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Abstract 

Every day, people are exposed to vast amounts of information 
that can impact how they feel, think about, and act upon the 
world. Here, we extend the computational reinforcement 
learning framework to explain how such an impact can shape 
future decisions to either seek or avoid information. By 
simulating human behavioral data, we showed that agents are 
more likely to seek information after exposure to information 
with a positive net impact on the agent’s affect, cognition, and 
ability to make good decisions. The more the agent is exposed 
to this kind of information, the higher the probability that it will 
seek even more information in the future. On the contrary, 
decisions to remain ignorant are more likely to occur after 
repeated exposure to information with a negative net impact. 
Our model offers a novel computational framework within 
which maladaptive information-seeking and information-
avoidance behaviors can be further investigated. 

Keywords: information-seeking; motivation; reinforcement 
learning; computational modeling 

Introduction 
Thanks to modern advances in global communication 
through the Internet and social media, people have access to 
more information than ever before. Critically, each piece of 
information can impact how people feel, think about, and act 
upon the world (Cogliati Dezza, Maher, & Sharot, 2022; 
Sharot & Sunstein, 2020). For example, watching daily news 
on the climate crisis or the Ukraine war may make one feel 
sad or unsafe. At the same time, this information can enhance 
people’s understanding of the world and might help taking 
actions that will yield future rewards and avoid losses.  

In addition to impacting people’s feelings, thoughts, and 
actions, consuming information may also shape future 
decisions to either seek further knowledge or remain 
ignorant. For example, if the consumed information causes a 
positive experience (e.g., by inducing happiness), one may be 
more likely to seek similar types of information than if it 
caused an overall negative experience (e.g., by inducing 
sadness). Indeed, recent theories and experimental findings 

suggest that the information can act as a reinforcer, similar to 
standard rewards (FitzGibbon, Lau, & Murayama, 2020; 
Marvin & Shohamy, 2016; Murayama, 2022). Here, we 
develop a novel computational framework to understand how 
the impact of information on how one feels, thinks about the 
world, and acts upon it can shape future decisions to seek or 
avoid information. 

Our computational framework is a generalization of the 
standard reinforcement learning (RL) framework (Sutton & 
Barto, 1998). In RL, an agent interacts with the environment 
to learn how to maximize long-term rewards by estimating 
the expected reward value associated with available options 
via the calculation of reward prediction errors over a trial-
and-error process. The agent then uses its acquired estimates 
to choose among available options. In our extended 
framework, the RL agent learns the likely impact of 
information on how it will feel (Affect), think about 
(Cognition), and act upon the world (Action) after consuming 
the information – similar to how state or state-action values 
are learned in the standard RL framework. A schematized 
summary of our extended framework is provided in Figure 
1. To our knowledge, this is the first model that integrates 
multiple values to learn and direct information-seeking 
decisions. 

To understand how the impact of information on how one 
feels, thinks, and acts can shape future information-seeking 
decisions, we expand the existing RL framework to 
incorporate recent findings (Cogliati Dezza, Maher, et al., 
2022) and current theories of human information-seeking 
(Murayama, 2022; Sharot & Sunstein, 2020). We then use 
such extended framework to simulate behavioral data on an 
information-seeking task inspired by previously published 
experimental designs developed for human participants 
(Cogliati Dezza, Maher, et al., 2022). We further validated 
our framework by demonstrating it could capture real human 
behavior when adapted to a different information-seeking 
task (Hsee & Ruan, 2016). 
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Figure 1: RL framework for information-seeking. 
 

Methods 

Computational framework 
In our extended framework, the RL agent learns the expected 
value of Affect (i.e., the agent’s prediction on how future 
information would impact its affective states), Cognition 
(i.e., the agent’s prediction on how future information would 
impact its understanding of the environment in which it acts), 
and Action (i.e., the agent’s prediction on how future 
information would impact the selection of reward-bearing 
actions) using the Rescorla-Wagner rule (Rescorla & 
Wagner, 1972): 

 
𝑄!"#$%&[t] = 𝑄!"#$%&[𝑡 − 1] + 𝛼!"#$%&	𝛿!"#$%&[𝑡]				(1) 

 
where 𝑄!"#$%&[t] is the agent’s prediction on how future 
information would impact the agent’s affective states (if 
motive = Affect), its understanding of the environment in 
which it acts (if motive = Cognition) or the selection of 
reward-bearing actions (if motive = Action). 𝑄!"#$%&[𝑡 − 1] 
is the previous estimate, while 	𝛿!"#$%&[𝑡] is the current 
prediction error. 𝑄!"#$%&[t] is only updated if the information 
is sought by the agent. 

Following recent theories of information-seeking (Sharot 
& Sunstein, 2020), we allow the value of each motive to 
linearly integrate into the joint value of information:  

 
𝑉$'("	[t] = 𝛽*((&+#	× 𝑄*((&+#[t] +

𝛽+",'$#$"'	 × 	𝑄+",'$#$"'[𝑡] + 𝛽*+#$"'		 × 𝑄*+#$"'[𝑡]   (2) 
 

where 𝛽*((&+#	, 𝛽+",'$#$"'	, 𝛽*+#$"'	 are the weights given to 
the expected values of Affect, Cognition, and Action, 
respectively. These weights determine the extent to which 
people are motivated to seek information that is expected to 
improve their affective states (𝛽*((&+#	), reduce their 
uncertainty (𝛽+",'$#$"'	) or help them collect future rewards 
(𝛽*+#$"'	). After estimating the joint value of information, the 
agent can use this overall estimate to direct its information-
seeking decisions. This is formalized by entering 𝑉$'("	 into a 
logistic probability function: 

𝑃$'("-.&&/[t] =
0

012345+".#-6!"#$	[8]:	
					(3) 

 
where the 𝑐𝑜𝑠𝑡 term captures collective costs people incur 
when seeking information, such as money, time and 
physical/cognitive effort (Gottlieb, Cohanpour, Li, 
Singletary, & Zabeh, 2020; Horan, Daddaoua, & Gottlieb, 
2019). We computed 𝑃$'("-.&&/ in such a way to mimic non-
deterministic choices, following many studies in the literature 
describing people’s choices as a logistic function (Daw & 
Doya, 2006; Wilson & Niv, 2011; Wilson, Geana, White, 
Ludvig, & Cohen, 2014; Cogliati Dezza, Yu, Cleeremans, & 
Alexander, 2017; Cogliati Dezza, Noel, Cleeremans, & Yu, 
2021; Cogliati Dezza, Cleeremans, & Alexander, 2022). 

Each time a new piece of information is received, the agent 
integrates the valence of the consumed information into the 
prediction error as follows: 
 

𝛿*((&+#[𝑡] = 𝐼𝑛𝑓𝑜%*;&'+&	[t] - 𝑄*((&+#[𝑡 − 1] (4) 
 

where	𝐼𝑛𝑓𝑜%*;&'+&	 is formalized as the expected utility of the 
information (𝐼𝑛𝑓𝑜%*;&'+&	[t] = ∑ 𝑖𝑛𝑓𝑜$$<'

$<0 × 𝑝$). The same 
formulation has been shown to capture participants’ 
information-seeking in past experiments and relates to 
participants’ self-reported ratings of happiness (Cogliati 
Dezza, Maher, et al., 2022). 

Similarly, the agent integrates its uncertainty after 
receiving the information as follows: 

 
𝛿+",'$#$"'[t] = 𝐼𝑛𝑓𝑜='+&>#*$'#?	[t]-	𝑄+",'$#$"'[𝑡 − 1]  (5)	 

 
where 𝐼𝑛𝑓𝑜='+&>#*$'#?	 is the inverse of the standard deviation 
of the received information(𝐼𝑛𝑓𝑜='+&>#*$'#?	[t]=

0

@∑ (𝑐𝑖
𝑖=6
𝑖=1 −𝜇)

2

𝑁

). 

We entered the inverse of the standard deviation in the 
calculation of 𝛿+",'$#$"'	as high uncertainty corresponds to 
higher values of the standard deviation, and low uncertainty 
corresponds to lower values. We used the standard deviation 
as such formulation has been shown to adequately explain 
human information-seeking motivated by uncertainty 
reduction (Cogliati Dezza, Maher, et al., 2022; Bromberg-
Martin et al., 2022) and relates to people’s subjective 
uncertainty (Cogliati Dezza, Maher, et al., 2022). 

Lastly, the outcome of the choice made after receiving the 
information is integrated as follows:		
	

𝛿*+#$"'[t] = 𝐼𝑛𝑓𝑜*+#$"'[𝑡]-	𝑄*+#$"'[𝑡 − 1]		(6) 
 

where 𝐼𝑛𝑓𝑜*+#$"' is the outcome obtained from a choice 
made after receiving the information. Higher the outcome 
obtained from a choice, more the information did help in 
selecting rewarding-bearing actions.  
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Simulated Environments 
Lottery Task Our first simulated environment was a lottery 
task (Figure 2). This task was inspired by existing 
information-seeking tasks developed for human participants 
(Cogliati Dezza, Maher, et al., 2022). In the lottery task, the 
agent was presented with six hidden cards drawn from an 
(integer) uniform distribution (depending on simulations, the 
range was either [-1, 5] or [-5, 1]). On each trial, the agent 
decided whether to uncover three of the six cards at a known 
cost or remain ignorant about the entire set of cards (Figure 
2A). This task design was intended to mimic real-life 
scenarios in which people search for information online or on 
social media and decide whether to click on a provided link 
or open an app to retrieve initially hidden information. To 
include an instrumental component to this task, at the end of 
each trial, the agent had the choice to either enter a lottery or 
pass (Figure 2B). If the agent decided to play the lottery, one 
of the six cards (the “outcome card”) was randomly chosen 
and the number printed on it determined the outcome of the 
trial, as the same amount was added to the agent’s pot of 
money. If the agent decided to pass, no money was added to 
the agent’s pot. By design, the three cards available for 
information purchase contained the outcome card among two 
decoy cards. Therefore, retrieving information about the 
cards would not only impact how the agent feels and its 
uncertainty but could also help the agent to maximize gains 
and reduce losses in future play or pass choices.  

 

 
 

Figure 2: A trial of the lottery task. A) The agent decides 
whether to uncover three cards at a known cost or remain 

ignorant. B) The agent decides whether to play the lottery or 
pass. 

 
Each time the agent decides to seek information, 𝛿*((&+#, 

𝛿+",'$#$"', and 𝛿*+#$"' are computed and integrated into Eq. 
1. In this task, 𝐼𝑛𝑓𝑜%*;&'+&	 is the sum of the product of each 
uncovered card and the probability of its occurrence 

(𝐼𝑛𝑓𝑜%*;&'+&	[t] = ∑ 𝑐$A
$<0 × 𝑝$), 𝐼𝑛𝑓𝑜='+&>#*$'#?	 is the 

inverse of the standard deviation of the information, and 
𝐼𝑛𝑓𝑜*+#$"' is the outcome obtained from the lottery choice, 
which is zero if the lottery is not played. 

After the information-seeking choice is made, the agent 
decides to play the lottery or pass. On trials in which the agent 
seeks information, the play and pass choices are determined 
by entering the expected utility of the information into a 
probability function: 

 
𝑃+B"$+& =

0
01234	(+".#-D'("'()*"+*	)

						 (7) 
 
On trials in which the agent decides not to seek 

information, it randomly decides whether to play or pass. 
 

Shock Task Our second simulated environment was based 
on the Hsee & Ruan’s task (Hsee & Ruan, 2016) in which 
participants were presented with a set of cues and they could 
decide to click on each of them to know whether an electric 
shock would be delivered. We, therefore, named it the 
“Shock Task”. To mimic such scenario, we simulated the 
model in an environment that could deliver either negative 
(“yes shock”) or positive outcomes (“no shock”) using a 
uniform distribution of values within the range [-5, 5] 
(Figure 3), with -5 being very negative and 5 very positive.  

 

 
 
 Figure 3: A, B) A trial of the shock task, where the 

information can either deliver a shock (A) or not (B).  
 
In the original task, participants were exposed to two 

conditions: the certain condition and the uncertain condition. 
In the certain condition, participants knew in advance 
whether the cues would deliver shocks. Therefore, in this 
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condition, participants would not reduce their uncertainty by 
clicking on the cues, but they would only experience the 
outcomes of their decisions (either positive or negative). To 
simulate the certain condition, we ran the above model where 
only 𝑄*((&+# was entered into Eq. 2, such that only the degree 
to which the information feedback (no shock vs. shock) 
would influence the agent’s affect would matter in its 
information-seeking decision (i.e., either clicking on the cues 
or not clicking on the cues): 

 
𝑉$'("	[t] = 𝛽*((&+#	× 𝑄*((&+#[t]	   (8) 

 
On the contrary, in the uncertain condition, participants did 

not know in advance whether the cues would deliver shocks. 
Therefore, in this condition, participants would both reduce 
their uncertainty and experience the outcomes of their 
decisions (either positive or negative) by clicking on the cues. 
To simulate the uncertain condition, we ran the above model 
where 𝑸𝒂𝒇𝒇𝒆𝒄𝒕 and 𝑸𝒄𝒐𝒈𝒏𝒊𝒕𝒊𝒐𝒏 were both entered into Eq. 2, 
such that the degree to which the information feedback would 
influence the agent’s affect and the gain in its understanding 
of the cue both matter for the agent’s final information-
seeking decision: 

 
𝑉$'("	[t] =

𝛽*((&+#	× 𝑄*((&+#[t] + 𝛽+",'$#$"' × 	𝑄+",'$#$"'[𝑡]		
			(9) 

 
In both sets of simulations, we did not include 𝑄*+#$"' as in 

this task the information has not an instrumental value (i.e., it 
can therefore not be used to improve future choices).  

Results 

The impact of information on Affect, Cognition and 
Action influences future information-seeking 
decisions 
We first simulated our RL agent in a positively skewed 
environment in which the lottery cards were drawn from a 
uniform distribution within the range [-1, 5]. In this 
environment, information is most likely to be positive, reduce 
uncertainty about the future outcome, and help making 
choices that will yield future rewards. Therefore, in this 
environment, information has a positive net impact. The 
definition of the net impact concerns only the averaged 
current value of 𝑄*((&+#, 𝑄+",'$#$"'	and 𝑄*+#$"' and does not 
include the weights given to these values in Eq. 2.  

We simulated 100 agents, each playing the lottery task for 
100 trials. We set the initial values for 𝑄*((&+#, 𝑄+",'$#$"'	and 
𝑄*+#$"' to 0 and their relative weights 𝛽*((&+#, 𝛽+",'$#$"', 
𝛽*+#$"' to 1. The cost of information was set to 0.1, while the 
three learning rates 𝛼*((&+#, 𝛼+",'$#$"' and 𝛼*+#$"' were set 
to 0.2.  

As shown in Figure 4A, consuming information with 
positive net impact on Affect, Cognition, and Action 
increases the probability of seeking information in future 

trials. This translated into frequent decisions to seek 
information in such environment.  
 

 
 

Figure 4: A) Consuming information with a positive net 
impact increases the probability of seeking information in 

future trials. B) Consuming information with a negative net 
impact decreases the probability of seeking information. 
 
We then simulated the RL agent in a negatively skewed 

environment in which the lottery cards were drawn from a 
uniform distribution within the range [-5, 1]. In this 
environment, information is often negatively valenced and 
does not help in making lottery choices that will yield future 
rewards, but it still reduces uncertainty about the outcome 
card. In this environment, information has a negative net 
impact. As in the previous simulation, the definition of the 
net impact concerns only the averaged value of 𝑄*((&+#, 
𝑄+",'$#$"'	and 𝑄*+#$"' in such environment and does not 
include the weights given to these values in Eq. 2.  

We again simulated 100 agents for 100 trials following the 
same model parametrization reported above. As shown in 
Figure 4B, consuming information with a negative net 
impact decreases the probability of seeking information in 
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future trials. This translated into increased decisions to 
remain ignorant in such an environment.  

To note, we obtained similar results with different values 
of learning rate (e.g., 0.5, 0.9) and cost (e.g., 0.5, 1.5) in both 
sets of simulations. 

Taken together, the impact of information on Affect, 
Cognition, and Action influences future agent’s information-
seeking decisions in the same fashion as more standard 
rewards influence choices. In particular, when the consumed 
information has a positive net impact, the agent is more likely 
to seek information in the future, while when the consumed 
information has a negative net impact the agent is more likely 
to remain ignorant in the future.  

Repeated exposure to information influence future 
information-seeking decisions more strongly  
We then simulated the RL agent in both environments for a 
variable number of trials. In the positively skewed 
environment, we observed that the higher the number of 
exposures to information, the higher the probability that 
agents would seek information (Figure 5A). The opposite 
was true in the negatively skewed environment: the higher 
the number of exposures to information the more the agents 
decided to avoid information (Figure 5B).  

 

 
 

Figure 5: Impact of information on future information-
seeking decisions across variable number of trials. 

 
Interestingly, we observed that under the same model 

parametrization, in a positively skewed environment the 
agent required less exposure to information to learn that 
information had a positive net impact, while more trials were 
needed to learn that information had a negative impact in the 
negatively skewed environment (Figure 6). This is because 
in this latter environment, although information negatively 
impacts affect and action, it always reduces uncertainty about 
the lottery card. 

 
 

 

 

 
Figure 6: Percentage of decisions in the opposite 

direction of the impact type – that is, seeking information 
when it has a negative net impact and remaining ignorant 

when the information has a positive net impact. 
 

Taken together, repeatedly exposing the agent to 
information with a positive or a negative impact influences 
future information-seeking more strongly. 

RL-guided information-seeking can predict human 
decisions 
To assess whether our model could capture real human 
behavior in the shock task, we simulated 100 RL agents for 
100 trials of the shock task. The results of these simulations 
showed that the agents were seeking information more often 
in the uncertain condition compared to the certain condition 
(Figure 7). These results replicate the original findings, 
according to which people clicked on cues more often in the 
uncertain condition, where uncertainty could be reduced by 
seeking information, than in the certain condition (Hsee & 
Ruan, 2016).  

 

 
 

Figure 7: The agent’s information-seeking decisions in 
the certain and uncertain conditions. 
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introduced a novel computational framework to understand 
how the impact of information on affect, cognition, and 
action can shape future decisions to seek information or 
remain ignorant. Overall, our simulations suggest that values 
related to information properties and learned via RL 
influence future information-seeking decisions, similar to 
how more standard rewards influence other behaviors. 

In our first set of simulations with the lottery task, we 
showed that consuming information with a positive net 
impact on one’s feelings, uncertainty reduction, and ability to 
make decisions that will yield rewards increases the 
probability of seeking further information. On the contrary, 
when one consumes information with a negative net impact, 
the probability of seeking information in the future decreases. 
These results are in line with recent theories and experimental 
findings that collectively consider information to be a 
reinforcer, similar to standard rewards (FitzGibbon et al., 
2020; Marvin & Shohamy, 2016; Murayama, 2022). The 
impact of information can therefore be learned and influences 
future decisions to seek or avoid information.  

In our second set of simulations, we showed that the 
number of exposures to positive or negative information 
affects future information-seeking decisions. In particular, 
the higher the number of exposures to information with a 
positive net impact, the more an agent will seek further 
information. On the contrary, the higher the number of 
exposures to information with a negative net impact the more 
an agent will avoid information. However, the amount of 
exposure required to stabilize information-seeking 
preferences varied across the two different environments. In 
particular, a smaller number of trials was required to learn 
that information had a positive net impact, and therefore 
should be sought, compared to the number of trials needed to 
learn that information had a negative net impact, and 
therefore should be avoided. These findings might explain 
why positive information is learned faster than negative 
information (Unkelbach, Fiedler, Bayer, Stegmüller, & 
Danner, 2008; Unkelbach et al., 2010). Because even 
negative information reduces uncertainty to some extent, the 
impact of negatively valenced information on Cognition is 
positive even when the environment frequently delivers 
negative news, thus driving the overall value of information 
up and pushing agents to seek more information (and slowing 
down the learning of the negative impact of such information 
on other dimensions – such as Affect and Action). 

In line with recent findings, our simulations suggest that 
the agent seeks more information when the information 
enhances its affect, understanding of the world, and ability to 
make future rewarding choices. This is in line with recent 
findings that suggest people avoid information that makes 
them feel bad and seek information that makes them feel 
good (Charpentier, Bromberg-Martin, & Sharot, 2018; 
Karlsson, Loewenstein, & Seppi, 2009; Kobayashi, Ravaioli, 
Baranes, Woodford, & Gottlieb, 2019; Vellani, de Vries, 
Gaule, & Sharot, 2021), reduces their uncertainty (Chater & 
Loewenstein, 2016; Cogliati Dezza et al., 2021; Golman & 
Loewenstein, 2018; Singh & Manjaly, 2021; van Lieshout, 

Traast, de Lange, & Cools, 2021), and helps them select 
actions that will yield future rewards (Cogliati Dezza et al., 
2017; Kobayashi & Hsu, 2019; Stigler, 1961; Wilson et al., 
2014).  

To further validate our model predictions, we simulated 
our RL agent using the shock task (Hsee & Ruan, 2016). We 
showed that, as observed in human participants who 
performed the same task, our RL agents were more likely to 
seek information when presented with the uncertain 
condition, in which the agent’s uncertainty could be reduced 
by seeking more information, compared to the certain 
condition, in which no new knowledge could be gained by 
actively seeking information. These results show that our 
framework that can be used to explain how people seek 
information maladaptively (e.g., doomscrolling; Sharma, 
Lee, & Johnson, 2022) or avoid information when it could be 
useful (e.g., deliberative ignorance; Hertwig & Engel, 2021). 
For example, by assigning greater weights to uncertainty 
reduction and smaller weights to the affective outcomes of 
information, the model could persistently seek negative 
valanced information regardless of its impact on its affective 
states, yielding doomscrolling-like behaviors (Cogliati 
Dezza, Molinaro, & Verguts, under review). 

In sum, by extending the RL framework to include 
parameters relevant to information alongside standard 
rewards, we showed that the impact of information can be 
learned in the same fashion as the value of state-action pairs 
learned via typical reinforcers (e.g., food or money). Such 
learned values can then influence future decisions to seek or 
avoid information, similar to how standard reinforcers 
strengthen or dampen other behavioral responses. Our model 
offers a novel computational framework within which 
maladaptive information-seeking and avoidance behaviors 
can be further understood and investigated. 
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