
UC Riverside
Cliodynamics

Title

Modeling Malthusian Dynamics in Pre-Industrial Societies

Permalink

https://escholarship.org/uc/item/71g00580

Journal

Cliodynamics, 4(2)

Author

Nefedov, Sergey A.

Publication Date

2013

DOI

10.21237/C7clio4221335

Copyright Information

Copyright 2013 by the author(s). All rights reserved unless otherwise 
indicated. Contact the author(s) for any necessary permissions. Learn 
more at https://escholarship.org/terms
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/71g00580
https://escholarship.org/terms
https://escholarship.org
http://www.cdlib.org/


Cliodynamics: the Journal of Theoretical and Mathematical History 

Corresponding author’s e-mail: hist1@yandex.ru 

Citation: Nefedov, Sergey A. 2013. Modeling Malthusian Dynamics. Cliodynamics 4: 
229–240. 

Modeling Malthusian Dynamics in  
Pre-Industrial Societies 
Sergey A. Nefedov  
Ural Federal University 
 

The discussion about the Malthusian character of pre-industrial 
economies that has arisen in the recent years extensively uses 
simple mathematical models. This article analyzes some of these 
models to determine their conformity with Malthusian postulates. 
The author suggests two models that are more adequate for the 
description of Malthusian patterns. 

 
 Until recently, most economic historians have tended toward the opinion 
that medieval economies in Eurasia had a Malthusian nature (Allen 
2008:951). However, following the publication of Lee and Anderson’s (2002) 
work, many came to dispute this opinion. A discussion has arisen about how 
the available data confirm the Malthusian relationship between demographic 
dynamics and consumption (i.e., real wages). This discussion has largely in-
volved simple mathematical models of Malthusian economics. 
In 1980, Lee published the first and most popular of these models. This model 
describes the relationship between the real wage, wt (consumption), and labor 
resources, Nt (population), using the following equation: 
 
(1)   wt  = exp( μ + ρt + εt) Nt

-η 

 
Or, in logarithmic form: 
 
(2)   ln wt = μ + ρt – η ln Nt + εt 
 
Here, t is time; μ, ρ, η are some non-negative constants; and εt is a variable 
that takes into account the climatic effect and other exogenous parameters. 
The factor ρ describes capital increase and technological advances, thus Mal-
thusian economics features ρ=0. If we take into account that εt=0 in the ideal 
case, the model can be expressed with quite a simple equation: wt = С Nt

-η, 
where С is some certain constant. The drawbacks of this equation are evident: 
a small population Nt results in a consumption rate close to infinity, while in a 
large population the consumption becomes too small to ensure subsistence. 
Additionally, this equation only shows the relationship between population 
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and consumption. The model contains no feedback to demonstrate how con-
sumption influences population growth. 
 Wood (1998) has suggested one feedback option. Wood derives his equation 
from the same equation (1) as Lee, but formulates it as follows: 
 
(1a)   wt = θ (St/Nt) η 
 
Here, θ is the minimum per capita consumption rate, and St is the maximum 
population that can subsist in the given territory when the consumption equals 
θ. St can grow through technological advances, but the Malthusian case fea-
tures a constant St, St = S0. Wood believes that the birth rate bt and death rate 
dt can be described with the following equations: 
 
(3)    bt = β0 + β1 ln wt + β2 dt 
 
(4)    dt = δ0 + δ1 ln wt + δ2 bt 
 
where β0 , β1 , β2, δ0, δ1, and δ2 are certain constants. Thus, the equation below 
describes population growth: 
 
(5)    dNt /dt =  ( bt – dt)Nt 
 
 Deriving bt and dt from the system of equations (3)–(4) and inserting them 
into (5) yields: 
 

dNt /dt = ( bt – dt)Nt = (с0 +с1 ln wt )Nt 

 
where с0 and с1 are certain constants. Substituting equation (1a) here produces: 
 
(6)    dNt /dt = (с2 + с3 ln Nt )Nt 
 
where с2 and с3 are certain constants. The differential equation (6) has the 
time-independent solution Nt = N0 = exp(–с2/с3); its chart will be a horizontal 
line. According to the theorem of the unique existence of the solution, no other 
solutions (integral curves) may cross this horizontal line. The derivative dNt /dt 
is positive below this line, in the area 0 < Nt  < N0; the solutions monotonically 
increase and the integral curves approximate the horizontal line. The deriva-
tive dNt /dt is negative above this line; the solutions monotonically decrease 
and the integral curves approximate the horizontal line from above. Finally, 
the solutions cannot oscillate: the population cannot first feature growth and 
then loss due to “Malthusian crisis.” Wood justifies this behavior of his model 
stating that Malthusian crises “are not a necessary feature of Malthusian sys-
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tems… This conclusion is contrary to the belief of many economic historians 
(e.g., Le Roy Ladurie 1974: passim; Postan and Hatcher 1985:69) though not 
to anything that Malthus himself ever wrote” (Wood 1998:110). 
 Malthus did, however, write about population loss, depopulation:  

The power of population is so superior to the power of the earth to 
produce subsistence for man, that premature death must in some 
shape or other visit the human race. The vices of mankind are ac-
tive and able ministers of depopulation. They are the precursors in 
the great army of destruction, and often finish the dreadful work 
themselves. But should they fail in this war of extermination, sickly 
seasons, epidemics, pestilence, and plague advance in terrific array, 
and sweep off their thousands and tens of thousands. Should suc-
cess be still incomplete, gigantic inevitable famine stalks in the 
rear, and with one mighty blow levels the population with the food 
of the world (Malthus 1798: 61). 

Wood’s model does not, therefore, describe the population dynamics envi-
sioned by Malthus, himself. It is nonetheless used in many studies dedicated to 
the analysis of the Malthusian economics in traditional societies. 
 Sometimes an iterative version of this model is used, implying calculations 
on an annual basis. Equation (1a) in the version put forth by Møller and Sharp 
(2009) has logarithmic form: 
 
(2a)   ln wt = c0 – c1 ln Nt + ln A 
 
Birth and death rates are calculated from the simplified equations: 
 
(3a)   bt = a0 + a1 ln wt 
 
(4a)   dt = a2 – a3 ln wt 
 
The population Nt is related to the population Nt-1 in the previous year through 
the following relationship: 
 
(7)    ln Nt  = ln Nt-1 +bt-1 – dt-1 
 
here, A, c0, c1 , a0 … a3 are certain constants. Inserting (3a) and (4a) into (7) 
gives: 
 

ln Nt  = ln Nt-1 + (a1 + a3 ) ln Wt-1  + a0 - a2= 

 
ln Nt-1 + (a1 + a3 )( c0 - c1 ln Nt-1 + ln A) + a0 - a2 = u ln Nt-1 + ln v 

where u and v are certain constants. The resulting equation is: 
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(8)    Nt = v(Nt-1 )u 
 
This equation generates a series of population values. If the population at the 
initial moment equals 1 million (i.e., N1 =1), then N2 = v, N3 equals v raised to a 
power of 1+u , N3 equals to v raised to a power of 1+u+u2, etc. If ׀u ׀  > 1, then  
Nt → ∞, which is impossible under the condition of limited resources in the 
Malthusian theory. If 0<u<1, then Nt monotonically tends to a finite bound. 
Finally, the case -1<u<0 produces a very specific series in which the population 
increases in even years and decreases in odd years (or vice versa). Thus, the 
Møller-Sharp model has the same drawback as Wood’s initial model: it cannot 
describe long-term population oscillations. 
 Another iterative version of the model is that developed by Ashraf and 
Galor (2011). Beginning with equation (1a), the authors of this model take into 
consideration the number of adults and children, and optimize expenses. They, 
nevertheless, ultimately come to the same equation (8). 
 One more version of Wood’s model is that of Voigtlander and Voth (2009). 
They use equation (1a), but replace equations (3) and (4) with (3a) and (4a): 
 
(3a)   bt = b0 (wt / θ)m 
 
(4a)   dt =d0 (wt / θ)n 
 
where b0 and d0 are certain constants. Inserting (1a) into equation (5) yields: 
 
(6a) dNt /dt = (bt – dt)Nt = (b0(S0/Nt) ηm – d0(S0/Nt) ηn)Nt = q(p - Nt η(m-n)) Nt

 1-ηm 
 
where p and q are certain constants. The differential equation (6a) has the 
time-independent solution Nt = N0 = p 1/η(m-n), which represents a horizontal 
line. As with the above model, the solution curves that are beneath this line 
monotonically increase, and those lying above the line monotonically decrease. 
Thus, this model has the same limitation as Wood’s model and its other deriva-
tives: it does not offer oscillating solutions. 
 Brander and Taylor (1998) have suggested another popular model. This 
model analyzes some abstract renewable resource consumed in the course of 
human activities. For example, it might be forest resources or soil yield. St is 
the available amount of this resource (in year t), and K denotes its reserve in 
nature. The equation for consumption of this resource is as follows: 
 
(8)    dSt /dt = rSt (1-St /K) – uStNt 
 
where r and u are certain constants. The first term on the right side describes 
the process of natural resource renewal; the second term describes resource 
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depletion owing to economic activity. The population is given by the following 
equation: 
 
(9)    dNt /dt = ( d + v S t )Nt 
 
where d and v are constants, and d < 0 in this case. This equation shows that 
natural population growth depends on the availability of resource St. 
 Brander and Taylor have shown that the system of equations (8)–(9) has 
oscillating solutions: when the resource is abundant the population grows, 
when it is exhausted the population decreases until the resource is renewed. 
Brander and Taylor refer to their model as “Malthusian-Ricardian”. Initially, 
the model was intended to describe the economy of Easter Island, but after-
wards it got wider application as a sufficiently general model of Malthusian 
economics (e.g., Maxwell and Reuveny 2000; D’Alessandro 2007). It is essen-
tial to note, however, that resource St in the Brander–Taylor model is not the 
harvest gathered by farmers. According to Brander and Taylor, the crop is de-
noted by the term uStNt and it is deducted from the resource St. According to 
Szulga (2012), such a model describes a society of gatherers (or hunters) rather 
than an agrarian society. However, Malthus mainly studied agricultural econ-
omies. Thus, Brander–Taylor model cannot be referred to as a “Malthusian-
Ricardian” one. 
 Up to this point, I have confined my discussion to the analysis of simple 
Malthusian economics models that contain no more than two differential equa-
tions. Naturally, more complicated models do exist (e.g., Usher 1989; Komlos 
and Artzrouni 1990; Chu and Lee 1994; Galor and Weil 2000; Lee and Tulja-
purkar 2008) that allow for better behavioral freedom and offer oscillating so-
lutions, as well. Many such models have been constructed within the frame-
work of cliodynamic studies actively carried out in Russia and the USA (e.g., 
Tsirel 2004; Korotaev, Malkov and Khaltourina 2005, 2006; Korotaev, Malkov 
and Grinin 2007; Turchin 2007, 2009; Malkov 2009). However, almost all 
models described in the literature feature the same drawback: they contain 
uncertain coefficients whose values are unknown and cannot be determined in 
principle. The more complicated the model, the more uncertain coefficients it 
contains. Meanwhile, these coefficients determine the model behavior, and 
different coefficient values result in different population dynamics. Owing to 
this, an uncertainty originates: as coefficient values are unknown, it is also un-
known which of the possible behavioral variants corresponds to the historical 
reality and which of them could not possibly have been realized. 
 In the remainder of this article, I would like to discuss two simple models 
that contain no uncertain parameters and, in my opinion, are sufficiently ade-
quate for description of Malthusian population dynamics. In the first, Nt is the 
population in the year t, as above; Kt is corn stock after the harvest estimated 
in terms of minimum annual rations (1 ration approximately equals 240 kg of 
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corn); and r is the natality under the favorable conditions. The area under cul-
tivation and the harvest depend on the population, and with the population 
growth they tend to some constant determined by the maximum area under 
cultivation maintained by the agricultural community. We will consider that 
the harvest is determined by the equation Pt=aNt /(Nt+d), where a and d are 
certain constants. To describe the population dynamics we use the standard 
logistic equation: 
 
(10)   dNt /dt = rNt (1 –  Nt / Kt) 
 
Kt in this logistic equation denotes the carrying capacity (i.e., the maximum 
size of population that may live in this territory). In our case, this population 
size corresponds to the number of minimum annual rations in storage. Annu-
ally, Nt rations are consumed, and the stock growth will be equal to: 
 
(11)   dKt /dt = Pt – Nt = aNt /(Nt+d) – Nt 
 
Thus, we have the simplest system of two differential equations (10)-(11). This 
system has an equilibrium state, when the population and stock remain con-
stant, namely in the point K0 = N0 = a – d. 
 If N in the equation for dP/dN tends to 0, we will obtain the harvest a/d 
(number of rations) gathered by one farmer in favorable conditions (when the 
population is small and he or she is able to cultivate the maximum area). Thus, 
the value q = a/d shows how many households one farming family can sup-
port. The history of agricultural societies shows that q usually varies within the 
limits 1.2< q <2. We can express a and d in terms of q and N0: 
 

d= N0/(q – 1),     a= qN0/( q – 1) 

 
N0 can be conventionally set equal to 1 and there are two constants in this 
model, r and q, that have physical significance and vary within the known lim-
its: 0.01 < r < 0.02, 1.2 < q < 2. The usual methods used for investigation of 
dynamic systems allow us to determine that system (10)–(11) originates dying 
oscillations. The first oscillations can have differing periods; however, when 
the curve approaches the equilibrium state, the period is close to: 
 

T = 2π / √(r – r/q – r2/4) 

 
The period T decreases when r and q increase, and increases accordingly when 
these values decrease (Table 1 and Figure 1). 
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Table 1. Period of oscillations with various r and q (in years) 
q\r 0.01 0.02 
1.2 154 110 
2.0 89 63 

 
Thus, the period of oscillations in this model is comparable to the duration of 
secular demographic cycles observed in the history of many states (Turchin 
and Nefedov 2009). 

 The dynamics of the agricultural population according to this model have 
an oscillating nature. In theory these oscillations die out and the system tends 
to the equilibrium state, but various random impacts and influences neglected 
herein (e.g., catastrophic crop failure) disturb the system equilibrium, after 
which a new series of dying oscillations begins. The peculiar feature of the ag-
ricultural society is that its economic dynamics substantially depend on such a 
random value as the crop yield. The random factors that impact such systems 
are generally assumed to be exogenous; however, the dependence on crop yield 
variations is an intrinsic, endogenous feature of agricultural production. 
Therefore, one arrives at the conclusion that a special random value describing 
crop yield must be incorporated into the ideal model of the Malthusian cycle. 
This can be conveniently done within the iterative model where the calcula-
tions are made from year to year. 
 For convenience, I consider production years that start with the harvest, not 
a specific calendar date. The population size Nt at the beginning of year t is ex-
pressed in terms of the number of households or families (conventionally as-
suming that a household population is 5 people). In theory (i.e., when there is 
enough land for cultivation), a farming household cultivates a standard parcel 
of land (e.g., a Middle Eastern “çiftlik”) and one can measure the maximum 

Figure 1. Example of calculations using the model (r=0.01; p=1.2) 
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possible area of arable land in terms of standard parcels S. When the number 
of households Nt exceeds S, two families can live on some parcels. 
 Let at represent the annual crop yield t, expressed in terms of minimum 
family corn rations that can be gathered on a standard parcel. We will express 
the crop yield in the form at= a0 + dt, where a0 is the average crop yield, dt is a 
random value that accepts values from the segment (–а1, а1). The value а1 is 
less than a0 and the crop yield at varies within the interval of a0 – а1 to a0 + а1. 
With the units of measure that I have assumed, the harvest Yt (number of ra-
tions) can be expressed in the following simple form: 
 

Yt = atNt  if  Nt  < S, and Yt = atS  if  Nt > S 

 
 If there is corn surplus in the year t, that is per-capita production yt =Yt/Nt 
exceeds some value of “satisfactory consumption” p1 (p1 > 1), then the farmers 
do not consume the entire corn produced, but lay up some surplus portion in 
store (for simplicity sake we will assume that they lay up half the surplus). 
However, it is worth noting that, owing to the storage conditions, the house-
hold stock Zt cannot grow to infinity and is limited by certain value Z0. If there 
are surpluses exceeding this value, they all are consumed. If the year is lean 
and the production yt falls below the level p1, the farmers take corn from the 
stock, increasing the consumption, if possible, up to the level p1. If the stock is 
not sufficient, it is consumed in full. 
 The population growth rate rt is determined as the ratio of the population 
Nt+1 in the following year to the population Nt in the previous year. The growth 
rate rt depends on the consumption pt. When the consumption is equal to the 
minimum normal rate (pt =1), the population remains constant (rt = 1). I desig-
nate the maximum natural growth r0, and the consumption rate needed to en-
sure it – p0. I believe that r0 = 1.02, that the maximum population growth is 
2% yearly. When 1 < pt < p0, population growth is linearly dependent on con-
sumption, and in the case when pt > p0, it does not increase (r = r0). For pt < 1, 
the dependence of rt on pt is taken as rt = pt (i.e., in case of crop failure the sur-
viving population will be equal to the number of rations and all people that do 
not have a sufficient annual food reserve will perish from starvation). Conse-
quently, the population in the following year will be Nt+1 = rt Nt. 
 Considering the typical case from the Middle East or Russia in the 16th to 
18th centuries, in which each family could obtain two minimal rations from one 
standard parcel, one can assume a0 = 2 for the numerical experiment. The 
scatter of crop yield (ratio а1 /a0) was large enough (e.g., it was about 60% of 
average crop yield in Egypt). Hence, it appears that one can assume а1 = 1.2. As 
for the random value dt, it may be approximated using squared uniform distri-
bution: if w is a value uniformly distributed over the segment (–1.1), then this 
random value can be taken as dt = а1 w2 sign(w) (Nefedov and Turchin 2007). 
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The maximum number of standard parcels S can be conventionally assumed to 
equal 1 million, and the maximum stock to equal ten-year ones (Z0 = 10). Here, 
I consider a case in which farmers call upon the experience gained by preced-
ing generations and start laying the crop up in storage as soon as the per-capita 
production exceeds 1.05 of the minimum level (p1 = 1.05). This calculation has 
an idealized character, allowing one to assume N1 =0.8 as the initial population 
value (in year t = 1). As the calculation results depend on a random value (i.e., 
crop yield), they will vary with each program run. Despite this variation, one 
can qualitatively observe a pattern of demographic cycles that seems typical: 
population growth periods alternating with demographic catastrophes. The 

duration of this cycle is, as in the previous model, 80–150 years (Figure 2). 
 Naturally, this model describes just the basic mechanism of the demograph-
ic cycle omitting many details (e.g., the existence of the state and military elite, 
the emergence of large landowners). Such factors are taken into account in 
other models (e.g., Nefedov and Turchin 2007) and the calculations made us-
ing these models show that the qualitative pattern of cycles changes insignifi-
cantly compared to the suggested model. On the whole, it seems quite certain 
that the availability of corn stock in farms allows for long-term economic stabi-
lization. Population growth results in stock depletion, however, and, sooner or 
later, major harvest failures provoke catastrophic starvations followed by 
events like epidemics, uprisings of starving people, and/or invasions by exter-
nal enemies seeking to take advantage. As a result, the population size can de-

Figure 2. Example of calculation using this model for r0 =1.02, p0 = 2, a0 = 2, 
а1=1.2, p1=1.05. 
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crease even by half and a new demographic cycle starts. While the model calcu-
lations suggest that this new cycle might start immediately after the catastro-
phe, in real life such crises as wars and uprisings have some inertia and impede 
economic revival. In such cases, stabilization is delayed. 
 Finally, it is worth noting that after the publication of Wood’s model eco-
nomic historians came to see Malthusian economics as a system wherein the 
population size cannot exceed the carrying capacity and, consequently, the 
“Malthusian crisis” is not possible. For example, Read and LeBlanc (2003: 59) 
“… suggest that there is a standard model for the pattern of human population 
growth and its relationship to carrying capacity (K), namely, that most of the 
time human populations have low to nonexistent rates of growth.… The model 
is often implicit and may simply assert that, until recently, population sizes 
have always been well below K and growth rates very low.” But Le Roy Ladurie, 
Postan, Hatcher and many other economic historians insist that “Malthusian 
crises” were quite common phenomena in lived history, a fact acknowledged 
by Wood himself. The models described in this article show that the inevita-
bility of similar crises arises from the simple laws that govern the functioning 
of agrarian economies. 
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