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ABSTRACT Brain stimulation has emerged as an effective treatment for a wide range of neurological and
psychiatric diseases. Parkinson’s disease, epilepsy, and essential tremor have FDA indications for electrical
brain stimulation using intracranially implanted electrodes. Interfacing implantable brain devices with local
and cloud computing resources have the potential to improve electrical stimulation efficacy, disease tracking,
and management. Epilepsy, in particular, is a neurological disease that might benefit from the integration
of brain implants with off-the-body computing for tracking disease and therapy. Recent clinical trials have
demonstrated seizure forecasting, seizure detection, and therapeutic electrical stimulation in patients with
drug-resistant focal epilepsy. In this paper, we describe a next-generation epilepsy management system that
integrates local handheld and cloud-computing resources wirelessly coupled to an implanted device with
embedded payloads (sensors, intracranial EEG telemetry, electrical stimulation, classifiers, and control policy
implementation). The handheld device and cloud computing resources can provide a seamless interface
between patients and physicians, and realtime intracranial EEG can be used to classify brain state (wake/sleep,
preseizure, and seizure), implement control policies for electrical stimulation, and track patient health. This
system creates a flexible platform in which low demand analytics requiring fast response times are embedded
in the implanted device and more complex algorithms are implemented in offthebody local and distributed
cloud computing environments. The system enables tracking and management of epileptic neural networks
operating over time scales ranging from milliseconds to months.

INDEX TERMS Epilepsy, deep brain stimulation, implantable devices, seizure detection, seizure prediction,
distributed computing.

I. INTRODUCTION
Electrical Brain Stimulation (EBS) via implanted brain
electrodes has shown therapeutic benefit in a wide range

neurological and psychiatric diseases [1]. Parkinson’s dis-
ease and essential tremor have FDA indications for deep
brain stimulation (DBS) and epilepsy has FDA indication for
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responsive neural stimulation (RNS) and DBS of the bilateral
electrical stimulation of anterior nucleus of the thalamus for
treatment of focal epilepsy.

Preliminary studies also show EBS can improve cogni-
tion [2]–[4], depression [5], [6], and post-traumatic disor-
der [7]. There is now considerable interest in interfacing
EBS implants with local and cloud computing resources to
link the brain with computational devices [8], [9]. Epilepsy,
in particular, is a neurological disease that could benefit from
integration of brain implants with off-the-body computing for
tracking disease and therapy.

Epilepsy is a common neurological disease affecting
approximately 50 million people worldwide. Even in devel-
oped countries with access to a wide array of antiseizure med-
ications, approximately 1/3 of people with epilepsy have drug
resistant epilepsy (DRE). Epilepsy surgery is an option for
some, but many patients are not surgical candidates because
their seizures are poorly localized, or originate from multiple
foci, or involve eloquent brain regions that cannot be resected.
Furthermore, resective surgery is irreversible, and is unsuc-
cessful in achieving seizure freedom in approximately 50% of
patients [10], [11]. Advances in neural engineering have led
to implantable devices capable of both sensing and electrical
stimulation [12], [13]. Duty cycle stimulation of the ante-
rior nucleus of the thalamus (SANTE: [14], [15]) and clos-
edloop, responsive stimulation triggered by detected focal
epileptiform activity (RNS: [16]–[18]) reduce seizures, are
not destructive, and are reversible if unsuccessful. However,
it is rare for patients to achieve long-term seizure free-
dom [18], [15], and multiple limitations have been recog-
nized using current devices. The current treatment paradigm
is limited by the use of stimulation parameters that are not
individualized, and adjustments that are driven only by treat-
ment failures. A fundamental limitation of most epilepsy
trials is the use of patient diaries for measuring seizure out-
come, a serious limitation given the established inaccuracy of
patient seizure diaries [19]–[21]. The Medtronic device used
in the SANTE trial and theNeuroPace RNS device do not pro-
vide electronic seizure diaries. The SANTE trial DBS did not
have sensing capability, and thus relied on patient reporting.
While the RNS device represents a significant engineering
advance over the Medtronic Activa PC device, with contin-
uous sensing, embedded detection algorithms and respon-
sive stimulation, the RNS does not provide accurate seizure
diaries. The limited embedded computation power and data
storage capacity of the RNS preclude high specificity and
sensitivity seizure diaries and seizure analytics. The absence
of NeuroPace electronic seizure diaries was the topic of inter-
est and discussed in Epilepsia Gray Matter Letters [22], with
follow up response from NeuroPace Inc. clarifying that while
the RNS has continuous sensing, the device is not capable
of providing high accuracy electronic seizure diaries for the
reasons mentioned above [23]. Clinicians, however, can draw
inference on the effects of stimulation using RNS counts of
detected events, and ‘‘long-episodes’’ of abnormal activity
can serve as an imperfect surrogate for possible seizures.

But with the limited RNS data storage it is generally not
possible to store all the EEG data of the detected events to
provide definitive seizure counts. Lastly, while the extended
period of time required for treatment optimization is often
assumed to be related to brain plasticity and the long-term
effects of stimulation, it is possible that since seizures can
be relatively infrequent, sporadic, and inaccurately reported
this could have significant impact on therapy optimization.
Notably, both the SANTE DBS [15] and RNS [18] trials
reportedmultiple years to achieve optimal therapeutic results.
We argue that it is time for an accurate seizure diary to guide
therapeutic electrical brain stimulation.

Automated seizure detection, electronic seizure diaries,
and seizure forecasting have been demonstrated using a novel
system (NeuroVista Inc.) consisting of an implanted device
providing continuous intracranial EEG (iEEG) telemetry
coupled with off-the-body analytics in humans [20] and
canines [22]–[27]. The ability to track behavioral state [28]
and the correlation of electrophysiological biomarkers with
seizure probability [29], [30] have also been demonstrated
in humans using iEEG recordings. These advances suggest
a new treatment paradigm where stimulation parameters are
dynamically adjusted based on seizure probability in order
to prevent seizures. The potential to dynamically adjust ther-
apeutic stimulation in response to biomarkers that serve as
surrogates for seizures, e.g. pathological interictal epilepti-
form discharges (IED), pathological high frequency oscilla-
tions [31], and other electrophysiological measures of brain
excitability [32]–[34], make rational selection and adjustment
of stimulation parameters to prevent seizures feasible.

Here we describe a next generation epilepsy therapy
system in canines with naturally occurring epilepsy. A hand-
held epilepsy personal assist device (EPAD) provides bidirec-
tional wireless connectivity with the cloud via cellular and
Wi-Fi and with an implantable, investigational neurostimu-
lator (Summit System RC+S: Medtronic Inc.) with embed-
ded scientific payloads (sensors, iEEG telemetry, electrical
stimulation, classifiers, and control policy implementation).
The epilepsy therapy system (Fig. 1.) provides automated
seizure detection [22], [35], seizure forecasting [20], [26]
and behavioral state classification [28] running locally on the
EPAD or distributed in the cloud. Similarly, electrical stim-
ulation control policy algorithms can run on the implanted
device, the technology pioneered in the Neuropace RNS
device, the EPAD, and in the cloud. This system provides
control policies operating at time scales ranging from mil-
liseconds, again similar to the Neuropace Inc. RNS tech-
nology, to months using forecasting algorithms applied to a
large database of patient iEEG recordings. A seizure detec-
tor embedded on the RC+S device provides rapid (msec)
responsive electrical stimulation. Brain state classifiers and
control policies running on the EPAD and in the cloud provide
seizure forecasting and behavioral state tracking over longer
time scales (minutes, hours, days) and could prove useful
for intelligent stimulation to prevent seizures and disrupt
consolidation of seizure engrams [36], [37]. The multiple
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FIGURE 1. Schematic of next generation epilepsy management system
using Medtronic investigational Summit RC+S. The implanted neural
stimulator (INS) combines flexible stimulation paradigms, continuous
telemetry of intracranial EEG, bi-directional communication between the
INS and the Mayo Epilepsy Patient Assistant Device (EPAD) and provided
by the Clinician Telemetry Module (CTM) and Summit RDK. The EPAD
seamlessly interfaces with the INS and cloud to create a flexible platform
with local and distributed computing, analytics, and data storage.

computing environments (embedded on device, EPAD, and
Cloud) create a distributed computing and data platform for
analytics that can track disease and inform therapy [8].

II. METHODS
A. EXPERIMENTAL SETUP
1) MEDTRONIC’s INVESTIGATIONAL SUMMIT SYSTEM
The Medtronic Inc. Summit RC+S [13] is an investiga-
tional device built upon FDA approved technology from
the Activa PC family of neurostimulators used for treating
Parkinson’s disease, essential tremor, and epilepsy, of which
over 140,000 devices have been implanted worldwide. The
Activa PC is an implantable neurostimulator without sens-
ing capability, and is approved for use in focal epilepsy
throughout much of the world based on the clinical trial
investigating stimulation of the anterior nucleus of the tha-
lamus for epilepsy [14]. Electrical stimulation of thalamus
was recently approved for treatment of epilepsy in the USA.
The device is not currently approved for the treatment of
epilepsy in the USA. The Summit RC+S is a rechargeable,
implantable 16-channel neurostimulation device providing
bidirectional communication with arms-length telemetry,
electrophysiological and motion sensing, and adjustable,
constant-current stimulation. The Summit RC+S is capable
of continuous sensing both inertial signals from an embedded
3axis accelerometer and iEEG from 4 channels selectable
from 16 implanted electrode contacts. The Summit RC+S
has relatively limited data storage on the device (∼3 minute

buffer), but provides continuous iEEG (up 1000 Hz sampling
rate) telemetry off the device. Basic spectral analysis algo-
rithms (Fast Fourier Transforms and powerband summation)
are embedded in device and can trigger realtime, closed-loop,
and responsive electrical stimulation.

The implantable RC+S is a component of the investiga-
tional Summit System, shown in Figure 2, which provides
instruments to wirelessly recharge the INS (PTM – patient
telemetry module with RTM – radio telemetry module and
antenna) and communicates with the implantable neural stim-
ulator (INS). The Summit system provides a bi-directional
interface between the INS and EPAD using the clinician
telemetry module (CTM) for wireless communication and
data streaming. The INS and CTM communicate via U-Band
and the CTM and EPAD communicate via secure Bluetooth.
The communication channel between the PC and the RC+S
through the CTM are encrypted and secured using out-of-
band key exchanges in order to reduce the possibility of
interference with the Summit System components. The PC
and CTM need to be connected over USB before Bluetooth
can be used, and the CTM must be placed directly on top of
the RC+S to inductively exchange keys before transitioning
to using distance telemetry. By requiring a physical (or induc-
tive) connection between each device before a session can
begin, the chance of interference from an unknown source is
greatly diminished. To ensure patient safety, the stimulation
electrode contacts and parameters can only be programmed
by a clinician using the Research Lab Programmer (RLP).
The RLP communicates with the INS using CTM and can
also be used to define safe parameter ranges that limit how
embedded algorithms or connected devices can adjust stim-
ulation. In practice, the safe stimulation parameter range is
established in a facetoface encounter between the patient
and a clinician who will directly observe clinical symptoms,
signs or electrographic abnormalities associated with stimu-
lation before the parameters are programmed into the RC+S.
The Summit System also provides an application program-
ming interface (API) that allows researchers to develop their
own offthebody device applications to control the Summit
RC+S sensing parameters and adjust stimulation within the
safe parameter space.

2) MAYO EPILEPSY PERSONAL ASSISTANT DEVICE (EPAD)
The Mayo EPAD is a custom software application running
on a tablet device (HP Tablet; Windows 10) with Blue-
tooth communication with the Medtronic Summit RC+S
through a research development kit API. The Mayo EPAD
bidirectional communication capability with the implanted
RC+S provides an interface for controlling iEEG data
acquisition and storage, real-time analysis, and closed loop
responsive stimulation. The embedded and external algo-
rithms and control policies are limited to the defined, safe
stimulation parameter space. The EPAD also serves as a
more powerful local computational node with larger data
storage that provides capabilities not possible with the limited
computational capabilities of the RC+S device. The EPAD
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FIGURE 2. The Medtronic Investigational Summit RC+S system includes: implantable neural stimulator (INS), patient telemetry unit (PTM)
and radio telemetry module (RTM) for wireless charging, clinician telemetry module (CTM) for wireless interface between INS and the
epilepsy patient assistant device (EPAD) and research lab programmer (RLP). The RLP is used to program INS settings, stimulation and safety
parameters. The CTM provides the interface with the EPAD and enables streaming of data from the INS to EPAD and to control the INS
(closing the loop). The integrated system provides a flexible platform for device embedded, EPAD, cloud-based analytics and closed loop
responsive stimulation.

communicates with the cloud infrastructure for large volume
data storage, remote data viewing, and large-scale computing
for advanced analytics. The EPAD is designed as a communi-
cation tool for the patient to enter notes, medications, auras,
symptoms, and seizures. The EPAD also provides statistics
on connection, data transmission and communicationwith the
INS and resolves connectivity problems if the connection is
unstable. The EPAD provides patient alerts to check system
components, battery levels, and wireless network connectiv-
ity in case issues can’t be solved automatically (e.g. charge a
system component). This integrated system provides epilepsy
management capabilities needed to optimize therapy and
track outcomes (Fig. 1 and 2).

3) CANINE EPILEPSY
The preclinical testing was performed in normal and epileptic
canines. There are many animal epilepsy models induced by
chemical or physical insults, but these models may differ
significantly from human epilepsy [38]. In contrast, epilepsy
occurs naturally in dogs with prevalence, age of onset, and
clinical presentation similar to human epilepsy [39]. Canine
epilepsy has a prevalence of 0.5 to 5.7% [40], with 65%
of seizures characterized as focal onset without secondary
generalization [39]. The EEG in canine and human epilepsy is
similar [22], [41]–[44]. In summary, the clinical [39], [45],

electroencephalographic [22], [46], [47], and pharmacolog-
ical [41]–[44] features of naturally occurring canine epilepsy
are similar to human epilepsy. Naturally occurring canine
epilepsy is an excellent vehicle for preclinical translation
since the dogs are large enough to accommodate devices
designed for humans.

4) ELECTRODE IMPLANTATION IN DOGS
The study was approved by institutional IACUC commit-
tees of Mayo Clinic, University of Minnesota, and Univer-
sity of California Davis where canines were implanted and
housed. Electrodes were implanted intracranially in canines
under anesthesia using framed stereotaxis with a custom
head frame. Subjects underwent a 3.0T MRI (GE Medi-
cal Systems) using a stereotactic T1-weighted MPRAGE
sequence and a diagnostic coronal T2 FLAIR sequence
to screen for abnormalities. Targets and trajectories were
planned using stereotactic software (CompassTMStereotactic
Systems) adapted for our animal head frame. Burr holes were
drilled into the skull for each of the four depth electrodes
(Medtronic models 3391 and 3387), which were inserted
to depth and secured with clinical wire anchors and bone
screws. The electrode tails were tunneled to the RC+S device
in a pocket behind the right scapula. The canine underwent
a post-op x-ray CT scan (Somatom Flash, Siemens Inc.),
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which was then co-registered to the stereotactic MRI (Ana-
lyze 12.0, BIR, Mayo Foundation) in order to verify targeting
accuracy.

B. DEVICE PERFORMANCE METRICS
1) BATTERY LIFE – SMART SENSING PARADIGMS
The rechargeable Summit RC+S has battery capacity that
provides 24 hours of continuous data streaming and thera-
peutic stimulation. However, recharging is a patient burden
that must be minimized. The sensing & telemetry paradigms
on the EPAD include 4-channel continuous sensing with
selectable sampling rates (250 1000 Hz) and a smart sensing
paradigm designed to optimize battery longevity. The smart
sensing paradigm makes use of continuous loop recording
(3-minute buffer) of the iEEG on the device and adjustable
periodic iEEG telemetry off the device combined with trig-
gered telemetry using an iEEG power threshold to cap-
ture putative seizures. The iEEG telemetry performance was
evaluated and various sensing and stimulation paradigms
designed to extend battery life were explored and evalu-
ated for real-time seizure detection, forecasting, and brain
state classification. The performance of seizure detection
and forecasting algorithms were compared prospectively
using both continuous iEEG telemetry and smart sampling
paradigms.

2) EMBEDDED AND HYBRID DETECTION STRATEGY
Seizure detection was evaluated using an RC+S device
embedded linear discriminant analysis (LDA) algorithm
alone and a hybrid 2stage algorithm that combined a hyper-
sensitive detector embedded on the RC+S coupled with a
more complex classification algorithm running on the EPAD
system or in the cloud [35]. To evaluate the detector’s per-
formance, we performed a statistical measure of the binary
classification using testing data that was not used for training
on hourly basis as follows: True Negativeis an hour with
no seizure and no detections; False Negativeis a verified
seizure when there is no device detection; False Positiveis
detection on the device that was not associated with a seizure;
True Positiveis detection on device and an associated seizure.
Results are reported as sensitivity (SS) and specificity (SP),
and false positive detections rate per day (FPR). The device
embedded detector was tuned for hypersensitive detection
to capture electrographic seizures. A previously validated
seizure detection system requiring a significant computa-
tional resource [35] was used on the offthebody EPAD sys-
tem and on the cloud. The patient specific classifier was
trained using data from the initial seizures and interictal data
from randomly chosen segments, all collected within the first
months of recording.

3) CLOSED LOOP RESPONSIVE STIMULATION DELAYS
The bidirectional coupling between the RC+S device and
Mayo EPAD provides closedloop stimulation using algo-
rithms embedded directly on the implanted device, or

algorithms running on the EPAD, or within a cloud environ-
ment. We tested delays in closed loop on the RC+S device
and Mayo EPAD. The suitability of these two approaches
is driven by the minimum time delay needed to implement
an effective therapy and the computational complexity of the
algorithm and independence of data connectivity to cloud.
The simple detection algorithms embedded on the device
achieve fast responsiveness but poorer accuracy, whereas
more complex algorithms running on the tablet will show
greater latency. We tested timing delays for various closed
loop stimulation approaches.

C. MACHINE LEARNING AND PERFORMANCE
EVALUATION
1) SEIZURE FORECASTING WITH OFFTHEBODY ANALYTICS
The computation required for seizure forecasting is consider-
able, and not possible to run in an embedded fashion on the
RC+S device itself. An offthebody forecasting system was
implemented using the best performing algorithm in a recent
seizure forecasting competition [27]. Classifiers to identify
interictal and preictal brain states were trained off-line using
one week of interictal data and two to three onehour preictal
data segments directly preceding visually verified seizures
for each epileptic canine. The algorithm selects the best per-
forming classifier (SVM, random forest, or a linear or logistic
regression model) using training data crossvalidation, and
then the classifier coefficients are uploaded to the EPAD.
Results are reported as sensitivity (SS), mean false positive
rate per day (FPR), and time in warning (TIW) [48].

2) A CLOUD PLATFORMS FOR ANALYZING
STREAMING DATA
Implantable neurodevices face challenges for data manage-
ment, including storage, retrieval, and review of recorded sig-
nals. Continuous iEEG generates large amounts of data which
may need to be accessed across institutions and analyzed
bothmanually and algorithmically. For this projectMedtronic
ORCA Digital Heath system, Mayo Clinic Electrophysiol-
ogy Laboratory (MSEL) cloud system, and Blackfynn Inc.
(https://www.blackfynn.com)were used for visualizing iEEG
data, diaries, annotating seizures and behavioral states, and
running algorithms. Seizure markings were validated by
board certified epileptologists. For the hybrid detection, dur-
ing smart sensing, iEEG clips were streamed from MSEL
cloud to the Blackfynn cloud platform. Once uploaded to the
Blackfynn platform, we retrieved data via a custom python
client and ran higher performing, computationally intensive
seizure detection algorithms [35].

3) ACTIVE PROBING OF NEURAL NETWORKS
We used the Medtronic Summit RC+S device for active
probing of brain neuronal networks with subthreshold evoked
potentials. Four canines (two epilepsy & two controls) were
selected for testing. Stimulation parameters such as electrode
contacts for stimulation and sensing, stimulation frequency,
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TABLE 1. Summary of implanted subjects. electrode configuration, survival, days of recording, and telemetry performance.

pulsewidth, and amplitudewere tested and adjustedmanually
during visual contact with the dogs to ensure there were
no clinical signs, seizures, or IED during stimulation. Each
canine was stimulated for a period of 48 hours using 30 sec-
onds of stimulation followed by 30 seconds with stimulation
off.

4) AUTOMATED BEHAVIORAL STATE CLASSIFICATION
To test the feasibility of automated behavioral state classifi-
cation running on the EPAD with and without background
electrical stimulation, we compared awake/deep sleep clas-
sification results over 48 hours with a video recording. Data
acquired from one dog over a 48hour video iEEG recording
(four electrodes sampled at 250 Hz) was analyzed, and a lin-
ear discriminant classifier using power in band features [28]
was applied and compared in clear wake and deep sleep
periods using 48 hours of video iEEG data. We have also
evaluated the feasibility of using an unsupervised cluster-
ing method and power in band features to separate awake
and deep sleep 30-second epochs during electrical stimula-
tion of the brain (frequency of stimulation 2Hz, stimulation
amplitude 3mA, pulse width 90µs). These were manually
selected twelve 30-seconds epochs within a period of clear
wakefulness (captured by the video monitoring) and another
12 segments of 30second epochs were selected from within
periods of putative sleep (confirmed by video and iEEG).
We extracted power in band (PIB) features during stimulation
and used multifactorial analysis and unsupervised K-means
clustering to classify awake and deep sleep.

III. RESULTS
A. IMPLANTATION AND MONITORING
Seven dogs (4 epileptic & 3 controls) were implanted with
theMedtronic RC+S INS device and 4 intracranial electrodes
with 4 contacts each (for a total of 16 recording/stimulation
contacts) targeting the neocortex, hippocampus, and anterior
nucleus of thalamus (Table 1). There are currently 2 epileptic
dogs and 2 control dogs living implanted with the RC+S
system. The average post-implant survival duration for all
dogs was 376 days. Three dogs died during the study. Two
dogs were euthanized due to a progressing infection that did
not respond to antibiotics. One dog was found deceased in
the kennel after a weekend, following 644 days of monitoring

with no indication of illness or distress. Review of the con-
tinuous video and iEEG demonstrated that during a 12-hour
period before the death the dog had multiple unwitnessed
seizures, and a prolonged seizure preceded death.

To further evaluate the Epilepsy Management System,
we recently implanted two pet dogs with epilepsy that went
home with their owners after device implantation. The pet
dogs are the first animals to our knowledge to be living
outside of the hospital with their owners with data stream-
ing from the EPAD to a cloud environment. The electrode
configuration for these two implants was bi-lateral anterior
nucleus of thalamus and bilateral hippocampus. We are now
managing epilepsy in a real-world use case with dog owners
charging the devices (RC+S, CTM&EPAD) regularly, anno-
tating medications and witnessed seizures to create patient
diaries. The iEEG data and annotations are transmitted to the
cloud and remotely reviewed by physicians to create gold
standards annotations of electrographic events and seizures.
We are currently gathering seizure data for training of seizure
detection and forecasting algorithms.

B. DEVICE PERFORMANCE METRICS
1) BATTERY LIFE - SMART SENSING PARADIGMS
The iEEG data (sampling rate 250 Hz) was acquired from a
fourelectrode configuration for multiple months, with elec-
trode placement unique to each subject. Data were collected
based on the smart sensing paradigms described above. The
iEEG telemetry performance during continuous and smart
sensing paradigm was quantified for each dog by calculat-
ing the amount of analyzable iEEG collected (see Table 1).
We tested the battery depletion rate for continuous sensing,
smart sensing without detection (periodic loop recording),
and smart sensing (Fig. 3). The battery depletion rate for
continuous telemetry (4 channels at 250 Hz sampling rate)
was 4.33 ± 1.66% per hour compared to periodic telemetry
with continuous sensing embedded detector battery depletion
of 2.72± 1.00% per hour (30 seconds on and 90 seconds off),
2.80± 1.78% per hour (60 second on and 60 seconds off) and
1.61 ± 0.62% per hour (30 seconds on and 150 second off).
The battery depletion rate with these sensing and telemetry
paradigms was stable over long term monitoring (Fig. 3A).
Figure 3B shows a data plot of the battery level over a period
of one month showing a similar battery discharge rate when
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FIGURE 3. A) Graphical representation of different sensing paradigms and battery depletion rates showing that smart sensing (red, yellow, and blue lines)
can run approximately 2.5time longer than continuous recording (purple) while still capturing 100% of the seizures recorded with the embedded detector
on. B) Battery level and battery consumption and charging trend shown in a Medtronic Digital Health Dashboard web application over approximately
month of recording on one of the study subjects. It displays the approximately linear and regular discharging of the INS battery when maintaining the
smart sensing paradigm.

TABLE 2. Comparison of embedded and epad/cloud detectors - dogs with naturally occurring epilepsy.

the same sensing paradigm is maintained. The results suggest
that a device using a smart sensing mode - collecting one
minute of data separated by one-minute breaks - must be
charged every other day, while a device using continuous
streaming needs charging every day. The charging latency
can be prolonged by decreasing the duration of and extending
the interval between data telemetry sessions depending on the
application.

2) SEIZURE DETECTION USING EMBEDDED AND
HYBRID DETECTION STRATEGY
a: EMBEDDED DEVICE DETECTOR
The Summit RC+S embedded LDA classifier was used to
differentiate iEEG anomalies as interictal or seizure events.
Seizure detector performance using a single optimized iEEG
channel, power in band (central frequency and range), and
canine specific classifier threshold was tested using pre-
viously recorded interictal and seizure data. Optimization
of detectors for each epileptic dog consumed a substantial
amount of recording time and required several seizures (on
average 21±26 seizures) to setup suitable contacts, determine
optimal frequency band for power calculation, and to find the
optimal hypersensitive threshold with 100% sensitivity and
maximal possible specificity. Results for the hypersensitive
detection on the device for all epileptic dogs in the cohort
are shown in Table 2. An embedded detection example is
shown in canine #1 (Fig. 4). A graphical display of the
number and temporal distribution of seizures of embedded
detector events in a long-term recording is displayed using

a heat map figure on a Medtronic Digital Health Dashboard
web application to see the temporal distribution of seizures’
frequency (Fig. 4).

b: HYBRID DETECTION SYSTEM
Classifiers were deployed prospectively on all future outof-
sample data. The seizure detection algorithm was trained on
6 seizures from canine #1 comprising a total of 193 sec-
onds of seizure data, and 1390 seconds of interictal data
(51 randomly selected segments). Seizure clips were detected
by the algorithm with probability scores >90%. The trained
detector was then run in a prospective manner consisting
all data (180 days). The detector had accurate detections
of 4 unique seizures. There were no false positives (speci-
ficity 100%). The same seizure detection algorithm [35] was
trained on 6 seizures from canine #2 comprising 176 sec-
onds of seizure data and 1216 seconds of interictal data
(21 randomly selected segments). The detector was evalu-
ated in a prospective manner on all future data collected
(60 days) using the smart sampling scenario with engaged
embedded detector and periodic 60-second data streaming
with 60-second breaks. The performance of the seizure detec-
tor on outofsample prospective data was sensitivity 100%
(10/10 seizures detected), specificity 95.5%, and a false pos-
itive rate of 0.67/day (Table 2). The results show that seizure
detection from an embedded classifier can be improved with
offthebody analytics either on local or distributed computing.
Currently the detector trained for canine #2 is running online.
During smart sensing and hybrid detection, iEEG clips are
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FIGURE 4. Next Generation Epilepsy Management System: Canine with
epilepsy undergoing continuous video-intracranial EEG monitoring and
electrical brain stimulation. Top: Video of seizure onset captured on
device. Middle: Automated seizure classification algorithm embedded on
Summit RC+S captured seizure (green/red vertical line). Four channels of
iEEG showing electrographic seizure onset. Bottom: Blow-up of channel
showing seizure evolution.

streamed from the MSEL cloud to the Blackfynn cloud plat-
form. Once uploaded to the Blackfynn platform, data are
retrieved via a custom python client and analyzed with a
higher performing, computationally intensive seizure detec-
tion algorithm. The results of the seizure detection algorithms
are sent back to the Blackfynn platform as automated time-
synced annotations, allowing any user to review automati-
cally detected seizures shortly after the data was collected.
Automated seizure detections can also be used to generate
seizure diaries on the cloud analytics system.

3) CLOSED LOOP RESPONSIVE STIMULATION DELAY
a: DETECTOR EMBEDDED ON THE RC+S DEVICE
In the embedded closed-loop scenario, the RC+S device
samples LFPs from the implanted electrodes and performs a
fast-Fourier transform (FFT) to convert the time domain data
into the frequency domain. Key recording factors affecting
delay time include the iEEG sampling rate and the FFT
configuration size, windowing, and update. The RC+S then
can be configured to sum the FFT output frequency bins into
band-power estimates, which are used as input into a pro-
grammable linear-discriminate (LD) classifier. The RC+S
device will then change the output stimulation parameters

based on changes in the signal determined by the LD clas-
sifier. Given the large number of parameters within the signal
processing components, the delays in the embedded sce-
nario are largely driven by researcher-configured parameters.
To measure the system delay of the embedded closed-loop
functionality, we configured a benchtop RC+S device to
turn stimulation on in response to a frequency burst cre-
ated by a signal generator while using different time-domain
sampling rates and FFT sizes. The signal generator was
configured to provide 15 pulses of 27Hz input into the
RC+S. The test was performed in each test case 60 times
and the final delays ranged 123.2 ± 14.0 msec (64-point
FFT, 1kHz sampling rate) to 1432 ± 15.msec (1024-point
FFT, 250Hz).

b: DETECTOR RUNNING ON THE EPAD
For the distributed case, which the Mayo EPAD will use for
off-the-body analysis, we tested the system delay by again
making use of a benchtop RC+S device, signal generator,
and oscilloscope. The Summit API was used to create a test
application that used a simple edge detector on the streamed
time-domain data to trigger various stimulation commands
on the RC+S device. We measured the time between the
signal generator’s edge being input into the RC+S and the
stimulation adjustment on the lead using an oscilloscope to
gain a measure of the full system latency. Each test was done
10 times. Compared to the embedded case, it’s important to
note that there are several other important system parameters
that influence these delay measurements. First the stream
frame interval, which is how often the RC+S sends a packet
of data back to the user. Increasing the streaming interval
will increase the delay as packets are sent less frequent, but
shortening it too far increases bandwidth usage due to addi-
tional packet header overhead. Second, stimulation updates
like increments and decrements take effect on the 2nd pulse
after the command is sent, so a low stimulation frequency will
result in longer delays. For this work we used ratio 5:1, 125Hz
stimulation, and 50 msec frame size. Delay was measured for
therapy on/off commands (310±21msec), stimulation ampli-
tude increments (163.7 ± 22.3 msec), and a go-to command
(169.6±20.3 msec), which updates amplitude and frequency
on the INS concurrently.

C. MACHINE LEARNING AND
PERFORMANCE EVALUATION
1) SEIZURE FORECASTING USING EPAD
The seizure forecasting system was initially tested for
canine #3 with a linear regression classifier using all avail-
able features. Training using only two lead seizures (lead
seizures defined as separated from other seizures by at
least four hours) and a prediction horizon of four hours,
we obtained the following results: SS = 100%, FPR =
0.31 and TIW = 10%. In the final experiment, we increased
the number of lead seizures in the training to three with
the following performance SS = 100%, FPR = 0.21, and
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FIGURE 5. A) Evoked related potential for subject 1. Top) Raw iEEG data captured on sensing electrode (1 kHz sampling rate) using stimulation
parameters: frequency 2 Hz, pulse width 90 µs, amplitude 3.0 mV (blue dots show automated detections of stimulation peaks). Bottom) Detected
stimulation waveforms aligned by peak in stimulation artifact. Bold black line shows averaged waveform. B) Evoked related potentials during
wake (Top) and deep sleep (middle) using continuous parahippocampus electrical stimulation and hippocampus sensing in canine #2. Bottom
graph shows comparison of median curves calculated in awake versus in deep sleep. Note a difference in ERP delay in awake versus deep sleep.

FIGURE 6. A) Distribution of absolute power in six iEEG bands (2-4 Hz, 4-6 Hz, 8-12 Hz; 12 – 30 Hz, 30 – 55Hz, 65 – 115 Hz)
for 12 30-second segments during stimulation for awake versus deep sleep (selected manually). Note several bands with no
overlap in power. B) K-NN clustering to two clusters using six absolute power in band features (note only two features are
displayed in 2-D graph). Clear separation between two classes (wake & deep sleep) was found using all six features. The
class with higher delta power is assigned to deep sleep.

TIW= 7%.Additionally, we performed seizure forecasting in
a pseudo-prospective manner for dog # 1 (SS= 92%, FPR=
0.62, TIW = 0.09%) and dog #2 (SS = 81%, FPR = 0.8,
TIW = 0.3%). These results suggest that a robust, reliable,
subject specific, seizure forecasting algorithm with high SS,
low FPR, and low TIW can be achieved (Brinkmann 2016).
The algorithm’s performance is influenced by the basic exper-
imental parameters (definition of lead seizure and prediction
horizon) [20], [26], and [48]. The high sensitivity and rel-
atively low TIW demonstrates the potential clinical viability
of seizure forecasting.

2) ACTIVE PROBING OF NEURAL NETWORKS
Low frequency electrical stimulation over 48 hours on each
dog was used to test active probing. There was no significant
decline in telemetry quality during the experiment, with more
than 97% of data analyzable. Figure 5A shows an example
of stimulation and evoked related potentials. We also ana-
lyzed ERP data in two distinct behavioral states (awake and
deep sleep) and objectively compared results between those
two states in canine #1 (Fig. 5B). Based on the pattern of
iEEG data and concurrent video, we analyzed 12 segments
(30 seconds long) in each state. We recorded iEEG data from
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a hippocampal electrode (1kHz sampling rate) while stimu-
lating in the parahippocampus (stimulation frequency 2Hz,
amplitude 3.0mV, pulse width 90 µsec) and calculated ERP
response in awake versus sleep. The peak of the ERP during
awake was earlier in wake (36 msec) than in sleep (72 msec),
but the amplitude of the response was similar.

3) AUTOMATED BEHAVIORAL STATE CLASSIFICATION
All the phases of deep sleep classified by the classifier were
visibly matched with behavioral signs of the dog (data from
early AM hours (1AM-3AM), including kennel lights off,
prolonged period of immobility, slow and deep respirations,
and eyes closed). Awake states corresponded to signs of
obvious wakefulness (eyes opened, moving around, jumping,
etc.). Transitional phases of sleep (drowsy, N2, REM) could
not be evaluated using this methodology due to lack of scalp
and associated sleep (e.g. eye, chin) electrodes. For the ERP
study, the results of automated behavioral state classification
suggest that distributions in spectral power are not overlap-
ping for several bands in awake and deep sleep (Fig. 6A),
thus ERP might be useful for automated separation of deep
sleep and awake. We were able to automatically separate
data into two clusters using a simple rule (higher delta power
in deep sleep) to classify awake or deep sleep states. The
results show 100% correct classification for these two distinct
behavioral classes in the 24 epochs analyzed (Fig. 6B).

IV. DISCUSSION AND CONCLUSION
This manuscript describes an Epilepsy Management Sys-
tem designed around Medtronic’s investigational Summit
RC+S System and a hand-held EPAD. The EPAD serves
as a local computing device with bi-directional connectivity
to the internet and an implanted Medtronic RC+S device.
The system demonstrates multiple advances, and includes
automated seizure detection, electronic seizure diary fea-
tures, active electrical probing of neural networks, behavioral
state classification, seizure forecasting and implementation
of control policies driven by embedded and off-the-body
analytics that can be used to inform therapeutic electrical
stimulation. The primary causes of data drops we encoun-
tered are losing Bluetooth connectivity, e.g the dog wan-
dering beyond the range of EPAD antenna, or by EPAD to
CTM connection interruptions. These data drops are sporadic
and short and didn’t affect algorithm performance. Further,
a smart sensing paradigm was demonstrated where iEEG
telemetry is intermittently activated based on detected iEEG
anomalies and user-defined background periodic data sam-
pling to significantly prolong RC+S device battery life while
maintaining seizure detection and forecasting performance.
Seizure detection and closed-loop stimulation was accom-
plished using an embedded detector. The detector was
tuned to be hypersensitive (sensitivity 100%) so that all
seizures were captured. This generated a high number of
false positive detections, but triggered reliable data record-
ing in all cases when seizures occurred during the periodic
breaks in data streaming (for battery saving). High accuracy

classifications between false positives and true seizures are
subsequently made by a seizure detector using advanced
signal processing and machine learning methods running on
the EPAD or cloud. In the EPAD system we implemented the
best seizure detection algorithm from Baldassano et al. [35].
We show that the integration of the detection algorithm on
the EPAD achieves 100% sensitivity with low false positive
rates (Table 2). We demonstrated the feasibility of active
probing and brain state tracking and showed that closed loop
stimulation based on a device embedded iEEG algorithms
perform at millisecond timescales and that an off-the-body
EPAD and cloud based algorithm can close the loop with
delays on the order of a second. Our testing evaluated the
time lag for automated seizure detection and expert visual
review for the implanted device embedded detector and the
EPAD, a remaining challenge will be responsive stimula-
tion implementation and redetection after stimulus delivery
(e.g. as described for RNS system in [49]). These tests are
underway in freely behaving canines where subject specific
stimulation protocols are likely to be useful.

The bi-directional connectivity of the EPAD with internet
services allow for the creation of a cloud based centralized
data and analytics platform. In this study, the cloud ser-
vices Medtronic ORCA Digital Heath system, Mayo Clinic
Electrophysiology Laboratory cloud system, and Blackfynn
Inc. (https://www.blackfynn.com) were utilized for collect-
ing, viewing, annotating, and analyzing data. The cloud ser-
vices provide a central location for researchers to review and
annotate iEEG data, device information (Fig. 3b), seizure
diaries (Fig. 3d), seizure detections, sleep analytics, and real-
time video iEEG links to remotely housed canines (Fig. 4).
Similar capabilities could be useful in future medical appli-
cations for monitoring seizures, determining sleep quality,
and optimizing electrical stimulation therapy. In particular,
the ability to continuously monitor iEEG and analytics to
forecast and detect seizure to alert patients and caregivers of
seizures [50] is important for patient safety and could help
prevent SUDEP.

The epilepsy management system described here is the
first system that integrates an implanted device streaming
24/7 brain electrophysiology data to a local, and dis-
tributed computing resource. The off-the-body computa-
tional devices run machine learning algorithms to detect
and predict electrophysiology anomalies and seizures in a
real-time scenario. This research demonstrates the feasibil-
ity of a system that creates a link between the brain and
computers, and patients and their physicians. While addi-
tional data and experimental results are needed to estab-
lish the reliability of this technology, the potential for
intelligent electrical stimulation informed by physiological
(wake/sleep) and pathological (pre-seizure state) brain states
is demonstrated. Furthermore, electrical stimulation tuned
in an individualized manner to suppress iEEG biomark-
ers of cortical excitability could prove useful for prevent-
ing seizures and rapidly optimizing the management of
epilepsy [29].
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