants were picked up slower than objects closer to a 
single participant. This discrepancy could be reflective of 
decision time or hesitancy associated with ambiguity in 
division of labor boundaries and emergence of heuristic rules. 
We hypothesize that when objects are equidistant from and 
thus graspable by two people, agents will check if their co-
actor is approaching the object before deciding to perform a 
pick-up. Thus, pick-up decisions where affordances are 
equivalent for more than one agent may involve conscious 
feedback systems or hierarchy between teammates instead of 
more automatic processes. In the complex task, object pick-
up time was also determined by object target location (where 
objects with more central target locations were picked up 
slower), and by an interaction between appearance and target 
location. This demonstrates that pick-up decisions are not 
only influenced by affordances but also the actions’ cost. 

Modelling Pass Locations 
Consistent with affordance research (e.g., Meyer et al., 2016; 
Ray & Welsh, 2011) and the shared-effort model of motor 
behavior (Santamaria & Rosenbaum, 2011), participants’ 
passing behavior prioritized efficiency of task completion via 
minimizing travelling distance and therefore movement costs 
(Török et al., 2019) of the dyad. In the simple task, each 
participant tended to pass in a location near their co-actor, 
thus maximizing their co-actor’s comfort, however, in the 
complex task, participants tended to perform swaps in one 
central location on the table, reducing their combined effort. 

Conclusion 
This study examined the effects of changing task 

constraints on object pick-up and passing decisions in a 3D 
joint pick and place task. In doing so, this study demonstrated 
efficacy for affordance-based models in predicting 3D joint 
pick and place action decisions,  thus providing a unique 
insight into the behavioral dynamics of regularly occurring 
interpersonal coordination. Furthermore, this study 
demonstrated that when complexity of a task is increased, a 
greater number of parameters may modulate the behavioral 
dynamics of a task and therefore become involved in 
determining action decisions. Emerging research suggests 
interpersonal behavioral dynamics’ models may be integrated 
in artificial agents (AAs) for expertise training (Kümmel, 
Kramer, & Gruber, 2014), motor rehabilitation, and social 
skill development (Matarić et al., 2007; Turner et al., 2013). 
As such, the ability of these models to accurately capture 
human behavior provides unique avenues for future research 
in developing human-like AAs for robust and seamless 
human-AA interactions. These models can be further used to 
validate and/or train AAs using a hybrid deep reinforcement 
learning-dynamical motor primitives approach (Patil et al. 
2021), where agents can discover strategies by interacting 
with the environment whilst still scaffolded by essential 
human movement behaviors. 
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