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This dissertation covers techniques for the estimation of parameters related to making causal

inferences and discoveries. Both for its generality and its simplicity, the focus is in the plug-in

estimation of these parameters, whereby the statistical estimator(s) of a parameter(s) is

plugged in to obtain an estimator for another, possibly more difficult to estimate, parameter.

In particular, the following is addressed.

In Chapter 2, we focus on causal discovery, the learning of causality in a data mining

scenario. Causal discovery has been of strong scientific and theoretical interest as a starting

point to identify “what causes what?” Contingent on assumptions and a proper learning

algorithm, it is sometimes possible to identify and accurately estimate a causal directed acyclic

graph (DAG), as opposed to a Markov equivalence class of graphs that gives ambiguity of

causal directions. The focus of this chapter is in highlighting the identifiability and estimation

of DAGs with general error distributions through a general sequential sorting procedure that

orders variables one at a time, starting at root nodes, followed by children of the root nodes,
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and so on until completion. We demonstrate a novel application of this general approach

to estimate the topological ordering of a DAG. At each step of the procedure, only simple

likelihood ratio scores are calculated on regression residuals to decide the next node to append

to the current partial ordering. The computational complexity of our algorithm on a p-node

problem is O(pd), where d is the maximum neighborhood size. Under mild assumptions, the

population version of our procedure provably identifies a true ordering of the underlying DAG.

We provide extensive numerical evidence to demonstrate that this sequential procedure scales

to possibly thousands of nodes and works well for high-dimensional data. We accompany

these numerical experiments with an application to a single-cell gene expression dataset.

The focus of the Chapter 3 is the Linear Non-Gaussian Acyclic Model (LiNGAM).

Compared to what has been done, we present a novel estimation approach which involves

specifying a parametric objective function and arguing when our sequential optimization

approach will be statistically consistent, including if the dimension of underlying graph

diverges, and when we can provide finite sample guarantees on its accuracy. This involves

(1) defining well our target parameter: an ordering of the Directed acyclic graph (DAG)’s

vertices such that parents always precede children; and (2) translating deviation bounds on

the parameters for the corresponding structural equation model (SEM) into a statement

about our topological order estimate’s deviation from a true topological ordering. We also

incorporate the use of a priori known neighborhood sets to our theoretical results.

In Chapter 4, we assume that the underlying causal structure is known, for example, due

to the successful application of a causal discovery algorithm similar to those in the previous

two chapters. This grants us the identifiability of parameters on the distribution of so-called

potential outcomes, the key random variables we would like to make causal claims about. The

premise of this chapter, in a vein similar to predictive inference with quantile regression, is

that observations may lie far away from their conditional expectation. In the context of causal

inference, due to the missing-ness of one outcome, it is difficult to check whether an individual’s

treatment effect lies close to its prediction given by the estimated Average Treatment Effect

iii



(ATE) or Conditional Average Treatment Effect (CATE). With the aim of augmenting the

inference with these estimands in practice, we further study an existing distribution-free

framework for the plug-in estimation of bounds on the probability an individual benefits

from treatment (PIBT), a generally inestimable quantity that would concisely summarize

an intervention’s efficacy if it could be known. Given the innate uncertainty in the target

population-level bounds on PIBT, we seek to better understand the margin of error for the

estimation of these target parameters in order to help discern whether estimated bounds

on treatment efficacy are tight (or wide) due to random chance or not. In particular, we

present non-asymptotic guarantees to the estimation of bounds on marginal PIBT for a

randomized experiment setting. We also derive new non-asymptotic results for the case where

we would like to understand heterogeneity in PIBT across strata of pre-treatment covariates,

with one of our main results in this setting making strategic use of regression residuals.

These results, especially those in the randomized experiment case, can be used to help with

formal statistical power analyses and frequentist confidence statements for settings where

we are interested in inferring PIBT through the target bounds under minimal parametric

assumptions. Our results extend to both real-valued and binary-valued outcomes, and these

results can also instead be applied to reason about whether an individual is likely to be

harmed by an intervention.
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CHAPTER 1

Introduction

With observational data alone, causal inference using an accurate directed acyclic graph

(DAG) has been shown to provide results that are up to par with the quintessential randomized

controlled experiment (Pearl 2009, Malinsky et al. 2019). However, it is difficult to imagine

that this approach, with its reliance on strong domain knowledge about the system of variables

at hand, can be applied to cases with large numbers of variables and little background on

how they are all related, such as in bioinformatics and fields of science where “big data” was

previously unavailable and we are now trying to get a grasp of it. On the other hand, causal

discovery—learning the DAG structure for Bayesian networks from scratch—has its own

pitfalls, such as a super-exponentially increasing number of networks in the search space as

the number of nodes grows and the fact that it is possible for multiple directed acyclic graphs

and the Bayesian networks they encode to map to the same joint distribution–a phenomenon

called Markov equivalence (Frydenberg 1990, Verma and Pearl 1990, Peters et al. 2017, Verma

and Pearl 2022). Nonetheless, a large effort has been devoted to the structure learning of

DAGs as a preliminary data mining step in the scientific pipeline. Section 1.2 discusses more

on the motivation for DAG structures and structure learning.

Moreover, what do we do once we have high confidence about a fixed graphical model

or some properties of it, such as knowing appropriate confounding variables between two

variables W and Y of interest (see Assumption 4.1.5 and Assumption 4.1.7 in Chapter 4)?

For such a scenario, Section 1.3 below discusses causal modeling for an estimand known as

the Conditional Average Treatment Effect (CATE), which allows us to study heterogeneity in
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the causal effect of W on Y due to differing values of a confounding variable (effect modifier)

X. We also introduce a related parameter of interest: the probability an individual benefits

from treatment (PIBT), which is discussed in depth in Chapter 4. On the one hand, a CATE

model is a predictive model we can never check the goodness of fit for due to the fundamental

problem of causal inference: we only observe one potential outcome for each individual in

a sample, while the other potential outcomes that could result from unrealized values of

the treatment variable remain hidden. On the other hand, we cannot directly estimate the

probability an individual benefits from treatment, due to the same fundamental reason. This

means we have to estimate bounds on PIBT in practice that could be conservative. Section

1.3 discusses CATE and the inestimable parameter of interest.

We next discuss the outline and contribution of this dissertation. This includes a short

summary of each of the chapters.

1.1 Outline and Contribution of this dissertation

1. In Chapter 2, we develop a novel structure learning method that allows us to estimate

the topological ordering of a large number of variables in an unknown causal graph. A

key component of our method is the use of a general sequential procedure that appends

a node to a partial ordering one at a time until completion, greatly reducing the search

complexity across the large number of possible orderings. We theoretically establish the

identifiability of such a topological ordering with our sequential procedure under well

explained regularity conditions. To the best of our knowledge, ours is the most recent

method that pushes the boundary of learning large causal graphs with such theoretical

guarantees. Through our use of regression residuals in an easy to follow application of

the plug-in estimation principle, an additional takeaway of our work is the suggestion

it gives to scale up similar sequential algorithms that estimate more flexible classes of

structural equation models.
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2. Moreover, given the importance of applying theoretically justified methods in practice,

Chapter 3 provides finite sample and asymptotic guarantees for the learning of the

linear structural equation model discussed in Chapter 2. The results here can help

provide a reasonable expectation for a causal discovery method, such as that introduced

in Chapter 2, in terms of accuracy and its relation to dimension, connectedness of

nodes, relative signal to noise, and sample size.

3. In Chapter 4, we develop novel statistical estimation theory that allows us to reason in a

frequentist sense about the probability an individual benefits from treatment (PIBT)–an

inestimable parameter. A key component of our approach is the use of distribution-

free bounds on the parameter of interest along with non-asymptotic concentration

inequalities. In doing so, we theoretically establish an understanding of how much

sample size is needed to reason, within some target margin of error and frequentist

confidence level, about the parameter of interest through the distribution-free bounds

of choice. To the best of our knowledge, ours is the first approach that provides

such a non-asymptotic statistical inference on PIBT. Through our use of regression

residuals in another easy to follow application of the plug-in estimation principle, we

also provide results to reason about the parameter of interest in strata of confounding

covariates. Moreover, Section 4.5 of this chapter, in an application to a large randomized

experiment dataset, demonstrates how our proposed methodology can help augment

existing approaches for average and heterogeneous causal effect modeling.

The remainder of this chapter gives background and motivation for these three middle

chapters. Finally, Chapter 5 concludes.

1.2 Motivation for Directed Graphical Models, Structure Learning

In the ideal case, our estimate of a DAG, completed partially direct acyclic graph (CPDAG)

as in Figure 1.1 (Spirtes and Glymour 1991), or related structure would be accurate so that
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U

XZ Y
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XZ Y

Figure 1.1: The original DAG (left) and its corresponding CPDAG (right), obtained by keeping

the orientation of edges corresponding to the v-structures Z → X ← U and Z → Y ← U ,

and removing the orientation from all other edges (Spirtes and Glymour 1991). Note the

ambiguity about the causal direction X → Y vs. X ← Y in the CPDAG.

its use to augment our causal reasoning is justified. That is, the structure we estimate would

guide our use of Pearl (2009)’s back-door adjustment, front-door (mediator) adjustment,

instrumental variable analysis, and combinations thereof. This is the goal! As a basic example

of how a graphical model can augment causal inference, consider the linear structural equation

model in Figure 1.2 where a natural causal estimand of interest for the effect an intervention

on variable X will have on the response variable Y is the total causal effect (see chapter

7 of Hernán and Robins (2020) or chapter 3 of Pearl et al. (2016) for more background).

Due to linearity, the total causal effect can be summarized by the coefficient of X in the

expectation of Y on X when the experimenter intervenes on X to be x (denoted by the

do-operator). This coefficient is equivalently the expected difference of two counterfactual

(potential) outcomes Y (1) and Y (0) under do(X = 1) and do(X = 0), respectively:

γx→y=̇
∂

∂x
E[Y |do(X = x)] = E[Y (1)]− E[Y (0)] = α2α3.

Let βA(B ∼ A+S) denote the coefficient of variable A in the population-level linear regression

of variable B on variable A and a set of variables S. For the example in Figure 1.2, using the

observational data distribution, the standard back-door adjustment argument shows that

γx→y is equal to βX(Y ∼ X +U) since U is the sole common cause of both X and Y . Should

U be unobserved on the other hand, the standard instrumental variable analysis argument

shows that γx→y is the same as βZ(Y ∼ Z)/βZ(X ∼ Z) since Z and Y are causally related

through X, while X’s parents Z and U are marginally independent. And if the instrumental
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variable is also unobserved or is weak (e.g. if α1 ≈ 0 after all), the front-door (mediator)

adjustment approach tells us that also γx→y is the same as βM(Y ∼M +X)× βX(M ∼ X)

since X closes the backdoor path between M and Y . (See the Appendix for more details.)

Because the causal DAG in this example is known, we may estimate the causal estimand by

the sample analogues of such regressions using non-interventional data. The key is obtaining

this graph to begin with.

1.2.1 Combining Bayesian network structure learning and causal inference

Alas, it is likely unavoidable to make an estimation error in the graph estimate due to data

variability, not too mention model misspecification. So a better goal is to demonstrate that

causal discovery models are useful as working models in data mining settings to generate

causal leads a scientist will follow up on with more experiments and/or compelling domain

knowledge. To this end, procedures have been developed to take the equivalence class of

DAGs outputted by a CPDAG-learning algorithm to further estimate the corresponding set

of total causal effects for each DAG using Pearl et al. (2016)’s do-calculus. These works

include Maathuis et al. (2009), Nandy et al. (2017), Malinsky and Spirtes (2017), and Henckel

et al. (2019). Notably, Maathuis et al. (2009), the precursor to its generalizations in Nandy

et al. (2017) and Malinsky and Spirtes (2017), was applied to gene expression data from

an observational distribution, and many of the causal leads were validated using readily

available experiment data for the plant organism of interest (Stekhoven et al. 2012). This

result was despite the use of linear structural equations, albeit after a strategic log (Box-Cox)

transformation of the count matrix. Maathuis et al. (2010) further discuss such applications

of causal discovery in practice.

Taking for granted that the assumptions for a CPDAG-learning algorithm are met, a

question arises on how to resolve ambiguities in the causal effect set that is given by a

procedure such as Nandy et al. (2017) or Maathuis et al. (2009). Consider the example in

Figure 1.1. For this example, one would forcibly estimate a causal effect of X on Y to be null
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θ1 θ2

α2 α3α1



U = ϵu

Z = ϵz

X = θ1U + α1Z + ϵx

M = α2X + ϵm

Y = θ2U + α3M + ϵy

Figure 1.2: An example of a DAG and the linear structural equation model it encodes, where

the exogenous ϵ terms are mutually independent and zero-centered.

using the DAG in the equivalence class which orients the edges betwen {X, Y } as Y → X.

For this and the general case where there is ambiguity about the orientation of edges on a

path between two nodes in a CPDAG, Nandy et al. (2017) propose to remedy the ambiguity

by taking the absolute value of the total causal effect query for each DAG in the equivalence

class, then summarizing the set of (absolute values of) total causal effects by taking the

minimum1. This is done under a linear structural equation model assumption to go along

with each DAG, in which case the estimand is ∂
∂x
E[Y |do(X = x)]. For the example in Figure

1.1, the lower bound for the absolute value of the total causal effect of X on Y is zero, yet

the possibility for a practically significant causal effect exists if the DAG on the left with

edge orientation X → Y is the true causal DAG.

Therefore, the uniquely identifiable Linear Non-Gaussian Acyclic Model (LiNGAM) of

Shimizu et al. (2006) can be of interest to the causal discovery practitioner who wishes for

less ambiguity of causal effect estimates. Very importantly, the practitioner must be willing

to grant this wish by adding stronger assumptions. If the model assumptions are not met, an

estimated LiNGAM must be used cautiously as one small part of a larger quest to understand

1Resolving this ambiguity for the general case of one or more simultaneous intervention nodes, i.e. under
do (XI = xI) where I ⊆ [p] arbitrary, would work in a similar way: their procedure would simply keep track
of total causal effect coefficient for each simultaneous intervention node across each DAG in the MEC.
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causality for the system of variables at hand. When modeling assumptions are not met, a

LiNGAM estimate would simply be the linear structural equation model of best fit–in our case

in Chapter 2, according to the specified non-Gaussian noise-term densities and corresponding

estimation procedure.

1.3 A Brief Review of Causal Modeling

Consider now that we are in a setting in which we are confident about how variables are

causally related, perhaps after we have successfully applied data mining methods discussed in

the previous section and Chapters 2 and 3, have had plenty of domain expert input, and also

conducted various validation studies. In such a setting, it can be interesting for practitioners

to understand what confounding characteristics of individuals in a population are predictive

of benefiting from treatment. To this end, we now review a popular estimand known as

Conditional Average Treatment Effect (CATE) along with popular estimation approaches for

it. We then motivate Chapter 4 which discusses further how to reason statistically about the

probability an individual benefits from treatment, an arguably more informative quantity

than CATE if only it could be known.

1.3.1 The Conditional Average Treatment Effect (CATE) and its Estimation

Denote below Yi(w) as the potential outcome for individual i = 1, . . . , n in our sample when

they are in binary treatment group w = 0, 1 (Rubin 1974, Imbens and Rubin 2015). Denote

also the individual treatment effect as

∆i := Yi(1)− Yi(0).

Here, ∆i is a summary of the effect treatment has on individual i specifically. It could be

well predicted by some covariates Xi that confound the naturally occurring treatment, Wi,

and Yi. This premise leads to the definition of CATE.
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Definition 1.3.1 (Conditional Average Treatment Effect (CATE)).

To understand average treatment effect heterogeneity across strata of our confounder, Xi,

denote:

τx
∆
= E [Yi(1)− Yi(0)|Xi = x] .

Due to linearity of expectation and Chapter 4’s Assumption 4.1.7 (Strong Conditional

Ignorability)2, we have that:

τx = E [Yi|Wi = 1, Xi = x]− E [Yj|Wj = 0, Xj = x] .

This equivalent formulation of τx as the difference of two regression curves, µ1T (x) =

E [Yi|Wi = 1, Xi = x] and µ0T (x) = E [Yj|Wj = 0, Xj = x], suggests why τx is identifiable:

the conditional expectations can be with respect to differing individuals (i ̸= j) such that

Xi = Xj = x.

After learning µ1T (x) and µ0T (x) with the treatment group sample and control group

sample, respectively, we can use µ̂1T (x)− µ̂0T (x) as our estimate of τx–known as the T-Learner

approach, where “T” stands for “two.” One may also estimate a single regression curve,

µS(x,w) = E [Yi|Wi = w,Xi = x] by pooling treatment and control group outcomes together.

The estimate of τx in this approach is given by taking the difference µ̂S(x, 1)− µ̂S(x, 0). This

procedure is known as the S-Learner, where “S” stands for “single.” The regression curves of

both the S and T-learner approaches can be learned with any appropriate method, called

the “base-learner,” including linear regression, kernel regression, tree-based procedures, or

artificial neural networks (Künzel et al. 2019).

For provably better statistical efficiency compared to the T and S-learner frameworks

under regularity conditions, Künzel et al. (2019) introduce the X-learner, which stands for

“meta-learner.” This approach strategically builds off of a T-learner by using it to impute ∆i

as Wi[Yi− µ̂0T (Xi)]+(1−Wi)[µ̂1T (Xi)−Yi], then using this imputation as the regression label

2This assumption should be argued well in practice.
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to learn τx. In order to obtain desirable efficiency results in their own right, Nie and Wager

(2020) learns τx by mimicking an oracle loss function involving the main effects regression

curve m(x) = E [Yi|Xi = x], and the propensity score, e(x) = Pr (Wi = 1|Xi = x). Nie and

Wager (2020) do so by plugging in the corresponding estimates m̂(x) and ê(x) to the loss

function which is with respect to τx, with special care given to sample splitting in order to

mitigate biases. This approach is named the R-learner, where the “R” here stands for its

namesake: the author of the key reference (Robinson 1988). The causal random forests of

Wager and Athey (2018), later made more robust by the generalized random forests in Athey

et al. (2019), fall under the R-learner framework to estimate CATE.

Moreover, Burkhart and Ruiz (2022) discuss a heuristic approach that can help provide

greater accuracy to each of the above mentioned CATE learning frameworks. The idea is to

train a feed-forward neural network (Goodfellow et al. 2016) in which Xi is the feature we

input to the model in order to predict Yi. After this is done, we use the last hidden layer as

the basis for a feature representation of Xi, which we can call Ψ(Xi). One would then use

the learned feature representation Ψ(Xi) in place of Xi in a CATE-learning algorithm. Given

that Ψ(Xi) already incorporates the non-linear relation between Xi and Yi, the base-learner

for this approach with Ψ(Xi) can be a linear model if one wishes.

1.3.2 Does CATE really imply what it suggests about benefiting from treatment?

Asking whether CATE really implies what it suggests about benefiting from treatment, in

part, boils down to how far points on the conditional distribution ∆i|Xi = x tend to be from

τx. That is, it is partly a matter of whether the distribution ∆i|Xi = x is thin tailed. Does

this distribution have outliers which pull the mean toward them? Are there multiple modes?

In regression lingo, this question might be answered in part by the proportion of ∆i’s

variance explained by Xi through τXi
:

R2
ITE =

V[∆i]− E [V[∆i|Xi]]

V[∆i]
= 1− E [V[∆i|Xi]]

V[∆i]
,
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which is between 0 and 1 due to the law of total variance. If R2
ITE is large, say 90% or

larger, then one can feel more confident in making a statement about treatment efficacy for

individuals with large values of CATE as it would appear that most values of ITE are near

the curve τx.

If we know the ITE for each individual in our sample used to learn CATE, R2
ITE can be

estimated by:

R̂2
ITE = 1−

∑n
i=1 (∆i − τ̂Xi

)2∑n
i=1

(
∆i − 1

n

∑n
j=1∆j

)2 ,
which makes use of the residual sum of squares and total sum of squares. Alas, computing

the residual ∆i − τ̂Xi
as we typically would in supervised regression is impossible.

Given that R̂2
ITE cannot be calculated to assess the goodness of fit of τ̂Xi

, we propose to

study estimation strategies for bounds on the proportion of individuals in stratum x that

benefit from treatment. We define this proportion, without loss of generality3, as:

θx := Pr (∆i > δ|Xi = x) .

θx, if it could be known, seems more practically informative than R̂2
ITE. Here, δ is a fixed

threshold of interest, such as δ = 0. The quantity θx is importantly different in general from

ηx := Pr (Yi(1)− Yj(0) > δ|Xi = Xj = x; i ̸= j) ,

as discussed below and in Chapter 4 (Hand 1992, Fay et al. 2018, Greenland et al. 2020).

Let us now study the relation between θx and τx to gain some intuition for why the

study of individuals benefiting from treatment in Chapter 4 is interesting. Consider the toy

generative model on ∆i given by:

∆i = τXi
+ ν(Xi) [ϵi1 − ϵi0]ϵi0

ϵi1

 ∼ N2×1

0
0

 ,

1 ρ

ρ 1

 .
(1.1)

3See the Introduction and Section 4.4 of Chapter 4 to understand why there is not a loss of generality.
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Notice that conditional on Xi = x, we have that the ITE residual satisfies:

∆i − τXi
= ν(x)[ϵi1 − ϵi0] ∼ N

(
0, 2ν(x)2(1− ρ)

)
.

Here, it can be appreciated that ∆i− τXi
satisfies homoscedasticity (constant variation across

possible values of Xi) so long as ν(·) is a constant function. Otherwise, the variance of

∆i − τXi
depends on Xi = x.

Further,

θx = Pr(∆i − τXi
> δ − τx|Xi = x) = 1− Φ

(
δ − τx

|ν(x)|
√
2(1− ρ)

)
(1.2)

and similarly,

ηx = 1− Φ

(
δ − τx

|ν(x)|
√
2

)
. (1.3)

Here Φ is the CDF for a standard normal distribution.

From Equations (1.2) and (1.3), one can begin to appreciate the complexity of reasoning

about the relation between τx and θx that comes when ∆i − τXi
violates homoscedasticity.

Figure 1.3 gives this insight for specific choices of ν(x), ρ, σ, and threshold δ. For the

relation between θx and τx, we see in the homoscedastic case where ν(x) = 1 that θx increases

monotonically with τx, with the rate of increase being dictated by ρ. For the heteroskedastic

cases (non-constant variation of residuals across possible values of Xi), especially when

ν(x) = 1 + sin(τx), we see that we may counter-intuitively have that θx < θx′ even if τx > τx′ .

For the general case that homoscedastic violations are allowed, stronger tools than those

presented in Chapter 4’s Theorem 4.3.4 for the homoscedastic case are needed in order to

estimate bounds on θx and to estimate ηx. Because there appears to be a gap in the literature

for the homoscedastic case, we deem its discussion in this chapter relevant nonetheless. We

consider violations of homoscedasticity outside of the scope of this paper.

With respect to the relation between τx and θx, Figure 4.5.1 in Chapter 4 gives some

interesting insight. Upon a partitioning of individuals in the sample using their similar CATE
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prediction, we can estimate PIBT in each hand-crafted strata of the partition to better

understand the implication of a CATE estimate.
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Figure 1.3: For the toy example given in Equation (1.1), the corresponding relation between

τx and θx. The rows on the grid of plots correspond to ν(x) = 1 (homoscedastic case),

ν(x) = 1 + sin(τx), and ν(x) =
√

1 + |τx|. The columns on the grid of plots corresponds to

examples choices of our threshold δ. The color corresponds to examples for ρ, the Pearson

correlation between ϵ0 and ϵ1. The x-axis of each plot on the grid corresponds to values of τx.

The y-axis on the top grid corresponds to θx (note that θx = ηx when ρ = 0 in this example).
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APPENDIX

1.A Deriving Causal Estimands from the Example in Figure 1.2

Recall the estimand of interst is E[Y (1)] − E[Y (0)] = α2α3. This is the case because an

experimenter setting the value of X to be 1 or 0 does not change the value of U , but it does

change the value of M to M(1) = α2 + ϵm and M(0) = ϵm, respectively. In turn, this means

that Y (1) = α3(α2 + ϵm) + θ2U + ϵy, while Y (0) = α3ϵm + θ2U + ϵy. Taking the difference in

expectations gives α2α3 as our estimand.

Using the observational data distribution, the standard back-door adjustment argument

shows that the causal effect is βX(Y ∼ X + U), since

E [Y |X,U ] = E [θ2U + α3M |X,U ] = θ2U+α3E [M |X] = θ2U+α3E [α2X|X] = θ2U+α2α3X.

The second equality holds because M and U are d-separated by X.

When we use Z as an instrumental variable, the standard argument shows that the causal

estimand of interest is the same as βZ(Y ∼ Z)/βZ(X ∼ Z), since E[X|Z] = α1Z while

E [Y |Z] = E [θ2U + α3M |Z] = θ2E [U ]+α3E [M |Z] = θ2E [U ]+α3E [α2X|Z] = θ2E [U ]+α3α2α1Z.

In the second equality we used that U and Z are d-separated by the empty set.

For the front-door (mediator) adjustment approach, the causal estimand of interest is the

same as βM(Y ∼M +X)× βX(M ∼ X), since E[M |X] = α2X while

E [Y |M,X] = E [θ2U + α3M |M,X] = α3M + θ2E [U |M,X] = α3M + θ2E [U |X] .

The last equality holds because U is d-separated from M by X.
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CHAPTER 2

Sequentially Learning the Topological Ordering of

Causal Directed Acyclic Graphs with Likelihood Ratio

Scores

2.1 Introduction

The present chapter provides discussion of a general learning algorithm, which we show can

be quite scaleable, along with novel identification theory for a specific application. It is based

on our work in the pre-print Ruiz et al. (2022). The main task of the approach we advocate

for is to sequentially estimate a topological ordering of the DAG, a permutation of node labels

such that every parent must precede its children. To help with scalability in practice, we also

make use of a priori known neighborhood sets, such as a Markov blanket of a node. In order

to demonstrate the theoretical promise of this procedure, we discuss existing identification

results that make use of it. We also provide new theory for a linear structural equation model

(SEM) first studied in Shimizu et al. (2006). The novelty of our application of the sequential

sorting procedure to this SEM compared to the state-of-the-art for it is the scalability of our

procedure to a large number of nodes in the underlying graphical model.

Representative methods for causal discovery under the assumption of no unobserved

confounding (causal sufficiency) include the Peter-Clark (PC) algorithm (Spirtes and Glymour

1991) and Greedy Equivalence Search (GES) (Chickering 2002). The PC algorithm is a

constraint-based method due to its use of conditional independence queries, while GES is
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considered a score-based method for the objective function it seeks to optimize across the

space of graphical models. Without additional structural assumptions, the best these methods

can generally do in the limit of sample size (n→∞) is to obtain a Markov equivalence class

(MEC) of DAGs, visualized typically by a single Completed Paritially Directed Acyclic Graph

(CPDAG) as in Figure 1.1. Each DAG in the MEC, obtainable by orienting undirected edges

in the CPDAG without introducing a cyclic path nor a “v-structure,” encodes the same set

of d-separation relations that imply marginal and conditional independence relations between

triplets of variable subsets in their underlying joint distribution (Spirtes and Glymour 1991).

When additional assumptions are justified, such as strict non-linearity of structural

equations, or non-Gaussianity of noise terms in a linear structural equation model, a unique

DAG can be identified (Bühlmann et al. 2014, Shimizu et al. 2006). When we are not willing

to make the assumption of causal sufficiency, the Fast Causal Inference (FCI) algorithm

provides an alternative at the cost of a potentially less precise, though possibly more accurate,

graphical model compared to a DAG or CPDAG (Spirtes et al. 2000). Beyond what we

highlight here for the case of iid samples from a distribution that our DAG of interest satisfies

the Markov property with respect to, Glymour et al. (2019) and Peters et al. (2017) provide

reviews on the trade-offs of different algorithms and what can and cannot be done when

there is additional structure, such as the case that the system of variables varies in time. In

the context of Earth system sciences, Runge et al. (2019) review causal discovery methods.

Structure learning has also been explored for its possibility to explain the black-box nature of

state-of-the-art deep learning architectures (Sani et al. 2020). Moreover, Zheng et al. (2018)

and its extension to Zheng et al. (2020) provide an approach to optimize a non-convex score

function in DAG space by using a smooth characterization of an adjacency matrix’s acyclicity

constraint.
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2.1.1 Review of relevant work

Specific to our task of learning a topological ordering for an underlying acyclic graphical

model, we now review some relevant work. Let us first formally define a so-called topological

ordering of a DAG, the target parameter we seek to estimate. Let [m] = {1, . . . ,m} for

integer m ≥ 1.

Definition 2.1.1. A topological ordering for a DAG G is given by a permutation π : [p]→ [p]

such that every parent node precedes its child in the ordering:

j ∈ PAk =⇒ π−1(j) < π−1(k).

Importantly, we note that the discrete search space across p! permutation functions in

search of one that satisfies Definition 2.1.1 can be quite cumbersome (Raskutti and Uhler

2018, Solus et al. 2021). Several heuristic score-based methods have been developed to

cope with the search space, however, it remains the case that score-based approaches for

ordering search are NP hard in general (Chickering 1996, Ye et al. 2021a). Along these lines,

recent work by (Ye et al. 2021a) provides one approach under the case of a linear Bayesian

network with Gaussian noise. The similar non-parametric approach of Solus et al. (2021)

and Wang et al. (2017) requires a consistent conditional independence testing procedure to

decide the presence or absence of an edge in the DAG corresponding to a given π̃ in the

search space. The empirical results of these approaches are all promising. However, these

methods do not contain an application to more than 100 nodes. Moreover, these works do

not provide guarantees on whether the search can terminate at a point well before querying

all permutations or DAGs in order to achieve optimal (statistically consistent) results.

Complementary to these advances, we here study a simple approach for which the search

has a pre-determined number of steps: O(pd) in the number of least squares residual updates,

where d ≤ p is the maximum neighborhood size of a node. The objective of our work is to

estimate one such permutation π from observed data X ∈ Rn×p of sample size n. We denote

this estimate as π̂. To do so, we will apply Algorithm 1 for t = 1, 2, . . . , p until all nodes are
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sorted. At step t, given an input partial ordering At = (π̂(1), . . . , π̂(t− 1)), the algorithm

identifies a node π̂(t) /∈ At to append to the estimated ordering by maximizing the score

S(k,At;X).

Algorithm 1: Continue a Topological Ordering

Data: The partial ordering At and data matrix X ∈ Rn×p

Result: The continued partial ordering At+1

for k ̸∈ At do
sk ← S(k,At;X)

end

π̂(t)← argmaxk ̸∈At sk

At+1 ← At ∪ {π̂(t)}

There exist structure learning methods that use the general approach in Algorithm 1 to

sequentially construct a topological ordering. These approaches motivate our present work

and include the following. Peters et al. (2014) apply Algorithm 1 under an assumption of

strictly nonlinear structural equations with additive noise. Meanwhile Ghoshal and Honorio

(2017), Park (2020), Park and Kim (2020), and Chen et al. (2019) apply this sequential

sorting procedure under a bounded conditional variance assumption: a ≤ V[Xj|XPAj
] ≤ b

for each j ∈ [p] and some unknown positive constants a ≤ b restricted by the signal a parent

sends its child node. Park (2020) can be considered the most general of the three similar

approaches as it contains an extended discussion on the case of a node’s possibly non-linear

relation with its parents. Gao et al. (2020) further explore the scaleability for the sequential

application of Algorithm 1 to estimate non-linear structural equation models under this

bounded conditional variance assumption. With respect to linear SEMs, applications of

Algorithm 1 include Shimizu et al. (2011), Hyvärinen and Smith (2013), and Wang and Drton

(2019), while Zeng et al. (2020) construct the topological ordering in reverse starting with

child-less nodes. We believe there exists potential to scale up the estimation of each of these
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models. We focus on the linear SEM here.

2.1.2 Chapter Contribution and Outline

Our application of Algorithm 1 to a linear SEM with non-Gaussian noise under causal

sufficiency, a model known as the linear non-Gaussian acyclic model (LiNGAM). In terms of

theoretical guarantees for the estimation of LiNGAM, Shimizu et al. (2006) and Shimizu et al.

(2011) provide identifiabiliy results for the respective LiNGAM learning procedures–that is,

with knowledge of the true distribution defined by the LiNGAM and an oracle for conditional

independence queries in the case of latter. Meanwhile Wang and Drton (2019) provide formal

statistical consistency results for their LiNGAM-learning procedure.

Although the above methods have very nice theoretical guarantees, their practical appli-

cation is limited as they do not presently scale well to large graphs, say with thousands of

nodes, as confirmed in the numerical results in this chapter. Therefore, we develop a fast

sequential learning method that can estimate large graphs in practice. At each step of this

method, a node is selected to append to a partial ordering, so that after p steps, where p is

the number of nodes in the underlying graph, a full ordering of all the nodes will be produced.

Compared to the existing works on LiNGAM, the main contributions of our work are:

1. Based on a specified error distribution, we define a novel likelihood ratio score which is

used at each step in our sequential algorithm. The evaluation of the likelihood ratio

only involves linear regression and residual calculation. There are no tuning parameters.

2. We prove that at the population-level, this sequential algorithm will identify a true

ordering of the underlying DAG under proper assumptions on the LiNGAM.

3. Our sequential method is computationally tractable with computational complexity

O(p2) for the number of updates used in the entire algorithm. If prior knowledge on

the Markov blankets of the nodes is provided, the computational complexity can be

further reduced to O(pd), where d is the maximum size of the Markov blankets. This is
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in sharp contrast to traditional score-based approaches for ordering search, which are

NP hard in general (Chickering 1996, Ye et al. 2021a).

The rest of the chapter is organized as follows. In the rest of this section, we formally

introduce the linear SEM of interest. Next, in Section 2.2 we will introduce our approach:

§2.2.1 discusses the conditions for this approach to work; §2.2.2 provides a formal identifiability

result; and §3.2 provides the finite sample version of the algorithm. Section 2.3 presents

simulation results for our procedure for small and large-sized Bayesian networks, along with

an application to single-cell gene expression data. Finally, we conclude with a summary of

our findings and discussion of future work.

2.1.3 Where the LiNGAM Falls Within Existing Work

2.1.3.1 Review of LiNGAM

We follow closely here the definition of a LiNGAM given by Shimizu et al. (2006).

Definition 2.1.2. (Linear Non-Gaussian Acyclic Model)

For p ≥ 2, let G be a DAG on p nodes and B ∈ Rp×p be the weighted adjacency matrix of G

such that Bjk ̸= 0 means j ∈ PAk, the parent set of node k. Let ϵ = (ϵ1, . . . , ϵp) such that

ϵk ∼ g(·; θk) independently with g(·; θ) a density of a non-Gaussian distribution parameterized

by θ ∈ Rq. We say X ∈ Rp follows a LiNGAM with DAG G if

Xk =
∑
j∈PAk

BjkXj + ϵk, k = 1, . . . , p. (2.1)

The scalar form of the linear SEM in Equation (2.1) can be rewritten in vector form as

X = BTX + ϵ. Put M = (Ip −B)−T , a matrix with ones on its diagonal. Let ANk denote

the ancestor set of node k: a ∈ ANk means there exists a direct path starting at node

a and ending at node k, a → · · · → k. Then we arrive at X = Mϵ in vector form and

Xk =
∑

j∈ANk
⋃
{k}Mkjϵj in scalar form for all k ∈ [p]. Noting that M serves as a mixing
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matrix for the independent components in ϵ, we may think of the estimation of this linear

SEM as an instance of Independent Component Analysis (ICA) (Hyvärinen and Oja 2000).

Shimizu et al. (2006) discuss the connection between LiNGAM and ICA.

2.2 Methodology and algorithm

In this section, we introduce both the population-level and finite-sample versions of our

sorting procedure. We also show that our choice of summary score S(k,At;X) in Algorithm 1

will lead to the identification of a topological ordering of the true DAG G used to define the

linear SEM of Definition 2.1.2. We start with a few main assumptions on the linear SEM we

will work with.

2.2.1 Assumptions

Our main assumptions are on the distributions of the independent errors ϵ. We consider

restricting our class of densities {g(·; θk)}1≤k≤p for the noise terms in Definition 2.1.2 to a

scale-location family in which the θk > 0 are the scale parameters, such as the Laplace family

of distributions, the Logistic family of distributions, or a Scaled-t distribution family (same

degrees of freedom). This is summarized in Assumption 2.2.1.

Assumption 2.2.1.

Let U ∼ g(·; θ0) with θ0 > 0 and E[U ] = 0. For each k = 1, 2, . . . , p, the density of the error

ϵk satisfies

g(e; θk) =
θ0
θk
g(θ0e/θk; θ0).

That is, ϵk
d
= (θk/θ0)U , an equality in distribution.

Our next assumption for the linear SEM of interest is on linear combinations of the noise

terms. This condition is related to Lemma 2.B.1 in the appendix, a key result about how to

characterize the regression residuals of Equation (2.2) as linear combinations of “independent
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components.”

Assumption 2.2.2. For any j = 1, 2, . . . , p and any a ∈ Rp with at least two non-zero

entries, the linear combination aT ϵ does not follow the same distribution as ϵj.

Notable disagreements with Assumption 2.2.2 are when the ϵj are all Gaussian distributed

(not the case for LiNGAM), or when the ϵj are all Poisson-distributed. Notable agreements

with Assumption 2.2.2 (and Assumption 2.2.1) are the cases where the ϵj are all Laplace-

distributed, all Logistic-distributed, or all Scaled-t distributed (same degrees of freedom).

This can be concluded with the characteristic function for a linear combination of two or

more ϵj’s.

To allow for a quicker sorting procedure in practice, we may make use of an a priori known

support set for the neighborhood of each node in the DAG. We consider these neighborhood

sets to arise based on domain knowledge, previous studies, or a pre-processing step such as

with neighborhood lasso regression of Meinshausen and Bühlmann (2006). We highlight this

usage in Assumption 2.2.3:

Assumption 2.2.3. For node k, denote its neighborhood estimate as N̂k. Assume for each

k = 1, 2, . . . , p that:

N̂k ⊇MBk := PAk ∪ CHk ∪
⋃

j∈CHk

PAj\{k},

where MBk is known as the Markov Blanket of node k: the set of its parents PAk, its children

CHk, and its co-parents
⋃
j∈CHk

PAj\{k}.

Let N̂kt := N̂k ∩At, which is the subset of the neighborhood set that has been ordered at

step t of our procedure (Algorithm 1). For the cases where |N̂kt| ≥ 1, we will make use of

least squares residuals for calculating the score S(k,At). The corresponding sample version
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is discussed in §3.2. At the population-level, the residual is

Rkt :=


Xk if |N̂kt| = 0

Xk − βTktXN̂kt
otherwise

, (2.2)

where βkt is the least-squares regression coefficient vector,

βkt =
(
E
[
XN̂kt

XT
N̂kt

])−1

E
[
XN̂kt

Xk

]
.

Remark 2.2.4. When we consider the population-level version of our algorithm in this

section (i.e. we have infinite n), we can take N̂k = [p]\{k} for each k so that Assumption 2.2.3

holds trivially. For the finite sample version of our procedure discussed in Section 3.2, we

will make use of Ordinary Least Squares (OLS) linear regressions which require the design

matrix to be of full column rank. So if p≪ n, we may also take N̂k = [p]\{k} for each k. In

the case that p≫ n or p ≈ n, the neighborhood sets can reduce the number of covariates in

OLS regression if |N̂k| ≪ n for all k.

2.2.2 Our Choice of a Likelihood Ratio Score

In Algorithm 1, we will select the next node to continue our constructed topological ordering

as:

π̂(t) = argmax
k ̸∈At

Efkt(rkt)
[
log

g(Rkt; ηkt)

ϕ(Rkt;σkt)

]
. (2.3)

Here, Efkt(rkt)[·] denotes expectation with respect to Rkt’s true density, fkt(rkt). Also,

ηkt := argmax
η

Efkt(rkt) [log g(Rkt; η)] ,

while ϕ(rkt;σkt) is the density for N (0, σ2
kt = V[Rkt]), i.e. the normal density that matches

the mean and variance of Rkt. Note that fkt(rkt) is in general different from g(rkt; ηkt).

The log-likelihood ratio in (2.3) can be thought of as a score that tells us “how non-

Gaussian” the residual Rkt is. If the residual is explained by a Gaussian distribution well

relative to the non-Gaussian distribution in the assumed family, then we expect the log-

likelihood ratio to be smaller. Otherwise, if the Gaussian density is not a good fit relative to
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g(rkt; ηkt), then we have stronger evidence to believe that node k is a valid node to continue

the ordering. In Theorem 2.2.5, we claim that using (2.3) leads to the identification of a valid

topological ordering, our main result.

Theorem 2.2.5. Let X ∈ Rp follow a LiNGAM with DAG G. If Assumptions 2.2.1, 2.2.2

and 2.2.3 hold, then applying Algorithm 1 at all steps t = 1, 2, . . . , p with the score

S(k,At) = Efkt(rkt)
[
log

g(Rkt; ηkt)

ϕ(rkt;σkt)

]
will identify a permutation π̂ = (π̂(1), . . . , π̂(p)) that is a topological ordering of G.

Theorem 2.2.5 suggests that the maximization at each iteration in which we apply

Algorithm 1 can be done easily. This differs from maximizing a score over a whole ordering

which may also lead to identification of the true MEC, but is in general NP hard (not

tractable). Relatedly, Appendix 2.A gives additional motivation for the choice of S(k,At) in

Theorem 2.2.5 as one that allows us greedily optimize the mean log-likelihood when the full

ordering is only partially discovered. The proof of Theorem 2.2.5 in Appendix 2.B.1 is an

inductive application of key lemmas found in Appendix 2.B.2.

2.2.3 Finite Sample Sorting Procedure

Assume that we have a data matrix X ∈ Rn×p such that Xi·, the i-th row, is iid across

i = 1, 2, . . . , n from a distribution defined by a LiNGAM satisfying Assumptions 2.2.1 and

2.2.2. Also let Assumption 2.2.3 hold, where the sets N̂k are given by domain knowledge, or

they are estimated with data independent of X by an asymptotically consistent procedure.

Denote by X·S the columns of X indexed by the set S. When S is a singleton, such as

S = {k}, we will simply write X·k for the k-th column. Analogous to Section 2.2.2, consider:

β̂kt =
(
XT

·N̂kt
X·N̂kt

)−1

XT
·N̂kt

X·k ∈ R|N̂kt|×1,

which exists so long as 1 ≤ |N̂kt| ≤ n and X·N̂kt
is of full column rank almost surely. Further,
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we define R̂kt ∈ Rn×1 as

R̂kt =


X·k if |N̂kt| = 0

X·k −X·N̂kt
β̂kt if |N̂kt| ≥ 1

,

the vector of residuals which we will use to estimate the pertinent scale parameter of (2.3),

denoted as η̂kt and σ̂kt, respectively. Explicitly, we select the next node to continue an

ordering using the empirical analogue of the mean log-likelihood ratio in Equation (2.3):

π̂(t) = argmax
k ̸∈At

1

n

n∑
i=1

log
g(R̂i,kt; η̂kt)

ϕ(R̂i,kt; σ̂kt)
, (2.4)

where R̂i,kt is the i-th entry of the vector R̂kt, while σ̂
2
kt :=

1
n
∥R̂kt∥22 and η̂kt := argmaxη

∑n
i=1 log g(R̂i,kt; η).

For example, if ηkt is the scale parameter for a Laplace distribution, it can be seen that

η̂kt =
1
n
∥R̂kt∥1. In this case, (3.1) is equivalent to

π̂(t) = argmax
k ̸∈At

log
σ̂kt
η̂kt

= argmax
k ̸∈At

∥R̂kt∥2
∥R̂kt∥1

. (2.5)

The Laplace update (2.5) exemplifies how simple the maximization of our likelihood ratio

score is. After the regression of each unsorted node Xk, k /∈ At, onto N̂kt, we only need to

compare the ratio between the two norms of the residual vector R̂kt across unsorted nodes to

find π̂(t). Algorithm 2 in the Supplementary Material shows the pseudo-code for the sorting

procedure we use in practice, with a strategic update of regression residuals using partial

regression that greatly reduces the computation cost. We have also provided the details on

the estimation of the scale parameters for Logistic and Scaled-t distributions in Appendix

2.D.1.

2.3 Empirical Results

2.3.1 Simulations on Small Networks

We now present simulation results for networks that are on the smaller end (35 ≤ p ≤ 223),

downloaded from the bnlearn.com Bayesian network repository. We compared our sorting
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Figure 2.2.1: The simulation results comparing LiNGAM estimation procedures.

procedure to other LiNGAM learning procedures. Due to their readily available code, the

algorithms of interest are “DirectLiNGAM” (Shimizu et al. 2011), “HighDimLingam” (Wang

and Drton 2019), and “ScoreLiNGAM” (our procedure). For each simulation setting, we

conduct 30 replicates.

For each choice of G underlying a LiNGAM, our synthetic data generation schema was

as follows. We generated Bjk
i.i.d.∼ Uniform[−0.9,−0.4] ∪ [0.4, 0.9] for each (j, k) such that

j ∈ PAk, and otherwise set Bjk = 0. We generated θk
i.i.d.∼ Uniform[0.4, 0.7] across 1 ≤ k ≤ p,

where θk is the scale parameter for the error distributions as in Assumption 2.2.1. Finally,

we varied sample size as n = 0.5p, p, 2p, 10p, 50p. Note that n = 0.5p and n = p represent

the high-dimensional setting (p ≥ n). Next, a data set X ∈ Rn×p of iid samples is drawn
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from the distribution given by the LiNGAM parameterized by (B, θ1, . . . , θp) and having

errors ϵk ∼ g(·; θk) across 1 ≤ k ≤ p. Moreover, we varied the family of the densities g in

Assumption 2.2.1 to be the Laplace, the Logistic, or the Scaled-t distribution (10 degrees

of freedom) scale-location families. Finally, ScoreLiNGAM and HighDimLiNGAM were run

with knowledge of the true Markov blanket for each node, while DirectLiNGAM was not as

it does not have this option. Afterward, the data matrix X was standardized so that each

column has sample standard deviation equal to 1 and sample mean equal to 0.

Figure 2.2.1 reports the results in terms of order estimation error (lower is better), which

we define as:
1

p2

p∑
j=1

p∑
k=1

1{Bjk ̸= 0, π̂−1(k) < π̂−1(j)}.

Our ScoreLiNGAM achieved the highest accuracy for all high-dimensional settings (n ≤ p).

DirectLiNGAM became quite comparable until the sample size increased to n = 2p and did

a bit better than ScoreLiNGAM when n ≥ 10p (large sample size cases). Note that results

are not presented for DirectLiNGAM when n = 0.5p nor n = p, because it is not applicable

for n ≤ p. For the Andes network, results for DirectLiNGAM are also not presented as

this procedure takes about 118 minutes for a single replicate, which adds up across 90 total

replicates. On the other hand, HighDimLiNGAM is generally the least accurate algorithm

across all networks and sample sizes. Recall that the data matrix X is re-scaled. The

inaccuracy of HighDimLiNGAM is likely owed to the fact that this procedure is not invariant

to a re-scaling of the data, as ScoreLiNGAM and DirectLiNGAM are. We also compared

the three methods when the error distributions were mis-specified for ScoreLiNGAM (second

and third columns of Figure 2.2.1). The true error distributions were Logistic or Scaled-t,

but we still used the Laplace update (2.5) in ScoreLiNGAM. It is seen that its accuracy was

comparable to the result when we correctly specified the error distributions (the other three

columns), suggesting that our method is robust to model mis-specification.

In terms of speed, Figure 2.3.1 summarizes this for the win95pts network. The advantage

of our method is speed, with our method being no less than 100 times faster the next fastest
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Figure 2.3.1: The log10(avg.

sorting time in seconds) scale

for the various methods applied

to the win95pts network.

Figure 2.3.2: Sorting er-

rors for ScoreLiNGAM un-

der p = 5000, 10000 and n =

0.1p, 0.25p, 0.5p. Color indi-

cates how the neighborhood

sets are constructed.

Figure 2.3.3: The mean log-

likelihood on 1,000 genes for

a subset of cells in the data of

(Yao et al. 2021), across 50 rep-

etitions.

method. (Note: HighDimLiNGAM’s procedure is parallelized across 7 threads.) Appendix

2.C contains details about the implementation of each procedure, along with the machine

used to run these experiments. Moreover, Figure 2.C.1 in Appendix 2.C contains sorting

times for all the settings we considered.

2.3.2 Larger Network Results

Next, we simulated large networks with p = 5000, 10000 and n = 0.1p, 0.25p, 0.5p to further

demonstrate the scalability of ScoreLiGAM. We do not include results in these settings for

DirectLiNGAM nor HighDimLiNGAM as they would take too long to run. The network

generation is such that 5% of nodes are root nodes (no parents), and all other nodes have

between 1 and 2 parents (with equi-probability) which are selected at random from the set of

predecessors in a randomly generated permutation. Moreover, Bjk
i.i.d.∼ Uniform[−0.9,−0.4]∪

[0.4, 0.9] across (j, k) such that j ∈ PAk, while θk
i.i.d.∼ Uniform[0.25, 0.9] across 1 ≤ k ≤ p
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is the scale parameter for the Laplace noise in the synthetic LiNGAM. A new LiNGAM is

generated according to this schema for each data replicate.

Figure 2.3.2 presents simulation results for ScoreLiNGAM with two different a priori

known neighborhood sets. “True Markov Blanket” means that we set N̂kt = MBk for each

1 ≤ k ≤ p and run the sorting procedure with these oracle sets. The results for “10 Most

Correlated” use 20% of the data to specify N̂kt as the 10 most Pearson-correlated variables

(in absolute value) to Xk for each 1 ≤ k ≤ p, and the other 80% of the data to estimate the

topological ordering.

It is encouraging to see in Figure 2.3.2 that the accuracy of our method is high even

for such a challenging high-dimensional setting. In fact, the average error rate is quite

comparable to that for the smaller networks reported in Figure 2.2.1. As expected, an

accurate neighborhood set provides better sorting results. Further, our method can run

relatively quickly for large p, but its accuracy naturally is dictated by sample size. Figure

2.C.2 in Appendix 2.C contains the sorting times to go along with Figure 2.3.2.

2.3.3 Application: Single-Cell Gene Expression Data

We apply our method on the data of Yao et al. (2021)1. With it, we seek to estimate a linear

SEM to model a gene regulatory network, where each Xk in Equation (2.1) is the expression

level of a gene. We focus our attention on their dataset for which isolated single cells were

processed for RNA sequencing using SMART-Seq v4 (labeled “Mouse Cortex+Hipppocampus

(2019/2020)”). Noting the paper’s finding that cells’ gene expressions cluster according to

region and cell type, we subset the data as follows. We focus on glutamatergic cells from the

mice brains’ primary visual cortex. We also focus on cells for which injection materials are

not specified (see Saleeba et al. (2019) for background on neuronal tracers). This takes us

from 74,973 cells down to 7,159–the largest subset of all cell class, isocortex location, and

1Available at http://cells.ucsc.edu/?ds=allen-celltypes+mouse-cortex&meta=regionlabel in
compressed TSV format
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injection material combinations. A sizable amount of genes had expression measurements of

exactly 0, so we subset genes to those which were measured to be non-zero in 50% or more of

these cells. This brings us from 45,768 to 10,012 genes.

2.3.3.1 Comparison to another scalable linear SEM estimation procedure

As for large simulated networks in Section 2.3.2, DirectLiNGAM and HighDimLiNGAM were

too slow for this application. In order to compare ScoreLiNGAM to another linear structural

equation modeling procedure, we applied the package sparsebn (Aragam et al. 2019) to our

data, which is a score-based method that maximizes a regularized Gaussian likelihood over

the DAG space (Aragam and Zhou 2015). To make comparisons across 50 repetitions, we

randomly select 1,000 of the original 10,012 genes. For each repetition, we randomly sample

2,000 cells: half of the cells are designated to be in the training set, and the other half in test

set; each data matrix is standardized such that columns have sample standard deviation 1

and sample mean 0.

In the training set, 20% of cells are randomly selected to estimate the Pearson correlation

matrix. We specify the neighborhoods, N̂k, for ScoreLiNGAM as the 50 genes j ∈ [1000]\{k}

with the largest Pearson correlation (in absolute value) with gene k. The remaining 80% of

training data is used to estimate a topological ordering and the linear SEM’s coefficients (via

ordinary least squares). For Sparsebn, no a priori neighborhood selection is used: parent sets

for the linear SEM are learned with 100% of the training data using default options in the

estimate.dag command, and the selection of the final DAG in the solution path is done

by the recommended select.parameter command. For Sparsebn, the linear SEM’s model

parameters are estimated according to the selected DAG. Moreover, the noise densities we fit

to the residuals in the training set are either Gaussian or Laplace.

As can be seen in Figure 2.3.3, the Laplace density specification for the additive errors

provides a significantly higher mean log-likelihood on the test set compared to a Gaussian

density for both methods. This shows that the Laplace distribution, with its thicker tails
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than the Gaussian distribution, fits this data better. Furthermore, ScoreLiNGAM showed

substantially higher test-data likelihood than Sparsebn under both error distributions for

calculating the likelihood.

2.3.3.2 Application of ScoreLiNGAM to All 10,012 Genes

Figure 2.3.4: Across 30 replications, a comparison of the estimated coefficient of determination

on Fold 2B for each gene. We summarize the coefficient of determination across genes by

taking the median, 80th, 90th, and 95th percentiles.

We now present the application of ScoreLiNGAM to all original p = 10, 012 genes discussed

at the start of this section. The application is as follows:
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1. We randomly split the gene expression measurement matrix with 7,159 cells (rows) into

two folds having 358 (∼ 5%) and 6801 (∼ 95%) of the cells, respectively.

2. On the first fold, we ran neighborhood linear regressions in which we restrict coefficients

to be non-negative via R’s glmnet package (?) with no ridge or lasso regularization.

We then selected the sets N̂k to correspond to genes N̂k ⊆ [p]\{k} such that coefficients

are non-zero. The non-negative coefficient constraint for each linear regression, known

as non-negative least squares, can itself be seen as a form of regularization that gives a

sparse solution to the coefficient vectors (?). Indeed, this constraint in the neighborhood

regressions resulted in neighborhood sets of size 45 to 277 genes (of 10,011 possible

genes), with a median of 145 genes per neighborhood set. Our use of non-negative

least squares regression is motivated by the use of non-negative linear regression to

impute single-cell gene expression measurements (?). It is also computationally faster

compared to neighborhood Lasso regression.

3. We then randomly split the second fold into two folds, 2A and 2B, having 3401 (∼ 47.5%)

and 3400 (∼ 47.5%) of the original cells, respectively.

4. On Fold 2A, we estimated the permutation π̂ using ScoreLiNGAM.

5. On Fold 2B, the validation fold, we estimated via linear least squares regression

the 10,012 by 10,012 weighted adjacency matrix for the DAG corresponding to the

topological ordering defined by π̂ and such that the support of the k-th column is the

set of indices N̂k ∩ {π̂(j)}0<j<π̂−1(k).

6. Using the weighted adjacency matrix estimate from the previous step, we then calculated

linear least squares residuals from the predictions given by the estimated parent set for

each node k, on Fold 2B.

7. With the residuals of the last step, we calculated the coefficient of determination (R2
k):

for each gene k ∈ [10, 012], R2
k is an estimate of the proportion of variation explained by
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linearly regressing gene k’s measurement on the estimated parent genes. It is 1 minus

the ratio of gene k’s residual sum of squares and the total sum of squares.

The result of this application is summarized in Figure 2.3.4. In order to make a comparison,

we also calculated residuals from the linear SEM induced by a randomly generated topological

ordering, denoted in Figure 2.3.4 as ”Random.” The two linear SEMs, with topological

ordering given by ScoreLiNGAM or randomly generated, select parent sets as the intersection

of a node’s neighborhood set, N̂k, and the node’s predecessors in the corresponding topological

ordering if any. We repeat Steps 3-7 a total of 30 times.

Considering that some genes may have more estimated parents than others, and that a

coefficient of determination can be artificially large as the number of regressors increases,

Figure 2.3.4 also includes the adjusted coefficient of determination which incorporates a

penalty for the number of regressors (?). The adjusted coefficient of determination is

1− (1−R2
k)

nB − 1

nB − |P̂Ak|
,

where |P̂Ak| is the number of estimated parents for node k and nB = 3400 is the sample size

in Fold 2B.

As we can see from Figure 2.3.4, ScoreLiNGAM gives higher coefficients of determination

(adjusted and unadjusted) on the test datasets (validation fold 2B) compared to a randomly

generated permutation across all random replications–as summarized by the median, 80th,

90th, and 95th percentiles taken across the 10,012 coefficients of determination. Taking for

granted the linearity assumption, the above higher-end percentiles of the R2
k across all genes

provide meaningful comparisons because it may very well be the case that a majority of the

genes have quite random expression patterns. Based on the 90th percentile for the adjusted

coefficient of determination in Figure 2.3.4, it appears that for 10% of all the genes, more

than 51% of their expression variation is explainable by its estimated parents in the linear

SEM given by ScoreLiNGAM. As shown by the 95th percentiles in Figure 2.3.4, for the

top 5% of genes in terms of adjusted R2, 79% or more of the genes’ expression variation is
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explainable by its estimated parents in the linear SEM given by ScoreLiNGAM. These R2

levels are significantly higher than those given by random permutations, with no overlap in

the boxplots in Figure 2.3.4.

Across the 30 replications, ScoreLiNGAM’s sorting time for all 10,012 genes had a median

of 10.28 minutes, confirming its scalability for such large and high-dimensional datasets of

p > 10, 000 and n > 3, 000.

2.4 Discussion

In this chapter, we demonstrated that sequentially applying Algorithm 1 can give promising

structure learning results. We demonstrated this with a novel sequential procedure based

on parametric specification that provides an alternative to the state of the art for the

identifiability and estimation of a linear DAG model with non-Gaussian errors. We discussed

the conditions, Assumptions 2.2.1 and 2.2.2, under which the proposed causal discovery

procedure will identify the valid DAG. We also proposed a relatively simple procedure that

can make strategic use of an a priori known neighborhood set for each node. Finally, we

presented numerical evidence that our procedure scales to large dimensions, which is otherwise

not the case for the state-of-the-art for LiNGAM. We accompanied these simulations with a

real-data application. Further extensions of the work presented here include formal statistical

guarantees along with extensions of the likelihood ratio approach to nonlinear SEMs.

As a practical manner, consider prospective applications to single cell gene expression

data (scRNA-seq). Recent work suggests a hierarchical structure between true (hidden)

expressions and measured expressions with missing, and possibly zero, counts (Sarkar and

Stephens 2021). Should the hierarchical nature be justified, further work on causal discovery

for gene co-expression models may need to incorporate the fact that what we really would

like is a graphical model, possibly causal if a domain expert agrees, on the true (hidden)

expressions. Along these lines, future causal discovery procedures for such data can build
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on the procedures of McDavid et al. (2019) and Yu et al. (2020), which themselves build on

Gaussian graphical models, using a heavier tail distribution for residuals as we do here.
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APPENDIX

2.A Greedy Choice of a Factor to Optimize the Joint Likelihood

Function

Let vector X ∼ f(x), where f(x) corresponds to the density induced by the generative model

in Definition 2.1.2. Consider X’s expected log-likelihood as a function of the permutation π:

L(π) =
p∑
j=1

EX∼f(x)
[
log g

(
Xj − [Bπ

·j]
TX; θπj

)]
, (2.6)

Here, Bπ is the acyclic weighted adjacency matrix that arises from a population-level least

squares objective such that the π(j)-th column is given by:

Bπ
·π(j) = arg min

θ∈Rp×1: θk=0 ∀k
s.t π−1(k) ≥ j

E
[
(Xπ(j) − θTX)2

]
.

That is, the column Bπ
·π(j) is comprised of the least squares coefficients when linearly regressing

π(j) onto its predecessors, if any, in the ordering given by π. Moreover, θπj is the corresponding

scale parameter according to Assumption 2.2.1. Now let ϕπj be the density for the Gaussian

distribution having the same first two moments as:

Rπ
j := Xj − [Bπ

·j]
TX.

Define

L̃(π) :=
p∑
j=1

EX∼f(x)
[
log ϕπj

(
Rπ
j

)]
and κ := EX̃∼f(x)

[
logN (X̃;E[X],V[X])

]
.

Here, N (x;E [X] ,Var [X]) denotes the density for a p-variate Gaussian distribution with

the same first and second order moments as X. Due to the relation between Bπ and the

generalized Cholesky factorization of V[X], Ye et al. (2021a) shows that we actually have

the equality:

L̃(π) = κ. (2.7)
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Thus, maximizing (2.6) with respect to π is the same as maximizing the expected log-

likelihood ratio given by:

(L − L̃)(π) =
p∑
j=1

EX∼f(x)

[
log

g
(
Rπ
j ; θ

π
j

)
ϕπj
(
Rπ
j

) ] = L(π)− κ. (2.8)

With all this in mind, we can think of our choice of a node to append to the ordering At

at step t as greedily choosing the largest summand,

EX∼f(x)

log g
(
Rπ̂
π̂(t); θ

π̂
π̂(t)

)
ϕπ̂π̂(t)

(
Rπ̂
π̂(t)

)


to add to the known log-likelihood ratio at step t:

(L − L̃)t(π̂) :=


0 t = 1∑t−1

j=1 EX∼f(x)

[
log

g(Rπ
π̂(j)

;θπ̂
π̂(j))

ϕπ̂
π̂(j)

(
Rπ

π̂(j)

)
]

2 ≤ t ≤ p+ 1
.

That is, our sequential application of Algorithm 1 is attempting to greedily maximize (2.8)

one summand at a time.

2.B Proof of Theorem 2.2.5

2.B.0.1 Proof sketch for Theorem 2.2.5

The formal proof of Theorem 2.2.5 in § 2.B.1 below is a relatively straightforward inductive

application of the following reasoning after applying Algorithm 1 at any given step t. Key

to the proof, we note that (2.3) can also be written equivalently as the difference of two

KL-divergence terms:

argmax
k ̸∈At

{DKL (fkt(rkt)||ϕ(rkt;σkt))−DKL (fkt(rkt)||gk(rkt; ηkt))}. (2.9)

Lemma 2.B.1 suggests that invalid nodes’ residuals, Rkt, are a linear combination of two or

more entries in the vector ϵ, while for valid nodes ℓ we have Rℓt = ϵℓ. Under Assumption
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2.2.2, this means that the term DKL (fkt(rkt)||gk(rkt; ηkt)) in (2.9) will be zero only if node k

is valid to continue the ordering at step t. The natural follow up question is what the behavior

is for the term DKL (fkt(rkt)||ϕ(rkt;σkt)) in (2.9) when k is valid vs. invalid to continue the

ordering. Lemma 2.B.6 provides this insight: for valid nodes to continue an ordering, this

term’s value is no less than the same term’s value for invalid nodes.

In light of Lemma 2.B.1, Lemma 2.B.6 makes sense under a Central Limit Theorem-like

argument: a sum of two or more random variables is closer to Gaussian than each summand

alone. Of particular note, a key result that helps show why Lemma 2.B.6 holds is Theorem

17.8.1 of (Cover and Thomas 2005), a restatement of the entropy-power inequality. This

restatement says that the differential entropy for a sum of any two independent random

variables, U and V , is no less than the differential entropy for the sum of two strategically

defined Gaussian random variables, each having the same differential entropy as U and V

(rather than the same first two moments), respectively.

2.B.1 Formal Proof of Theorem 2.2.5

Proof of Theorem 2.2.5.

Our proof boils down to making the correct decision in Algorithm 1 at step 1, then making

the correct choice at step 2 assuming the choice in step 1 was correct, and so on.

For the sake of induction, let us assume that At is correct in the sense that PAa ⊆ At for

all a ∈ At. This is true at the base case t = 1 when At = ∅, since having made no ordering

choices also means we have made no mistakes.

Let k ∈ St be an invalid node to continue the ordering in the sense that PAk ∩ At ≠ ∅.

And let ℓ ∈ St be a valid node to continue the ordering in the sense that PA(ℓ) ⊆ At.

Lemma 2.B.6 tells us that the least squares residual Rℓt ∼ fℓt(rℓt) is no closer to Gaussian
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than Rkt ∼ fkt(rkt) in the sense that:

DKL (fkt(rkt)||ϕ(rkt;σkt)) ≤ DKL (fℓt(rℓt)||ϕℓt(rℓt))

Furthermore, regularity Assumption 2.2.2 ensures that:

DKL (fkt(rkt)||gk(rkt; ηkt)) > 0.

On the other hand, so long as we properly specified the error density for node ℓ, we have

that:

DKL (fℓt(rℓt)||gℓ(rℓt; ηℓt)) = 0.

Thus,

Efkt(rkt)
[
log

gk(Rkt; ηkt)

ϕ(rkt;σkt)

]
= DKL (fkt(rkt)||ϕ(rkt;σkt))−DKL (fkt(rkt)||gk(rkt; ηkt))

< Efℓt(rℓt)
[
log

gℓ(Rℓt; ηℓt)

ϕℓt(Rℓt)

]
= DKL (fℓt(rℓt)||ϕℓt(rℓt)) .

Altogether, this implies that

max
j∈St

S(j,At) > S(k,At).

and

ℓ = argmax
j∈St

S(j,At),

since ℓ and k were arbitrary valid and invalid nodes, respectively.

So at step t, we will always make the correct choice for a node to continue the ordering.

2.B.2 Proofs of Lemma 2.B.1 and Lemma 2.B.6

In this section, we formally prove Lemma 2.B.1, Lemma 2.B.6.
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2.B.2.1 Some Useful Shorthand Notation

Let us define some new strategic sets which contain indices in [p], and review some we have

been using already.

• The set

At =


∅ t = 1

{π̂(1), . . . , π̂(t− 1)} t ≥ 2

.

This is the partial ordering at step t = 1, 2, . . . . In our population-level identification

results, we will typically assume it is correct at step t, which means that for all a ∈ At,

PAa ⊂ At.

• St = [p]\At is the set of unordered nodes at step t.

• MBk = PAk ∪ CHk ∪j∈CHk
PAj is the Markov Blanket of node k.

• N̂k is the Markov Blanket superset such that N̂k ⊇MBk. In finite data, we will typically

estimate N̂k by a procedure such as neighborhood lasso regression, so this containment

may not hold. For the sake of this section, because we are deriving quantities at the

population-level, we assume that N̂k is known and contains the true Markov blanket.

Note that trivially, we may consider N̂k = [p]\{k}, and the results of this section would

still hold.

• N̂kt = At ∩ N̂k is the intersection of the Markov blanket superset with the partial

ordering.

• Lkt =
⋃
j∈N̂kt

{j} ∪ ANj, which are either nodes of N̂kt or ancestors of nodes in N̂kt.

When At is correct, it is necessarily the case that Lkt ⊆ At for each k ̸∈ At.

• LCkt, the complement of set Lkt which either contains nodes in At which are not in Lkt,

i.e. the nodes of At\Lkt, or which are unordered, i.e. we have that St ⊆ LCkt.
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Note that for each node k ∈ St we can write:

Xk = Mk·ϵ = MkLkt
ϵLkt

+MkLC
kt
ϵLC

kt
, (2.10)

where the second equality holds since Lkt ∪ LCkt = [p]. We can similarly write

XN̂kt
= MN̂kt·ϵ = MN̂ktLkt

ϵLkt
. (2.11)

We omit a term with ϵLC
kt

since by definition of Lkt, the sub-mixing matrix MN̂ktL
C
kt

is a zero

matrix.

Combining (2.10) and (2.11),

Rkt =
(
MkLkt

− βTktMN̂ktLkt

)
ϵLkt

+MkLC
kt
ϵLC

kt
,

which we will make use of in the proof for Lemma 2.B.1 below.

2.B.2.2 Lemma 2.B.1: Characterizing nodes’ residuals as linear combinations of

independent components

Lemma 2.B.1. Assume that At is correct so far in the sense that for each a ∈ At, we have

PAa ⊆ At. Also assume Assumption 2.2.3 holds. We have that:

• If k ∈ St is a valid node to continue the ordering, i.e. PAk ⊆ At, then:

Rkt = Xk − βTktXN̂kt
= ϵk.

• Otherwise, if k is not a valid node, then Rkt is a linear combination of more than one

independent component in ϵ.

Proof of Lemma 2.B.1.

Case 1: Assume k is a valid node to continue the ordering in the sense that PAk ⊆ At. We

want to show that Rkt = ϵk. In this case, MkLC
kt
has a non-zero entry corresponding to only
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Mkk = 1. This is because ANk = support (Mk·) \{k} ⊆ Lkt, which in turn holds because

PAk ⊆MBk ∩ At ⊆ N̂kt. Thus we have

MkLC
kt
ϵLC

kt
= ϵk.

So we have left to show that (
MkLkt

− βTktMN̂ktLkt

)
ϵLkt

= 0.

Recall that B is the weighted adjacency matrix for the underlying LiNGAM. We have

that support(B·k) = PAk. Let us index the entries of the column vector B·k by N̂kt and

denote this as BN̂ktk
. One thing that could be helpful to prove is that if k is valid, then:

βkt = BN̂ktk
.

Because support(B·k) = PAk and PAk ⊆ N̂kt, consider that

Xk = XTB·k + ϵk = XT
N̂kt

BN̂ktk
+ ϵk,

with ϵk⊥⊥XN̂ktk
and E[ϵk] = 0. Thus,

βkt =
(
E
[
XN̂kt

XT
N̂kt

])−1 (
E
[
XN̂kt

XT
N̂kt

]
BN̂ktk

+ E
[
XN̂kt

ϵk

])
=
(
E
[
XN̂kt

XT
N̂kt

])−1

E
[
XN̂kt

XT
N̂kt

]
BN̂ktk

= BN̂ktk
,

(2.12)

as we wanted.

It follows that Xk = BT
N̂ktk

XN̂kt
+ ϵk = βTktXN̂kt

+ ϵk. This then means that Rkt =

Xk − βTktXN̂kt
= ϵk, as we wanted to show.

Case 2: Assume k is not a valid node. All we need in this case for our identifiability

proof is that Rkt is a linear combination of more than one independent component. This is

the case because if k is invalid to continue the ordering, then we have that there exists at

least one j ∈ PAk such that j ∈ St (unordered) and therefore j ∈ LCkt. Recall that:
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Rkt =
(
MkLkt

− βTktMN̂ktLkt

)
ϵLkt

+MkLC
kt
ϵLC

kt
.

Note that it is necessarily the case that Mkj ̸= 0, otherwise j ̸∈ PAk. Thus, Rkt includes

the sum Mkjϵj + ϵk. That is, Rkt in this case is a linear combination of more than one

independent component in ϵ. Note that Rkt could be a linear combination of more entries in

ϵ, in addition to ϵj and ϵk.

2.B.2.3 Some Information Theory Definitions and Results

We now present some straightforward information theoretic results. They are meant to help

demonstrate that our surrogate optimization (now a likelihood ratio) approach for Algorithm

1 leads to the identifiability of a causal order. These lemmas are used later to prove Lemma

2.B.6, a key result that says valid nodes j in a LiNGAM are no closer to Gaussian compared

to invalid nodes k, conditional on the nodes in N̂jt and N̂kt, respectively.

Definition 2.B.2 (Differential Entropy).

For a continuous random variable X with density p(x), denote Ep(x) [·] to be expectation with

respect to p(x). The differential entropy of X is given by:

h (X) = Ep(x)
[
log

1

p(X)

]
.

Lemma 2.B.3 (Restatement of the entropy power inequality).

Consider two independent random variables X ∼ p(x) and Y ∼ p(y), and let X ′ ∼

N (E[X ′],V[X ′]) and Y ′ ∼ N (E[Y ′],V[Y ′]) be independent random variables such that

h(X) = h(X ′) and h(Y ) = h(Y ′). Then:

h(X + Y ) ≥ h(X ′ + Y ′).
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Proof. This is exactly Theorem 17.8.1 of (Cover and Thomas 2005), so we refer the reader

to their proof.

Lemma 2.B.4 (KL Divergence from Gaussianity).

Let X ∼ p(x) and q(x) the density for X̃ ∼ N (E [X] ,Cov [X]).

DKL (p(x)||q(x)) = h(X̃)− h (X) . (2.13)

As in Lemma 2.B.3, let X ′ ∼ N (E[X ′],V[X ′]) such that h(X) = h(X ′). We can

equivalently write the KL divergence from Gaussianity as:

DKL (p(x)||q(x)) =
1

2
log

(
V[X]

V[X ′]

)
.

Proof.

Because

h(X̃) = EX̃∼q(x)

{
log

1

q(X̃)

}
= EX∼p(x)

{
log

1

q(X)

}
,

by properties of this normal distribution (namely, that E[log q(X)] ∝ V[X] = V[X̃]) we have

that:

DKL (p(x)||q(x)) = h(X̃)− h (X) .

Noting that the differential entropy for any N (µ, σ2) is 1
2
log(2πeσ2) and our assumption

that h(X) = h(X ′), we arrive at the second equality:

DKL (p(x)||q(x)) =
1

2
log

(
2πeV[X]

2πeV[X ′]

)
.

Note that also V[X] = V[X̃] ≥ V[X ′] ⇐⇒ DKL (p(x)||q(x)) ≥ 0, which is the case because

KL-divergence is always non-negative.

This well known result also implies that the normal distribution is the maximum entropy

distribution when we constrain the first and second order moments of each distribution to be

the same.
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Lemma 2.B.5 (Same distance to Gaussianity).

Let ϵ̃k ∼ N (0,V[ϵk]) with density qk(·) for each k = 1, 2, . . . , p. Also let ϵ′k ∼ N (0,V[ϵ′k])

such that h(ϵ′k) = h(ϵk). If ϵ in our LiNGAM satisfies Assumption 2.2.1, then there exists a

constant γ ≥ 0 such that

DKL (g(ϵk; θk)||qk(ϵk)) = γ

and
V[ϵk]

V[ϵ′k]
= γ̃ = exp(2γ)

for all k = 1, 2, . . . , p.

Proof.

From Lemma 2.B.4, we have that:

DKL (g(ϵk; θk)||qk(ϵk)) = h(ϵ̃k)− h(ϵ′k).

Noting Assumption 2.2.1 and properties of differential entropy under a rescaling, it follows

that for U ∼ g(·; θ0):

h(ϵk) = h(U) + log(θk/θ0).

Let U ′ ∼ N (0,V[U ′]) such that h(U ′) = h(U). We have also that

h(ϵ′k) = h(U ′) + log(θk/θ0),

based on the construction of both ϵ′k and U ′.

Similar to ϵ̃k, let Ũ ∼ N (0,V[U ]). Thus, regardless of k = 1, 2, . . . , p, we have that:

1

2
log

(
2πeV[ϵk]

2πeV[ϵ′k]

)
= h(ϵ̃k)− h(ϵ′k) = h(Ũ)− h(U ′) =: γ.
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2.B.2.4 Lemma 2.B.6: KL Divergence from Gaussianity for valid and invalid

nodes’ residuals

Lemma 2.B.6. Let X ∈ Rp be a LiNGAM from Definition 2.1.2 that satisfies Assumptions

2.2.3 and 2.2.1. Assume that At is correct in the sense that PAa ⊆ At for all a ∈ At. Let

k ∈ [p]\At be an invalid node to continue the ordering in the sense that there exists j ∈ PAk

such that j ∈ [p]\At. And let ℓ ∈ [p]\At be a valid node to continue the ordering in the sense

that PA(ℓ) ⊆ At. Then the least squares residual Rℓt ∼ fℓt(rℓt) is no closer to Gaussian than

Rkt ∼ fkt(rkt) in the sense that:

DKL (fkt(rkt)||ϕ(rkt;σkt)) ≤ DKL (fℓt(rℓt)||ϕℓt(rℓt)) , (2.14)

where ϕkt and ϕℓt are the respective densities for

R̃kt ∼ N (E[Rkt],V[Rkt]) and R̃ℓt ∼ N (E[Rℓt],V[Rℓt]).

Proof of Lemma 2.B.6.

For each j ∈ [p], let ϵ′j be a normally distributed random variable such that h(ϵ′j) = h(ϵj),

while ϵ̃j is distributed as N (E[ϵj],V[ϵj]). Here, for all j, k ∈ {1, 2, . . . , p}, ϵ̃j⊥⊥ϵ̃k (unless

j = k) and ϵ̃j⊥⊥ϵ′k (even if j = k).

Recall also that for j ∈ St

Rjt =
(
MjLkt

− βTjtMN̂jtLtj

)
ϵLtj

+MjLC
tj
ϵLC

tj
=
∑
i∈[p]

δijϵi,

where the coefficients δij in the last equality are used for shorthand. Note that δjj = 1

always. And if j is invalid to continue the ordering, then also δij ̸= 0 for at least one other

i ∈ [p]\{j}, based on Lemma 2.B.1.
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The relation between the quantities of interest is as follows:

DKL (fkt(rkt)||ϕ(rkt;σkt)) = h(R̃kt)− h (Rkt) by Lemma 2.B.4

= h

∑
i∈[p]

δik ϵ̃i

− h

∑
i∈[p]

δikϵi

 Notice: R̃kt
d
=
∑
i∈[p]

δik ϵ̃i

≤ h

∑
i∈[p]

δik ϵ̃i

− h

∑
i∈[p]

δikϵ
′
i

 by Lemma 2.B.3

=
1

2
log

(
2πe

∑
i∈[p] δ

2
ikVar [ϵi]

2πe
∑

i∈[p] δ
2
ikVar [ϵ

′
i]

)
by normality of the ϵ̃i, ϵ

′
i

=
1

2
log

(
2πeγ̃

∑
i∈[p] δ

2
ikVar [ϵ

′
i]

2πe
∑

i∈[p] δ
2
ikVar [ϵ

′
i]

)
by Lemma 2.B.5

= γ

= DKL (fℓt(rℓt)||ϕℓt(rℓt)) ,

(2.15)

as we wanted (Recall Rℓt = ϵℓ by Lemma 2.B.1).

2.C More Figures

2.C.1 Sorting Time for Small Networks

The general takeaway of Figure 2.C.1 is that ScoreLiNGAM is generally much faster. Consider

the largest DAG, the Andes network (p = 223), where the sorting time of ScoreLiNGAM is

typically under 1 second across all sample sizes, while for HighDimLiNGAM (parallelized

across 7 threads) the sorting procedure takes between 10-1000 seconds across sample sizes.

We note that ScoreLiNGAM is written with C++ using the Armadillo linear algebra library

and an R wrapper via the Rcpp package, while DirectLiNGAM is written in Python (https:

//github.com/cdt15/lingam) with a wrapper function in R using the reticulate package

that is written by this paper’s authors. HighDimLiNGAM is also written in C++ (https:

//github.com/ysamwang/highDNG) with an R wrapper, but it searches regressor subsets when

computing low-dimensional linear regressions–the likely reason for its slower time despite 7
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parallel threads. All simulations were run on a Dell XPS 13 with Intel Core™ i7-8550U CPU

@ 1.80GHz × 8, 8 GB RAM, and 64-bit Ubuntu 20.04.3 LTS OS.

Figure 2.C.1: The simulation times for LiNGAM estimation procedures

2.C.2 Sorting Times for Large Networks

Figure 2.C.2 contains the sorting times to go along with Figure 2.3.2 in the main text.

2.D The sorting algorithm in practice

In Algorithm 2, we present further pseudo-code for ScoreLiNGAM’s sorting procedure in

practice, which uses partial regression.
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Algorithm 2: The sorting procedure in practice

Data: X ∈ Rn×p (standardized), {N̂k}pk=1

Result: π̂(1), π̂(2), . . . , π̂(p)

# initialize mixing matrix

M← Ip×p

# initialize residual matrix

R← X

# initialize scores

sk ← S(k;R), k = 1, 2, . . . , p.

# sort the nodes

for t = 1, 2, . . . , p+ 1 do

π̂(t)← argmaxk ̸∈At sk

# update residuals for neighbors of selected node.

for k ∈ N̂π̂(t)\At do
# update residuals with partial regression.

for a ∈ {j : Mπ̂(t)j ̸= 0,Mkj = 0} do
Mka ← (RT

·aR·a)
−1RT

·aR·k

R·k ← R·k −MkaR·a

end

# update score

sk ← S(k;R)

end

end
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Figure 2.C.2: Sorting times for ScoreLiNGAM under p = 5000, 10000 and n = 0.1p, 0.25p, 0.5p.

Color indicates how the neighborhood sets are constructed.

2.D.1 Obtaining the scale-parameter for Emprical Mean Log-likelihood in (3.1)

As discussed in the main text, our sequential algorithm at step t ≥ 1 in practice requires

the estimation of the scale parameter, ηkt, in Equation (3.1). Here, we discuss the estimator

for the three parametric assumptions used in this chapter. We make use of the respective

definitions and properties in Forbes et al. (2010).

• Laplace Distribution: If ϵk ∼ Laplace(0, θk), we have that θk = E[|ϵk|] is the scale

parameter. When g(·; ηkt) is specified as the density for Laplace(0, ηkt), the maximum

likelihood estimator we use in practice is η̂kt =
1
n

∥∥∥R̂kt

∥∥∥
1
.

• Logistic Distribution: If ϵk ∼ Logistic(0, θk), then θk is the scale parameter. We

have that Var [[] ϵk] =
π2

3
θ2k. When g(·; ηkt) is specified as the density for Logistic(0, ηkt),

we find that the plug-in estimator η̂kt =
√
3
π
σ̂kt to work satisfactorily.
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• Scaled-t Distribution: If ϵk ∼ Scaled-t(0, ν, θk), then we say ϵk is equal in distribution

to the scale parameter, θk, times U ∼ t(0, ν), a Student’s t-distributed random variable

having mean 0 and degrees of freedom ν > 0. That is, ϵk
d
= θkU . For ν > 2, we have

that Var [[] ϵk] = θ2k
(

ν
ν−2

)
. When g(·; ηkt) is specified as the density for Scaled-t(0, ν, ηkt)

with ν > 2 assumed to be known, we find that the plug-in estimator η̂kt = σ̂kt

√
ν−2
ν

to

work satisfactorily.

In equation (3.1) and in the plug-in estimators for the Logistic and Scaled-t specifications,

we use

σ̂2
kt =

1

n

∥∥∥R̂kt

∥∥∥2
2
.
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CHAPTER 3

Statistical Guarantees when Learning the Topological

Ordering for the Linear Non-Gaussian Acyclic Model

with Laplace Noise

3.1 Introduction

The Linear Non-Gaussian Acyclic Model (LiNGAM) of Shimizu et al. (2006) is also the focus

of the present chapter. We focus on deriving statistical estimation theory for this model when

the noise terms come from a Laplace distribution. Theorem 3.2.2 is our main result.

Compared to the state of the art for LiNGAM, we showed in the previous chapter

that a score-based alternative allows us to identify the underlying DAG and to accurately

estimate it in practice when our regularity assumptions are met. Compared to Shimizu

et al. (2006), Shimizu et al. (2011), and Wang and Drton (2019) who work under a semi-

parametric assumption on the LiNGAM’s non-Gaussian noise terms, we provide a relatively

more scale-able score-based estimation procedure under an explicit parametric assumption

for the LiNGAM’s noise terms. In terms of theory, Shimizu et al. (2006) and Shimizu et al.

(2011) provide identifiabiliy results for the respective LiNGAM learning procedures–that is,

with knowledge of the true distribution defined by the LiNGAM and an oracle for conditional

independence queries in the case of latter. Meanwhile Wang and Drton (2019) provide

formal statistical consistency results for their LiNGAM-learning procedure. Compared to the

consistency theory of Wang and Drton (2019), which works under conditions on the higher
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Figure 3.1.1: The target DAG (left) and the undirected graph (right) we start with. We

consider the undirected graph to be known from either domain knowledge or a pre-processing

step.

order moments on strategically defined least-squares residuals, we make use of sub-Exponential

deviation inequalities centered on a Laplace-noise parametric assumption. The identifiability

results of the previous chapter are slightly more general than a Laplace assumption: we

showed how to identify a LiNGAM with noise distributions that come from any non-Gaussian

scale-location family. Further, Wang and Drton (2019) discuss how one might use a priori

known neighborhood estimates, e.g. the neighbors in an undirected graphical model as in

Figure 3.1.1, in the LiNGAM estimation procedure, but they do not incorporate these a

priori known neighborhood estimates into their consistency results; we incorporate these

neighborhood sets into our theoretical discussion.

The rest of the chapter is organized as follows. In Section 3.2, we will provide the finite

sample version of the algorithm for the case of Laplace errors along with a general theorem

for its finite sample accuracy guarantees, a corollary for statistical consistency as the number

of nodes in the underlying DAG diverges, and a corollary for finite sample accuracy when the

LiNGAM is fixed. Finally, we will conclude with a summary of our findings and discussion of

future work.

3.1.1 Some notation

For a positive integer m, we write [m]= {1,2,. . . ,m}. For any set S, |S| will denote its

cardinality: the number of unique elements it contains. |S| = 0 means S = ∅, the set with no

elements.
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For sets T ⊆ [m], S ⊆ [r], and matrix A ∈ Rm×r, A·S ∈ Rm×|S| is the sub-matrix defined

by indexing columns S in A, while AT · ∈ R|T |×r is the sub-matrix given by indexing rows

T in A. Similarly, ATS ∈ R|T |×|S| is the sub-matrix indexing rows T and columns S of A.

Similarly, for a vector v ∈ Rm, we will write vT ∈ R|T | to denote the subset of entries indexed

by T . We will also sometimes write (vj; j ∈ T ) to denote vT .

For two sets S and T , we will make use of set operations such as their intersection:

S ∩ T = {a : a ∈ S and a ∈ T}; their union: S ∪ T = {a : a ∈ S or a ∈ T}; and their

difference: S\T = {a : a ∈ S and a ̸∈ T}. For sets S1, . . . , SK , we denote their intersection

as
⋂K
j=1 Sj and their union as

⋃K
j=1 Sj.

3.1.2 Linear Non-Gaussian Acyclic Model (LiNGAM)

We follow closely here the definition of a LiNGAM given by Shimizu et al. (2006) and in

Definition 2.1.2. Moreover, we seek to estimate an ordering of nodes in the underlying

LiNGAM as defined in Definition 2.1.1. As before, we will denote this estimate as π̂. We will

also apply Algorithm 1 at steps t = 1, 2, . . . , p until all nodes are sorted.

3.2 Finite Sample Sorting Procedure

Our main result in this section is Theorem 3.2.2, which provides a finite sample bound on the

probability that π̂ is accurate. Working from this result, Corollary 3.2.6 examines a condition

for our sorting procedure to be statistically consistent as number of nodes diverge. On the

other hand, Corollary 3.2.7 discusses the finite sample bound of Theorem 3.2.2 when the

underlying LiNGAM is fixed.

Assume that we have a data matrix X ∈ Rn×p such that Xi·, the i-th row, is iid across

i = 1, 2, . . . , n from a distribution defined by a LiNGAM satisfying Assumptions 2.2.1 and

2.2.2. Also let Assumption 2.2.3 hold, where the N̂k are estimated with a dataset independent

of X by an asymptotically consistent procedure, or are simply known from domain knowledge.
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Analogous to Section 2.2.2, consider:

β̂kt =
(
XT

·N̂kt
X·N̂kt

)−1

XT
·N̂kt

X·k ∈ R|N̂kt|×1,

which exists so long as 1 ≤ |N̂kt| ≤ n and X·N̂kt
is of full column rank almost surely. Further,

we define R̂kt ∈ Rn×1 as

R̂kt =


X·k if |N̂kt| = 0

X·k −X·N̂kt
β̂kt if |N̂kt| ≥ 1

,

the vector of residuals which we will use to estimate the pertinent parameters of (2.3). We

refer the reader to Algorithm 2 in the appendix for the sorting procedure used in practice,

which uses partial regression and strategic updates to the residuals to obtain a quicker

procedure in practice.

3.2.1 Laplace Scale-Location Family

We now work with the Laplace scale-location family for a concrete LiNGAM model to establish

finite-sample bounds. For other error distributions, similar results can be obtained by using

corresponding concentration results.

Assumption 3.2.1 (Laplace errors).

Let the densities {g(·; θk)} correspond to

ϵk ∼ Laplace(0, θk), k = 1, 2, . . . , p

where

θk = E [|ϵk|]

is the corresponding scale parameter, and

g(e; θk) =
1

2θk
exp

(
−|e|
θk

)
.
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Correspondingly, we estimate the scale parameter for g(·; ηkt) of (2.3) using the plug-in

estimate:

η̂kt =
1

n

n∑
i=1

|R̂i,kt| =
1

n

∥∥∥R̂kt

∥∥∥
1
,

where R̂i,kt is the i-th entry of R̂kt. We also estimate V[Rkt] as:

σ̂2
kt =

1

n

n∑
i=1

R̂2
i,kt =

1

n

∥∥∥R̂kt

∥∥∥2
2
.

As the sample analogue to (2.3), we select the next node to continue the ordering with

respect to the sample mean log-likelihood ratio:

argmax
k ̸∈At

1

n

n∑
i=1

log

{
g(R̂i,kt; η̂kt)

ϕ(R̂i,kt; σ̂2
kt)

}
= argmax

k ̸∈At

log

{
σ̂kt
η̂kt

}
. (3.1)

Under the Laplace family assumption for the densities {g(·; θk)}, (2.3) is also the same as:

argmax
k ̸∈At

log

{
σkt
ηkt

}
.

Intuitively, if

η̂kt
p→ ηkt and σ̂kt

p→ σkt, (3.2)

then it seems that the choice in (3.1) will be correct as n→∞. The remainder of this section

is devoted to presenting results which tell us under what conditions on sample size, dimension

p, and maximum neighborhood size we will have that using (3.1) in Algorithm 1 recovers

a valid ordering satisfying Definition 2.1.1. In particular, we make use of sub-Exponential

deviation inequalities.

3.2.2 Finite Sample Accuracy Based on Deviation Inequalities

For the statement of Theorem 3.2.2 and Assumptions 3.2.3 and 3.2.4 below, denote:

• The maximum cardinality of the estimated neighborhood sets:

d = max
j∈[p]

∣∣∣N̂j

∣∣∣ .
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• The set of permutations π0 satisfying Definition 2.1.1 with respect to the DAG G

underlying our LiNGAM of interest:

ΠG,

and the number of such permutations, i.e. the cardinalty of the set ΠG:

|ΠG|.

• The partial ordering at step t ∈ [p] given by π0 ∈ ΠG:

Aπ0t =


∅ t = 1

{π0(j)}t−1
j=1 2 ≤ t ≤ p

.

• Node k’s neighboring nodes that are sorted at step t with partial ordering according to

π0 ∈ ΠG:

N̂π0
kt = N̂k ∩ Aπ0t .

• Node k’s population-level residual from the linear regression of Xk on XN̂
π0
kt
:

Rπ0
kt = Xk − βπ0Tkt XN̂

π0
kt
; βπ0kt = arg min

θ∈R|N̂π0
kt

|
E
[(

Xk − θTXN̂
π0
kt

)2]
.

• The maximum possible sub-Exponential norm of a population-level residual:

γmax = max
π0∈ΠG ,t∈[p],k ̸∈A

π0
t

∥Rπ0
kt ∥ψ1

,

where ∥V ∥ψ1
=̇ inf{t > 0 : E [exp (|V |/t)] ≤ 2} is the sub-Exponential norm for real-

valued random variable V .

• The target parameters when the partial ordering is given by π0 ∈ ΠG:

ηkt(π0)=̇E[|Rπ0
kt |] and σkt(π0)=̇(E[|Rπ0

kt |
2])1/2,

along with

ηmax=̇ max
π0∈ΠG ,t∈[p],k ̸∈A

π0
t

ηkt(π0).
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• The sets of valid and invalid nodes, respectively, to continue the partial ordering given

by Aπ0t :

V (t; π0), I(t; π0) ⊆ [p]\Aπ0t .

• The minimum difference in population-level scores between valid nodes ℓ ∈ V (t; π0) and

invalid nodes k ∈ I(t; π0) when the partial ordering is given by π0 ∈ ΠG at step t ∈ [p]:

δπ0t = min
ℓ∈V (t;π0)

log

{
σℓt(π0)

ηℓt(π0)

}
− max

k∈I(t;π0)
log

{
σkt(π0)

ηkt(π0)

}
.

Our main result is as follows.

Theorem 3.2.2 (Finite Sample Sorting Procedure Accuracy).

Let π̂ = (π̂(1), . . . , π̂(p)) be constructed using

S(k,At;X) = log

{
σ̂kt
η̂kt

}
in Algorithm 1 across steps t = 1, 2, . . . , p. Then

Pr(π̂ ∈ ΠG) ≥ 1− 8|ΠG|p2

nξ
, (3.3)

so long as d ≤ n and Assumptions 2.2.3, 3.2.1, 3.2.3, and 3.2.4 hold. Here, ξ > 0 is the

constant in Assumption 3.2.3.

We now discuss the assumptions on Theorem 3.2.2 and the lemmas where they are used.

The formal proofs of Theorem 3.2.2 and all its pertinent lemmas are contained in Appendix

3.A.

Assumption 3.2.3 (Gap Condition).

n is large enough so that for each π0 ∈ ΠG, t ∈ [p], and each k ∈ Aπ0t the inequalities:(
δπ0t

δπ0t + 4

)
ηkt(π0) >

2d(γmax + ηmax)(1 + ξ) log(n)

c1/2n1/2
≍ d(γmax + ηmax) log(n)

n1/2
(3.4)

and (
δπ0t

δπ0t + 4

)
σkt(π0) >

(1 + ξ)γmax log
3/2(2n)

√
32

cn1/2
+

dγ2
max(1 + ξ) log2(n)

n1/2c

+
dγ2

max(1 + ξ)2 log2(n)

nc2
≍ dγ2

max log
2(n)

n1/2

(3.5)

hold, where c is an absolute constant.
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Assumption 3.2.4 (Conditionally Zero-centered Residuals).

For all π0 ∈ ΠG, each t ∈ [p], and each k ̸∈ Aπ0t ,

E
[
Rπ0
kt

∣∣∣XN̂
π0
kt

]
= 0

when N̂π0
kt is non-empty. If N̂kt = ∅, we take Rπ0

kt = Xk, which is marginally zero-centered

without loss of generality.

The term |ΠG|p2 in (3.3) comes about due to a union bound across events related to

deviations in our finite sample score from the population-level score. Firstly, for π̂ to be

correct at any given step, it must be that π̂ is the same as some π0 ∈ ΠG. We do not quite

know which π0 will satisfy this, so the total number of orderings contributes to the union

bound. The p2 term corresponds to the total number of steps required to sort all nodes (p)

and the maximum number of unordered nodes at any given step (also p). We refer the reader

to Appendix 3.A.1 for details on this union bound. Note that the right hand side of (3.3)

goes to 1 so long as |ΠG|p2/nξ → 0, which means that p and |ΠG| must both grow no faster

than a polynomial in n, when G is not fixed (see Corollary 3.2.6). In practice, this latter

scenario may come about if we are willing to add more nodes to a specified LiNGAM model

as more data becomes available. But if the number of nodes stays fixed, then the requirement

that |ΠG|p2/nξ → 0 will be satisfied with any ξ > 0.

The requirement that the noise terms be Laplace distributed (Assumption 3.2.1) can

be changed to any other family satisfying Assumptions 2.2.1 and 2.2.2 (both needed for

identifying a valid topological ordering), but some of the arguments in Appendix 3.A will

need to be changed as they make use of the sub-Exponential deviation inequalities found in

Wainwright (2019).

The requirement that d ≤ n corresponds to our use of low-dimensional linear least squares

regressions to obtain the residuals R̂kt. In practice, these regressions save quite a bit of time

as they do not require tuning a penalty parameter, e.g. for a LASSO term, for each linear

regression during the sorting procedure.
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The right hand sides of the two inequalities in Assumption 3.2.3, which depend on d, γmax,

ηmax, and n, provide the overall rate of our convergence. Theoretically, d can grow with n. If

d grows with n, then γmax and ηmax may also grow (if not constants). The contribution of d

to the rate shows the penalty we pay in terms of the accuracy of our estimated ordering if

our neighborhood estimates are too large, while the contribution of γmax shows the potential

bottleneck in our accuracy if our variables are too noisy as determined the sub-Exponential

norm, which measures the thickness of a distribution’s tail. A similar interpretation in

terms of noisy residuals holds for ηmax. This rate is determined by the deviation bound

on σkt(π0) − σ̂kt(π0) in Lemma 3.A.13 of Appendix 3.A, and by the analogous bound on

ηkt(π0)− η̂kt(π0) in Lemma 3.A.9. Here, η̂kt(π0) and σ̂kt(π0) are the corresponding sample

estimates when the partial ordering is given by π0 ∈ ΠG.

The requirement in Assumption 3.2.3 that n be large enough so that inequalities hold with

respect to the target parameters (ηkt(π0), σkt(π0)) and δπ0t is a seemingly standard requirement.

In these inequalities, which correspond to the rate of convergence of our sorting procedure,

notice also the appearance of ξ: the larger it is required to be, the slower the overall rate will

be. These inequalities come about due to a use of the Mean Value Theorem in Lemma 3.A.2

of Appendix 3.A, which shows how to arrive at deviation bounds on log(ηkt(π0))− log(η̂kt(π0))

and log(σkt(π0))−log(σ̂kt(π0)) from deviation bounds on ηkt(π0)−η̂kt(π0) and σkt(π0)−σ̂kt(π0),

respectively. Through a use of the triangle inequality, the former help bound our primary

focus:

log(σkt(π0)/ηkt(π0))− log(σ̂kt(π0)/η̂kt(π0)),

the difference between the population-level score of interest and its sample analogue.

Finally, we note that the requirement that Assumption 3.2.4 is similar to what is often taken

for granted in regression analysis. It is different from the statement E
[
R̂π0
kt

∣∣∣X·N̂π0
kt

]
= 0n×1,

which is a consequence of the former and noting that R̂π0
kt is a projection of X·k onto the

orthogonal complement of X·N̂π0
kt
’s column space. The use of E

[
Rπ0
kt

∣∣∣XN̂
π0
kt

]
= 0 corresponds

to an application of Bernstein’s inequality in Appendix 3.A’s Lemma 3.A.7 and Lemma
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3.A.11, two results that examine the deviation,

X·N̂kt
βkt −X·N̂kt

β̂kt

in terms of the ℓ1 and ℓ2 vector norms, respectively. Lemma 3.A.7 helps with Lemma 3.A.9

while Lemma 3.A.11 helps with Lemma 3.A.13, the important results mentioned earlier that

bound the difference between η̂kt − ηkt and σ̂kt − σkt, respectively.

When N̂π0
kt = Aπ0t , it is readily checked that E

[
Rπ0
kt

∣∣∣XN̂
π0
kt

]
= 0. This is because the

sub-mixing matrix, MN̂
π0
kt N̂

π0
kt
, is of full column and row rank, so we can write:

Xk =
∑
j∈[p]

Mkjϵj = MkN̂
π0
kt
M−1

N̂
π0
kt N̂

π0
kt

XN̂
π0
kt

+
∑
j ̸∈N̂π0

kt

Mkjϵj, (3.6)

a linear combination of entries in the zero-centered ϵ or, equivalently, a linear combination of

XN̂
π0
kt

= MN̂
π0
kt N̂

π0
kt
ϵN̂π0

kt
and the independent (ϵj; j ̸∈ N̂π0

kt ). For any other choice of N̂π0
kt , the

satisfaction of E
[
Rπ0
kt

∣∣∣XN̂
π0
kt

]
= 0 may be on a case by case basis according the underlying

DAG’s structure and/or the structure of the sets N̂k. For more discussion on the case that

N̂π0
kt ̸= A

π0
t and the satisfaction of this condition, we refer the reader to Appendix 3.B for a

theoretical discussion on how to append other ordered nodes to the set N̂π0
kt to guarantee this

assumption. The gist of Appendix 3.B is that, where Lπ0kt =
⋃
j∈N̂π0

kt
{j} ∪ ANj , we would like

to guarantee that each directed path in the underlying DAG from (Xa; a ∈ Lπ0kt \N̂
π0
kt ) to Xk

must be mediated by (Xb; b ∈ N̂π0
kt ).

For the case that we do not modify the regression sets N̂π0
kt as discussed in Appendix

3.B, consider relaxing the assumption that E[Rπ0
kt |XN̂

π0
kt
] = 0 in Assumption 3.2.4 to what is

written in Assumption 3.2.5.

Assumption 3.2.5 (Loosening our Residual Assumption).

Denote P π0
kt as the projection matrix onto the column space of XN̂

π0
kt
. We require the following

to hold, uniformly across π0 ∈ ΠG, t ∈ [p], and k ̸∈ {π0(j)}t−1
j=1.

1. There exists τmax ≥ 0 such that:∥∥∥E [Xik

∣∣∣XiN̂
π0
kt

]
−XiN̂

π0
kt
βπ0kt

∥∥∥
ψ1

=
∥∥∥E [Rπ0

kt

∣∣∣XN̂
π0
kt

]∥∥∥
ψ1

≤ τmax,

61



2. There exists a non-negative sequence ρn,ξ and ξ > 0 such that:

1

n

∥∥∥PktE [X·k

∣∣∣X·N̂π0
kt

]
−X·N̂π0

kt
βπ0kt

∥∥∥
1
≤ ρn,ξ

and
1

n

∥∥∥PktE [X·k

∣∣∣X·N̂π0
kt

]
−X·N̂π0

kt
βπ0kt

∥∥∥2
2
≤ ρn,ξ

with probability at least 1− 1
nξ .

As may be expected by relaxing conditions to what is given in Assumption 3.2.5, we will

have a slower rate of consistency for our sorting procedure as dictated by the magnitude of

τmax and ρn,ξ. We refer the interested reader to Equations (3.13) and (3.14) in Appendix 3.A.2

for this insight. Also notice that E[Rπ0
kt |XN̂

π0
kt
] = 0 if and only if E[Xk|XN̂

π0
kt
] = (βπ0kt )

TXN̂
π0
kt
,

which would imply that ρn,ξ = 0 and τmax = 0 work and we’d end up with the rate implied

by (3.4) and (3.5) as a special case. After replacing (3.4) and (3.5) in Assumption 3.2.3 with

(3.13) and (3.14), the statement in Theorem 3.2.2 would remain the same when we generalize

Assumption 3.2.4 to Assumption 3.2.5.

3.2.3 Corollaries to Theorem 3.2.2

Given the discussion following Theorem 3.2.2 in the previous subsection, we can make the

following formal corollaries.

Corollary 3.2.6 (Finite Sample Sorting Procedure is Consistent when p→∞).

Let the conditions of Theoreom 3.2 hold. Assume further that p and |ΠG| grow, possibly to

infinity, at a rate no faster than a polynomial in n. Then we have that:

Pr(π̂ ∈ ΠG)→ 1.

Proof.

Our condition on the growth of p and |ΠG| means that there exists ξ1, ξ2 > 0 such that

p = o(nξ1) and |ΠG| = o(nξ2). It follows that p2|ΠG |
n2ξ1ξ2

→ 0. Next, pick any ξ > 0 satisfying
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Assumption 3.2.3 such that ξ ≥ 2ξ1ξ2. With such a choice of ξ, we have also p2|ΠG |
nξ → 0. This

means the right hand side of (3.3) goes to 1 and therefore Pr(π̂ ∈ ΠG)→ 1 as we wanted.

Note that Corollary 3.2.6 does not require p→∞, necessarily. If the underlying LiNGAM

is fixed, then we can say (trivially) that p and ΠG grow as a polynomial in n of degree zero.

Moreover, the growth of p and G can be of any polynomial in n, no matter how large, for us

to achieve convergence in probability of our sorting procedure.

Corollary 3.2.7 (Finite sample accuracy guarantee for fixed LiNGAM).

If the underlying LiNGAM is fixed, and that N̂k = [p]\{k} for each k ∈ [p], then

Pr(π̂ ∈ ΠG) ≳ 1− 1

nξ

for any ξ > 0 and large enough n.

Proof.

Note that Theorem 2.2.5 on the identifiability of a topological ordering guarantees that

δπ0t > 0, while ηkt(π0) > 0 holds due to our assumption of a continuous distribution for the

noise terms in our LiNGAM (Assumption 3.2.1). Overall the left hand sides of (3.4) and (3.5)

in Assumption 3.2.3 will be positive. Moreover, the terms d, γmax, and ηmax on the right hand

side of (3.4) and (3.5) in Assumption 3.2.3 will remain fixed, due to our assumption that the

LiNGAM is fixed. It follows that for any ξ > 0, a large enough n will satisfy Assumption

3.2.3. Assumption 3.2.4 is satisfied because N̂k = [p]\{k} means that N̂π0
kt = Aπ0t ; we simply

invoke the discussion surrounding (3.6) for this case. Moreover, |ΠG|p2 is also a constant, due

to our assumption of a fixed LiNGAM. Thus, we make our desired claim that π̂ ∈ ΠG with

probability at least 1− 1
nξ , up to a constant factor.

Corollary 3.2.7 is of potential interest for the following reason related to a statistical

power analysis. Suppose we would like to be at least 95% confident that our topological

ordering is accurate. This requires us to find a minimal ξ > 0 and minimal n such that
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Pr(π̂ ∈ ΠG) ≥ 1 − 8|ΠG |p2
nξ ≈ 0.95. In turn, this requires us to specify plausible values of

δπ0t , γmax, and ηmax in Assumption 3.2.3 and plausible values of |ΠG|p2 in a manner similar to

specifying plausible effect sizes in the power analysis for a 2-sample t-test. As an example, this

all seems quite feasible when G is a chain graph for which only one topological ordering exists.

In this case, feasible values γmax and ηmax may be upper bounded by the sub-exponential

norm estimate and L1 norm estimate, respectively, of Xk for each k ∈ [p]. Moreover, feasible

δπ0t values may be found by estimating LiNGAMs for several random orderings and computing

the gap between the scores in (3.1). We leave the further study of this idea to future work.

3.3 Discussion

In this chapter, we discussed a estimation theory for a score-based alternative to the state

of the art for the Linear Non-Gaussian Acyclic Model (LiNGAM) of Shimizu et. al (2006).

Under the belief that a data mining procedure, such as those of causal discovery, cannot be

useful in practice without good theoretical foundations for some underlying assumed model,

our contributions are consistency and finite sample results, including for the case that p > n.

As a topic for future work, it would be interesting to study whether identifiability of

a LiNGAM’s topological ordering with the score log(σkt/ηkt) can hold with respect to any

non-Gaussian sub-Exponential noise distribution, not just the Laplace distribution, so that

the argument for the proof of Theorem 3.2.2 can remain essentially unchanged. Generalizing

the identification of LiNGAMs with the score log(σkt/ηkt) is a similar, yet different claim to

that of Theorem 2.2.5 which holds when the noise term densities come from an arbitrary

non-Gaussian scale-location family. Further, given the simplicity of the score log(σkt/ηkt),

which takes the ratio of the L1 and L2 norms of Rkt’s distribution, it would be interesting to

examine in future work whether identification of a valid topological ordering can also hold for

population-level residuals arising from an interesting class of non-linear regressions. Should

this be the case, Theorem 3.2.2’s results will need to be modified accordingly at Appendix
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3.A’s Lemma 3.A.7 and Lemma 3.A.11, which deal with the deviation between the estimated

conditional expectation and the true conditional expectation as functions of the random

regressors.
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APPENDIX

3.A Finite Sample Sorting Procedure Accuracy Lemmas and Proofs

3.A.1 Proof of Theorem 3.2.2

Recalling Assumption 2.2.3, we will condition our inference on the event:

B =
⋂
k∈[p]

{N̂k ⊇MBk}, (3.7)

which says that all neighborhood estimates, N̂k, contain the true Markov blanket, MBk.

Note that we may trivially take N̂k = [p]\{k} for each k so that B holds true. In general, the

sets N̂kt can be random, but they are independent of the data X used to obtain π̂.

For each t = 1, 2, . . . , p+ 1 in the sequential node ordering procedure, we are interested

in the event:

Et=̇


∅ if t = 1⋂t−1
j=1{PA (π̂(j)) ⊆ Aj} if 2 ≤ t ≤ p+ 1

.

Et states that the partial ordering to this point is correct in the sense that the parents of

each node π̂(j) ∈ At were already contained in the ordering before π̂(j) was appended.

Let ΠG be the set of permutations π satisfying Definition 2.1.1 for the DAG G underlying

our LiNGAM of interest. The event Et (t ≥ 2) equates to the event:

There exists π0 ∈ ΠG such that π̂(j) = π0(j) for each j = 1, . . . , t− 1. (3.8)

Let us use the notation (ηkj(π), σkj(π)) and (η̂kj(π), σ̂kj(π)) to denote the target parameters

and the corresponding sample estimates that we obtain by regressing node k at step j onto

the set of nodes

N̂π0
kj =̇{π(i)}

j−1
i=1 ∩ N̂k,
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where π is some permutation of interest. The corresponding population-level least squares

residual will be denoted as:

Rπ0
kj =̇


Xk if N̂π0

kj = ∅

Xk −

((
E
[
XN̂

π0
kj
XT
N̂

π0
kj

])−1

E
[
XN̂

π0
kj
Xk

])T

XN̂
π0
kj

otherwise.

Now define the event:

Qj(ℓ, k; π) =̇

{
log

{
σ̂ℓj(π)

η̂ℓj(π)

}
> log

{
σ̂kj(π)

η̂kj(π)

}}
,

which says that node ℓ has a higher finite sample score than node k in step j when the partial

ordering is {π(i)}j−1
i=1 . Also consider the sets of nodes:

V (j; π0) = {ℓ ̸∈ Aj : PA(ℓ) ⊆ {π(i)}j−1
i=1} and I(j; π0) = {k ̸∈ Aj : PAk\{π(i)}j−1

i=1 ̸= ∅},

which are the set of valid and invalid nodes to continue the partial ordering defined by

permutation π at step j.

We now make use of an implication given by Theorem 2.2.5 which says:

arg max
k ̸∈{π0(i)}j−1

i=1

log

{
σkj(π0)

ηkj(π0)

}
= V (j; π0).

That is, all nodes in V (j; π0) will give the largest mean log-likelihood ratio at the population

level, because the partial ordering {π0(i)}j−1
i=1 is correct for π0 ∈ ΠG. Define the gap at step j

between the population-level score of interest for any node ℓ ∈ V (j; π0) and the maximum

population-level score among nodes k ∈ I(j; π0) as:

δπ0j = log

{
σℓj(π0)

ηℓj(π0)

}
− max

k∈I(j;π0)
log

{
σkj(π0)

ηkj(π0)

}
.

Making use of this gap, which Theorem 2.2.5 gaurantees will be strictly positive, consider

the events:

Fj(k, σ; π0) =

{
|log(σkj(π0))− log(σ̂kj(π0))| <

δπ0j
4

}
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and

Fj(k, η; π0) =

{
|log(ηkj(π0))− log(η̂kj(π0))| <

δπ0j
4

}
.

By the triangle inequality, we have that:

Fj(k, σ; π0) ∩ Fj(k, η; π0) ⊆ Hj(k; π0)

=̇

{
|log(σkj(π0)/ηkj(π0))− log(σ̂kj(π0)/η̂kj(π0))| <

δπ0j
2

}
.

Importantly, should the right hand side event, Hj(k; π0), occur for each k ̸∈ {π0(i)}j−1
i=1 ,

the finite sample version of our sorting procedure will make the correct choice at step j when

{π0(i)}j−1
i=1 is the partial ordering. That is,

⋂
k∈V (j;π0)∪I(j;π0)

Fj(k, σ; π0)∩Fj(k, η; π0) ⊆
⋂

k∈V (j;π0)∪I(j;π0)

Hj(k; π0) ⊆
⋃

ℓ∈V (j;π0)

⋂
k∈I(j;π0)

Qj(ℓ, k; π0).

(3.9)

Taking it a step further, we have the following containment statements:

t−1⋂
j=1

⋂
π0∈ΠG

⋂
k∈V (j;π0)∪I(j;π0)

Fj(k, σ; π0) ∩ Fj(k, η; π0) ⊆
t−1⋂
j=1

 ⋂
π0∈ΠG

⋃
ℓ∈V (j;π0)

⋂
k∈I(j;π0)

Qj(ℓ, k; π0)


⊆ Et.

(3.10)

The first containment follows from (3.9), after taking the intersection across π0 ∈ ΠG and

across j = 1, . . . , t− 1. The second containment holds by induction. At t = 1, the partial

ordering is empty and the event in square brackets guarantees that π̂(1) is equal to the first

element of some valid topological ordering. Next, suppose for induction that π̂(i) = π′
0(i)

across i = 1, 2, . . . , j − 2 for some π′
0 ∈ ΠG. The fact that Qj(ℓ, k; π0) holds for all π0 ∈ ΠG

and all valid and invalid nodes ℓ and k, respectively, guarantees that π̂(j − 1) will be valid,

and therefore our overall topological ordering at step j will also be given by some valid

topological ordering in ΠG.
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From (3.10), it follows that:

Pr

t−1⋂
j=1

⋂
π0∈ΠG

⋂
k∈V (j;π0)∪I(j;π0)

Fj(k, σ; π0) ∩ Fj(k, η; π0)

∣∣∣∣∣∣B
 ≤ Pr (Et|B) , (3.11)

where we condition on the event B of (3.7). To lower bound the right hand side, it is sufficient

to lower bound the left hand side. By rule of complements and union bound, we can derive a

lower bound on Pr(Et|B) by upper bounding:

t−1∑
j=1

∑
π0∈ΠG

∑
k∈V (j;π0)∪I(j;π0)

{
Pr
(
FCj (k, σ; π0)

∣∣B)+ Pr
(
FCj (k, η; π0)

∣∣B)} , (3.12)

where BC denotes the complement of an event B.

Therefore, the key for our argument is to upper bound:

Pr
(
FCj (k, σ; π0)

∣∣B)+ Pr
(
FCj (k, η; π0)

∣∣B)
for any j = 1, . . . , t− 1, any k ̸∈ Aπ0j , and any π0 ∈ ΠG . We will show that this upper bound

goes to zero at an exponentially decaying rate, thus making the union bound in (3.12) less

severe to our overall rate. This result is given by Lemma 3.A.2 which builds on Lemma 3.A.1.

Lemma 3.A.1 makes use of the linear regression results in Section 3.A.3.

Recall our definition of event Et for 2 ≤ t ≤ p+ 1:

Et=̇
t−1⋂
j=1

{PA (π̂(j)) ⊆ Aj}.

To finish our proof of Theorem 3.2.2, we need to lower bound Pr (Ep+1|B). The key will

be to derive this lower bound while making use of Lemma 3.A.2 as well as the statement

about the containment of our events of interest in (3.10).

Recall that (3.10) implies (3.11), which together with (3.12) (the place where we used the

union bound) says that:

Pr(Ep+1|B) ≥ 1−
p∑
j=1

∑
π0∈ΠG

∑
k∈V (j;π0)∪I(j;π0)

{
Pr
(
FCj (k, σ; π0)

∣∣B)+ Pr
(
FCj (k, η; π0)

∣∣B)}
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Combining Lemma 3.A.2 with the previous inequality, we have that:

Pr(Ep+1|B) ≥ 1−
∑
π0∈ΠG

p∑
j=1

∑
k∈V (j;π0)∪I(j;π0)

8

nξ
≍ 1− 8|ΠG|p2

nξ
,

where |ΠG| is the cardinality of the set ΠG, i.e. to the total number of valid permutations.

This concludes the proof of Theorem 3.2.2. The rest of this section contains the key

lemmas used to derive the upper bounds on the deviation between the scale parameter

estimates and the true counterparts, which were used in the proof of Lemma 3.A.1.

3.A.2 Lemmas for Theorem 3.2.2

The task of Lemma 3.A.1 is to place the generic results of Section 3.A.3 in the notation

of our LiNGAM’s sorting procedure, including all relevant assumptions. In the previous

subsection, we apply Lemma 3.A.2 in the special case that E[Rπ0
kt |XN̂

π0
kt
] = 0, i.e. in the case

that Assumption 3.2.5 is satisfied with ρn,ξ = 0 and τmax = 0. Lemma 3.A.2 is a strategic

application of Lemma 3.A.1 through a use of the Mean Value Theorem.

Lemma 3.A.1 (Deviation between Scale Parameter Estimates and Truth).

Let π0 ∈ ΠG Assumption 2.2.3, denoted as the event B in this subsection.

Let:

• d=̇maxk∈[p]

∣∣∣N̂k

∣∣∣ , the maximum cardinality for the estimated neighborhood sets.

• γmax=̇maxj∈[p],k ̸∈{π0(i)}j−1
i=1
∥Rπ0

kt ∥ψ1
, the maximum possible sub-Exponential norm for the

population-level least squares residual across permutations π0 ∈ ΠG.

• ηmax=̇maxπ0∈ΠG ,j∈[p],k ̸∈{π0(i)}t−1
i=1

ηkj(π0), the maximum possible Laplace scale parameter

for the population-level least squares residual across permutations π0 ∈ ΠG.

If d ≤ n and Assumption 3.2.5 holds, then for arbitrary ξ > 0 and n large enough:

• With probability at least

1− 3

nξ
→ 1,
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we have that:

|η̂kj(π0)− ηkj(π0)| <
2d(γmax + τmax + ηmax/ log(2))(1 + ξ) log(n)

c1/2n1/2
+ ρn,ξ.

• With probability at least

1− 5

nξ
→ 1,

we have that:

|σ̂2
kj(π0)− σ2

kj(π0)| ≤
(1 + ξ)γmax log

3/2(2n)
√
32

cn1/2
+

dγmax(γmax + τmax)(1 + ξ) log2(n)

n1/2c
dγmax(1 + ξ) log2(n)

n1/2c
ρn,ξ +

dγ2
max(1 + ξ)2 log2(n)

n1/2c2
+ ρn,ξ.

Proof.

The general forms of Lemma 3.A.9 and Lemma 3.A.13 give us the desired conclusion. Note

that Assumption 3.2.5 in the main text defines ρmax,ξ and τmax in Analogy to Section 3.A.3’s

Assumptions 3.A.4 and 3.A.5.

Lemma 3.A.2 (Showing Events FCj (k, η; π0) and FCj (k, σ; π0) have probability going to 0).

Let π0 ∈ ΠG. Also let:

• d=̇maxk∈[p]

∣∣∣N̂k

∣∣∣ , the maximum cardinality for the estimated neighborhood sets as.

• γmax=̇maxj∈[p],k ̸∈{π0(i)}j−1
i=1
∥Rπ0

kt ∥ψ1
, the maximum possible sub-Exponential norm for the

population-level least squares residual across permutations π0 ∈ ΠG.

• ηmax=̇maxπ0∈ΠG ,j∈[p],k ̸∈{π0(i)}t−1
i=1

ηkj(π0), the maximum possible Laplace scale parameter

for the population-level least squares residual across permutations π0 ∈ ΠG.

If d ≤ n, Assumption 3.2.5 holds, and n large enough so that:

(
δπ0j

δπ0j + 4

)
ηkj(π0) >

2d(γmax + τmax + ηmax/ log(2))(1 + ξ) log(n)

c1/2n1/2
+ ρn,ξ, (3.13)
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then for arbitrary ξ > 0:

Pr
(
FCj (k, η; π0)

∣∣B) ≤ 3

nξ
→ 0.

And if additionally, n large enough so that:(
δπ0j

δπ0j + 4

)
σkj(π0) >

(1 + ξ)γmax log
3/2(2n)

√
32

cn1/2
+

dγmax(γmax + τmax)(1 + ξ) log2(n)

n1/2c

dγmax(1 + ξ) log2(n)

n1/2c
ρn,ξ +

dγ2
max(1 + ξ)2 log2(n)

n1/2c2
+ ρn,ξ.

(3.14)

then:

Pr
(
FCj (k, σ; π0)

∣∣B) ≤ 5

nξ
→ 0.

Proof.

Consider the mean value theorem which says that for f : [a, b]→ R which is continuous and

at least once differentiable on the open interval (a, b), there exists c ∈ (a, b) such that:

f(b)− f(a) = (b− a)f ′(c).

This implies that:

|f(b)− f(a)| ≤ |b− a| sup
a<x<b

|f ′(x)|. (3.15)

Now let f(t) = log(t) with t restricted to be in [a, b] where:

a < min {ηkj(π0), η̂kj(π0)} and b > max {ηkj(π0), η̂kj(π0)} .

It follows from (3.15) that:

| log(ηkj(π0))− log(η̂kj(π0))| ≤
|ηkj(π0)− η̂kj(π0)|

a
, (3.16)

since supa<x<b |f ′(x)| ≤ 1
a
and

| log(ηkj(π0))− log(η̂kj(π0))| ≤ | log(b)− log(a)|,

due to monotonicity of t 7→ log(t).
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From Lemma 3.A.1, we know that with probability at least 1− 3
nξ :

|ηkj(π0)− η̂kj(π0)| < rn < κ, (3.17)

where κ is a constant we’d like to derive and rn is shorthand for:

rn =̇
2d(γmax + τmax + ηmax/ log(2))(1 + ξ) log(n)

c1/2n1/2
+ ρn,ξ.

We have that:

η̂kj(π0) ∈ (ηkj(π0)− κ, ηkj(π0) + κ) .

So we can take:

a = ηkj(π0)− κ and b = ηkj(π0) + κ.

With this choice of a, the implication of (3.16) and (3.17) is that:

| log(ηkj(π0))− log(η̂kj(π0))| <
rn

ηkj(π0)− κ

with probability at least 1− 3
nξ .

Recall that Fj(k, η; π0) is defined as the occurrence of the inequality

| log(ηkj(π0))− log(η̂kj(π0))| < δπ0j /4.

We can thus see that:

rn
ηkj(π0)− κ

≤ δπ0j /4 ⇐⇒ κ ≤ ηkj(π0)−
4rn
δπ0j

.

Setting κ = ηkj(π0)− 4rn
δ
π0
j

, from (3.17), we require that:

rn < ηkj(π0)−
4rn
δπ0j
⇐⇒ rn <

(
δπ0j

δπ0j + 4

)
ηkj(π0),

which is satisfied for large enough n.

Thus, for n large enough so that rn <
(

δ
π0
j

δ
π0
j +4

)
ηkj(π0),

Pr(FCj (k, η; π0)) ≤
3

nξ
,
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as we wanted.

By a similar argument, so long as n is large enough, we have that:

Pr(FCj (k, σ; π0)) ≤
5

nξ
.

3.A.3 Full Column Rank Linear Regression with sub-Exponential Noise

This section contains the core lemmas for bounding the finite sample performance of our

sorting procedure. We make use of the regression setup in Assumption 3.A.3.

Assumption 3.A.3 (A Regression Setup with sub-Exponential Noise).

Let:

• X ∈ Rn×m with rank(X) = m almost surely, and m ≤ d ≤ n.

• β ∈ Rm.

• Y = Xβ + U ∈ Rn.

• U = Y −Xβ ∈ Rn such that Ui
i.i.d.∼ sub-Exponential for i = 1, 2, . . . , n with E[Ui] = 0.

• ∥Ui − E[Ui|Xi·]∥ψ1
≤ s, where ∥V ∥ψ1

=̇ inf{t > 0 : E [exp] (|V |/t) ≤ 2} is known as the

sub-Exponential norm of scalar random variable V .

• E[|Ui|4] <∞.

• β̂ = (XTX)−1XTY = β + (XTX)−1XTU the linear least squares estimate.

• P = X(XTX)−1XT , the projection matrix onto column space of X.

Assumption 3.A.4 (Projection Assumption).

There exists a non-negative sequence rn,ξ and ξ > 0 such that for n large enough,

1

n
∥PE [Y |X]−Xβ∥1 ≤ rn,ξ
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and
1

n
∥PE [Y |X]−Xβ∥22 ≤ rn,ξ

with probability at least 1− 1
nξ .

These two inequalities say that rn,ξ is, with a certain probability, the worst case sample

average deviation between Xi·β and the projection of E[Yi|Xi·] onto the column space of X.

Assumption 3.A.5 (sub-exponential norm assumption).

There exists τ ≥ 0 such that:

∥E[Ui|Xi·]∥ψ1
= ∥E[Yi|Xi·]−Xi·β∥ψ1

≤ τ.

Remark 3.A.6 (When Y is linear in X).

Importantly, if E[Y |X] = Xβ, then rn,ξ = 0 is a valid choice for Assumption 3.A.4 while

τ = 0 is a valid choice for Assumption 3.A.5. The former is because PXβ = Xβ by properties

of P , while the latter holds by noting that E[Ui|Xi·] = 0 in this case.

This section how to bound the differences between:

• Prediction estimate Ŷ = Xβ̂ and Xβ in terms of the ℓ1-norm and in terms of the

ℓ2-norm in Lemmas 3.A.7 and 3.A.11.

• Plugin estimate 1
n

∥∥∥Y −Xβ̂
∥∥∥
1
and E[|Ui|] in Lemma 3.A.9.

• Plugin estimate 1
n

∥∥∥Y −Xβ̂
∥∥∥2
2
and V[Ui] in Lemma 3.A.13.

The rest of the lemmas help to prove these results.

Lemma 3.A.7 (Exponential decay probability for ℓ1-norm deviation of sample linear least

squares prediction from population linear least squares prediction).
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For the setup given by Assumption 3.A.3 and Assumption 3.A.4, we have that for n large

enough and absolute constant c:

1

n

∥∥∥Xβ̂ −Xβ
∥∥∥
1
=

1

n
∥PU∥1 ≤

ds(1 + ξ) log(n)√
nc

+ rn

with probability at least 1− 3
nξ → 1.

Proof.

Let v1, v2, . . . , vd be an orthonormal basis for range(P ) = col(X), the column space of X

such that the inner product

⟨vj, vi⟩ = δij =


1 if i = j

0 o/w

,

which exists if we take any basis for col(X) and pass it through a Gram-Schmidt process.

Let Ũ = U − E[U |X]. For our quantity of interest, we have:

1

n
∥PU∥1 =

1

n

∥∥∥PŨ
∥∥∥
1
+

1

n
∥PE[U |X]∥1 triangle inequality

≤ 1

n

∥∥∥PŨ
∥∥∥
1
+ rn Assumption 3.A.4, with probability ≥ 1− 1

nξ

=
1

n

∥∥∥∥∥
d∑
j=1

⟨vj, Ũ⟩vj

∥∥∥∥∥
1

+ rn span{v1, . . . , vd} = col(X)

≤ 1

n

d∑
j=1

|⟨vj, Ũ⟩| ∥vj∥1 + rn triangle inequality

≤ 1

n

d∑
j=1

|⟨vj, Ũ⟩|
√
n ∥vj∥2 + rn b/c ∥·∥1 ≤

√
n ∥·∥2 in Rn

=
1√
n

d∑
j=1

|⟨vj, Ũ⟩|+ rn b/c ∥vj∥2 = 1

≤ d√
n

max
j=1,...,d

|⟨vj, Ũ⟩|+ rn

(3.18)
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Now consider each ⟨vj, Ũ⟩, which is zero-centered conditional on X. Theorem 2.8.2 of

Vershynin (2018), Bernstein’s inequality for a linear combination of independent zero-centered

sub-Exponential random variables, tells us that for t ≥ 0

Pr
(∣∣∣⟨vj, Ũ⟩∣∣∣ ≥ t

∣∣∣X) ≤ 2 exp

−cmin

 t2[
max
i=1,...,n

∥∥∥Ũi∥∥∥
ψ1

]2
∥vj∥22

,
t

max
i=1,...,n

∥∥∥Ũi∥∥∥
ψ1

∥vj∥∞




≤ 2 exp

[
−cmin

(
t2

s2
,
t

s

)]
,

where c is an absolute constant. The second inequality holds because ∥vj∥∞ ≤ ∥vj∥2 = 1, and

because max
i=1,...,n

∥Ui∥ψ1
≤ s by assumption. Note that the second inequality does not depend

on X, so we also have unconditionally

Pr
(∣∣∣⟨vj, Ũ⟩∣∣∣ ≥ t

)
≤ 2 exp

[
−cmin

(
t2

s2
,
t

s

)]
=


exp

(
−c t2

s2

)
if t ≤ s

exp
(
−c t

s

)
o/w

.

So by union bound,

Pr

(
max
j=1,...,d

∣∣∣⟨vj, Ũ⟩∣∣∣ ≥ t

)
≤


2d exp

(
−c t2

s2

)
if t ≤ s

2d exp
(
−c t

s

)
o/w

.

Letting ξ > 0 be arbitrary and t∗ = s(1 + ξ) log(n)/c and n > Nξ,s,c large enough such

that t∗ > s, we have:

Pr

(
max
j=1,...,d

∣∣∣⟨vj, Ũ⟩∣∣∣ ≥ t∗
)
≤ 2d

(n)1+ξ
≤ 2

(n)ξ
→ 0.

It follows that

1

n

∥∥∥Xβ̂ −Xβ
∥∥∥
1
≤ d√

n
max
j=1,...,d

∣∣∣⟨vj, Ũ⟩∣∣∣+ rn ≤
ds(1 + ξ) log(n)√

nc
+ rn

with probability at least 1− 2
nξ → 1.
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Lemma 3.A.8 (Sample Estimate of ∥·∥L1
).

Consider the setup given by Assumption 3.A.3 and Assumption 3.A.5. Denote b = ∥Ui∥L1
=

E[|Ui]|]. Also let ξ > 0 be arbitrary.

Then for n large enough and absolute constant c:∣∣∣∣∣ 1n
n∑
i=1

(|Ui| − b)

∣∣∣∣∣ ≤ (s+ τ + b/log(2)) log(n)

c1/2n1/2

with probability at least 1− 1
nξ → 1.

Proof.

Consider the sub-Exponential norm of the zero-centered r.v. |Ui| − b:

∥|Ui| − b∥ψ1
≤ ∥|Ui|∥ψ1

+ ∥b∥ψ1

= ∥Ui∥ψ1
+

b

log(2)

= ∥Ui − E[Ui|Xi·]∥ψ1
+ ∥E[Ui|Xi·]∥ψ1

+
b

log(2)

≤ s+ τ +
b

log(2)
=̇š,

(3.19)

with the second line holding by ∥|Ui|∥ψ1
= ∥Ui∥ψ1

, while ∥c∥ψ1
= |c|

log(2)
for any constant c.

The fourth line holds by Assumptions 3.A.3 and 3.A.5.

Theorem 2.8.2 of Vershynin (2018), Bernstein’s inequality for a linear combination of

independent zero-centered sub-Exponential random variables, tells us that for t ≥ 0:

Pr

(∣∣∣∣∣ 1n
n∑
i=1

(|Ui| − b)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

−cnmin

 t2[
max
i=1,...,n

∥|Ui| − b∥ψ1

]2 , t

max
i=1,...,n

∥|Ui| − b∥ψ1




≤ 2 exp

[
−cnmin

(
t2

š2
,
t

š

)]
,

where c is an absolute constant.
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Set t = šξ log(n)

c1/2n1/2 , and assume n large enough so that t ≤ š. Thus, min
(
t2

š2
, t
š

)
= t2

š2
. We

have:

Pr

(∣∣∣∣∣ 1n
n∑
i=1

(|Ui| − b)

∣∣∣∣∣ ≥ šξ log(n)√
cn

)
≤ 2

nξ
→ 0.

Lemma 3.A.9 (Laplace Shape Parameter Estimation with OLS Residuals).

Consider the setup given by Assumptions 3.A.3, 3.A.4, and 3.A.5. Let our estimate of

b=̇ ∥Yi −Xi·β∥L1
be:

b̂=̇
1

n

∥∥∥Y −Xβ̂
∥∥∥
1
.

Then for n large enough and absolute constant c:

|b̂− b| ≤ 2d(s+ τ + b/log(2))(1 + ξ) log(n)

c1/2n1/2
+ rn

with probability at least

1− 2

nξ
→ 0.

Proof.

Note that:

b̂ ≤ 1

n

∥∥∥Xβ −Xβ̂
∥∥∥
1
+

1

n
∥U∥1

=
1

n
∥PU∥1 +

1

n
∥U∥1

(3.20)

by triangle inequality. Similarly,

b̂ =
1

n
∥U + PU∥1

≥
∣∣∣∣ 1n ∥U∥1 − 1

n
∥−PU∥1

∣∣∣∣
≥ 1

n
∥U∥1 −

1

n
∥PU∥1

(3.21)
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by reverse triangle inequality. Thus,

b̂− b ≤ 1

n
∥PU∥1 +

1

n
∥U∥1 − b ≤ 1

n
∥PU∥1 +

∣∣∣∣ 1n ∥U∥1 − b

∣∣∣∣ .
Similarly,

b− b̂ ≤ b− 1

n
∥U∥1 +

1

n
∥PU∥1 ≤

1

n
∥PU∥+

∣∣∣∣ 1n ∥U∥1 − b

∣∣∣∣ .
So overall,

|b̂− b| ≤ 1

n
∥PU∥+

∣∣∣∣ 1n ∥U∥1 − b

∣∣∣∣ .
By Lemmas 3.A.7 and 3.A.8, we have that

|b̂−b| ≤ (s+ τ + b/log(2)) log(n)

c1/2n1/2
+
ds(1 + ξ) log(n)√

nc
+rn ≤

2d(s+ τ + b/log(2))(1 + ξ) log(n)√
nc

+rn

with probability at least

1− 2

nξ
→ 1.

Lemma 3.A.10 (Variance Estimate for Sub-Exponential Random Variables).

Let Assumptions 3.A.3 and 3.A.5 hold. Also assume E[U4
i ] <∞ (implying that V[U2

i ] <∞).

Consider the deviation of the variance estimate 1
n

∑n
i=1 U

2
i from V[Ui] = E[U2

i ] = σ2.

For arbitrary ξ > 0, n large enough, and abslute constant c, we have that:∣∣∣∣∣
(
1

n

n∑
i=1

U2
i

)
− σ2

∣∣∣∣∣ ≤ (1 + ξ)(s+ τ) log3/2(2n)
√
32

cn1/2
→ 0

with probability at least

1− 1

(2n)ξ
→ 1.
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Proof.

Indexing across f ∈ F , we will make use of the Rademacher process

f 7→
n∑
i=1

ρiZi(f),

where (ρ1, ρ2, . . . , ρn)⊥⊥(U1, U2, . . . , Un), ρi
i.i.d.∼ Unif{−1, 1}, and Zi(f)=̇

1
n
f(Ui). In our case,

we will take F to be a singleton set with element t 7→ t− σ2.

Lemma 2.3.7 (Symmetrization for probabilities) of van der Vaart and Wellner (1996)

tells us that for our iid stochastic processes Z1(f), . . . , Zn(f) and arbitrary functionals

µ1, . . . , µn : F 7→ R,

βn(x)Pr

(
sup
f∈F

∣∣∣∣∣
n∑
i=1

Zi(f)

∣∣∣∣∣ > x

)
≤ 2Pr

(
4 sup
f∈F

∣∣∣∣∣
n∑
i=1

ρi(Zi(f)− µi(f))

∣∣∣∣∣ > x

)
, (3.22)

for every x > 0 and

βn(x) = inf
f
Pr

(∣∣∣∣∣
n∑
i=1

Zi(f)

∣∣∣∣∣ < x/2

)
. (3.23)

We will take µi(f) = −σ2 for each i = 1, 2, . . . , n.

Noting that in our case we have a supremum across a singleton set F , we can re-write the

inequality in (3.22) as:

Pr

(∣∣∣∣∣ 1n
n∑
i=1

(
U2
i − σ2

)∣∣∣∣∣ > x

)
≤
[

1

βn(x)

]
2Pr

(
4

∣∣∣∣∣ 1n
n∑
i=1

ρiU
2
i

∣∣∣∣∣ > x

)
. (3.24)

Now, consider the event

Eγ = { max
i=1,...,n

|Ui| ≤ γ} = { max
i=1,...,n

U2
i ≤ γ2}.

Note that

Pr

(∣∣∣∣∣ 1n
n∑
i=1

ρiU
2
i

∣∣∣∣∣ > x/4

)
≤ Pr

(∣∣∣∣∣ 1n
n∑
i=1

ρiU
2
i

∣∣∣∣∣ > x/4

∣∣∣∣∣Eγ
)

+ Pr(ECγ ),
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since Pr(·) = Pr(·|Eγ)Pr(Eγ) + Pr(·|ECγ )Pr(ECγ ) ≤ Pr(·|Eγ) + Pr(Ecγ).

We want for the upper bound

Pr

(∣∣∣∣∣ 1n
n∑
i=1

ρiU
2
i

∣∣∣∣∣ > x/4

∣∣∣∣∣Eγ
)

+ Pr(ECγ )

to go to zero.

By union bound and properties of sub-Exponential random variables, we have that:

Pr(ECγ ) ≤ nPr(|Ui| > γ) ≤ 2n exp

[
−cmin

(
γ2

(s+ τ)2
,

γ

s+ τ

)]
,

Here, we used that ∥Ui∥ψ1
≤ ∥Ui − E[Ui|Xi·]∥ψ1

+ ∥E[Ui|Xi·∥ψ1
≤ s+ τ .

Let γ = (1 + ξ)(s + τ) log(2n)/c and n large enough so that min
(

γ2

(s+τ)2
, γ
s+τ

)
= γ

s+τ
.

Thus,

Pr(ECγ ) ≤ nPr(|Ui| > γ) ≤ 2n

(2n)1+ξ
=

1

(2n)ξ
→ 0.

Now consider that, conditional on Eγ , ρiU2
i ∈ [−γ2, γ2] almost surely. Hoeffding’s inequality

for sums of bounded random variables thus tells us that:

Pr

(∣∣∣∣∣ 1n
n∑
i=1

ρiU
2
i

∣∣∣∣∣ > x/4

∣∣∣∣∣Eγ
)

= Pr

(∣∣∣∣∣
n∑
i=1

ρiU
2
i

∣∣∣∣∣ > nx/4

∣∣∣∣∣Eγ
)
≤ exp

[
−2(nx/4)2

n(2γ)2

]
= exp

[
− nx2

32γ2

]
.

Letting x =
γ
√

32ξ log(2n)

n1/2 , we have that conditional on Eγ,

∣∣∣∣∣ 1n
n∑
i=1

ρiU
2
i

∣∣∣∣∣ > (1 + ξ)(s+ τ) log3/2(2n)

cn1/2
→ 0

with probability at most:
1

(2n)ξ
→ 0.

So unconditionally:

Pr

(∣∣∣∣∣ 1n
n∑
i=1

ρiU
2
i

∣∣∣∣∣ > x/4

)
≤ Pr

(∣∣∣∣∣ 1n
n∑
i=1

ρiU
2
i

∣∣∣∣∣ > x/4

∣∣∣∣∣Eγ
)

+ Pr(ECγ ) ≤
2

(2n)ξ
→ 0. (3.25)
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Now recall our choice of βn(x). Base on Zi(f) =
1
n
(U2

i − σ2), we have:

βn(x) = 1− Pr

(∣∣∣∣∣ 1n
n∑
i=1

(U2
i − σ2)

∣∣∣∣∣ ≥ x/2

)

≥ 1− 4

x2
V

[
1

n

n∑
i=1

(U2
i − σ2)

]
by Chebyshev’s Inequality

= 1− 4

nx2
V[U2

i ]

= 1− c2

8ξ(1 + ξ)2(s+ τ)2 log3(2n)
based on our choice of x.

(3.26)

For large enough n, note that βn(x) ≥ 1/2. Thus, for this large enough n and our choice of

x, (3.24) and (3.25) tell us that:∣∣∣∣∣
(
1

n

n∑
i=1

U2
i

)
− σ2

∣∣∣∣∣ ≤ (1 + ξ)(s+ τ) log3/2(2n)
√
32

cn1/2
→ 0

with probability at least

1− 1

(2n)ξ
→ 1.

Lemma 3.A.11 (Exponential decay probability for ℓ2-norm deviation of sample linear least

squares prediction from population linear least squares prediction).

For the setup given by Assumptions 3.A.3, 3.A.4, we have that for n large enough and absolute

constant c:
1

n

∥∥∥Xβ̂ −Xβ
∥∥∥2
2
≤ ds2(1 + ξ)2 log2(n)

nc2
+ rn

with probability at least 1− 3
nξ → 1.

Proof.

Let v1, v2, . . . , vd be an orthonormal basis for range(P ) = col(X), the column space of X such

that the inner product

⟨vj, vi⟩ = δij =


1 if i = j

0 o/w

,
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which exists if we take any basis for col(X) and pass it through a Gram-Schmidt process.

Let Ũ = U − E[U |X].

For our quantity of interest, we have:

1

n
∥PU∥22 ≤

1

n

∥∥∥PŨ
∥∥∥2
2
+

1

n
∥PE[U |X]∥22

≤ 1

n

∥∥∥PŨ
∥∥∥2
2
+ rn Assumption 3.A.4, with probability ≥ 1− 1

nξ

=
1

n

∥∥∥∥∥
d∑
j=1

⟨vj, Ũ⟩vj

∥∥∥∥∥
2

2

+ rn

=
1

n

d∑
j=1

|⟨vj, Ũ⟩|2 ∥vj∥22 + rn Pythagoras’ theorem

=
1

n

d∑
j=1

|⟨vj, Ũ⟩|2 + rn because ∥vj∥2 = 1

≤ d

n
max
j=1,...,d

|⟨vj, Ũ⟩|2 + rn

=
d

n

(
max
j=1,...,d

|⟨vj, Ũ⟩|
)2

+ rn.

(3.27)

Now consider an arbitrary ⟨vj, Ũ⟩, which is zero-centered conditional on X. Theorem

2.8.2 of Vershynin (2018), Bernstein’s inequality for a linear combination of independent

zero-centered sub-Exponential random variables, and a similar argument to Lemma 3.A.7 tell

us the following. For arbitrary ξ > 0 and t∗ = s(1 + ξ) log(n)/c and n > Nξ,s,c large enough

such that t∗ > s, we have:

Pr

(
max
j=1,...,d

|⟨vj, U⟩| ≥ t∗
)
≤ 2d

(n)1+ξ
≤ 2

nξ
→ 0.

It follows that

1

n

∥∥∥Xβ̂ −Xβ
∥∥∥2
2
≤ d

n

[
max
j=1,...,d

|⟨vj, U⟩|
]2
≤ ds2(1 + ξ)2 log2(n)

nc2

with probability at least 1− 3
nξ → 1.
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Lemma 3.A.12 (ℓ∞-norm of Sub-Exponential Vector).

Consider the setup in Assumption 3.A.3 and 3.A.5. Let ξ > 0 be arbitrary. We have that

∥U∥∞ ≤ (s+ τ)(1 + ξ) log(n)

with probability at least 1− 2
nξ → 1.

Proof.

Let t > 0. Consider:

Pr(∥U∥∞ > t) ≤ nPr(|Ui| > t)

=nPr(exp(|Ui|/ ∥Ui∥ψ1
) > exp(t/ ∥Ui∥ψ1

))

≤ nE

[
exp

(
|Ui|
∥Ui∥ψ1

)]
exp(−t/ ∥Ui∥ψ1

) by Markov Inequality

≤ n2 exp(−t/ ∥Ui∥ψ1
) by defn. of ∥·∥ψ1

≤ 2 exp(−t/(s+ τ) + log(n)) b/c ∥Ui∥ψ1
≤ s+ τ

≤ 2 exp(−t/(s+ τ) + log(n))

where the first inequality follows from union bound.

Let ξ > 0 be arbitrary. Set t = (s+ τ)(1 + ξ) log(n). Thus,

∥U∥∞ ≤ (s+ τ)(1 + ξ) log(n)

with probability at least

1− 2 exp (−ξ log(n)) = 1− 2

nξ
→ 1.

Lemma 3.A.13 (Plug-in Variance Estimation with OLS Residuals).
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Consider the setup given by Assumptions 3.A.3, 3.A.4, and 3.A.5. Denote σ̂ = 1√
n

∥∥∥Y −Xβ̂
∥∥∥
2

and σ = ∥Yi −Xi·β∥L2
, where ∥U∥Lp

= (E[Up])1/p.

Then for arbitrary ξ > 0 and absolute constant c > 0:

|σ̂2 − σ2| >
(1 + ξ)(s+ τ) log3/2(2n)

√
32

cn1/2
+

ds(s+ τ)(1 + ξ)2 log2(n)

n1/2c

+
(s+ τ)(1 + ξ) log(n)

n1/2c
rn +

ds2(1 + ξ)2 log2(n)

nc2
+ rn

with probability at least

1− 5

nξ
→ 0.

Proof.

By the definition of σ̂2 and the fact that Y = Xβ + U , we obtain

σ̂2 =
1

n
UTU +

2

n
UTX(β − β̂) +

1

n

∥∥∥X(β − β̂)
∥∥∥2
2
.

Denoting σ⃗ = (σ, σ, . . . , σ)T ∈ Rn, we can see that:

|σ̂2 − σ2| ≤ 1

n
|UTU − σ⃗T σ⃗|+ 2

n
|UTX(β − β̂)|+ 1

n
∥PU∥22 .

For the middle term on the right of the inequality, we can apply Cauchy-Schwarz inequality

and have further that:

|σ̂2 − σ2| ≤ 1

n
|UTU − σ⃗T σ⃗|+ 2

n
∥U∥∞ ∥PU∥1 +

1

n
∥PU∥22 .

Note that we have controlled all the terms on the right hand side already in Lemmas

3.A.7, 3.A.10, 3.A.11, and 3.A.12. That is, these lemmas imply that:

|σ̂2 − σ2| >
(1 + ξ)(s+ τ) log3/2(2n)

√
32

cn1/2
+

ds(s+ τ)(1 + ξ)2 log2(n)

n1/2c

+
(s+ τ)(1 + ξ) log(n)

n1/2c
rn +

ds2(1 + ξ)2 log2(n)

nc2
+ rn
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with probability at most

5

nξ
→ 0.

for arbitrary ξ > 0 and absolute constant c > 0.

3.B A modified neighborhood set which guarantees residuals have

conditional mean zero

The question of this subsection is, “for every possible π0 ∈ ΠG and each k which is not in the

partial ordering given by π0 at step t, how can we modify the regression sets N̂π0
kt to guarantee

the requirement in Theorem 3.2.2 that E
[
Rπ0
kt

∣∣∣XN̂
π0
kt

]
= 0 will hold?” The main results of

this section are Algorithm 3 and Theorem 3.B.1. Algorithm 3 tells us how to modify the sets

N̂π0
kt , while Theorem 3.B.1 tells us why E[Rπ0

kt |XN̂
π0
kt
] = 0 will hold after applying Algorithm 3.

3.B.1 Algorithm 3 for Appending Regression nodes

Consider that our use of the sets N̂k coincides with the definition of an undirected graph where

an edge between node j and k exists if either j ∈ N̂k or k ∈ N̂j . Because of Assumption 2.2.3,

it follows that d-separation queries on this undirected graph imply conditional independence

statements. For example, if N̂k ̸= [p]\{k} (the trivial neighborhood set), we have that

Xk⊥⊥X[p]\(N̂k∪{k})|XN̂k
. For more details, we refer the reader to Proposition 4.8 in §4.5 of

Koller and Friedman (2009) on moral graphs: undirected graphs formed by adding undirected

edges between all co-parents in a DAG and removing the orientation from every directed edge.

See also Figure 3.B.1 for an example of a moral graph. In our case, due to Assumption 2.2.3,

the (undirected) moral graph corresponding to our LiNGAM’s underlying DAG contains a

subset of the edges in our undirected graph of interest.
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To modify N̂π0
kt according to our requirement in Theorem 3.2.2 that E

[
Rπ0
kt

∣∣∣XN̂
π0
kt

]
= 0,

we will make strategic use of first and higher order neighbors to define sequences of m ≥ 3

nodes (a1, . . . , am) such that al ∈ N̂al+1
or al+1 ∈ N̂al (1 ≤ l ≤ m − 1). We will take a1 to

be a sorted node that is not in the set N̂π0
kt already, and al for 2 ≤ l ≤ m to be unsorted

nodes with am = k. The logic is that the nodes al (1 ≤ l ≤ m − 1) in Algorithm 3 are

candidate ancestors for node k, if any. In particular, am−1 is a prospective parent of k, and

we need to account for paths which go through it because it is unsorted. This translates to

finding additional sorted nodes a1 that can be k’s ancestors and appending them to the set

N̂π0
kt . As we demonstrate shortly, appending these nodes to N̂π0

kt guarantees that Rπ0
kt will be

independent of XN̂
π0
kt
. In practice, the ancestor candidates al (2 ≤ l ≤ m− 1) may include

node k’s descendants in terms of the underlying DAG G, but we must take these ancestor

candidates into account because at step t ≥ 3 we technically only know the partial ordering

Aπ0t = {π0(j)}t−1
j=1.

For use in Algorithm 3, consider:

Lπ0kt =̇
⋃

j∈N̂π0
kt

{j} ∪ ANπ0
j ,

which contains each j ∈ N̂π0
kt and its ancestors, as determined by the partial ordering at steps

π−1
0 (j) and the a priori known neighborhood sets. Note that N̂π0

kt ⊆ Lπ0kt ⊆ A
π0
t := {π0(j)}t−1

j=1.

The candidate nodes to append to N̂π0
kt will be those in Lπ0kt \N̂

π0
kt .

3.B.2 Example Output of Algorithm 3

As an example to what Algorithm 3 outputs, consider Figure 3.B.1 and π0 given by the

natural ordering, π0(j) = j for j = 1, 2, . . . , 5, which is unique in this case (this need not be

the case in general):

1. At step t = 1, the partial ordering is empty, so we need not apply Algorithm 3 since

each Xj (j = 1, 2, . . . , 5) is, without loss of generality, marginally zero-centered.

88



Algorithm 3: Appending regression nodes to N̂π0
kt

Data: π0 ∈ ΠG, t ∈ [3, p], k ̸∈ Aπ0t , {N̂j}pj=1

Result: N̂π0
kt ∪ Sπ0kt

#initialize set of nodes to append

Sπ0kt ← ∅

if |N̂π0
kt | = 0 then

#no need to append nodes

else

#decide what nodes to append

#the candidate ancestors to append

for a ∈ Lπ0kt \N̂
π0
kt do

# check whether node k is reachable from node a along paths for which only

a ∈ Aπ0t
if there exists a sequence of m ≥ 3 nodes (a1, . . . , am) such that

• a1 = a, am = k.

• al ∈ N̂al+1
or al+1 ∈ N̂al for 1 ≤ l ≤ m− 1.

• al ̸∈ Aπ0t for 2 ≤ l ≤ m.

then

Sπ0kt ← Sπ0kt ∪ {a}.

else

continue

end

end

end
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X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

Figure 3.B.1: The original DAG (left) and the undirected graph (right) used for Algorithm

3, which we can arrive at if N̂k = MBk, node k’s Markov Blanket, for each k = 1, 2, . . . , 5.

Compared to the DAG on the left, notice the extra edge between X1 and X4, since a markov

blanket contains co-parents.

2. At step t = 2, the partial ordering is {1}. The corresponding sets of ordered neighbors

are N̂π0
22 = N̂π0

41 = N̂π0
52 = {1} and N̂π0

32 = ∅. Because there are no more nodes to append

to N̂π0
22 , N̂

π0
41 , and N̂π0

52 , we need not apply Algorithm 3 for nodes 2, 4, and 5. For node

3, we also need not run Algorithm 3 because we assume X3 is marginally zero-centered.

3. At step t = 3, the partial ordering is {1, 2}. The corresponding sets of ordered neighbors

are N̂π0
33 = {2} and N̂π0

43 = N̂π0
53 = {1}.

• In the undirected graph in Figure 3.B.1, there exists a path from the sorted node

1 to the unsorted node 4, a neighbor of node 3. So Sπ033 = {1} in Algorithm 3.

• Sπ043 = {2} because of the path that exists in the undirected graph from sorted

node 2 to unsorted node 3, a neighbor of node 4.

• Finally, Sπ053 = {2} because there is a path in the undirected graph from sorted

node 2, through unsorted node 3, then to the unsorted node 4, a neighbor of node

5.

4. At step t = 4, the partial ordering is {1, 2, 3}. The sets of ordered neighbors are

N̂π0
44 = {1, 3} and N̂π0

54 = {1}.

• We cannot append node 2 to N̂π0
44 in Algorithm 3, because no path from node 2 to

an unsorted neighbor of node 4 satisfies the constraint that is must contain only

one sorted node.
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Figure 3.B.2: The DAG that results from Algorithm 3.

• Sπ054 = {3} due to the path from node 3 to node 4 in the undirected graph. We

similarly do not add node 2 to Sπ054 because the path from node 2 to node 4 contains

two sorted nodes.

5. At step t = 5, the partial ordering is {1, 2, 3, 4} and we have only one node left to order,

so we need not run Algorithm 3.

3.B.3 Theoretical Grounding of Algorithm 3

Recycling notation, now take N̂π0
kt = N̂π0,old

kt ∪ Sπ0kt as the output of Algorithm 3. In Theorem

3.B.1, we formally show that with our modified regression set N̂π0
kt ,

E[Rπ0
kt |XN̂

π0
kt
] = 0.

Figure 3.B.2 provides the corresponding DAG with S = N̂π0
kt as outputted by Algorithm 3

and T = Lπ0kt .

Theorem 3.B.1 (Xk is linear in XN̂
π0
kt

after applying Algorithm 3).

For simplicity of notation, let S = N̂π0
kt as outputted by Algorithm 3 and T = Lπ0kt , which

contains nodes in N̂π0
kt and their ancestors. We have that

Xk = ηTXS +MkTCϵTC ,

with MkTCϵTC⊥⊥XS and Rπ0
kt = MkTCϵTC . That is, the DAG of Figure 3.B.2 holds with each

child being linearly related to its parents.
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Proof.

Consider the entry (b, a) of the mixing matrix M. It corresponds to the signal Xb obtains

from ϵa. Intuitively, this signal is related to all directed paths from node a to node b in the

underlying DAG. These directed paths can be defined as sequences of nodes (a1, . . . , am) with

m ≥ 1 such that:

• a1 = a and am = b.

• al ∈ PAal+1
for 1 ≤ l ≤ m− 1 when m ≥ 2.

Based on the linear relationship each node has with its parents, we have that:

Mba = 1{a=b} +
∑

a1,...,am∈[p]:
2≤m≤p,a1=a,am=b

m−1∏
l=1

Balal+1
. (3.28)

Note that in (3.28), we are technically summing across
∑

2≤m≤p p
m−2 combinations of nodes.

But because B is an acyclic weighted adjacency matrix, the terms Balal+1
will conveniently

be zero if al ̸∈ PAal+1
. This implies that Mba = 0 if a ̸∈ {b} ∪ ANb, Mba = 1 if b = a, and

overall that Mba will only be a sum of non-zero terms corresponding to valid directed paths

from a to b.

Consider two sets of nodes S and T such that S ⊆ T ⊆ [p]\{k} and every directed path

from a node a ∈ T must go through a node b ∈ S in order to reach k (including the case that

a = b). This is exactly the case with S = N̂π0
kt and T = Lπ0kt as a property of Algorithm 3. For

any a ∈ T , it follows that all directed paths (a1, . . . , am) from a1 = a to am = k are such that

the index λ = argmax{1 ≤ l ≤ m− 1 : al ∈ S} exists: aλ is the final node in the directed

path which was an element of S. An important property of λ is that al ∈ {k} ∪ ANk\Aπ0t
for λ < l ≤ m due to our reconstruction of S in Algorithm 3. Incorporating this additional
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structure to (3.28), we have:

Mka =
∑

a1,...,am∈[p]:
2≤m≤p,a1=a,am=k

∃ λ=argmax{1≤l≤m−1: al∈S}

m−1∏
l=1

Balal+1

=
∑
b∈S


∑

a1,...,am∈[p]:
2≤m≤p,a1=a,am=k

∃ λ=argmax{1≤l≤m−1: al∈S}
aλ=b

m−1∏
l=1

Balal+1



=
∑
b∈S


1{a=b} +

∑
a1,...,aλ∈[p]:

2≤λ≤p,a1=a,aλ=b

λ−1∏
l=1

Balal+1

 ∑
b1,...,bγ∈[p]:

2≤γ≤p,b1=b,bγ=k
bl ̸∈A

π0
t for 2≤l≤λ

[
γ−1∏
l=1

Bblbl+1

]
=
∑
b∈S

Mba

∑
b1,...,bγ∈[p]:

2≤γ≤p,b1=b,bγ=k
bl ̸∈A

π0
t for 2≤l≤λ

γ−1∏
l=1

Bblbl+1

= ηTMSa.

(3.29)

Note that the sum in the first line is across a non-empty set of node sequences, based on

a ∈ T and our discussion around aλ. The second line is essentially the same as the first, but

in the inner sum we are specifying which node b ∈ S is equal to aλ, while in the outer sum

we are iterating through the various possible b ∈ S. The third line in (3.29) holds because

for λ ≥ 2:

(a1, . . . , aλ, . . . , am) = (a1, . . . , b1, . . . , bγ).

The indicator 1{a=b} incorporates the possibility that the path, (a1, . . . , am), starts at b ∈ S

if a = b. The fourth line in (3.29) holds based on an application of (3.28) for Mba. In the

fifth line, we take η ∈ R|S|×1 such that

ηj =
∑

b1,...,bγ∈[p]:
2≤γ≤p,b1=(S)j ,bγ=k

bl ̸∈A
π0
t for 2≤l≤λ

γ−1∏
l=1

Bblbl+1
,
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where (S)j is the j-th element of the set S.

Note that η does not depend on a ∈ T , so it follows that from (3.29) that:

MkT = ηMST .

Consider that:

Xk = MkT ϵT +MkTCϵTC

= ηMST ϵT +MkTCϵTC because MkT = ηMST

= ηXS +MkTCϵTC because XS = MST ϵT ,

(3.30)

which is what we wanted to show. Note that MkTCϵTC⊥⊥XS because XS is a deterministic

function of ϵT and ϵT⊥⊥ϵTC by our LiNGAM assumption. Also, the least squares residual

satisfies Rπ0
kt = MkTCϵTC because

η = argmin
θ

{
E[(ηTXS − θTXS)

2] + E[(MkTCϵTC )2]
}
= argmin

θ
E[(Xk − θTXS)

2].
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CHAPTER 4

Non-asymptotic Confidence Bands on the Probability

an Individual Benefits from Treatment (PIBT)

4.1 Introduction

This chapter presents our work found in the pre-print Ruiz and Padilla (2022).

Figure 4.1.1: A hypothetical distribution for the Individual Treatment Effects. Here, the

mean is positive yet the probability an individual’s treatment outcome is better (larger in

value) than their control outcome is approximately 50%.

We are interested in the individual treatment effect (ITE):

Yi(1)− Yi(0), i = 1, 2, . . . , N,
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where Yi(w) for w = 0, 1 is known as a potential outcome (Splawa-Neyman et al. 1990, Rubin

1974) and equivalently as a counterfactual (Pearl 2009, Hernán and Robins 2020). Here,

Yi(w) corresponds to the outcome Yi of interest when a hypothetical experimenter intervenes

with nature to force the binary exposure indicator Wi for individual i to be little w ∈ {0, 1},

typically through random assignment in an experiment. This intervention can also be denoted

by (Pearl 2009)’s “do” operator: Yi(w) is the outcome we observe under do(Wi = w).

Suppose a large value of the observed outcome Yi = WiYi(1) + [1−Wi]Yi(0) is “good” for

an individual. Assuming we wish to show Wi = 1 is effective at accomplishing this, we will

consider an individual such that

Yi(1)− Yi(0) > δ (4.1)

to have benefited from treatment. We can take δ to be any relevant threshold we’d like,

such as δ = 0. We may also reverse the inequality if more appropriate. Should the potential

outcomes be binary, we may also use the inequality in (4.1) with δ = 0. Moreover, if the

outcome of interest is strictly positive, we may alternatively define benefiting from treatment

in terms of the ratio of an individual’s potential outcomes being above a threshold as we

discuss in Section 4.2.4. For simplicity of presentation and without any loss of generality for

these alternative definitions which our results can be applied to, we will say an individual

benefits from treatment when the inequality in (4.1) holds. Just as well, the vocabular and

notational semantics of the inequality in (4.1) can instead be with respect to whether an

individual is harmed by an intervention as we discuss in Section 4.4.

As can be appreciated from the hypothetical distribution of the individual treatment

effects in Figure 4.1.1, it is very well possible that the average of the individual treatment

effect distribution is pulled by outliers and therefore may mislead us. This example motivates

our interest in the probability an individual benefits from treatment (PIBT) as provided in

Definition 4.1.1.

Definition 4.1.1 (The probability an individual benefits from treatment (PIBT)).
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To understand heterogeneity in treatment effect for individuals across differing strata of a

pre-treatment covariate, Xi, denote

θ(δ, x) := Pr (Yi(1)− Yi(0) > δ|Xi = x)

as the conditional probability an individual benefits from treatment in pre-treatment covariate

stratum x. To understand the effect of treatment for all individuals regardless of strata,

denote

θ(δ) := Pr (Yi(1)− Yi(0) > δ)

as the marginal probability an individual benefits from treatment.

Here, Xi is a pre-treatment covariate that is thought to deconfound variability in the

observed outcome Yi that is not due toWi and exogenous noise alone (see Assumption 4.1.7 and

Example 4.1.8) (Rubin 1974, Imbens and Rubin 2015). One can see that θ(δ) = E [θ(Xi, δ)],

where the expectation is taken with respect to the confounder Xi. Consider now two very

similar quantities in Definition 4.1.2.

Definition 4.1.2 (Probability a treatment outcome is better than an independently drawn

control outcome).

To understand heterogeneity in treatment’s effect across differing individuals and across

differing strata of a pre-treatment covariate, denote

η(δ, x) := Pr (Yi(1)− Yj(0) > δ|Xi = Xj = x; i ̸= j)

as the probability that a randomly selected individual in pre-treatment covariate stratum x

has a treatment potential outcome that is better than the control potential outcome of a

differing randomly selected individual also in stratum x. To understand treatment’s effect

across differing individuals overall, denote

η(δ) := Pr (Yi(1)− Yj(0) > δ; i ̸= j)

as the overall probability that a randomly selected individual has a treatment outcome that

is better than a differing randomly selected individual’s control outcome.
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Of crucial importance, θ(δ, x) and θ(δ) are not in general the same as η(δ, x) and η(δ)

in Definition 4.1.2 (Hand 1992, Greenland et al. 2020). This is because Yi(1) and Yi(0)

are in general dependent random variables, while Yi(1) is independent of Yj(0) when i ̸= j

under the standard Stable Unit Treatment Value Assumption (see Assumption 4.1.3). Under

appropriate identifiability assumptions, such as Assumption 4.1.5 or Assumption 4.1.7 below,

η(δ, x) and η(δ) can be identified because we can generally sample from the distributions

Yi|Wi = w,Xi = x and Yi|Wi = w for w = 0, 1. It is impossible to sample from the joint

distributions of (Yi(0), Yi(1)) marginally or given Xi = x, because an individual cannot be

in both the treatment group and the control group simultaneously. So we cannot generally

identify θ(δ, x) nor θ(δ). Not even if we are able to perfectly match individuals in opposite

treatment groups based on pre-treatment covariates. This is what is known as the fundamental

problem of causal inference.

The goal nonetheless is to reason about θ(δ, x) and θ(δ) through estimated bounds on

these quantities. Building from the work of Fan and Park (2010), our focus is on deriving

closed-form, non-asymptotic margins of error on the estimated bounds for an overall confidence

band on PIBT of the form: PIBT is contained between

[estimator for lower bound on PIBT]− [margin of error for PIBT bounds] (4.2)

and

[estimator for upper bound on PIBT] + [margin of error for PIBT bounds] (4.3)

with some target frequentist confidence level. This interpretation with respect to PIBT is

motivated by that of Fay et al. (2018) for the bootstrap confidence intervals they calculate

using the PIBT bound estimators of Fan and Park (2010) in the randomized experiment

setting.

4.1.0.1 Overview of our contributions

The contributions of the present work are as follows.
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1. For the bounds on the marginal probability an individual benefits from treatment which

are estimated with data from a randomized experiment (RE), we derive a closed-form

concentration inequality depending on only the sample size and the desired frequentist

confidence level. As discussed in Section 4.2.3, this allows for a formal statistical power

analysis, albeit conservative, but notably without the requirement of an asymptotic

limiting distribution nor the specification of any unknown parameters (e.g. plausible

effect sizes). Different from the non-asymptotic margin of error that can be obtained

with bootstrap re-sampling (Efron and Tibshirani 1994, Bickel et al. 1997), our non-

asymptotic margin of error will be closed-form and simultaneous for all thresholds δ

that can be used to define PIBT, thus allowing for a form of sensitivity analysis on its

definition.

2. Making strategic use of regression residuals, we also discuss how to estimate, possibly in

an observational setting, the PIBT conditional on strata of an individual’s pre-treatment

co-variates. We accompany the proposed approach to study heterogeneity in PIBT

with a simple but general theorem that suggests how to extend or obviate from this

approach with regression residuals. For the approach with regression residuals, we

provide tailored versions of the general statement that allow for a frequentist confidence

interpretation simultaneously at all pre-treatment covariate strata. In Section 4.3.2.1,

we provide an extended discussion of the application of this result to the canonical

linear regression model.

3. We include in Section 4.4 an extended discussion on the scope of our results. For binary

potential outcomes, we show in Proposition 4.4.1 that the general approach we take to

bound PIBT is equivalent to using the sharp Boole-Fréchet bounds (Rüschendorf 1981).

4. We include in Section 4.5 an example application to a real-life randomized experiment

dataset, Criteo AI Lab’s benchmark data for uplift prediction (Diemert Eustache, Betlei

Artem et al. 2018). In particular, this section points toward a useful combination
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of conditional average treatment effect (CATE) estimation and inferring Individual

Treatment Effects: through a partitioning of individuals in a sample based on their

similar CATE prediction, we can estimate PIBT in each of these strata to better

understand the implication of the CATE estimate. This is related to recent work

on more interpretable causal analysis given by stratifying treatment effects on an

informative univariate score, such as a prognostic or propensity score (Abadie et al.

2018, Padilla et al. 2021, Ye et al. 2021b, Yadlowsky et al. 2021, Xu and Yadlowsky

2022).

The existing mathematical results we exploit include the following. Key to establishing

the population-level target bounds on PIBT, we use the Makarov bounds first introduced in

Makarov (1982) and later generalized in (Frank et al. 1987, Williamson and Downs 1990).

These works establish a distribution-free bound on the cumulative distribution function (CDF)

on the sum (or difference or product) of two or more random variables having any unknown

joint distribution and fixed marginal distributions. For the non-asymptotic concentration

results (the margin of error derivations), the novel contribution of this chapter, we use

the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (Dvoretzky et al. 1956, Massart 1990,

Naaman 2021). The DKW inequality gives a non-parametric, non-asymptotic deviation

inequality for the supremum difference at any evaluation point between a target CDF and its

empirical analogue estimated with a sample of independent and identically distributed (i.i.d.)

random variables. Importantly, Massart (1990), Naaman (2021) show that this inequality is

tight under no additional assumptions.

4.1.1 Existing work

4.1.1.1 Bounding the Distribution of Individual Treatment Effects

Statistical inference on the CDF of the ITE distribution, 1− θ(δ), has been of interest before

the present work. In particular, we are decidedly not unique in applying Makarov (1982)’s
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bounds to study the ITE’s CDF. Fan and Park (2010) estimate bounds on 1− θ(δ) under a

randomized experiment (RE) setting in which the distributions of Yi(1) and Yi(0) are each

marginally identified. These authors present a straightforward plug-in estimation approach

that uses the empirical marginal CDFs to estimate the lower bound and upper bound on

1− θ(δ) in practice. We make use of this same plug-in estimation approach for the RE setting

as well.

The contribution of this work, relative to the contribution of Fan and Park (2010) in the

RE setting, is the concentration inequality for the estimated PIBT bounds. Under regularity

conditions, the authors show asymptotically that the plug-in bound estimators follow either

a normal distribution (centered at the target bound), or a truncated normal distribution,

or a point mass. Exactly which distribution this is depends on the supremum difference

between the two potential outcomes’ CDFs, which is unkown. Even if we knew that the

asymptotic distribution of the estimator is Gaussian, a prospective power analysis further

requires an estimator for the standard error (not provided in their work) to guarantee a

target confidence level and margin of error (e.g. a maximum deviation of 0.05). This points

to a strength of the main concentration result in this setting: despite the possibility that the

plug-in estimator can have a non-trivial, possibly biased, sampling distribution in a finite

sample, the confidence level we can have for a target margin of error depends only on sample

size (see the discussion around Theorem 4.2.1 and Figure 4.2.1 for details).

Fay et al. (2018) further discuss the statistical inference technique of Fan and Park (2010)

in conjunction with the quantity 1−η(δ) in Definition 4.1.2. They discuss how 1−η(δ) (plus a

tie correction term allowing for discrete outcomes) is related to the Wilcoxon-Mann-Whitney

U test (Wilcoxon 1945, Mann and Whitney 1947), often used as a non-parametric alternative

to the 2 sample t-test (Fay and Proschan 2010). Through extensive synthetic examples and

an application to study vaccine efficacy, these authors demonstrate that η(δ) and θ(δ) can

be related, for example should certain parametric models hold. But they caution that one

must remain very wary of Hand (1992)’s paradox: θ(δ) < 1/2 can be the case, i.e. treatment
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is ineffective for a majority of individuals, yet η(δ) > 1/2 may lead us to believe otherwise.

Similarly, η(δ) < 1/2 and θ(δ) > 1/2 can instead be the case. Relatedly, Greenland et al.

(2020) cautions about the danger of conflating η(δ) with θ(δ).

Interestingly, it has been established that the Makarov bounds for the marginal CDF of

Yi(1)− Yi(0) studied in (Fan and Park 2010) are point-wise but not uniformly sharp (Firpo

and Ridder 2010, 2019). This means that Makarov (1982)’s bounds, evaluated at a point

δ ∈ support(Yi(1) − Yi(0)), arise from a joint distribution on the support of (Yi(0), Yi(1))

which itself may not satisfy the constraint of (Makarov 1982) with respect to the fixed

CDFs of one outcome. These authors then show how one can tighten the population-

level Makarov bounds on the marginal ITE CDF evaluated at only a finite set of points

δ1, . . . , δm ∈ support(Yi(1)− Yi(0)) (m ≥ 2). While promising, we consider the estimation of

these tightened bounds for δ1, . . . , δm beyond the scope of this chapter as it is not immediately

clear that it is amenable to our analysis.

For continuous outcomes in a randomized experiment setting, Frandsen and Lefgren (2021)

works under a condition known as mutual stochastic increasing-ness of the potential outcomes

(Yi(0), Yi(1)) (Lehmann 1966). The authors write that this condition, a more general way to

define positive correlation, “means that individuals with higher potential outcomes in one

treatment state draw from a more favorable–in the first order stochastic sense–conditional

distribution of outcomes in the other state.” The plug-in estimation approach we use in the RE

case does not make the assumption of positive correlation: it works for any joint distribution

on (Yi(0), Yi(1)) (Fan and Park 2010), including those with any type of negative association.

Given that their numerical results suggest greater precision in the point estimates of the

bounds on (one minus) PIBT compared to Fan and Park (2010)’s approach, an interesting

avenue for further extensions of the power analysis we propose here is to incorporate their

estimation approach for greater precision in settings where we believe positive correlation

between potential outcomes is justified.

Also in the context of a randomized experiment, Caughey et al. (2021) study PIBT under
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a randomization inference setup that is traditionally used to test the sharp null hypothesis

that all individual treatment effects are constant (Fisher 1935). The authors extend this

framework to test whether individual treatment effects are bounded, and they also present a

strategic use of order statistics to reason about PIBT. The approach we take to bound PIBT

assumes the existence of an infinite super-population that subjects in our sample at hand are

drawn i.i.d. from and for which our plug-in estimators provide inference for. Caughey et al.

(2021) appears to be a nice alternative under the differing assumption that randomness is

solely due to random assignment of subjects to a treatment.

Of special note, the quantity θ(δ) in Definition 4.1.1 when 0 ≤ δ < 1 is equivalent to

what is known as the “probability of necessity and sufficiency (PNS)” when Yi(0) and Yi(1)

take on binary values (Pearl 1999, Tian and Pearl 2000, Pearl 2009). In this case, PNS and

what we call “marginal PIBT” are given by the joint probability Pr (Yi(1) = 1, Yi(0) = 0). As

suggested by the intriguing use of prepositional logic terminology in its name, PNS informs

us of an intervention’s effectiveness at achieving a strictly better outcome. Bounding and

estimation approaches different from the approach taken by Fan and Park (2010) (our focus)

are provided in Pearl (1999), Tian and Pearl (2000). In particular, both experimental and

observational data can be used to bound PNS. See also Cinelli and Pearl (2021) for a recent

discussion on PNS and related quantities that inform about treatment’s efficacy. We discuss

more on PIBT for binary potential outcomes in Section 4.4’s Proposition 4.4.1.

Related to the study of PIBT, Makarov’s bounds can also be used to obtain sharp bounds

on the quantiles of the marginal distribution of the individual treatment effects in randomized

experiments (Fan and Park 2010, 2012). In particular, Fan and Park (2012) discusses the

statistical inference on the estimators of these sharp bounds. Also related to reasoning about

individual treatment effects, Ding et al. (2019) study bounds on the variance of the ITE.

These bounds can also be conditional on pre-treatment covariates, which helps us understand

whether covariates help explain away the original variation in ITE. An interesting avenue of

future work may be to relate ATE (or CATE) with the ITE distribution via a Chebyshev’s
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inequality using the results in Ding et al. (2019).

4.1.1.2 PIBT conditional on pre-treatment covariates

Fan and Park (2010) also discuss the conditional bounds for the conditional PIBT, 1− θ(δ, x),

at the population-level along with a brief discussion of possible estimation approaches. The

appendix of Frandsen and Lefgren (2021) also discuss a generalization of the mutual stochastic

increasing-ness assumption in order to arrive at bounds for 1−θ(δ, x). In the context of ordinal

outcomes, using Makarov’s bounds to study the ITE, Lu et al. (2015) also consider the case we

would like to condition on covariates. All three suggest some form of distributional regression,

the semi-parametric estimation of a conditional CDF (Koenker et al. 2013, Chernozhukov

et al. 2013, Kneib et al. 2021). We extend their discussion on covariate conditioning with a

discussion on theoretical guarantees and how to conduct statistical inference with the bound

estimators.

Related to our use of pre-treatment covariates, Lei and Candès (2021) develops prediction

intervals for the individual treatment effect based on quantile regression (Koenker and Bassett

1978) with strategic calibration using conformal inference (Vovk et al. 2005, Shafer and Vovk

2008, Tibshirani et al. 2019). Moreover, this work is extended to scenarios where unobserved

confounding is possible (Yin et al. 2021, Jin et al. 2021). Our work here is complementary

to these advances, in analogy to the inverse relation between quantiles and the CDF of a

distribution. With respect to theoretical guarantees, Theorem 4.3.4 below is with respect to

the supremum deviation across inputted pre-treatment covariate levels, whereas the guarantees

of Lei and Candès (2021) are with respect to any single randomly generated covariate level.

This is a subtle but important difference: one may like inference about heterogeneity in

individual treatments effects to extend simultaneously to multiple individuals with fixed

(non-random) covariate levels, not necessarily a single random individual. On the other hand,

our work does not necessarily extend to a target population beyond that represented by our

training sample, and one of the main results here (Theorem 4.3.4) makes use of a regularity
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condition on regression residuals that quantile regression generally avoids.

4.1.2 Assumptions

Throughout this work, we will assume the stable unit treatment value assumption (SUTVA)

in Assumption 4.1.3.

Assumption 4.1.3 (Stable Unit Treatment Value Assumption (SUTVA)).

We quote Imbens and Rubin (2015): “The potential outcomes for any unit do not vary with

the treatments assigned to other units, and, for each unit, there are no different forms or

versions of each treatment level, which lead to different potential outcomes.”

We will also assume consistency of the observed outcome throughout as given in Assump-

tion 4.1.4.

Assumption 4.1.4 (Consistency).

The observed outcome is dictated by treatment receipt indicator Wi:

Yi := WiYi(1) + [1−Wi]Yi(0).

Depending on the setting in which we would like to bound PIBT, we will also work with

differing identification assumptions which are discussed now. Assumption 4.1.5 and 4.1.7

are in line with the Neyman-Rubin potential outcome model. To demonstrate how these

assumptions can come up, we provide Examples 4.1.6 and 4.1.8 which make use of Pearl

(2009)’s structural causal model (SCM).

4.1.2.1 The randomized experiment case

Assumption 4.1.5 (Strong Ignorability (Rubin 1974, Imbens and Rubin 2015)).

For i = 1, 2, . . . , n, assume (Yi(0), Yi(1))⊥⊥Wi and Pr (Wi = 1) is bounded away from 0 and 1.

Example 4.1.6 next gives a situation in which the marginal independence component

of Assumption 4.1.5 holds: noting that Yi(w) := hY (w,Xi, ϵiY ) for non-random w = 0, 1
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and that (Xi, ϵiY )⊥⊥Wi, it follows that (Yi(0), Yi(1)) is independent of random treatment

assignment indicator Wi.

Example 4.1.6.

Let hX , hW , and hY be fixed functions. For i = 1, 2, . . . , n, assume the random variables of

interest are generated i.i.d. according to:
Xi = hX(ϵiX)

Wi = hW (ϵiW )

Yi = hY (Wi, Xi, ϵiY )

.

Here, (ϵiX , ϵiW , ϵiY ) are the latent causes for variation in (Xi,Wi, Yi), and they are mutually

independent.

4.1.2.2 The pre-treatment covariate adjusted case

Wi

Xi

Yi

Figure 4.1.2: A Directed Acyclic Graph (DAG) with common cause Xi between Wi and Yi.

Assumption 4.1.7 (Strong Conditional Ignorability (Rubin 1974, Imbens and Rubin 2015)).

For i = 1, 2, . . . , n, assume (Yi(0), Yi(1))⊥⊥Wi|Xi and Pr (Wi = 1|Xi) is bounded away from

0 and 1 almost surely.

Example 4.1.8 which goes along with Figure 4.1.2 gives an example in which the conditional

independence component of Assumption 4.1.7 holds. Conditional on Xi = x, a non-random

value, we have that Yi(w) = hY (w, x, ϵiY ) for non-random w = 0, 1. From this and the
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fact that ϵiY⊥⊥Wi, it follows that (Yi(0), Yi(1)) is independent of random Wi conditional on

Xi = x, for any value of x.

Example 4.1.8.

Let hX , hW , and hY be fixed functions. For i = 1, 2, . . . , n, assume the random variables of

interest are generated i.i.d. according to:
Xi = hX(ϵiX)

Wi = hW (Xi, ϵiW )

Yi = hY (Wi, Xi, ϵiY )

.

Here, (ϵiX , ϵiW , ϵiY ) are the latent causes for variation in (Xi,Wi, Yi), and they are mutually

independent.

4.2 PIBT bounds in a randomized experiment

Here, we aim to estimate bounds on θ(δ) = Pr (Yi(1)− Yi(0) > δ), the marginal PIBT in

Definition 4.1.1. In order for us to identify these bounds, we will work under Assumption

4.1.5. Denote Makarov (1982)’s lower bound and upper bound on PIBT as θL(δ) and θU(δ),

which are such that

θL(δ) ≤ θ(δ) = Pr (Yi(1)− Yi(0) > δ) ≤ θU(δ).

Denote their corresponding estimators based on i.i.d. data as θ̂L(δ) and θ̂U(δ), respectively.

Theorem 4.2.1 is the main result in this section, providing a guarantee for the accuracy of

these estimators, which we now formally define.

4.2.1 The target bounds on PIBT and their estimators

We refer the reader to Lemma 4.A.1 in Appendix 4.A for the formal statement of the Makarov

bounds. The target parameters θL(δ) and θU(δ) are in terms of the potential outcomes’
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marginal CDFs. Here, the marginal CDF of Yi(w) is:

Fw(y) := Pr (Yi(w) ≤ y) ,

which is identified under Assumption 4.1.5. That is, Fw(y) = Pr (Yi ≤ y|Wi = w), the

marginal CDF of the observed outcomes in treatment group w = 0, 1. Denote the empirical

cumulative distribution function (eCDF) for Yi(w), a natural estimator for Fw(y), as:

F̂wn(y) :=
1

nw

∑
i: Wi=w

1 {Yi ≤ y} for w = 0, 1. (4.4)

Here, 1 {·} is the indicator function. Using Lemma 4.A.1 in Appendix 4.A, the target

parameters to bound θ(δ) across any joint distribution of (Yi(0), Yi(1)) are:

θL(δ) = −min

(
inf
y
{F1(y + δ/2)− F0(y − δ/2)} , 0

)
for the lower bound, while for the upper bound we have:

θU(δ) = 1−max

(
sup
y
{F1(y + δ/2)− F0(y − δ/2)} , 0

)
.

Correspondingly, we can obtain the bound estimators by plugging in the CDF estimators as

in Fan and Park (2010):

θ̂L(δ) := −min

(
inf
y

[
F̂1n(y + δ/2)− F̂0n(y − δ/2)

]
, 0

)
and

θ̂U(δ) := 1−max

(
sup
y

[
F̂1n(y + δ/2)− F̂0n(y − δ/2)

]
, 0

)
for the lower bound and upper bound, respectively.

4.2.2 The main result in the RE setting

Given the choice of our estimators (θ̂L(δ), θ̂U(δ)), the question becomes how accurate they

are for a given sample size n. Theorem 4.2.1 provides us with this understanding.
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Theorem 4.2.1 (Concentration inequality for the bounds on PIBT in an RE).

If (Y1(0), Y1(1)), . . . , (Yn(0), Yn(1)) are i.i.d. and Assumption 4.1.5 (strong ignorability) holds,

then for any α ∈ (0, 1), we have that:

Pr

(
sup
δ

{∣∣∣θ̂L(δ)− θL(δ)
∣∣∣ ∨ ∣∣∣θ̂U(δ)− θU(δ)

∣∣∣} ≤ ( log(4/α)

2

) 1
2 (

n
− 1

2
0 + n

− 1
2

1

))
≥ 1− α.

In Theorem 4.2.1, ”∨” is the maximum between the left and right arguments. Moreover,

n0 is the number of control group units, while n1 is the number of treatment group units. The

proof of Theorem 4.2.1 is contained in Appendix 4.B.2. The core idea is to first show that the

bound estimators’ joint deviation can be understood in terms of the deviation between the

potential outcome’s CDFs and eCDFs uniformly across each y ∈ support(Yi) and w = 0, 1.

That is, we must show that it is sufficient to bound:

max
w=0,1

sup
y

∣∣∣F̂wn(y)− Fw(y)
∣∣∣

with high probability. Conveniently, this second part of the proof to Theorem 4.2.1 is given

by the DKW inequality (Dvoretzky et al. 1956, Massart 1990, Naaman 2021) under the mild

assumption that Yi for each i such that Wi = w must be i.i.d..

In Remark 4.2.2, we can see the practical implication of Theorem 4.3.4. The validity of

Remark 4.2.2 follows from the definition of the target parameters, θL(δ) and θU(δ), and the

derived margin of error for their estimation. In Section 4.2.3, we further discuss its practical

implication with respect to a statistical power analysis.

Remark 4.2.2. Using Theorem 4.2.1, we can say that with confidence at least (1−α)×100%,

the probability an individual represented by our randomized experiment will benefit from

treatment,

θ(δ) = Pr (Yi(1)− Yi(0) > δ) ,

for any threshold δ of interest, is between

θ̂L(δ)−
(
log(4/α)

2

) 1
2 (

n
− 1

2
0 + n

− 1
2

1

)
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and

θ̂U(δ) +

(
log(4/α)

2

) 1
2 (

n
− 1

2
0 + n

− 1
2

1

)
.

4.2.3 A power analysis with Theorem 4.2.1

Figure 4.2.1: An example power analysis based on Theorem 4.2.1. Here, n0 = n1 and

n = n0 + n1. The target margin of error is 0.05, while the target confidence level is 90%. A

sample size of n ≥ 5902 guarantees this margin of error with at least a 90% confidence level.

Figure 4.2.1 presents an example power analysis making use of Theorem 4.2.1 for the case

that n0 = n1 and a target margin of error of 0.05. In general, suppose our target margin of

error for

sup
δ

{∣∣∣θ̂L(δ)− θL(δ)
∣∣∣ ∨ ∣∣∣θ̂U(δ)− θU(δ)

∣∣∣}
is ε ∈ (0, 1). Solving for the significance level αε when we set ε equal to the margin of error

in Theorem 4.2.1:

ε =̇

(
log(4/αε)

2

) 1
2 (

n
− 1

2
0 + n

− 1
2

1

)
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gives:

αε = 4 exp

(
−2
(
n
− 1

2
0 + n

− 1
2

1

)−2

ε2
)
.

The confidence level we can thus have for the target margin of error ε at any given sample

size (n0, n1) is at least: 
1− αε if 0 ≤ αε ≤ 1

0 otherwise

.

4.2.4 Differing definition of benefiting from treatment in terms of the ratio of

potential outcomes

We also have the following simple extension to ratios of potential outcomes. It is motivated

by Theorem 2 of Williamson and Downs (1990), which derives bounds for the CDF of a sum,

difference, product, or ratio of two random variables with an unknown joint distribution.

Suppose that we are interested in strictly positive potential outcomes Ỹi(0) and Ỹi(1).

For example, this can be in a setting where the time to an event is the outcome of interest

(Cox 1972, Stitelman and van der Laan 2010, Austin 2014, Schober and Vetter 2018, Cai and

van der Laan 2020). Using a threshold δ̃ > 0 (e.g. δ̃ = 1), one may alternatively consider an

individual to have benefited from treatment should the inequality

Ỹi(1)/Ỹi(0) > δ̃

occur. That is, individual i is deemed to have benefited from treatment should their treatment

outcome be larger than their control outcome by a factor larger than δ̃. Correspondingly, one

may be interested in bounding the unidentifiable probability

θ̃(δ̃) := Pr
(
Ỹi(1)/Ỹi(0) > δ̃

)
.

To do so, one can work with the variable transformation

Yi(w) =̇ log(Ỹi(w));w = 0, 1.
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Given our definition of θ(δ) in Definition 4.1.1 and the one-to-one nature of the log transfor-

mation, we get that

θ̃(δ̃) = θ(δ)

when we set δ =̇ log(δ̃). It follows that:

θL(δ) ≤ θ̃(δ̃) ≤ θU(δ).

We will simply have to work with the eCDF of log(Ỹi(w)) when obtaining the estimators

θ̂L(δ) and θ̂U(δ). Moreover, Theorem 4.2.1 here is still useful to conduct inference on θ̃(δ̃)

under the i.i.d. assumption.

4.3 PIBT bounds with pre-treatment covariates

We now seek to estimate bounds on the unidentifiable probability an individual benefits from

treatment (PIBT) in pre-treatment stratum Xi = x:

θ(δ, x) = Pr (∆i > δ|Xi = x) .

Could it be known, this quantity is helpful to understand whether the benefit of receiving

treatment varies across pre-treatment covariate strata. Denote the target bounds as θL(δ, x)

and θU(δ, x), the lower and upper bound, respectively. They satisfy:

θL(δ, x) ≤ θ(δ, x) ≤ θU(δ, x).

And denote the corresponding estimators as θ̂L(δ, x) and θ̂U(δ, x), respectively. We would

like a guarantee about how close (θ̂L(δ, x), θ̂U(δ, x)) is to (θL(δ, x), θU(δ, x)).

Remark 4.3.1 (Large enough sample at a covariate stratum?).

Importantly, we note that should a large enough sample be collected at stratum x of the

pre-treatment covariates, Theorem 4.2.1 can be applied for a frequentist confidence statement

about θ(δ, x) using the analogous interpretation in Remark 4.2.2. The rest of this section
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is useful for the case that a large enough sample is not collected for some or all of the

pre-treatment covariate strata of interest.

Theorem 4.3.2 is the main non-asymptotic, non-parametric result for this setting. Theorem

4.3.4 is the adaptation of Theorem 4.3.2 to a case where we strategically use regression residuals

to estimate the bounds on PIBT. For this approach with regression residuals, we show how a

confidence statement about the conditional PIBT bound estimators can be written in terms

of a target confidence level that is adjusted according to how accurate the regression function

estimator is. In Corollary 4.3.3, we demonstrate how the statement written in this manner

implies that the conditional bound estimators are as statistically efficient as the regression

function estimator of choice. Moreover, Proposition 4.3.7 adopts the more general Theorem

4.3.4 to the canonical linear regression case. We demonstrate how to use this result to conduct

a power analysis for the simultaneous inference on PIBT at all pre-treatment covariate strata.

4.3.1 The target bounds on conditional PIBT, their estimators, and the main

result

The bounds θL(δ, x) and θU(δ, x) make use of the conditional CDFs (w = 0, 1):

Fw(y|x) := Pr (Yi(w) ≤ y|Xi = x) = Pr (Yi ≤ y|Xi = x,Wi = w) ,

with the second equality due to Assumption 4.1.7 and consistency. Explicitly, due to Lemma

4.A.1 in Appendix 4.A, we have:

θL(δ, x) = −min

(
inf
y
{F1(y + δ/2|x)− F0(y − δ/2|x)} , 0

)
along with

θU(δ, x) = 1−max

(
sup
y
{F1(y + δ/2|x)− F0(y − δ/2|x)} , 0

)
at the population-level. Denote

G(y, δ, x) := F1(y + δ/2|x)− F0(y − δ/2|x),
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and its corresponding estimator as Ĝn(y, δ, x) based on the training sample. In practice, one

may specify Ĝn(y, δ, x) as the difference of two conditional CDF estimators as in Corollary

4.3.3 below. The plug-in estimators for the lower bound and upper bounds, respectively, will

be:

θ̂L(δ, x) = −min

(
inf
y

{
Ĝ(y, δ, x)

}
, 0

)
(4.5)

along with

θ̂U(δ, x) = 1−max

(
sup
y

{
Ĝn(y, δ, x)

}
, 0

)
. (4.6)

With respect to this choice of (θ̂L(·), θ̂U (·)), Theorem 4.3.2 is a result under the most general

conditions. Corollary 4.3.3 and Theorem 4.3.4 give further concreteness for how exactly

to guarantee the premise of Theorem 4.3.2 with respect to Ĝ(y, δ, x). The idea behind the

generic statement in Theorem 4.3.2 is to encourage extensions, especially those with the

possibility of being more statistically efficient, with less restricted conditions than those in

Theorem 4.3.4, or with modeling assumptions that are tailored to the application at hand.

Theorem 4.3.2 (A non-parametric inequality about the conditional bound estimators’

deviation).

If Assumption 4.1.7 (strong conditional ignorability) holds, we have for all δ ∈ R and all

x ∈ support(Xi):(∣∣∣θ̂L(δ, x)− θL(δ, x)
∣∣∣ ∨ ∣∣∣θ̂U(δ, x)− θU(δ, x)

∣∣∣) ≤ sup
y

∣∣∣Ĝn(y, δ, x)−G(y, δ, x)
∣∣∣ . (4.7)

If, additionally, Ĝn(y, δ, x) is such that there exists a value tα(δ, x) such that:

Pr

(
sup
y

∣∣∣Ĝn(y, δ, x)−G(y, δ, x)
∣∣∣ ≤ tα(δ, x)

)
≥ 1− α,

then we have that:

Pr
(∣∣∣θ̂L(δ, x)− θL(δ, x)

∣∣∣ ∨ ∣∣∣θ̂U(δ, x)− θU(δ, x)
∣∣∣ ≤ tα(δ, x)

)
≥ 1− α.

The proof of Theorem 4.3.2 is contained in Appendix 4.B.3. The implications of the non-

parametric, deterministic inequality in (4.7) are interesting and perhaps a bit surprising. This
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inequality is stating that in a finite sample, the conditional bound estimators (θ̂L(δ, x), θ̂U (δ, x))

in (4.5) and (4.6) are jointly no less accurate at estimating (θL(δ, x), θU(δ, x)) as the choice

of Ĝn(y, δ, x) is for G(y, δ, x), whatever the choice may be.

As the second part of Theorem 4.3.2 suggests, we can turn (4.7) into a statement of

frequentist confidence provided such a tα(δ, x) exists. Note that tα(δ, x) need not vary with

x or δ; it can also be with respect to the concentration of Ĝn(y, δ, x) uniformly across x

or across δ (or both) if more appropriate. Theorem 4.3.4 below is an example with such a

uniform guarantee.

With regard to specifying Ĝn(y, δ, x), one choice is to plug-in estimators of Fw(y|x) for

w = 0, 1 to arrive at a concentration inequality for the conditional bound estimators as

Corollary 4.3.3 suggests. In doing so, provided the appropriate guarantee exists for the

conditional CDF estimators, we actually get a strong guarantee for the bounds estimators

θ̂L(δ, x) and θ̂U(δ, x) that is simultaneous across all threshold values δ used to define PIBT

in Definition 4.1.1.

Corollary 4.3.3 (Conditional bound estimators’ concentration when plugging in conditional

CDF estimators).

If Assumption 4.1.7 holds, and there exists estimators of F0(y|x) and F1(y|x) such that for

w = 0, 1 and α ∈ (0, 1) there exists a value tw,α(x) such that:

Pr

(
sup
y

∣∣∣F̂wn(y|x)− Fw(y|x)
∣∣∣ ≤ tw,α(x)

)
≥ 1− α/2,

then we have that:

Pr

(
sup
δ

(∣∣∣θ̂L(δ, x)− θL(δ, x)
∣∣∣ ∨ ∣∣∣θ̂U(δ, x)− θU(δ, x)

∣∣∣) ≤ ∑
w=0,1

tw,α(x)

)
≥ 1− α.

The proof of Corollary 4.3.3 is found in Appendix 4.B.4.
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4.3.2 More explicit conditional bounds with strategic use of regression residuals

Given that we are after confidence bands on PIBT in this chapter, the question now becomes

how exactly we should specify F̂wn(y|x) in Corollary 4.3.3, while guaranteeing the closeness

between (θ̂L(δ, x), θ̂U (δ, x)) and (θL(δ, x), θU (δ, x)) at some target confidence level. We explore

one such choice using regression residuals for which such a high confidence guarantee is possible

as summarized in Theorem 4.3.4. The motivation is that we would like something very similar

to the plug-in estimator of Pr (Yi(w) ≤ y) given in Equation (4.4) for the RE case.

Assume (X1,W1, Y1(0), Y1(1)), (X2,W2, Y2(0), Y2(1)), . . . , (Xn,Wn, Yn(0), Yn(1)) are i.i.d.

copies from a joint distribution. Denote the training data as:

T := {(Xi,Wi, Yi)}ni=1 ,

where Yi = WiYi(1) + [1 −Wi]Yi(0). Consider partitioning T into two independent splits

T1 and T2. Denote the corresponding training indices as I1, I2 ⊆ {1, . . . , n} for T1 and T2,

respectively. Denote Sw := {i : Wi = w}, the index set of individuals in the sample in

treatment group w = 0, 1. Let nw := |Sw ∩ I2|, the sample size in treatment group w = 0, 1

coming from data split T2.

Further, denote

µw(x) := E [Yi(w)|Xi = x] ,

the conditional expectation of the potential outcome as a function of the pre-treatment

covariates. Denote the regression estimate using T1 as µ̂w(x). Importantly, we will be able to

reason about the counterfactual quantity µw(x) under Assumption 4.1.7, because:

µw(x) = E [Yi|Wi = w,Xi = x] ,

the conditional expectation of the observed outcome in treatment group w = 0, 1. Now

consider the population-level residuals:

Ri(w) := Yi(w)− µw(Xi).
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Denote the approximation of Ri(w) using µ̂w(·) as

R̂i(w) := Yi(w)− µ̂w(Xi).

Motivated by the use of i.i.d. draws from the distribution Yi|Wi = w used to define F̂wn(y)

in Equation (4.4) for the marginal PIBT in a RE setting, we would like to approximate draws

from the distribution Yi|Xi = x,Wi = w. With this in mind, we will specify:

F̂wn(y|x) :=
1

nw

∑
i∈Sw∩I2

1
{
µ̂w(x) + R̂i(w) ≤ y

}
. (4.8)

Considering that the definition of Ri(w) means that Yi(w) = µw(x) +Ri(w) conditional on

Xi = x, it seems that using µ̂w(x) + R̂i(w) will make this choice of F̂wn(y|x) a reasonable

approximation to Fw(y|x).

Noting the liberal use of the plug-in principle en route to the choice of (θ̂L(·), θ̂U (·)) using

the conditional CDF estimators in (4.8), a concern is now what the regularity conditions

must be so that overall the conditional bound estimators are close to their true values.

For any given value of x, F̂wn(y|x) is reusing residuals for indices in the sample (split I2)

corresponding to subjects that are not necessarily in stratum x. Implicit in this use is that

the distribution of (Ri(0), Ri(1)) is the same across values of x. That is, we are using the

independence assumption:

(Ri(0), Ri(1))⊥⊥Xi.

Beyond this regularity condition, we also require that the distribution of R̂i(w) approx-

imates well the distribution of Ri(w), which in turn requires that µ̂w(·) be close to µw(·).

This explains the correction to the confidence level in Theorem 4.3.4 with respect to how

likely a deviation, in a uniform sense, is to occur between the true regression curve and the

estimated regression curve based on random training data.

In Theorem 4.3.4, X ∈ R|I1|×p is such that its rows are comprised of XT
i ∈ R1×p for i ∈ I1.

Theorem 4.3.4 (Concentration Inequality for the Conditional Bounds on PIBT using

regression residuals).
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For the bound estimators in Equations (4.5) and (4.6), let us specify Ĝ(y|x) = F̂1n(y|x) −

F̂0n(y|x) using the conditional CDF estimators of (4.8). Also let Assumption 4.1.7 (strong

conditional ignorability) hold and assume further that the arbitrary joint distribution of

(Ri(0), Ri(1), Xi) is such that

(Ri(0), Ri(1))⊥⊥Xi.

Conditional on X, we have for any appropriate1 α ∈ (0, 1):

sup
δ,x

(∣∣∣θ̂L(δ, x)− θL(δ, x)
∣∣∣ ∨ ∣∣∣θ̂U(δ, x)− θU(δ, x)

∣∣∣)
≤
∑
w=0,1

sup
r
{Pr (r < Ri(w) ≤ r + 2tw|X) ∨ Pr (r − 2tw < Ri(w) ≤ r|X)}

+

(
log(4/α)

2

) 1
2 (

n
− 1

2
0 + n

− 1
2

1

)
with probability at least

1− α−
∑
w=0,1

Pr

(
sup
x
|µ̂w(x)− µw(x)| > tw

∣∣∣∣X) .

Here, t0, t1 ≥ 0 may depend on X. If they do not, we may remove the conditional statements.

The proof of Theorem 4.3.4 is contained in Appendix 4.B.5. Given Corollary 4.3.3, the

task in this proof is to characterize the high probability concentration between the conditional

CDF estimators of (4.8) and the true conditional CDFs. This involves a strategic application

of the DKW inequality that is tailored to the imputed draws from the conditional potential

outcome distribution, as well as incorporating the deviation between the estimated regression

curves and the true regression curves.

Consider the following corollary to Theorem 4.3.4. Corollary 4.3.5 means that, with respect

to statistical efficiency, we lose nothing with the plug-in estimation approach by building on an

estimator of (µ0(·), µ1(·)). One can apply Theorem 4.3.4 with any meta-learning algorithms

1Here, “appropriate” values of α are those such that 1− α− 2maxw=0,1 Pr (supx |µ̂w(x)− µw(x)| > t) is
between 0 and 1.
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that are used to estimate the conditional average treatment effect function (CATE) (Künzel

et al. 2019, Nie and Wager 2020, Athey et al. 2019, Wager and Athey 2018, Kennedy 2020):

τ(x) := µ1(x)− µ0(x).

Corollary 4.3.5 is stating that in learning (θL(·), θU (·)), we retain the same rate as any one of

these methods.

Corollary 4.3.5 (Efficiency of Conditional Bound Estimators in Theorem 4.3.4).

Let F be the function class containing our regression estimator, µ̂w(·). Assume there exists a

sequence gn,F , depending on n and the complexity of F (e.g. feature dimension, regularization

parameters)2, such that

max
w=0,1

sup
x
|µ̂w(x)− µw(x)| ≲ gn,F

with probability at least 1− α. Then:

sup
δ,x

(∣∣∣θ̂L(δ, x)− θL(δ, x)
∣∣∣ ∨ ∣∣∣θ̂U(δ, x)− θU(δ, x)

∣∣∣) ≲ gn,F +

(
log(4/α)

2

) 1
2 (

n
− 1

2
0 + n

− 1
2

1

)
holds with probability at least 1− 2α.

Proof.

Denote fw(r) as the marginal density of Ri(w) for w = 0, 1. The key here is that

sup
r
{Pr (r < Ri(w) ≤ r + 2tw|X) ∨ Pr (r − 2tw < Ri(w) ≤ r|X)}

≤ 2tw max
w=0,1

sup
r

fw(r),

using that
∫ b
a
h(u)du ≤ supu |h(u)||b − a| for any integrable function h. We also used that

Ri(w)⊥⊥X. Under the regularity condition that the density fw(r) is non-negative and bounded

away from infinity, we set tw =̇ gn,F for w = 0, 1. This inequality and Theorem 4.3.4 allow us

to arrive at the desired result.

2It decreases down to 0 as n increases under proper specification.
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4.3.2.1 An example power analysis using Theorem 4.3.4 and a restricted regres-

sion setup

Theorem 4.3.2 and Theorem 4.3.4 provide generic moulds for a statement about inference with

the estimated bounds (θ̂L(·), θ̂U(·)). Theorem 4.3.4 provides this inference simultaneously at

all pre-treatment covariate strata x. A tall task. For illustrative purposes, we now consider

a simple regression setup to give further concreteness to Theorem 4.3.2 and Theorem 4.3.4.

With knowledge about how the pre-treatment covariates are distributed and the restricted

regression setup in Assumption 4.3.6 below, we would like to understand the behavior of the

margin of error for the bound estimators in Theorem 4.3.4. That is, we would like to conduct

a statistical power analysis.

Figure 4.3.1: Power analysis based on Proposition 4.3.7. Each curve is given by the median

calculated margin of error across 30 Monte Carlo simulations at the points that are also

plotted.

Though somewhat idealistic, the attraction of Proposition 4.3.7 below for the power

analysis under Assumption 4.3.6 is that there are no unknowable parameters.
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Assumption 4.3.6 (Restricted data generating mechanism).

Across i = 1, 2, . . . , n and w = 0, 1, we will assume the i.i.d. data generating mechanism to

be as follows.

1. Xi a vector, possibly random, in Rp.

2. µw(Xi) = βTwΨw(Xi), where Ψw : Rp → Rd is a fixed mapping such that ∥Ψw(x)∥2 ≤ 1

and d < n.

3. Yi(w) = µw(Xi) +Ri(w).

4. (Ri(0), Ri(1)) have any joint distribution satisfying (Ri(0), Ri(1))⊥⊥Xi.

5. Marginally, Ri(w) ∼ N (0, σ2
w).

Let Λw ∈ R|I1∩Sw|×d be such that its rows are made up by stacking Ψw(Xi)
T for each

i ∈ I1 ∩ Sw. Further, let Yw ∈ R|I1∩Sw|×1 contain entries for the corresponding observed

outcome Yi for each i ∈ I1 ∩ Sw. In applying Theorem 4.3.4, we will estimate βw separately

for w = 0, 1 using ordinary least squares regression, so that:

µ̂w(x) := Ψw(x)
T β̂w; β̂w = (ΛT

wΛw)
−1ΛT

wYw.

We note that these separate regressions are an instance of the “two-learner” meta learning

of the conditional average treatment effect (CATE); CATE’s estimate with a two-learner is

given by µ̂1(x)− µ̂0(x) (Künzel et al. 2019).

For Proposition 4.3.7, let Φ denote the CDF of the standard normal distribution. For a

matrix A ∈ Rm×q, denote its operator norm as:

|||A|||op := sup
v∈Rq : ∥v∥2=1

∥Av∥2 .

Proposition 4.3.7 (Uniform confidence bands for the linear case with homoscedastic,

Gaussian residuals).

Assume rank(Λw) = d for w = 0, 1 almost surely. Let vd,α denote the (1− α/2)th quantile for
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the χ2
d distribution. Under Assumption 4.3.6, we have with confidence at least (1−2α)×100%

that uniformly across all pre-treatment covariate strata x,

θ(δ, x) = Pr (Yi(1)− Yi(0) > δ|Xi = x)

is contained in the interval with starting point

θ̂L(δ, x)−
∑
w=0,1

{
Φ
(√

vd,α
∣∣∣∣∣∣(ΛT

wΛw)
−1/2

∣∣∣∣∣∣
op

)
− Φ

(
−√vd,α

∣∣∣∣∣∣(ΛT
wΛw)

−1/2
∣∣∣∣∣∣
op

)}
−
(
log(4/α)

2

) 1
2 (

n
− 1

2
0 + n

− 1
2

1

)
and end point

θ̂U(δ, x) +
∑
w=0,1

{
Φ
(√

vd,α
∣∣∣∣∣∣(ΛT

wΛw)
−1/2

∣∣∣∣∣∣
op

)
− Φ

(
−√vd,α

∣∣∣∣∣∣(ΛT
wΛw)

−1/2
∣∣∣∣∣∣
op

)}
+

(
log(4/α)

2

) 1
2 (

n
− 1

2
0 + n

− 1
2

1

)
.

The proof of Proposition 4.3.7 is contained in Appendix 4.B.7. The idea is to tailor

Theorem 4.3.4 to the parametric assumptions and the two-learner. Moreover, the conclusion

that θ(δ, x) is contained in the specified interval follows because θL(δ, x) ≤ θ(δ, x) ≤ θU(δ, x)

by definition, and because the quantity added/subtracted to the estimated bounds is the

form taken on by their margin of error at the 1− 2α confidence level.

Under Assumption 4.3.6, Figure 4.3.1 illustrates the behavior of the margin of error for

sup
δ,x

(∣∣∣θ̂L(δ, x)− θL(δ, x)
∣∣∣ ∨ ∣∣∣θ̂U(δ, x)− θU(δ, x)

∣∣∣)
at the 90% confidence level. As one can imagine, the distribution of Xi, the transformation

Ψw in Assumption 4.3.6, and the propensity score matter for an application of Proposition

4.3.7. That is, there may very well exist cases where the operator norm of (ΛT
wΛw)

−1/2 does

not decrease with n, along with cases of the propensity score where this norm decreases

slowly due to insufficient treated or control units in the sample. To study this, the example

summarized in Figure 4.3.1 generates data as follows:
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1. We sample from a population in which each Xij
i.i.d.∼ Uniform(0, 1) across i = 1, 2, . . . , n

and j = 1, 2, . . . , p.

2. The degree q = 1, 2 polynomial transformation of Xi into Ψw(Xi) includes all possible

interaction terms of degree 1 ≤ k ≤ q, and each entry is re-scaled by 1/
√
d so that

∥Ψw(Xi)∥2 ≤ 1 as in Assumption 4.3.6.

• For example, Ψw(Xi) = (Xi1, Xi2, Xi1Xi2, X
2
i1, X

2
i2)/
√
5 when p = q = 2.

3. The propensity score is Pr (Wi = 1|Xi) =
[
1
3
(Xi1 +Xi2 + 0.5)

]m
for m = 1, 6.

• The case with m = 1 makes it so that the number of treated and control units are

very close to each other in a random sample, while the case with m = 6 will make

it so that control units are typically much more represented.

4. Moreover, the sample splitting is such that half of the observations are used to estimate

(µ0(·), µ1(·)), while the other half of the observations’ residuals are used to estimate

(θL(·), θU(·)).

We believe the example application of Proposition 4.3.7 in Figure 4.3.1 may be regarded as a

microcosm of what can occur in practice while applying the estimation procedure outlined in

Section 4.3.2 (or similar) for the bounds on Pr (Yi(1)− Yi(0) > δ|Xi = x) uniformly across x.

The primary concerns for satisfactory margins of error are the typical concerns of regression:

parsimony, multicollinearity, and feature dimension. In terms of parsimony, a more complex

model specification as understood by the polynomial degree in Figure 4.3.1 requires much

more data for reasonable margins of error. Regarding multicollinearity, because the features

Xi are generated with independent entries, the case of polynomial degree 1 generally has

sharper decreases in margins of error compared to the more complex models where the entries

in Ψw(Xi) can become correlated. In terms of feature dimension, we also generally see slower

rates of decrease in the margins of error when p or d is larger.
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4.4 More on the scope of our results

The contribution of this chapter is in the quantification of the margin of error for the bounds

on PIBT given by the Makarov bounds (Makarov 1982, Frank et al. 1987, Williamson and

Downs 1990, Fan and Park 2010). Three important questions may come up:

• Can we obtain better bounds for binary outcomes, such as with the Fréchet-Boole

inequalities (Boole 1854, Hailperin 1986, Fréchet 1935, 1960, Mueller and Pearl 2019)?

• Can we bound the proportion who are harmed by an intervention?

We will answer these in the following subsections.

4.4.1 When the potential outcomes are binary, the Makarov bounds on PIBT

are the same as the Boole-Fréchet bounds

Recall that the probability of necessity and sufficiency (PNS) for binary potential outcomes

(Pearl 1999, Tian and Pearl 2000, Pearl 2009) is given by the joint probability,

Pr (Yi(1) = 1, Yi(0) = 0) .

For two measurable events A and B, the Boole-Fréchet bounds on their joint probability

are:

max (Pr (A) + Pr (B)− 1, 0) ≤ Pr (A ∩B) ≤ min (Pr (A) ,Pr (B)) .

These bounds are sharp (Rüschendorf 1981). For example, if A ∩B = ∅, then Pr (A ∩B) =

max (Pr (A) + Pr (B)− 1, 0) holds. Moreover, ifA ⊆ B, then Pr (A ∩B) = min (Pr (A) ,Pr (B))

is the case.

We claim in Proposition 4.4.1 that the Makarov bounds on PNS are the same as the

Boole-Fréchet bounds. From this proposition, it follows that all the estimation results we

have shown are as applicable to the binary potential outcome case as any estimation approach

involving the Boole-Fréchet bounds.
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Proposition 4.4.1 (Boole-Fréchet bounds vs. Makarov bounds).

When the potential outcomes are binary, we have that the tightest Makarov bounds on PNS

and conditional PNS are:

• Marginal Case:

sup
δ∈[0,1)

θL(δ) ≤ Pr (Yi(1) = 1, Yi(0) = 0) ≤ inf
δ∈[0,1)

θU(δ).

• Conditional Case:

sup
δ∈[0,1)

θL(δ, x) ≤ Pr (Yi(1) = 1, Yi(0) = 0|Xi = x) ≤ inf
δ∈[0,1)

θU(δ, x).

Moreover, these tightest Makarov bounds are the same as the Boole-Fréchet bounds:

• Marginal Case:

– supδ∈[0,1) θ
L(δ) = max (Pr (Yi(1) = 1) + Pr (Yi(0) = 0)− 1, 0);

– infδ∈[0,1) θ
U(δ) = min (Pr (Yi(1) = 1) ,Pr (Yi(0) = 0)).

• Conditional Case:

– supδ∈[0,1) θ
L(δ, x) = max (Pr (Yi(1) = 1|Xi = x) + Pr (Yi(0) = 0|Xi = x)− 1, 0);

– infδ∈[0,1) θ
U(δ, x) = min (Pr (Yi(1) = 1|Xi = x) ,Pr (Yi(0) = 0|Xi = x)).

The proof of Proposition 4.4.1 can be found in Appendix 4.B.8. The general idea is to

use that the CDFs of binary potential outcomes have only three values, 0, Pr (Yi(w) = 0),

and 1, across evaluation points y ∈ R. We also use the fact that PIBT is the same as PNS

when the threshold δ is in [0, 1).

4.4.2 Reasoning about the proportion harmed by an intervention

Two days following the posting of our first manuscript on arXiv, a similar manuscript by

Kallus (2022) was also posted on arXiv. This work studies the probability an individual
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is harmed by an intervention (PIHI) in the case of binary potential outcomes. Supposing

instead that Yi = 1 is bad for an individual, while Yi = 0 is good for an individual, we have

that the PIHI is given by PNS:

Pr (Yi(1) = 1, Yi(0) = 0) .

This is simply, but importantly, due to notational and vocabular semantics. Moreover, if the

potential outcomes are real-valued, then one can refer to the quantity

Pr (Yi(1)− Yi(0) > δ) ,

as PIHI instead of calling this quantity PIBT. This holds analogously when we condition on

Xi = x.

Given the discussion surrounding Proposition 4.4.1, our model-free results extend to both

real-valued and binary potential outcome cases for PIHI as well. Given that the Boole-Fréchet

inequalities underlay the theoretical estimation results for binary potential outcomes in Kallus

(2022), we believe that the differing contributions in their work compared to ours are:

• Their results are for binary potential outcomes, while our results hold for both binary

and real-valued potential outcomes.

• Their results include a doubly robust estimation method which uses the estimated

propensity score to adjust for covariates, possibly in an observational setting, when

bounding marginal PIHI. We believe this warrants further investigation for the case of

real-value potential outcomes. Moreover, our confidence bands for marginal PIBT are

only for the randomized experiment case.

• Their presentation of estimation theorems are in terms of big-O probability notation,

i.e. statistical rates of convergence. We present results in terms of non-asymptotic

concentration statements. The subtle difference is that our presentation helps provide

nominal coverage guarantees for the confidence bands on PIBT (or PIHI).
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• Moreover, confidence bands for PIHI presented in their work make use of a standard

error (the standard deviation of a random variable being averaged to obtain the bound

estimators divided by
√
n). Likely due to an implicit Central Limit Theorem, these

standard-error based confidence bands do not achieve nominal coverage until a fairly

large sample size as demonstrated in their empirical results. See their Algorithm 1 and

Figure 3 for details.

• The non-asymptotic presentation of our results, having kept track of all constants,

can also help with a statistical power analysis, as discussed in Sections 4.2.3 and

4.3.2.1. However, we do note that keeping track of constants can prove difficult for

some applications of Theorems 4.3.2 and 4.3.4; more generally, plausible constants can

be specified in such regression settings.

4.5 Application to Criteo’s uplift prediction benchmark dataset

We now present an application to Criteo AI Lab’s uplift prediction benchmark dataset

(Diemert Eustache, Betlei Artem et al. 2018). According to the webpage3 that hosts the data,

This dataset is constructed by assembling data resulting from several incremen-

tality tests, a particular randomized trial procedure where a random part of the

population is prevented from being targeted by advertising. It consists of 25M

rows, each one representing a user with [12] features, a treatment indicator and 2

labels (visits and conversions).

For this application, the proportion we will estimate bounds for should be understood in

plain language as the proportion of the time that the advertiser benefits from presenting

an advertisement on the website, rather than the probability an individual benefits from

treatment. Equation (4.9) below is the formal statement of this proportion.

3https://ailab.criteo.com/criteo-uplift-prediction-dataset/

127

https://ailab.criteo.com/criteo-uplift-prediction-dataset/


Figure 4.5.1: The 90% Bonferroni corrected lower confidence band on PIBT across bins of

CATE predictions on the Criteo uplift dataset.

The available down sampled data consists of 13,979,592 observations. We focus on the

effect treatment assignment (rather than treatment receipt) has on visits, making this an

intent-to-treat analysis. The outcome of interest in our analysis is the visit indicator for

whether a user visited the advertiser website during the test period (2 weeks).

Using the 12 pre-treatment covariates, Xi, we will study heterogeneity as follows.

1. Obtain CATE Estimate: With 50,000 randomly sampled rows, we will use the

grf::causal forest (default options) in R (Athey et al. 2019) to learn the conditional

average treatment effect (CATE) function,

τ(x) := E [Yi(1)− Yi(0)|Xi = x] .
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2. Partition based on similar CATE predictions: Denote the quantiles of τ̂(Xi) as

qα := inf {q : Pr (τ̂(Xi) ≤ q) ≥ α}

for α ∈ [0, 1]. We will obtain estimators, q̂α using the second fold of 8,987,000 randomly

sampled rows. Now, for m = 20, define the discrete mapping sm : X → {1, . . . ,m} as:

sm(x) = k if τ̂(Xi) ∈ (q̂(k−1)/m, q̂k/m]; k ∈ {1, . . . ,m}.

The value m corresponds to the number of sub-groups that are created in the partition-

ing.

3. Estimate PIBT conditional on partition: We next conduct inference via the bound

estimators for

θ(δ, sm(x)) := Pr (Yi(1)− Yi(0) > δ|sm(Xi) = sm(x)) , (4.9)

the probability that treatment is beneficial, for the business in this example, in CATE

stratum sm(x).

• We note that, because of the randomization of treatment, we have the ignora-

bility statement (Yi(1), Yi(0))⊥⊥Wi|sm(Xi) = sm(x). This allows us to identify

the Makarov lower and upper bounds on θ(δ, sm(x)), which we will denote as

θL(δ, sm(x)) and θU(δ, sm(x)), respectively.

The mappings sm(·) allow us to stratify on an interpretable univariate score, which is the

estimated CATE function in this case. With the mapping sm(·), if the learned function τ̂(·)

is indicative of benefiting from treatment, we would like to see a monotone increasing relation

between k = 1, . . . ,m and the bound estimators (θ̂L(δ, k), θ̂U(δ, k)) as supporting evidence.

The stratification with the quantity we denote as θ(δ, sm(x)) in this subsection is similar

to what has been done with prognostic and propensity scores (Abadie et al. 2018, Padilla

et al. 2021, Ye et al. 2021b). Similarly, there is recent work for the estimation of the

129



quantity E [Yi(1)− Yi(0)|h(Xi) > γ] (Yadlowsky et al. 2021). Here, h(Xi) is a univariate

score that is predictive of individual i’s treatment effect, such as a prognostic score or

τ̂(Xi), and γ is tunable threshold that allows us to determine what individuals ought be

given priority to treatment (Yadlowsky et al. 2021). Moreover, estimation strategies for

E [Yi(1)− Yi(0)|τ̂(Xi) = s] have also be studied in order to determine whether τ̂(Xi) is well

calibrated (Xu and Yadlowsky 2022). To complement these advances in univariate score

stratification, bounds on θ(δ, sm(x)) allow us to determine the implications with respect to

treatment benefit a given CATE estimate provides.

Figure 4.5.1 provides a 90% Bonferroni corrected confidence band on

θ(δ, k) = Pr (Yi(1) = 1, Yi(0) = 0|sm(Xi) = k) ; δ ∈ [0, 1)

that allows for simultaneous inference across CATE prediction bins k = 1, 2, . . . , 20. The

practical insight we have is that for an individual such that τ̂(Xi) ∈ (0.0479, 1], the joint

probability of interest–the probability an individual will visit the advertiser’s webpage when

assigned treatment and otherwise not visit the website if untreated–is between 5.42% and

36.62% with 90% confidence. Given the Bonferroni correction and that all bins have equal

amounts of subjects, we may take a simple average of the upper confidence bound for every

bin corresponding to a CATE prediction of 0.0271 or less. This tells than an individual with

a CATE prediction of 0.0271 or less has a joint probability of interest of 4.18% or less with

90% confidence.

Of interest, the sample size to estimate θL(δ = 0, k) across k = 1, 2, . . . , 20 is determined

according to the discussion in Section 4.2.3. We specified the margin of error between

θL(δ = 0, k) and θ̂L(δ = 0, k) to be ε = 0.01. Because we desired 90% confidence jointly for

each k, the task was to find the sample size nk such that αε = 0.1/20 = 0.005 (recall the

Bonferroni correction). Because the treatment frequency in the dataset was 85%, we used

the constraint that the number of untreated and treated units per bin is 0.15nk and 0.85nk,
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respectively. This leads us to create groups with nk = 449, 350 subjects each4.

4.6 Discussion

For the bounds on the marginal PIBT estimated with data from a randomized experiment,

we derive a closed-form concentration inequality depending on only the sample size and the

desired frequentist confidence level. We discussed how this margin of error can be used for a

formal statistical power analysis in Section 4.2.3.

Making strategic use of regression residuals, we also discussed how to estimate, possibly

in an observational setting, the PIBT conditional on strata of an individual’s pre-treatment

co-variates. For this approach with regression residuals, we provide novel, tailored versions

of a general statement that allow for a frequentist confidence interpretation simultaneously

at all pre-treatment covariate strata. To provide an example application for this result, we

demonstrated in Section 4.3.2.1 how one may use it in a low dimensional linear regression

setting with Gaussian noise.

We included in Section 4.4 an extended discussion on the scope of our results. We showed

in Proposition 4.4.1 that the Makarov bound approach we take to bound PIBT is equivalent

to using the sharp Boole-Fréchet bounds. We discussed how to estimate bounds on PIBT

when we define benefiting from treatment in terms of the ratio of an individual’s two positive

potential outcomes as discussed in Section 4.2.4. Moreover, this section also discusses how

our results can easily extend to reasoning about the proportion of individuals that are harmed

by an intervention (Kallus 2022). We also included in Section 4.5 an example application

to a randomized experiment dataset, Criteo AI Lab’s benchmark data for uplift prediction

(Diemert Eustache, Betlei Artem et al. 2018). In particular, this section points toward a

useful combination of conditional average treatment effect (CATE) estimation and inferring

4The constraint of 0.15nk and 0.85nk untreated and treated units ended up being approximate due to the
random sampling of rows.
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PIBT (or related quantity) to better understand the implication of the CATE estimate.

Interesting extensions of the work presented here include applying the inequality in

Theorem 4.3.2 to an estimation approach that is more general than that provided in Theorem

4.3.4. Alternatively, we may like to tailor a version of Theorem 4.3.4 to certain modeling

assumptions that are sufficient for interesting applications, such as involving generalized

linear models (McCullagh and Nelder 2019, Sur and Candès 2019). With respect to Theorem

4.3.4 itself, we think it is also worthwhile in practice to apply it to regression scenarios beyond

the unregularized linear Gaussian model. For settings where comparing an individual’s two

potential outcomes in a ratio (rather than a difference) can provide interesting insight, such

as studies where time to an event is of interest (Cox 1972, Stitelman and van der Laan 2010,

Austin 2014, Schober and Vetter 2018, Cai and van der Laan 2020), it seems worthwhile to

extend the discussion in Section 4.2.4.

Our probability bound formulation to reason about treatment effects, rather than the

more common average formulation, is similar to recent model-free work that moves beyond an

average in favor of controlling the type I error (false discovery) violation probability (Tong et al.

2018, Li et al. 2021). Tong et al. (2018) propose a Neyman-Pearson classification paradigm

that that helps prevent classification algorithms from incorrectly classifying individuals with

Yi = 0 labels in sensitive scenarios where doing so can have negative consequences. Meanwhile,

Li et al. (2021) provide a method for marginal ranking of features for binary classification

using a classical criterion and the Neyman-Pearson criterion. Future work relating our work

in the present chapter to these two works could be of interest. It can involve more rigorously

choosing the appropriate threshold δ used to define PIBT in Definition 4.1.1 in accordance

with an appropriately formulated Neyman-Pearson objective. Currently, the treshold δ is

anything (or everything; recall the uniform control across this threshold) a practitioner finds

reasonable.
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APPENDIX

4.A The Makarov bounds

Lemma 4.A.1 (The Makarov Bounds as stated in Williamson and Downs (1990)’s Theorem

2 ).

Uniformly across all possible, unknown joint distributions

(V1, V2) ∼ Pr (V1 ≤ v1, V2 ≤ v2)

having fixed marginal CDFs F1(v1) = Pr (V1 ≤ v1) , F2(v2) = Pr (V2 ≤ v1), the CDF of V1−V2

evaluated at δ ∈ R satisfies:

FL(δ) ≤ Pr (V1 − V2 ≤ δ) ≤ FU(δ), (4.10)

where

FL(δ) = max

(
sup

a,b: a+b=δ
{F1(a)− F2(−b)}, 0

)
and

FU(δ) = 1 + min

(
inf

a,b: a+b=δ
{F1(a)− F2(−b)}, 0

)
.

Lemma 4.A.1 was first proved in (Makarov 1982) to bound the distribution of a sum of

two random variables. We present this result for subtraction, which is a simple extension,

as V1 − V2 is technically the sum of two random variables V1 and (−V2). Lemma 4.A.1’s

proof was later rigourized in (Frank et al. 1987) and (Williamson and Downs 1990), who also

seek bounds on the distribution of other binary operations on V1 and V2, like their difference,

product, and their ratio, under minimal distributional assumptions.

4.A.1 Equivalent forms of the bounds

We note that FL(δ) and FU(δ) in Lemma 4.A.1 can be rewritten.
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1. Consider a one-to-one change of variables (a, b) 7→ (u + δ/2,−u + δ/2). With it, we

have equivalently:

FL(δ) = max

(
sup
u
{F1(u+ δ/2)− F2(u− δ/2)}, 0

)
along with

FU(δ) = 1 + min
(
inf
u
{F1(u+ δ/2)− F2(u− δ/2)}, 0

)
.

This is in line with what we have written in Section 4.2 and 4.3 of the main text.

2. Consider instead the one-to-one change of variables (a, b) 7→ (u,−u+ δ). With it, we

have equivalently:

FL(δ) = max

(
sup
u
{F1(u)− F2(u− δ)}, 0

)
along with

FU(δ) = 1 + min
(
inf
u
{F1(u)− F2(u− δ)}, 0

)
.

This is in line with Fan and Park (2010)’s Lemma 2.1 and Equation (2) and (3), and it

also agrees with the alternative form given in Equations (21) and (22) of Williamson

and Downs (1990).

Moreover, it is straightforward to see that:

1− FU(δ) ≤ Pr (U1 − U0 > δ) ≤ 1− FL(δ).

We make use of this in the main text when bounding PIBT.

4.B Proofs for the main theoretical results

4.B.1 The key lemma

Lemma 4.B.1 (Plug-in estimation of Makarov (1982)’s conditional bounds).

Consider jointly distributed random variables (U0, U1, V ). Denote:

γL(δ, v) := −min
(
inf
u
{Pr (U1 ≤ u+ δ/2|V = v)− Pr (U0 ≤ u− δ/2|V = v)} , 0

)
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and

γU(δ, v) := 1−max

(
sup
u
{Pr (U1 ≤ u+ δ/2|V = v)− Pr (U0 ≤ u− δ/2|V = v)} , 0

)
,

the Makarov (1982), Williamson and Downs (1990) lower and upper bounds for Pr (U1 − U0 > δ|V = v).

Denote

H(u, δ, v) := Pr (U1 ≤ u+ δ/2|V = v)− Pr (U0 ≤ u− δ/2|V = v) .

Consider any estimator Ĥ(u, δ, v) of H(u, δ, v) based on a sample

{(Ui0, Vi)}n0
i=1 ∪ {(Ui1, Vi)}

n1
i=1

such that (Ui0, Vi) are i.i.d. copies of (U0, V ) for i = 1, . . . , n0 and (Ui1, Vi) are i.i.d. copies

of (U1, V1) for i = 1, . . . , n1. Now let

γ̂L(δ, v) := −min
(
inf
u

{
Ĥ(u, δ, v)

}
, 0
)

and

γ̂U(δ, v) := 1−max

(
sup
u

{
Ĥ(u, δ, v)

}
, 0

)
.

We claim for every δ ∈ R and every v ∈ support(V ) that

∣∣γ̂L(δ, v)− γL(δ, v)
∣∣ ∨ ∣∣γ̂U(δ, v)− γU(δ, v)

∣∣ ≤ sup
u

∣∣∣Ĥ(u, δ, v)−H(u, δ, v)
∣∣∣ .

Proof.

For any real-valued function g(t), denote:

g+(t) = max (g(t), 0) and g−(t) = −min (g(t), 0) ,

the positive and negative parts of g(t), respectively. We have the following properties we will

make use of

• g(t) = g+(t)− g−(t).

• |g(t)| = g+(t) + g−(t).
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• g+(t) = |g(t)|+g(t)
2

.

• g−(t) = |g(t)|−g(t)
2

.

Below, we will use the positive and negative parts of

ginf(δ, v) := inf
u
H(u, δ, v) and gsup(δ, v) := sup

u
H(u, δ, v)

along with

ĝinf(δ, v) := inf
u
Ĥ(u, δ, v) and ĝsup(δ, v) := sup

u
Ĥ(u, δ, v).

Consider:

• Lower bound on Pr (U1 − U0 > δ|V = v)

We are bounding the difference∣∣γ̂L(δ, v)− γL(δ, v)
∣∣

=
∣∣g−inf(δ, v)− ĝ−inf(δ, v)

∣∣
(i)
=

1

2
|ĝinf(δ, v)− ginf(δ, v) + |ginf(δ, v)| − |ĝinf(δ, v)||

(ii)

≤ |ĝinf(δ, v)− ginf(δ, v)|

=
∣∣∣inf
u
Ĥ(u, δ, v)− inf

u
H(u, δ, v)

∣∣∣ .
In (i), we used the properties of the negative part of a function introduced above, while

in (ii) we used triangle inequality followed by reverse triangle inequality. Consider that

inf
u
Ĥ(u, δ, v)− inf

u
H(u, δ, v)

= inf
u

[
Ĥ(u, δ, v)−H(u, δ, v) +H(u, δ, v)

]
− inf

u
H(u, δ, v)

(i)
= inf

u

[
Ĥ(u, δ, v)−H(u, δ, v)

]
≤ sup

u

∣∣∣Ĥ(u, δ, v)−H(u, δ, v)
∣∣∣ .
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Equality (i) follows from the fact that inf{a + b : a ∈ A, b ∈ B} = inf(A) + inf(B).

Similarly,

inf
u
H(u, δ, v)− inf

u
Ĥ(u, δ, v)

= inf
u

[
Ĥ(u, δ, v)−H(u, δ, v) +H(u, δ, v)

]
− inf

u
H(u, δ, v)

≤ sup
u

∣∣∣Ĥ(u, δ, v)−H(u, δ, v)
∣∣∣ .

The previous two equations imply that

∣∣∣inf
u
H(u, δ, v)− inf

u
Ĥ(u, δ, v)

∣∣∣ ≤ sup
u

∣∣∣Ĥ(u, δ, v)−H(u, δ, v)
∣∣∣ .

so that overall we have that

∣∣γ̂L(δ, v)− γL(δ, v)
∣∣ ≤ sup

u

∣∣∣Ĥ(u, δ, v)−H(u, δ, v)
∣∣∣ . (4.11)

• Upper bound on Pr (U1 − U0 > δ|V = v)

We are bounding the difference∣∣γ̂U(δ, v)− γU(δ, v)
∣∣

=
∣∣g+sup(δ, v)− ĝ+sup(δ, v)

∣∣
(i)
=

1

2
|ĝsup(δ, v)− gsup(δ, v) + |gsup(δ, v)| − |ĝsup(δ, v)||

(ii)

≤ |ĝsup(δ, v)− gsup(δ, v)|

=

∣∣∣∣sup
u

Ĥ(u, δ, v)− sup
u

H(u, δ, v)

∣∣∣∣ .
In (i), we used the properties of the positive part of a function introduced above, while

in (ii) we used triangle inequality followed by reverse triangle inequality. Noting that

sup{a+ b : a ∈ A, b ∈ B} = sup(A) + sup(B), we can arrive at the below inequality

based on similar steps to the case with the lower bound:

∣∣∣∣sup
u

H(u, δ, v)− sup
u

Ĥ(u, δ, v)

∣∣∣∣ ≤ sup
u

∣∣∣Ĥ(u, δ, v)−H(u, δ, v)
∣∣∣ .
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so that overall we have that

∣∣γ̂U(δ, v)− γU(δ, v)
∣∣ ≤ sup

u

∣∣∣Ĥ(u, δ, v)−H(u, δ, v)
∣∣∣ , (4.12)

as with the lower bound estimate.

The inequalities in (4.11) and (4.12) gives us the desired conclusion:

{∣∣γ̂L(δ, v)− γL(δ, v)
∣∣ ∨ ∣∣γ̂U(δ, v)− γU(δ, v)

∣∣} ≤ sup
u

∣∣∣Ĥ(u, δ, v)−H(u, δ, v)
∣∣∣ .

Lemma 4.B.2 (Bounding a probability statement with respect to a sum of random variables).

Let U and V be arbitrary real-valued random variables, and let u, v ∈ R be non-random

scalars. We have that:

Pr (U + V > u+ v) ≤ Pr (U > u) + Pr (V > v) .

Proof.

Consider that we have the following:

{U + V ≤ u+ v} ⊇ {U ≤ u} ∩ {V ≤ v} ⇐⇒ {U + V > u+ v} ⊆ {U > u} ∪ {V > v}.

This containment of events holds because U ≤ u and V ≤ v implies that U + V ≤ u+ v. It

follows that

Pr (U + V > u+ v) ≤ Pr ({U > u} ∪ {V > v}) ≤ Pr (U > u) + Pr (V > v) ,

where the second inequality is due to union bound.
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4.B.2 The proof of Theorem 4.2.1

Proof of Theorem 4.2.1.

We apply Lemma 4.B.1 with U0 := Yi(0), U1 := Yi(1), and V any arbitrary random variable

such that V⊥⊥(Yi(0), Yi(1)). We have that:

sup
δ

{∣∣∣θ̂L(δ)− θL(δ)
∣∣∣ ∨ ∣∣∣θ̂U(δ)− θU(δ)

∣∣∣}
≤ sup

δ,y

∣∣∣{F̂1n(y + δ/2)− F̂0n(y − δ/2)
}
− {F1(y + δ/2)− F0(y − δ/2)}

∣∣∣
≤ sup

δ,y

∣∣∣F̂1n(y + δ/2)− F1(y + δ/2)
∣∣∣+ sup

δ,y

∣∣∣F̂0n(y − δ/2)− F0(y − δ/2)
∣∣∣

= sup
y

∣∣∣F̂1n(y)− F1(y)
∣∣∣+ sup

y

∣∣∣F̂0n(y)− F0(y)
∣∣∣

(i)

≤ t0 + t1.

(4.13)

Here, tw ≥ 0 for w = 0, 1. Inequality (i) holds with probability at least

1− 2
∑
w=0,1

exp(−2nwt2w)

due to:

1. Lemma 4.B.2, which implies:

Pr

(
sup
y

∣∣∣F̂1n(y)− F1(y)
∣∣∣+ sup

y

∣∣∣F̂0n(y)− F0(y)
∣∣∣ ≥ t0 + t1

)
≤
∑
w=0,1

Pr

(
sup
y

∣∣∣F̂wn(y)− Fw(y)
∣∣∣ ≥ tw

)
.

2. The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Dvoretzky et al. 1956, Massart

1990, Naaman 2021) which tells us:

Pr

(
sup
y

∣∣∣F̂wn(y)− Fw(y)
∣∣∣ ≥ tw

)
≤ 2 exp(−2nwt2w)

based on the i.i.d. assumption.
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Given (4.13), we set

tw =̇ [2−1n−1
w log(4/α)]

1
2

for w = 0, 1 to arrive at the desired conclusion.

4.B.3 The proof of Theorem 4.3.2

Proof of Theorem 4.3.2.

This result is a direct consequence of Lemma 4.B.1 with Ui0 := Yi(0), Ui1 := Yi(1), and

Vi := Xi.

4.B.4 The proof of Corollary 4.3.3

Proof of Corollary 4.3.3.

Specify

Ĝ(y, δ, x) = F̂1n(y + δ/2|x)− F̂0n(y − δ/2|x),

which simply plugs in the estimate of F1(y + δ/2|x) and F0(y − δ/2|x). Consider that:

sup
y

∣∣∣F̂wn(y|x)− Fw(y|x)
∣∣∣ = sup

a,y

∣∣∣F̂wn(y + a|x)− Fw(y + a|x)
∣∣∣ ,

where the supremum is with respect to y is across the real line, while the supremum across

(y, a) is across the euclidean plane. Therefore, when the inequality

sup
y

∣∣∣F̂wn(y|x)− Fw(y|x)
∣∣∣ ≤ tw,α(x) (4.14)
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holds, triangle inequality and the definition of G(y, δ, x) tell us that

sup
δ,y

∣∣∣Ĝn(y, δ, x)−G(y, δ, x)
∣∣∣ ≤ sup

δ,y

∣∣∣F̂1n(y + δ/2|x)− Fw(y + δ/2|x)
∣∣∣

+ sup
δ,y

∣∣∣F̂0n(y − δ/2|x)− F0(y − δ/2|x)
∣∣∣

= sup
y

∣∣∣F̂1n(y|x)− Fw(y|x)
∣∣∣+ sup

y

∣∣∣F̂0n(y|x)− F0(y|x)
∣∣∣

≤
∑
w=0,1

tw,α(x).

(4.15)

Combining inequality (4.15) and inequality (4.7) in Theorem 4.3.2 (after taking the supremum

on both sides with respect δ), we get:

sup
δ

(∣∣∣θ̂L(δ, x)− θL(δ, x)
∣∣∣ ∨ ∣∣∣θ̂U(δ, x)− θU(δ, x)

∣∣∣) ≤ ∑
w=0,1

tw,α(x), (4.16)

also. Now, if the inequality in (4.14) holds with high probability (the premise of this corollary),

then so must (4.16).

4.B.5 The proof of Theorem 4.3.4

Proof of Theorem 4.3.4.

Given inequality (4.7) in Theorem 4.3.2, our specification for

Ĝ(y, δ, x) := F̂1n(y|x)− F̂0n(y|x),

and a similar argument to the proof of Corollary 4.3.3 in Appendix 4.B.4, we have that:

sup
x

(∣∣∣θ̂L(δ, x)− θL(δ, x)
∣∣∣ ∨ ∣∣∣θ̂U(δ, x)− θU(δ, x)

∣∣∣) ≤ ∑
w=0,1

sup
y,x

∣∣∣F̂wn(y|x)− Fw(y|x)
∣∣∣ . (4.17)
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Consider s0, s1 ≥ 0. Due to Lemma 4.B.2 and (4.17), we have that:

Pr

(
sup
x

(∣∣∣θ̂L(δ, x)− θL(δ, x)
∣∣∣ ∨ ∣∣∣θ̂U(δ, x)− θU(δ, x)

∣∣∣) > s0 + s1

∣∣∣∣X)
≤ Pr

(∑
w=0,1

sup
y,x

∣∣∣F̂wn(y|x)− Fw(y|x)
∣∣∣ > s0 + s1

∣∣∣∣∣X
)

≤
∑
w=0,1

Pr

(
sup
y,x

∣∣∣F̂wn(y|x)− Fw(y|x)
∣∣∣ > sw

∣∣∣∣X) .

(4.18)

Let tw ≥ 0. Moreover, Lemma 4.B.3 tells us that for

sw =̇ sup
r
{Pr (r < Ri ≤ r + 2t|V) ∨ Pr (r − 2t < Ri ≤ r|V)}+

(
log(4/α)

2

) 1
2

n
− 1

2
w ,

we get:

Pr

(
sup
y,x

∣∣∣F̂wn(y|x)− Fw(y|x)
∣∣∣ > sw

∣∣∣∣X) ≤ α/2 + Pr

(
sup
x
|µ̂w(x)− µw(x)| > tw

∣∣∣∣X) (4.19)

Now, combining (4.18) and (4.19), we have conditional on X:

Pr

(
sup
x

(∣∣∣θ̂L(δ, x)− θL(δ, x)
∣∣∣ ∨ ∣∣∣θ̂U(δ, x)− θU(δ, x)

∣∣∣) > s0 + s1

∣∣∣∣X)
≤ α +

∑
w=0,1

Pr

(
sup
x
|µ̂w(x)− µw(x)| > tw

∣∣∣∣X) .

This implies the desired conclusion.

4.B.6 A lemma for Theorem 4.3.4: conditional CDF estimation with regression

residuals

Lemma 4.B.3 (Conditional CDF estimator with regression residuals).

Consider the setup:

• (U1, V1), . . . , (Un, Vn) are i.i.d. jointly distributed random variables.

• Partition the training indices {1, . . . , n} into two non-intersecting splits, I1 and I2,

respectively. Let Tj := {(Ui, Vi)}i∈Ij for j = 1, 2.
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• Denote µ(v) := E [Ui|Vi = v], and let µ̂(v) denote its estimator based on T1.

• Denote Ri := Ui − µ(Vi) along with its approximation given by R̂i := Ui − µ̂(Vi) across

i = 1, 2, . . . , n.

• For u ∈ support(Ui) and v ∈ support(Vi), denote F (u|v) := Pr (U ≤ u|V = v). Con-

sider its estimator given by:

F̂n(u|v) :=
1

|I2|
∑
i∈I2

1
{
µ̂(v) + R̂i ≤ u

}
,

where |I2| is the number of indices in I2.

If Ri⊥⊥Vi, then conditional on V = (Vi; i ∈ I1), we have that for any t ≥ 0 (possibly

dependent on V):

sup
u,v

∣∣∣F̂ (u|v)− F (u|v)
∣∣∣ ≤ sup

r
{Pr (r < Ri ≤ r + 2t|V) ∨ Pr (r − 2t < Ri ≤ r|V)}+

(
log(4/α)

2

) 1
2

|I2|−
1
2

with probability at least

1− α/2− Pr

(
sup
v
|µ̂(v)− µ(v)| ≥ t

∣∣∣∣V) .

Proof.

Below, let the probability statements be with respect to i ̸∈ I1, where I1 is the set of indices

used to train µ̂. This is important to note as we will use that Ri⊥⊥(T1,V) later. Consider

that:

sup
u,v

∣∣∣F̂n(u|v)− F (u|v)
∣∣∣

= sup
u,v

∣∣∣F̂n(u|v)− Pr (µ(v) +Ri ≤ u)
∣∣∣

≤ sup
u,v

∣∣∣F̂n(u|v)− Pr
(
µ̂(v) + R̂i ≤ u

∣∣∣T1)∣∣∣
+ sup

u,v

∣∣∣Pr(µ̂(v) + R̂i ≤ u
∣∣∣T1)− Pr (µ(v) +Ri ≤ u)

∣∣∣
(i)
= sup

u,v

∣∣∣∣∣ 1

|I2|
∑
i∈I2

1 {Ui − µ̂(Vi) ≤ u− µ̂(v)} − Pr (Ui − µ̂(Vi) ≤ u− µ̂(v)|T1)

∣∣∣∣∣
+ sup

u,v

∣∣∣Pr(Ri ≤ u− µ(v) + [b̂(Vi)− b̂(v)]
∣∣∣T1)− Pr (Ri ≤ u− µ(v))

∣∣∣ .

(4.20)
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For any v, define:

b̂(v) := µ̂(v)− µ(v), (4.21)

a term that characterizes the bias in µ̂(v) for any v ∈ support(Vi). In equality (i), we used the

identities µ̂(v) = µ(v) + b̂(v) and R̂i = Ri − b̂(Vi), which are a consequence of the definition

of b̂(·).

Now, denote:

A := sup
u,v

∣∣∣∣∣ 1

|Iw|
∑
i∈I2

1 {Ui − µ̂(Vi) ≤ u− µ̂(v)} − Pr (Ui − µ̂(Vi) ≤ u− µ̂(v)|T1)

∣∣∣∣∣
and

B := sup
u,v

∣∣∣Pr(Ri ≤ u− µ(v) + [b̂(Vi)− b̂(v)]
∣∣∣T1)− Pr (Ri ≤ u− µ(v))

∣∣∣ .
Due to Equation (4.20) and Lemma 4.B.2:

Pr

(
sup
u,v

∣∣∣F̂n(u|v)− F (u|v)
∣∣∣ > a+ b

∣∣∣∣V)
≤ Pr (A+B > a+ b|V)

≤ Pr (A > a|V) + Pr (B > b|V) .

(4.22)

We now control the two terms in the latter inequality separately in § 4.B.6.1 and § 4.B.6.2,

respectively. We also explain the choices

a =̇
√

2−1(|I2|)−1 log(4/α)

and

b =̇ sup
r
{Pr (r < Ri ≤ r + 2t|V) ∨ Pr (r − 2t < Ri ≤ r|V)} .

From these choices, we get the desired conclusion:

sup
u,v

∣∣∣F̂n(u|v)− F (u|v)
∣∣∣ ≤ a+ b.

with probability at least 1− α/2− Pr (supv |µ̂(v)− µ(v)||V).
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4.B.6.1 The term Pr (A > a|V) in (4.22)

First, notice that:

A = sup
r

∣∣∣∣∣ 1

|I2|
∑
i∈I2

1 {Ui − µ̂(Vi) ≤ r} − Pr (Ui − µ̂(Vi) ≤ r|T1)

∣∣∣∣∣ ,
where the supremum with respect to r = u− µ̂(v) is taken in the support of u− µ̂(v).

Also note that µ̂(v) is random, even if v is not, because it is an estimator based on T1.

However, conditional on (T1,V), r = u − µ̂(v) is a constant. Importantly, conditional on

(T1,V), we have that R̂i = Ui − µ̂(Vi) is an independent and identically distributed random

variable across i ̸∈ I1. This means that the estimator

1

|I2|
∑
i∈I2

1 {Ui − µ̂(Vi) ≤ r}

for

Pr (Ui − µ̂(Vi) ≤ r|T1,V)

satisfies the i.i.d. sample condition for the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality

(Dvoretzky et al. 1956, Massart 1990, Naaman 2021). The DKW inequality gives:

Pr (A > a|T1,V)

= Pr

(
sup
r

∣∣∣∣∣ 1

|I2|
∑
i∈I2

1 {Ui − µ̂(Vi) ≤ r} − Pr (Ui − µ̂(Vi) ≤ r|T1)

∣∣∣∣∣ > a

∣∣∣∣∣T1,V
)

≤ 2e−2|I2|a2 .

Noting that the upper bound does not depend on (T1,V), we get due to law of total

expectation that:

Pr (A > a|V) ≤ 2e−2|I2|a2

and

Pr (A > a) ≤ 2e−2|I2|a2 .
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We will take

a =̇
√
2−1(|I2|)−1 log(4/α),

so that we are guaranteed Pr (A > a) ≤ α/2 and Pr (A > a|V) ≤ α/2.

4.B.6.2 The term Pr (B > b|V) in (4.22)

We note that

B := sup
u,v

∣∣∣Pr(Ri ≤ u− µ(v) + [b̂(Vi)− b̂(v)]
∣∣∣T1)− Pr (Ri ≤ u− µ(v))

∣∣∣
is a random variable with respect to T1. For t, possibly a function of V, consider the following

event with respect to the random data in T1:

E(t) :=

{
sup
v
|µ̂(v)− µ(v)| ≤ t

}
.

The event E(t) concerns the deviation between µ̂ and µ uniformly across the support of

Vi. Conditional on the event E(t) and V, we have that the regression bias term defined in

Equation (4.21) satisfies b̂(Vi) ∈ [−t, t], in spite of Vi being random, along with b̂(v) ∈ [−t, t]

for any v. This means that conditionally on (E(t),V):

b̂(Vi)− b̂(v) ∈ [−2t, 2t] (4.23)

almost surely.

Now let E(t)C denote the complement of E(t). Consider that:

Pr (B > b|V) = Pr (B > b|E(t),V) Pr (E(t)|V) + Pr
(
B > b

∣∣E(t)C ,V
)
Pr
(
E(t)C

∣∣V)
≤ Pr (B > b|E(t),V) + Pr

(
sup
v
|µ̂(v)− µ(v)| > t

∣∣∣∣V) .

(4.24)

This is by the law of total probability, the fact that Pr (·|V) ,Pr (·|E(t),V) ∈ [0, 1], along

with the definition of E(t)C .

For a random event D⊥⊥Ri (recall, i ̸∈ I1), consider the function:

ν(r, s,D,V) := |Pr (Ri ≤ r + s|D,V)− Pr (Ri ≤ r)| .
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For D = ∅, we write:

ν(r, s, ∅,V) := |Pr (Ri ≤ r + s|V)− Pr (Ri ≤ r)| .

Fixing (r,D,V), we can see that ν(r, s,D,V) is an increasing function with respect to s in

the domain [0, 2t], and it is a decreasing function with respect to s in the domain [−2t, 0).

From this, it follows that for all s ∈ [−2t, 2t]:

ν(r, s,D,V) ≤ ν(r,−2t,D,V) ∨ ν(r, 2t,D,V).

Based on Equation (4.23) and this property of ν(r, s,D,V), it follows that conditional on

E(t) and V we have:

B ∈
[
0, sup

u,v
{ν(u− µ(v),−2t, E(t),V) ∨ ν(u− µ(v), 2t, E(t),V)}

]
almost surely. We have further that

sup
r
{ν(r,−2t, ∅,V) ∨ ν(r, 2t, ∅,V)}

= sup
u,v
{ν(u− µ(v),−2t, E(t),V) ∨ ν(u− µ(v), 2t, E(t),V)} .

This is based on the properties of the supremum, the fact that t is fixed conditional on V,

and because Ri⊥⊥E(t). So we can re-write that conditional on E(t) and V:

B ∈
[
0, sup

r
{ν(r,−2t, ∅,V) ∨ ν(r, 2t, ∅,V)}

]
almost surely. We will strategically set:

b =̇ sup
r
{ν(r,−2t, ∅,V) ∨ ν(r, 2t, ∅,V)} .

Moreover, Ri⊥⊥V means that Pr (Ri ≤ r) = Pr (Ri ≤ r|V), so we have:

b = sup
r
{Pr (r < Ri ≤ r + 2t|V) ∨ Pr (r − 2t < Ri ≤ r|V)} .

With this choice of b, we have that Pr (B > b|E(t),V) = 0. Using this in (4.24), we get that:

Pr (B > b|V) ≤ Pr

(
sup
v
|µ̂(v)− µ(v)| > t

∣∣∣∣V) ,

as we wanted.
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4.B.7 The proof of Proposition 4.3.7

Proof of Proposition 4.3.7.

Let Λw ∈ R|I1∩Sw|×d be such that its rows are formed by stacking Ψw(Xi)
T for each i ∈

I1 ∩ Sw. Further, let Yw ∈ R|I1∩Sw|×1 contain the corresponding observed outcome Yi for

each i ∈ I1 ∩ Sw. The ordinary least squares estimator for the coefficient vector βw is given

by

β̂w = (ΛT
wΛw)

−1ΛT
wYw.

We have that

sup
x
|µ̂w(x)− µw(x)| = sup

x

∣∣∣ΨT
w(x)(β̂w − βw)

∣∣∣
≤
∥∥∥β̂w − βw

∥∥∥
2

≤
∣∣∣∣∣∣σw(ΛT

wΛw)
−1/2

∣∣∣∣∣∣
op

∥∥∥∥ 1

σw
(ΛT

wΛw)
1/2(β̂w − βw)

∥∥∥∥
2

.

The first inequality is based on Hölder’s inequality, while the second inequality is again

due to Hölder’s inequality and the definition of the operator norm. Conditional on Λw, the

d-dimensional sampling distribution for β̂ is:

β̂w|Λw ∼ N (βw, σ
2
w(Λ

T
wΛw)

−1).

This is based on a standard argument in low dimensional linear regression given the residual

distribution assumption. This further implies that conditionally on Λw,∣∣∣∣∣∣σw(ΛT
wΛw)

−1/2
∣∣∣∣∣∣2
op

∥∥∥∥ 1

σw
(ΛT

wΛw)
1/2(β̂w − βw)

∥∥∥∥2
2

∣∣∣∣Λw ∼ σ2
w

∣∣∣∣∣∣(ΛT
wΛw)

−1/2
∣∣∣∣∣∣2
op
× χ2

d,

a distribution generated by taking a chi-squared distributed random variable (d degrees of

freedom) and multiplying it by a factor of σ2
w

∣∣∣∣∣∣(ΛT
wΛw)

−1/2
∣∣∣∣∣∣2
op
. This is because

1

σw
(ΛT

wΛw)
1/2(β̂w − βw)

∣∣∣∣Λw ∼ Nd(0, I) =⇒
∥∥∥∥ 1

σw
(ΛT

wΛw)
1/2(β̂w − βw)

∥∥∥∥2
2

∣∣∣∣∣Λw ∼ χ2
d.
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Let V have a χ2
d distribution conditional on Λw, and denote vd,α as the (1− α/2)th quantile

of V ’s distribution. It follows that setting

tw,α =̇
√
vd,ασw

∣∣∣∣∣∣(ΛT
wΛw)

−1/2
∣∣∣∣∣∣
op

implies that

2 max
w=0,1

Pr

(
sup
x
|µ̂w(x)− µw(x)| > tw,α

∣∣∣∣X) ≤ 2 max
w=0,1

Pr

(
V >

t2w,α

σ2
w|||(ΛT

wΛw)−1/2|||2op

∣∣∣∣∣Λw

)
= α.

(4.25)

Now, consider that the distributional assumption on Ri(w) implies the following. We have:

2 max
w=0,1

sup
r

Pr (r < Ri(w) ≤ r + 2tw,α|Λw) ∨ Pr (r − 2tw,α < Ri(w) ≤ r|Λw)

(i)
= 2 max

w=0,1
sup
r

Pr (r < Ri(w) ≤ r + 2tw,α|Λw)

(ii)
= 2 max

w=0,1
Pr (−tw,α < Ri(w) ≤ tw,α|Λw)

(iii)
= 2 max

w=0,1
Pr
(
−√vd,α

∣∣∣∣∣∣(ΛT
wΛw)

−1/2
∣∣∣∣∣∣
op

< Ri(w)/σw ≤
√
vd,α
∣∣∣∣∣∣(ΛT

wΛw)
−1/2

∣∣∣∣∣∣
op

∣∣∣Λw

)
(iv)
= 2 max

w=0,1

{
Φ
(√

vd,α
∣∣∣∣∣∣(ΛT

wΛw)
−1/2

∣∣∣∣∣∣
op

)
− Φ

(
−√vd,α

∣∣∣∣∣∣(ΛT
wΛw)

−1/2
∣∣∣∣∣∣
op

)}
.

(4.26)

Here, Φ denotes the CDF for the standard normal distribution. Equality (i) holds due to

the symmetry of the Gaussian density around its mean, which is zero in the case of Ri(w)

conditional on Λw. Moreover, (ii) holds because the biggest slice of area under the normal

density of width 2tw,α is the one centered at its mean. Next, (iii) holds due to our choice of

tw,α, while (iv) holds since Ri(w)/σw follows a standard normal distribution.

The final conclusion in Proposition 4.3.7 follows by applying Theorem 4.3.4 with (4.25) and

(4.26).
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4.B.8 Proof of Proposition 4.4.1

Proof of Proposition 4.4.1.

The first claim is immediate from Lemma 4.A.1 and our definition of θL(δ) and θU(δ) in

Section 4.2. We also use the fact that PNS is the same as PIBT when δ ∈ [0, 1).

We now show why the second part of our claim holds. We will use that CDFs for binary

potential outcomes satisfy:

Fw(y) =


0 if y < 0

Pr (Yi(w) = 0) if 0 ≤ y < 1

1 if y ≥ 1

;w = 0, 1.

• For δ ∈ [0, 1), the Makarov lower bound on PIBT is:

θL(δ) = −min

(
inf
y=0,1
{F1(y + δ/2)− F0(y − δ/2)} , 0

)
= −min (F1(δ/2)− F0(−δ/2), F1(1 + δ/2)− F0(1− δ/2), 0)

=


−min (Pr (Yi(1) = 0)− Pr (Yi(0) = 0) , 0) if δ = 0

−min (Pr (Yi(1) = 0) , 1− Pr (Yi(0) = 0) , 0) if 0 < δ < 1

=


−min (1− Pr (Yi(1) = 1)− Pr (Yi(0) = 0) , 0) if δ = 0

0 if 0 < δ < 1

=


max (Pr (Yi(1) = 1) + Pr (Yi(0) = 0)− 1, 0) if δ = 0

0 if 0 < δ < 1

.

It follows that

sup
δ∈[0,1)

θL(δ) = max (Pr (Yi(1) = 1) + Pr (Yi(0) = 0)− 1, 0) ,

as we wanted.
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• Similarly, for δ ∈ [0, 1), the Makarov upper bound on PIBT is:

θU(δ) = 1−max

(
sup
y=0,1
{F1(y + δ/2)− F0(y − δ/2)} , 0

)
= 1−max (F1(δ/2)− F0(−δ/2), F1(1 + δ/2)− F0(1− δ/2), 0)

=


1−max (Pr (Yi(1) = 0)− Pr (Yi(0) = 0) , 0) if δ = 0

1−max (Pr (Yi(1) = 0) , 1− Pr (Yi(0) = 0)) if 0 < δ < 1

=


1−max (1− Pr (Yi(1) = 1)− Pr (Yi(0) = 0) , 0) if δ = 0

1−max (Pr (Yi(1) = 0) ,Pr (Yi(0) = 1)) if 0 < δ < 1

=


min (Pr (Yi(1) = 1) + Pr (Yi(0) = 0) , 1) if δ = 0

min (Pr (Yi(1) = 1) ,Pr (Yi(0) = 0)) if 0 < δ < 1

It follows that

inf
δ∈[0,1)

θU(δ) = min (Pr (Yi(1) = 1) ,Pr (Yi(0) = 0)) ,

as we wanted.

With essentially the same reasoning, we have the analogous claims for

Pr (Yi(1) = 1, Yi(0) = 0|Xi = x) .
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CHAPTER 5

Summary and Possible Extensions

In Chapter 2, we developed a novel structure learning method that allows us to estimate

the topological ordering of a large number of variables in an unknown causal graph. A key

strength is the computational scalability to a large number of variables and the identifiability

guarantee. The key limitation is the assumed structure: the linear relation between variables.

Further study is needed to understand whether incorporating a larger amount of variables

can make it so that, generally, any given variable is well explained. For example, this can

be understood by calculating coefficients of determination as in the real data application of

Section 2.3.3.2.

Along the lines of calculating coefficients of determination, it could be interesting to

study further the relative goodness of fit to our data between two causal discovery models

(see for example Ramsey et al. (2020)). Concretely, consider that for any arbitrary random

vector X ∼ f(x), we may define the cross entropy (Cover and Thomas 2005) of a specified

probability density function g(x) as the negative mean log-likelihood:

H(f, g) := −
∫
x

log g(x)f(x)dx.

The minimizer of H(f, g) with respect to g is f (Cover and Thomas 2005). Given that in

practice specifying f correctly is difficult, if not impossible, consider two candidate densities

g1(x) and g2(x) corresponding to two structural equation models (SEMs) output by differing

causal discovery models. At the limit of sample size, we may prefer to specify density g1 for

X over g2 if

H(f, g1) ≤ H(f, g2).
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This inequality says that g1 is a closer fit to the distribution of X compared to g2. As

an example of how one may reason about which model provides a better cross-entropy in

practice, consider specifying Gaussian noise for both a nonlinear SEM (e.g. as estimable

by Peters et al. (2014) or Gao et al. (2020)) and for a linear SEM (e.g. as estimable by

Aragam and Zhou (2015) or Ye et al. (2021a)). We may be more willing to live with the

nonlinear specification if the negative sample mean of the log-likelihood specification is better

with its specification vs. under the linear specification that does not allow us a unique SEM

(Ye et al. 2021a). The negative sample mean of the log-likelihood, an approximation to the

cross entropy H(f, gj) (j = 1, 2), can be calculated on a validation fold as in the model

comparison of Section 2.3.3.1. More formally, considering that parameter degrees of freedom

should also be taken into account, it can be of interest to build from the literature on Akaike

Information Criterion (AIC) and other information criterion rules for model selection (Stoica

and Selen 2004). It could also be of interest to look into formal statistical tests for comparing

non-nested models, such as based on the Vuong statistic (Vuong 1989). Moreover, it can be

of interest to incorporate recent work that cautions about the purported benefit of uniquely

identifiable graphical models and instead vouches for specifying a general likelihood that

encodes an equivalence class of Bayesian networks (Shpitser 2022).

Moreover, Chapter 3 provides finite sample and asymptotic guarantees for the learning

of the linear structural equation model discussed in Chapter 2. Given the importance of

applying theoretically justified methods in practice, the results of this chapter help provide a

reasonable expectation for a causal discovery method. Extensions of the work here include

understanding further the sensitivity of the accuracy results to the density specification (e.g.

Laplace) vs. the actual density which can be power law decaying, exponentially decaying,

or something else. Moreover, it would be interesting to see whether the argument of the

estimation theory in this chapter can be generalized to more sequential approaches to estimate

a permutation of variables based on some other heuristic, such as tailored to a non-linear

SEM specification.
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In Chapter 4, we developed novel statistical estimation theory that allows us to reason in a

frequentist sense about the probability an individual benefits from treatment–an inestimable

parameter. A key component of our approach is the use distribution-free bounds on the

parameter of interest along with non-asymptotic concentration inequalities. It could be

interesting to study how conservative this approach is, if at all. For example, in the case that

the potential outcomes’ residuals are jointly Gaussian, appropriate bounds on PIBT might be

obtained by simply tuning the correlation between the potential outcomes’ residuals (recall

the example in Equation (1.1) of Chapter 1). As with the case of jointly Gaussian potential

outcomes’ residuals, we may like to study other structural assumptions to obtain estimators

for bounds on PIBT. For example, we may like to develop results for generalized linear models

(McCullagh and Nelder 2019) in analogy to Proposition 4.3.7, including involving logistic or

probit regression for binary potential outcomes. Additionally, extensions of the theory in this

chapter may like to incorporate the assumption of positively correlated potential outcomes–an

assumption which may be realistic in practice (Frandsen and Lefgren 2021). Moreover, Section

4.5 of this chapter, in an application to a large randomized experiment dataset, demonstrates

how our proposed methodology can help augment existing approaches for average causal

effect modeling. Along these lines, and as alluded to in Chapter 1, it seems interesting

to study further the practical implications of seemingly significant, possibly heterogeneous,

average treatment effects. We may also like to study whether a connection exists between

the counterfactuals involved in reasoning about unconfounded (identifiable), possibly path

specific, effects (Malinsky and Spirtes 2017, Malinsky et al. 2019) and a parameter similar to

Definition 4.1.1 (PIBT) in Chapter 4.
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