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ABSTRACT OF THE DISSERTATION

Semi-Parametric Mixture Models Through Log-Concave Density Estimation
by
Yangmei Zhou

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2019
Prof. Weixin Yao, Chairperson

This dissertation consists of two parts. The first part considers a semi-parametric
two-component mixture model with one component completely known. Assuming the den-
sity of the unknown component to be log-concave, which contains a very broad family of
densities, we develop a semi-parametric maximum likelihood estimator and propose an EM
algorithm to compute it. Our new estimation method finds the mixing proportion and the
distribution of the unknown component simultaneously. We establish the identifiability of
the proposed semi-parametric mixture model and prove the existence and consistency of
the proposed estimators. We further compare our estimator with several existing estima-
tors through simulation studies and apply our method to two real data sets from biological
sciences and astronomy.

The second part of this dissertation considers the model g(x) = (1 — p) fo(x; 0) +
pf(x), where 0 represents the unknown parameters of a known distribution fp , and f
represents the distribution of possible outliers. We propose two innovative algorithms to

estimate @ nonparametrically. The first method is called Minimum Search, which is based on

vi



identifiability of the mixture model. A strong sufficient condition is proposed for the model
to be identifiable and a weaker condition is given for the model to be locally identifiable. The
second estimator is the maximum likelihood estimator, which is obtained by EM algorithm
assuming f is log-concave. Extensive simulation studies show that our methods give very

promising performances.
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Chapter 1

Maximum Likelihood Estimation of
a Semiparametric Two-component
Mixture Model using Log-concave

Density Estimation

1.1 Introduction

In this chapter, we consider the following two-component mixture model,

g(x) = (1 = p) fo(x) + pf(x), (1.1)



where the probability density function (pdf) fo(x) is known, whereas the mixing proportion
p € [0,1] and the pdf f are unknown. Model (2.1) is motivated by studies in biological
sciences to cluster differentially expressed genes in microarray data, see [2]. Typically
for microarray data, we build a test statistic, say 7;, for each gene 7. Under the null
hypothesis, which presumes no difference in expression levels under two or more conditions,
T; is assumed to have a known distribution (in general Student’s t or Fisher). Under the
alternative hypothesis, the distribution is unknown. Thus, the distribution of the test
statistic can be described by model (2.1) where p is the proportion of non-null statistics.
The estimation of p and the pdf f can tell us the probability P; that gene i is differentially

expressed given T; = t;:

p— pf(t:)
(I =p)folti) +pf(t:)

[2] considered model (2.1) assuming f to be symmetric. They obtained some identifiability
results under moment and symmetry conditions.

[30] considered another special case,

g(x) = (1 = p)ps(x) +pf(z)

where fy = ¢, is a normal density with mean 0 and unknown standard deviation ¢. This
model was inspired by sequential clustering [29], which finds candidates for centers of clusters
first, then carries out a local search to find the objects that belong to those clusters, and
finally selects the best cluster. The algorithm repeats after the best cluster is being removed.

[30] proposed an EM-type estimator and a maximizing m-type estimator for their model



which can be easily extended to models where fy is not normal.

A slightly different model is considered by [35]:

g(z) = (1 = p)fo(x;§) + pf(x — ),

where £ is a possibly unknown parameter, and g is a non-null location parameter for f.
They proposed a new effective estimator based on the minimum profile Hellinger distance
(MPHD). They established the existence and uniqueness of their estimator and also proved
its consistency under some regularity conditions. Their method does not require f to be
symmetric and thus can be applied to more general models. For some other alternative
estimators, see, for example [21, 16].

In this chapter, we propose to estimate (2.1) using a new approach by imposing
a fairly general log-concave shape constraint on f, i.e. log(f) € ®; here ® denotes the
family of concave functions ¢ on R which are upper semicontinuous and coercive in the
sense that ¢(x) — —oo, as || — oo. Note that log(f) needs to be coercive in order
for f to be a density function. The family of log-concave densities [7, 8] is very broad
and contain many commonly used parametric families of distributions, such as normal
distribution, exponential distribution, logistic distribution, etc. We propose to estimate the
new model by maximizing a semiparametric mixture likelihood. Compared to the kernel
density estimation of f used by many existing methods [2, 35, 16], the new method does
not require the choice of one or more bandwidths [26]. We establish the identifiability of
the proposed semiparametric mixture model and prove the existence and consistency of the

proposed estimators. We further compare our estimator with several existing estimators



through simulation studies and apply our method to two real data sets from biological
sciences and astronomy.

The rest of the chapter is organized as follows. In Section 2.2 we discuss some iden-
tifiability issues for model (2.1). Section 1.3 introduces our maximum likelihood estimator
and a detailed EM type algorithm. Existence and consistency properties of our estimator
are established. Section 2.5 demonstrates the finite sample performance of our proposed
estimator by comparing with many other existing algorithms. Two real data applications
are given in Section 1.5. Section 2.6 gives a brief discussion. The Appendix in Section 2.7

contains the detailed proofs.

1.2 Identifiability

Note that the model (2.1) is non-identifiable without any constraint on the density
f, see e.g., [2], and [21]. However, a parametric model for f might create biased or even
misleading statistical inference when the model assumption is incorrect. In this chapter, we
impose a general log-concave shape constraint on f(z), i.e. f(z) = e?®), where ¢(z) is a
concave function. Log-concave densities attracted lots of attention in the recent years since
it is very flexible and can be estimated by nonparametric maximum likelihood estimator
without requiring the choice of any tuning parameter. For more details, see [5], [8], [34], [9]
and the review of the recent progress in log-concave density estimation by [26].

We first provide a lemma which can be easily proved by extending the result of

Lemma 4 of [21].



Lemma 1.2.1. The model (2.1) is identifiable if there exists a such that

lim f(z) =0 or lim f(x)

z—at fo(il?) T—a~ f()(x) =0

Remark 1.2.1. Proposition 1.2.1 also holds if a = +o0o0, and this result is more general

(requiring weaker condition) than the result of Proposition 3(i) of [2].

Remark 1.2.2. Proposition 1.2.1 guarantees that model (2.1) is identifiable if the support
of f is strictly contained in the support of fo and the two supports have different Legesgue

measure.

If log(f) is assumed to be log-concave, we can have the following result with the

proof provided in Section 2.7.

Proposition 1.2.1. Assume fo > 0 and log(f) € ®. Model (2.1) is identifiable if either of

the following two conditions are satisfied

1. ¢(x) — logfo(z) = —o0 as x — +00 or x — —o0.

2. llogfo(z)| = O(|z|¥), for some 0 < k < 1.

Next we provide some examples to demonstrate how to use the above results to

establish the identifiability of the model (2.1).

Example 1.2.1. If fo(x) is the density of a t distribution with v degrees of freedom, and

f 1is log-concave, then model (2.1) is identifiable.

. L)
Proof. Since fy(x) = 2

= \/ﬁr(g)(l + %)_VTH, we have,

2132

v+1 1 v v+1
—)) — —log(1l + —).
) - Lo log(1+ )

T)) — Slog(vm) — log(T(2

log(fo(z)) = log(T'(



Thus, for any 0 < k < 1, log(fo())/x* — 0, as & — +o0o. Based on Proposition 1.2.1, we

can conclude that model (2.1) is identifiable when log(f) € ®. O

Remark 1.2.3. Similarly, one can check that when fy is the pdf of an F distribution,
log-normal distribution, or Pareto distribution, then model (2.1) is identifiable under the

condition that log(f) € ®.
Remark 1.2.4. Exzample 1.2.1 ensures Model 7 from Section 2.5 is identifiable.

Example 1.2.2. Suppose fo(zx) is the density of a normal distribution with mean p and

variance o2, then model (2.1) is identifiable if limg s 4o %f) —ﬁ, or limy_,_ o ¢£§) <
—35,2, or the condition of Remark 1.2.2 holds.
Proof. Suppose limg_; 4o ¢£"§) fﬁ, or lim,_,_ o ¢£§) < fﬁ. Since

o) ~logfo(x) = () +10(Vn0) + 5 5w — p)?

332((;5;:) + %log(\/ﬂa) + %(1 - H)Q)

— —00, as r — +00 Oor T — —OQ.

Hence j]f((ac)) — 0 as * — 400 or x = —o0, and Proposition 1.2.1 asserts the identifiability
olx
of model (2.1). O

Remark 1.2.5. Under the constraints set by Fxample 1.2.2, Model 1, 4, and 5 from Section

2.5 are identifiable.

Example 1.2.3. Suppose fo(x) is the density of an exponential distritution with rate X,

then model (2.1) is identifiable if limy_ 40 2a) —\, or the condition of Remark 1.2.2

xT



holds.

Proof. Suppose limg_ 4 @ < —A. Since,

¢(x) —logfo(x) = o(x)—logh+ Az

o) logh |
x x

= x( A)

— —00, as * — +00.

Hence ;“"((m)) — 0 as ¢ — +o0o, and again Proposition 1.2.1 ensures the identifiability of
o\r
model (2.1). O

Remark 1.2.6. Under the constraints set by Example 1.2.3, Model 3 from Section 2.5 is

identifiable.

1.3 Maximum Likelihood Estimation

Suppose we have a random sample of n i.i.d. observations Xi, Xo,---, X,, from
the density g(z) = (1 —p)fo(z) + pf(z), p € [0,1], and f = e? is a log-concave density, i.e.,

¢ € ®. For any distribution () on R, we define,
L(p,$;Q) = /log((l — ) fo+ pe?)dQ.

1 n
Then, with the empirical distribution Q, = — Zd x, , where dx, is the degenerate dis-
n
i=1
tribution function at {X;}, we propose to estimate p and ¢ by maximizing the following



semiparametric log likelihood,

L(p, ¢:Qn) = Zlog (1= p) fo(Xi) + pe?XD), (1.2)

subject to the condition that [ e?@)dx = 1. The log-likelihood (1.2) is semiparametric since
it contains both the parameter p and the nonparametric component ¢.
1.3.1 Algorithm

Maximizing the semiparametric log likelihood (1.2) is not trivial. To this end, we

propose an EM algorithm [6] to maximize L(p, ¢; Qy).

Algorithm 1.3.1. Staring from nitial values p©) and f), iterating the following E step

and M step until convergence.

E step Given p*) and %), find the classification probabilities

— ) oz
Wt = (1 —p7 ) olzi) i=1,...,n.

’ (1 = p®) fo(x;) + p) fR) (2;)

(k+1)

M step Given w, , update the parameter p and the nonparametric concave function ¢,

oD = argmax (1- (k+1))¢($1)>
HED, fe¢(90)dr:1 i=1

FlFD) — oY



In the M step, we find ¢+ using an active set algorithm, which is described
in [7] and implemened in the R package logcondens by [25]. Throughout this chapter, we
use “EM_logconcave” to represent the above algorithm. The following result establishes the

monotone properties of our EM _logconcave algorithm.

Proposition 1.3.1. Let (*) =3 log((1 — p®)) fo(z;) + p® e @) where p*) and ®
i=1

are kth update in Algorithm 1.3.1, then
(D) > gk)

for any k > 0.

1.3.2 Theoretical Properties

For the existence of a maximizer of L(p, ;@) for a general distribution @, we

follow the approach of [9]. We define the convex support of @ as,
esupp(Q) = [J{C : C C R closed and convex, Q(C) = 1}.

Theorem 1.3.1. For fized fo, assume supp{fo} C csupp(Q), and there exists some integer

k > 1, such that,

/|x!kQ(dx) < oo and interior(csupp(Q)) # 0.

For some fized m(z) = coel!* cg,c1 > 0. Let ® = {¢p € ® : [e?@de =1 and fo(x) <



m(x)e?@}. Then

L@Q) = sup L(p,¢,Q)

pel0,1], ped

is real and there exists

(b0, 60) € argmax_L(p, &; Q).
p€[0,1],p€P

Moreover,

interior(csupp(Q)) € dom(¢g) = {z € R : ¢o(x) > —o0} C csupp(Q).

The proof of Theorem 2.4.3 is given in the Appendix (Section 2.7).

Example 1.3.1. Assume fy represents the standard normal density. Consider all the log-
concave normal densities with mean u and standard deviation o. Suppose p and o are
bounded. Then, for integer k = 2, there exist co,c1 > 0, such that ® contains all such
normal pdfs with mean u and standard deviation o. In addition, Theorem 2.4.83 implies that

the mazimum of L(p, ¢; Q) exists over p € [0,1] and ¢ € P.

In general, the maximizer of L(p,¢; Q) is not unique. However, if @ has den-
sity go(x) = (1 — po)fo(x) + poe?®), where go(z) is identifiable, then L(po,¢o; Q) =
[ log(go(x))go(x)dx, and this (po, o) is the unique maximizer. This is because as not-

ed by [9]7 if we have (pla(z)l)? such that L(Q) = L(p07¢07Q) = L(p17¢1;Q)7 let gl(x> =

(1 - pl)f()(x) +p1€¢1(x)7 then7
/ log(go(z)/g1 () go () dz = 0,

10



Note the above integral is exactly the Kullback-Leibler divergence which is positive and
equals 0 iff go = g1 almost everywhere. Thus (pg, ¢9) = (p1, ¢1) except that ¢y and ¢ may
differ on a set of Lebesgue measure zero.

Next we establish the consistency of our maximum likelihood estimator. First, we

introduce some notations,

Qk

(QonR: [ lafQlr) < oc),

Qy = {Q on R :interior(csupp(Q)) # 0}.

In the remainder of this section, we consider the convergence of distributions under Mallows’
distance Dy [17]. Specifically, for two distributions @, Q" € QF,
D Y= inf {E|X - X'|F}V/*.
Q@)= nf  {BIX - X))

)

X~Q, X'~Q!

It is known that li_)m Di(Qn, Q) — 0 is equivalent to Q, —, Q and [ |z[*Q,(dz) —
n [o.¢]
[1z*Q(dz) [1, 17]. Here @y, —, Q means weak convergence, or convergence in distribution.

Now we are ready to state our main consistency theorem.

Theorem 1.3.2. Assume, (a). supp{fo} C csupp(Q); (b). for some fized integer k > 1,
the unknown density f satisfies the following condition: 3 m(z) = coeclmk, where ¢; > 0,
i=0,1, such that, fo(z) < m(z)f(z) = m(z)e?®. Let {Q,} be a sequence of distributions

in Qo QF such that h_)m Dy(Qn, Q) = 0 for some Q € Qo QF. Suppose fo is upper

11



log( fo)

1s bounded. Then
1+ |z

semi-continuous and

lim L(Qn) = L(Q).

n—oo

Assume there exist maximizers (pn, dn) of L(p, ¢;Qn), and a unique mazimizer (p*, ¢*) of

L(p, $; Q), where pn, p* € [0,1],¢n, 6" € . Let fr = exp(¢n), [* = exp(¢*), then

lim p, = p°,

n—0o0

lim fu(z) = f(y), VyeR\O{f >0},

n—00, T—Y

limsup fu(z) < f*(y), Vyed{f" >0},

n—00, r—Y

lim. / fule) — fr@)dz = 0,

here O{ f* > 0} represents the boundary of the set {f* > 0}.

Practically, @,, will be the empirical distribution function which automatically
satisfies the above assumption. Based on the above theorem, we can know that the proposed

semiparametric maximum likelihood estimators of p and f are consistent.

Remark 1.3.1. Theorem 2.4.3 and Theorem 2.4.4 still holds if we consider the distribution

Q to be defined on R, withd =1,2,3,--- .

1.4 Simulation

In this section, we investigate the finite sample performance of our algorithm and

compare it to the estimator proposed by [21] (&) **» from their chapter), the Symmetrization

12



estimator by [2], the EM-type estimator and Maximizing-m type estimator by [30], and the
Minimum profile Hellinger distance estimator by [35].

In order to test our method under different settings, we simulate K = 200 samples
of n ii.d. random variables with the common distribution given by the following seven

models:

Model 1: g(z) = (1 —=p)N(p=0,0 =2) + pN(u = 3,0 = 1),

Model 2: g(z) = (1 — p) - unif(0,1) + p - beta(a = 1, 8 = 5),

Model 3: g(z) = (1 —p)-exp(A=1) +p- (exp(A=1) +2),

Model 4: g(z) = (1 — p)N(0,1) + p(x2(3) + 2),

Model 5: g(z) = (1 —p)N(0,1) + p- (exp(A = 0.5) + 3),

Model 6: g(z) = (1 —p)N(0,1) +p- (t(d.f. =5) + 3),

Model 7: g(x) = (1 — p) - tgr=s + p - logistic(location = 5, scale = 0.5).

For each sample we estimate p, the mean p of the unknown component f and the
classification error. For our algorithm and the algorithm by [35], final estimators p and f
are always produced, thus the estimated probability w; that the i-th observation is from

the known component fy(z), given X; = x;, can be calculated by

i = A =pP)folx)
" (=) folx) + pf (a)

For other methods, f may not always be given directly. Suggested by [30], we estimate w;
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by the following,

o — 20 =P)folzi)
" (- p)foli) + h(a)

where h is the kernel density estimator of g with Gaussian kernel and Silverman’s “rule of
thumb” bandwidth [28]. Note that the algorithm proposed by [21] actually can estimate f
when f is non-increasing. But we find that the algorithm works best when fy and f have
the same support and it often produces unreliable estimates when the two supports differ
from each other. Thus, we do not use f to estimate w; for [21]’s algorithm even when the
true f does decrease on its support, instead, we follow [30]’s recommendation to get ;.

The algorithms by [35] and [2] give a final mean estimator fi directly. For other
methods, after we get w;, we estimate u by the following weighted sum,

= >z (L — i) X;
2im (I — i)

Last, we report the classification error (CE) based on w; as the mean squared error between

w; and the true w;, i.e.,

where w; = 1 if x; is from the known component fy(x) and 0 if z; is from the unknown
component f(z).

For model 1, Table 1 reports the bias and MSE of the estimates of p, the bias
and MSE of the estimates of y, and the mean of the classification error (MCE) for different
methods over K = 200 repetitions when p = 0.2, p = 0.5, and p = 0.8, with sample size

n = 1000. Similar reports of other models can be found in Tables 2.2 — 2.7. Simulation
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results for sample sizes n = 250 and n = 500 are reported in the Appendix (Section 2.7).
We report the results of [2]’s algorithm only for model 1, 2, 6 and 7, because this method

fails when f(z) is not symmetric.

Table 1.1: Bias (MSE) of estimates of p/u and mean of the classification error for model 1
when n = 1000.

‘EM,logconcave Patra Bordes Song EM Song max m Xiang

0.002(0.0004) 0.009(0.0007) 0.001(0.0009) 0.08(0.0066) 0.087(0.0122) 0.006(0.0006)
I 0.063(0.0180) -0.152(0.0650) -0.021(0.0426) 0.116(0.0446) -0.675(0.5680) 0.116(0.0396)
MCE 0.0960 0.1056 0.1052 0.1102 0.1052 0.0973

D -0.002(0.0004) -0.025(0.0011) 0.001(0.0006) -0.132(0.0177) 0.106(0.0149) 0.007(0.0006)
I 0.018(0.0042) 0.051(0.0073) 0.000(0.0046) 0.185(0.0375) -0.322(0.1392) 0.013(0.0056)
MCE 0.1094 0.1219 0.1198 0.1352 0.1206 0.1104
p=20.8
D 0.001(0.0002) -0.252(0.0020) 0.001(0.0003) -0.107(0.0118) 0.063(0.0047) 0.009(0.0003)
I 0.005(0.0013) 0.066(0.0057) 0.000(0.0016) 0.118(0.0153) -0.128(0.0220) -0.002(0.0021)
MCE 0.0645 0.0739 0.0694 0.0834 0.0721 0.0664

Table 1.2: Bias (MSE) of estimates of p/u and mean of the classification error for model 2
when n = 1000.

‘EM,logconcave Patra Bordes Song EM  Song max m Xiang
p=0.2
D -0.008(0.0014) -0.023(0.0015) -0.015(0.0012) -0.15(0.0228) 0.382(0.1496) 0.017(0.0019)
I -0.018(0.0015) 0.027(0.0016) -0.029(0.0017) -0.014(0.0007) 0.199(0.0401) -0.007(0.0010)
MCE 0.1270 0.1520 0.1511 0.1676 0.1847 0.1339
p=20.5
D 0.001(0.0007) -0.046(0.0030) -0.040(0.0024) -0.248(0.0811) 0.228(0.0548) -0.047(0.0035)
I -0.003(0.0001) -0.011(0.0002) -0.032(0.0011) -0.038(0.0015) 0.077(0.0064) -0.022(0.0012)
MCE 0.1609 0.1990 0.1974 0.2638 0.1887 0.1753
p=20.8
D -0.001(0.0004) -0.074(0.0059) -0.070(0.0055) -0.311(0.0974) 0.099(0.0105) -0.060(0.0043)
w4 |-0.001(0.00004) -0.019(0.0004) -0.033(0.0011) -0.040(0.0016) 0.025(0.0007) -0.030(0.0014)
MCE 0.1000 0.1264 0.1261 0.2103 0.1129 0.1142
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Table 1.3: Bias (MSE) of estimates of p/u and mean of the classification error for model 3
when n = 1000.

‘EM,logconcave Patra Bordes  Song EM Song max w Xiang

0.001(0.0002) -0.001(0.0006) NA -0.060(0.0038) 0.410(0.1698) 0.024(0.0011)
p | 0.006(0.0082) -0.039(0.0152) NA  0.048(0.0149) -1.140(1.3094) -0.105(0.0184)
MCE 0.0709 0.0851 NA 0.0879 0.1568 0.0790

P 0.000(0.0003) -0.013(0.0006) NA -0.073(0.0057) 0.259(0.0681) 0.042(0.0028)
7 0.003(0.0021) -0.011(0.0030) NA  0.018(0.0030) -0.502(0.2578) -0.091(0.0157)
MCE 0.0595 0.0767 NA 0.0790 0.1166 0.0732
p=0.8
P 0.001(0.0002) -0.228(0.0010) NA -0.231(0.0012) 0.104(0.0112) 0.071(0.0060)
@ -0.001(0.0013) -0.002(0.0014) NA -0.002(0.0014) -0.159(0.0283) -0.104(0.0224)
MCE 0.0260 0.0325 NA 0.0322 0.0526 0.0617

Table 1.4: Bias (MSE) of estimates of p/u and mean of the classification error for model 4
when n = 1000.

‘EM,logconcave Patra Bordes  Song EM Song max 7 Xiang

-0.000(0.0002) 0.005(0.0005) NA  0.006(0.0003) 0.106(0.0160) 0.056(0.0041)
g [-0.023(0.0321) -0.286(0.1299) NA  -0.304(0.1353) -1.066(1.4174) -0.738(1.0279)
MCE 0.0112 0.0139 NA 0.0137 0.0205 0.0215

D 0.000(0.0002) -0.009(0.0004) NA  0.014(0.0005) 0.067(0.0057) 0.049(0.0030)
| -0.005(0.0074) -0.148(0.0332) NA -0.185(0.0459) -0.333(0.1439) -0.676(0.6616)
MCE 0.0110 0.0157 NA 0.0163 0.0160 0.0207

p |-0.001(0.0001) -0.023(0.0007) NA  0.006(0.0002) 0.038(0.0019) 0.066(0.0048)
g -0.002(0.0052) -0.025(0.0077) NA  -0.054(0.0098) -0.147(0.0352) -0.718(0.5396)
MCE 0.0045 0.0078 NA 0.0089 0.0108 0.0319
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Table 1.5: Bias (MSE) of estimates of p/u and mean of the classification error for model 5
when n = 1000.

‘EM,logconcave Patra Bordes  Song EM Song max w Xiang

D 0.001(0.0002) 0.006(0.0006) NA  0.018(0.0005) 0.110(0.0154) 0.037(0.0018)
I 0.004(0.0193) -0.399(0.2021) NA -0.427(0.2126) -1.129(1.4965) -0.923(0.9073)
MCE 0.0012 0.0044 NA 0.0045 0.0105 0.0092

P 0.000(0.0003) -0.009(0.0005) NA  0.023(0.0008) 0.131(0.0208) 0.061(0.0044)
@ 1-0.001(0.0079) -0.173(0.0384) NA -0.213(0.0538) -0.681(0.5620) -0.650(0.4645)
MCE 0.0007 0.0079 NA 0.0090 0.0202 0.0189
p=0.8
P 0.001(0.0001) -0.223(0.0007) NA  0.009(0.0002) 0.079(0.0068) 0.081(0.0071)
1 0.000(0.0047) -0.027(0.0061) NA -0.051(0.0077) -0.313(0.1123) -0.473(0.2482)
MCE 0.0003 0.0022 NA 0.0030 0.0190 0.0426

Table 1.6: Bias (MSE) of estimates of p/u and mean of the classification error for model 6
when n = 1000.

‘EM,logconcave Patra Bordes Song EM Song max Xiang

p |-0.010(0.0003) -0.007(0.0006) 0.083(0.0012) -0.022(0.0006) 0.077(0.0080) 0.001(0.0003)
g | 0.171(0.0455) 0.029(0.0262) -0.075(0.0843) 0.083(0.0257) -0.414(0.2369) 0.001(0.0177)
MCE 0.0440 0.0450 0.0455 0.0457 0.0468 0.0435

p | 0.001(0.0003) -0.031(0.0015) -0.002(0.0006) -0.053(0.0031) 0.038(0.0028) -0.002(0.0631)
g |-0.010(0.0115) 0.148(0.0264) -0.003(0.0066) 0.182(0.0375) -0.020(0.0185) 0.018(0.0066)
MCE 0.0094 0.0672 0.0658 0.0680 0.0656 0.0631

p  |-0.001(0.0001) -0.059(0.0037) -0.002(0.0004) -0.063(0.0043) 0.008(0.0006) 0.001(0.0034)
g |-0.004(0.0072) 0.169(0.0307) -0.001(0.0024) 0.174(0.0321) 0.055(0.0073) -0.003(0.0034)
MCE 0.0046 0.0637 0.0570 0.0643 0.0567 0.0545
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Table 1.7: Bias (MSE) of estimates of p/u and mean of the classification error for model 7
when n = 1000.

‘EMJogconcave Patra Bordes Song EM Song max m Xiang
p=0.2

-0.001(0.0002) 0.003(0.0004) -0.002(0.0003) 0.011(0.0004) 0.2(0.0529) 0.0095(0.0004)
I 0.007(0.006) -0.423(0.2122)  0(0.0071)  -0.468(0.2455) -1.799(3.7131) -0.0116(0.0057)
MCE 0.0117 0.0139 0.0137 0.014 0.0403 0.0138
p=0.5
p -0.003(0.0003) -0.012(0.0005)  0(0.0003) 0.014(5e-04) 0.131(0.0217) 0.0134(0.0004)
I 0.017(0.0023) -0.148(0.0255) -0.001(0.0022) -0.192(0.0413) -0.683(0.5779) -0.0041(0.0017)
MCE 0.0129 0.0145 0.0146 0.0151 0.0315 0.0144
p=0.8
p |-0.0060(0.0002) -0.024(0.0008)  0(0.0002)  0.002(0.0002) 0.061(0.0046) 0.0097(0.0002)
I 0.02(0.0015) -0.014(0.0015)  0(0.0012) -0.044(0.0035) -0.24(0.0695) 0.0046(0.0013)
MCE 0.0103 0.0094 0.01 0.0101 0.0197 0.0108

The simulation results demonstrate that our method has the overall best perfor-
mance among all methods. In addition, our method is even more favorable when the sample
size n gets larger. Overall, all the estimates of u get better when p gets larger, which is
expected because we are getting more points from the unknown component. [2]’s method
does not work well when f is not symmetric due to the fact that their algorithm is based on
the symmetry of f. [35]’s method has excellent performance when f is symmetric, because
their algorithm incorporates the symmetry property of f in these cases. When f is not
symmetric, our algorithm is far superior. [21]’s method works better when p is small, but
it only estimates f when it is decreasing.

To better display our simulation results, we also plot the MSE of point estimates
of p and p vs. different models for all the methods we mentioned above when p = 0.2

and n = 1000, except for the method by [2] as their method fails to estimate p and p for
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half of the models we discussed here. Figure 1.1 shows that the curve representing our
method always lies at the bottom for all seven models considered, which demonstrates the

effectiveness of our new method.

(a) MSE of the p estimator (b) MSE of the mean estimator
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Figure 1.1: (a): MSE of the estimates of p when p = 0.2, n = 1000; (b): MSE of the
estimates of p when p = 0.2, n = 1000.

1.5 Real Data Application

1.5.1 Prostate Data

In this section we consider the prostate data consisting of genetic expression levels
related to prostate cancer patients of [10]. The data set is a 6033 x 102 matrix, with
entries z;; = expression level for gene 7 on patient j, ¢ = 1,---,n, j = 1,---,m, here,

n = 6033, m = 102. Among the m = 102 patients, m; = 50 of them are normal control
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subjects (corresponding to j = 1,--- ,my) and mgy = 52 of them are prostate cancer patients
(corresponding to j = mq + 1,--- ,mg). The goal of the study is to discover the potential
genes that are differentially expressed between normal control and prostate cancer patients.

Two-sample t-test is performed to test the significance of each gene 7 by,

ti = (2i(1) — 2:(2)) /s,

where .fz(l) = (Till xij)/ml, 51(2) = (AT§+1 a:ij)/mg, 812 = (1/m1+1/m2) {2 (xij - j}i(l))2+

nﬁ 1 (zi5 — 2:(2))? ¢ /(m — 2). These two-sided t-tests produce n = 6033 p-values, and
j=m1i+
the distribution of these p-values under the null hypothesis (i.e., the gene is not differentially
expressed) has a uniform density, while under the alternative hypothesis (i.e., the gene is
differentially expressed) has a non-increasing density.

The estimation of p is reported in Table 1.8. We can see that the estimate by [2]
and the Maximizing-m type estimate by [30] give a relatively big estimate. The estimate
procedure by [2] assumes the density function under the alternative hypothesis to be sym-
metric, while in our example this density is non-increasing, which violates the symmetric
assumption. (If we apply [2]’s method to the original ¢ statistics directly, the estimate of
pis p = 0.0072.) It is known that the Maximizing-7 type estimator by [30] tends to over-
estimate the p value, which can also be seen in Table 1.8. We also want to point out that
several approaches have been proposed by [10] to estimate p as well, the estimator based on
central matching method gives p = 0.020 (please see [10] and [11] for detailed description of

those estimators), and Table 1.8 shows that our estimator gives a closest value to Efron’s

result.
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Table 1.8: Estimates of p for the prostate cancer data.

EM_logconcave Patra Bordes Song EM Song max m Xiang
0.0173 0.0817 0.1975 0.0076 0.6132  0.1915

Figure 1.2 plots the estimated density f based on our method and the method by
[21]. It can be seen that our estimate of the density f tends to have a much smaller support
compared to the one given by [21]. Note that small p-values indicate the support for the
alternative hypothesis. Therefore, it makes sense that the support of f for this prostate

data may be much smaller than (0, 1).
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Figure 1.2: Plots for the prostate data: (a) Histogram of the p-values. The horizontal
line represents the Uniform(0,1) distribution. (b) Plot of the estimated density f by our
maximum likelihood estimation via EM algorithm. (c) Plot of the estimated density f by
the method of [21].

1.5.2 Carina Data

Carina is one of the seven dwarf spheroidal (dSph) satellite galaxies of Milkey Way.
Here we consider the data consisting of radial velocities (RV) of n = 1266 stars from Carina

galaxy. The data is obtained by Magellan and MMT telescopes ([33]). The stars of Milkey
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Way contribute contamination to this data set. We assume the distribution fy of RV from
stars of Milkey Way is known and follows the Besancon Milky Way model ([23]). We would
like to analyze this data set to better understand the inhomogeneous distribution of the RV
of stars in Carina galaxy.

The estimation of p is reported in Table 1.9. We see that the estimation by [30]’s
Maximizing-7 type estimator gives a relatively big estimate. Other estimates are relatively

close.

Table 1.9: Estimates of p for the Carina data.

EM _logconcave Patra Bordes Song EM Song max w Xiang
0.354 0.364 0.363  0.370 0.687 0.385

In Figure 1.3, we plot the histogram of the RV data overlaid with our estimated
two components of the mixture density. Based on the plot, we can see that our estimation
approximates the data fairly well. The component corresponding to the stars of Carina looks
very symmetric, and in fact astronomers usually assume the distribution to be Gaussian,

which makes the density estimation proposed by [21] fail.

1.6 Discussion

In this chapter we study the two-component mixture model with one component

completely known. A semiparametric maximum likelihood estimator is developed via EM
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Figure 1.3: Histogram of RV data overlaid with the estimated two components from our
EM log-concave algorithm

algorithm and log-concave approximation. Unlike most existing estimation procedures, our
new method finds the mixing proportion and the distribution of the unknown component
simultaneously without any selection of a tuning parameter and the proposed EM algorithm
satisfies the non-decreasing property of the traditional EM algorithm. We establish the
existence of consistency of the proposed estimator. Simulation results show that our method
is more favorable than many other competing estimation methods.

In this chapter, we assume that the first component is completely known, it would
be our interest to apply our method to a more general model where the component fy also

contains some unknown parameter and extend our method to the regression setting.
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1.7 Appendix

1.7.1 Theoretical Proof

Proof of Lemma 1.2.1. According to [21], if we let G, Fy, and F be the cumulative
distribution functions of g, fy and f respectively, define py = inf{y € (0,1] : [G — (1 —
v)Fo]/7v is a CDF}, then

po=p{l— essinfi},
fo

where essinf(h) = sup{t € R : m{x : h(xz) < t} = 0}, and here m represents the Lebesgue

measure. Now if essinf% > 0, there must exist some ¢ > 0, such that, m{z : ;; ((a; )) <t} =

0, i.e., % > t almost everywhere, which contradicts to the fact that lim,_,,+ ]{; ((“T )) =
0 or lim, ,,- % = 0. Hence we can conclude that essinf% = 0, and consequently

po = p, which means if we can write g(x) = (1 — p) fo(x) + pf(z), this p is fixed and equals
po. Consequently f(z) = (g(x) — (1 — p)fo(z))/p is fixed as well, and our model (2.1) is

identifiable. O

Proof of Proposition 1.2.1. Since f(z) = e?@) is a log-concave density, there exist con-

stants a and b > 0, such that ¢(z) < a — b|z| (see [4]), which implies

¢(x) —logfo(x) < a—blx| —logfo(x).

Now if |logfo(x)| = O(|z|¥), for some 0 < k < 1, apparently,

—bl|z| — logfo(z) = |z|*(=blz|' 7 — logfo(z)/|x|*) = —o0, as & — +o0 or & — —oc.
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Hence ¢(z) — logfo(x) — —o0 as © — +o0 or x — —oo, which shows limg_, 4 % = 0.

Thus, model (2.1) is identifiable from Proposition 1.2.1. O

Proof of Theorem 2.4.3. Suppose [ |z|*Q(dx) < oo, interior(csupp(Q)) # 0, [ e?@dx =
1 and fo(z) < m(z)e?®). For any concave function ¢ satisfying the above condition-
s, there exist (ap,bp), such that ¢(z) < ag — bp|z|, thus for any p # 0, L(p, —bo|z| —
log( [ e~leldz); Q) > og =437z, —bo [ |#|Q(dx) > —oo, thus we have L(Q) > —co. When
maximizing L(p, ¢; Q) over all ¢ € ®, we may restrict our attention to functions ¢ such that
dom(¢) = {z € R: ¢(z) > —oc} C csupp(Q). For if dom(¢) € csupp(Q), replacing ¢(z)
with —oo for all x ¢ csupp(Q), then the value of L(p, ¢ —log( [ e‘i’(x)da:); Q@) would be greater
or equal to the original L(p, ¢; Q). Note that since supp(fy) = csupp(Q), the new concave
function ¢ = ¢ — log([ e¢(x)d:c) still satisfies the conditions above, i.e., fe‘ﬁ/(z)dx =1,
fo(x) < m(x)e?’ @ and dom(¢') = {z € R : ¢(z) > —o0} C csupp(Q). We denote ®(Q) to
be the family of all ¢ € ® with dom(¢) = {z € R : ¢(z) > —o0} C csupp(Q).

Now we show that L(Q) < oo. Suppose that ¢ € ®(Q) is such that M =
max,cpap(x) > 0. Let Dy = {¢ > t}, hence D, is closed and convex. For any o > 0,

we have the following estimate,

L(p,#;Q) = /log((l—p)fo + pe?)dQ

< /log ((1- () +p)Q(dx) /¢dQ
< / log(m() + 1)Q(dz) — aMQ(R?\ D_ans) + MQ(D_ 1)
= /log Q(dac) (Oé—l— 1)M(a+ 1 (D—aM))-

26



Note that [log(m(z) + 1)Q(dz) exists since [ |z|*Q(dx) < co. By Lemma 4.1 of

[9], for any fixed a,

(14+a)M
Leb(D_an) < (1+a)deeM// tdetdt
0

= (1+a)Mi%e™/(d +0(1)) =0, as M — oo.

Lemma 2.1 of [9] says that for sufficiently large o and sufficiently small § > 0,

there exist some sufficiently small € > 0, such that,

sup{Q(C) : C C R closed and convex, Leb(C) < ¢} < ai—i—l — €,

which implies that L(p, ¢; Q) — —o0, as M — oo. Since for any ¢ € ®(Q), we also have
L(p,#;:Q) < [log((1 — p)m(x) + p)dQ + M, = L(Q) < oo and there exist constants My

and M,, such that

L@Q)=  sup L(p, ¢; Q).
pE[0,1], $€2(Q)
Mg<max(¢(z))<Msx

Now that we know L(Q) is real, we are ready to prove the existence of a maximizer
(po, o) of L(Q). Let (pn,dn) be a sequence such that p, € [0,1], ¢, € ®(Q), M,, =
max (¢, (x)) € [Mo, M,], and —oco < L(pp, ¢n; Q) T L(Q) as n — oco. Here we assume {p,}
is a convergent sequence, say p, — po € [0,1], as n — oco. If {p,} is not convergent, since
it is bounded, it must have a convergent subsequence {py,, }, and the sequence {py, , ¢n, }
would satisfy all those properties above and we can just simply replace the original sequence

with this subsequence.
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Next, we show that,
ngfi on(z0) > —00, Vo € interior(csupp(Q)). (1.3)
n>

For any x € interior(csupp(Q)), if ¢n(xo) < My, then xo can not be an interior

point of {¢,, > &n(zo)}, hence,

L(pna d)n; Q) = /log((l - pn)f() +pne¢”)dQ
< [togime) + Q) + [ 620
< /log(m(:r) +1)Q(dx) + ¢n(20) + (M, — ¢ (0))Q(dn > Pn(0))

< /log(m(x) + 1)Q(dz) + ¢n(z0)(1 — h(Q, zp)) + max(M,,0),

where h(Q,z) = sup{Q(C) : C C R? closed and convex, x ¢ interior(C)} < 1 by Lemma

2.13 of [9]. And the above inequalities still hold even if ¢, (z9) = M,,. Thus we have,

L(pn, ¢n; Q) — [ log(m(z) +1)Q(dz) — max(My, 0)

¢n($0) > 1— h(Q, 170)
. L(p1, ¢1;Q) — [log(m(z) + 1)Q(dz) — max(M.,0)
=>711121f1 bn(z0) > = (0. 20) > —00,

which establishes (1.3). Since ¢, < M., together with (1.3), Lemma 3.3 of [27] implies that

there exist constants a and b > 0 such that,

On(x) <a—blx|, Vn>1,x € R. (1.4)
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Let C ={x e R :lirginf ¢n(r) > —oo} D interior(csupp(Q)) and ¢(x) = a — b|z|, using
n—0o0
Lemma 4.2 of [9], together with (1.3) and (2.8) we can conclude that there exist ¢g € ®¢

and a subsequence ¢, such that C' C dom(¢g) C csupp(Q) and,

limsup ¢, () < ¢o(z) <a—blz|, Vz € R,

k—o0

lim ¢, () = ¢o(z) > —o0, Vo € interior(csupp(Q)).

k—o0

Since dom(¢y, ) C csupp(Q), we have ¢, converges to ¢g almost everywhere as the
Lebesgue measure of the boundary of csupp(Q) is zero, then we can conclude [ eP@dy =1
by dominated convergence. Thus, ¢y € ®(Q). Next, we apply Fatou’s Lemma to the
nonnegative functions = — [ log(m(z) + 1)Q(dz) + a — blz| — log((1 — pn,) fo + pn,e?*),
and we get,

limsup L(ppy, $ne; @) < L(po, d0; Q).

k—o0

Hence,

L(Q) > L(po, ¢0; Q) Zli;nsup L(pn,,, ¢ny; Q) = L(Q),

which shows (pg, ¢g) is the maximizer that we are looking for.

Proof of Theorem 2.4.4. Since ILm Dy(Qn, Q) — 0, hence
n o

Qn —w Q and/ |z[*Q (dx) — / lz[*Q(dzx), as n — oco.

Suppose limsup L(Q,) = A € [—o00,00], thus there exist a subsequence {Qy, },

n—oo
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such that L(Qn,) — A If we let h(z) = —bg|z| — log( [ e~*l*ldz) as we did in the proof of

Theorem 2.4.3, then, h € ®, and for any p > 0,

>
\Y

limsup L(p, h; Qyp, ) =limsup /log((l — ) fo + pe)dQn,
k—o00

k—o0

A\

logp — b0/|x|Q(dx) - log(/ el ) > —oc.

Note that in the above inequalities, we used the fact that nh_}ngo [ z|Qn(dz) =
[ |z|Q(dz) by Lemma 4.6 of [27].

Let M, = max,cpi¢n(z). Since Jim [log(m(z) + 1)Qn(dz) = [log(m(z) +
1)Q(dz) by Lemma 4.6 of [27], similar to the proof of Theorem 2.4.3, one can show that for n
sufficiently large, we have L(py, ¢n; Qn) — —00, if M,, — 00 asn — 0o, and L(py, ¢n; Qn) <

[log(m(z) + 1)Q(dz) + M, provided that

limsup Q,(Cp) < 1, for any {C,, : C;, C R closed and convex, lim Leb(Cy) = 0}. (1.5)

n—oo

Hence there exist some suitable constants My and M., such that My < M, < M, for k
sufficiently large and thus A < oco.

Here we explain how (1.5) is derived. As in the proof of Lemma 2.1 of Schuhmacher,

[27], there exist a simplex A = conv(Zo, - - - , Z4) with positive Lebesgue measure and open
sets Uy, Ui, ---, Ug with Q(U;) > n > 0, for 0 < j < d, here :Or<nj£1d Q(U;) > 0. For
<<

any convex and closed set C with C' N U; # 0 for all j, we have A C C. By Theorem
4.4.4 of [3], liginf Qn(Uj) > Q(U;) > n for all j. Thus if le Leb(Cy,) = 0, then for

any n sufficiently large, Leb(C,,) < Leb(A),= A ¢ C,,= there exist some j, such that
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CoNUj =0,= Qn(Cr) <1—Qn(Uj;) <1— min Q,(Uj). Since,

1<j<d

Qn(Uj) = liminf Qy(Uj) + Qn(U;)— liminf @, (Uj)

v

nt jof Qy(Uj)— liminf Qn(Us) =n + o(1),

thus 1r§11]jgd Qn(U;j) > 1+ o(1), which shows that Q,(C),) <1 —mn+o0o(1), and hence (1.5) is
established.

Now that we know M, is bounded for k sufficiently large, and L(py, , ¢n,; @n,) —
A € R as k — oo, we may assume {py, }, is a convergent sequence, say p,, — p« € [0,1],
as k — oo. For if {py, } is not convergent, since it is bounded, it must have a convergent
subsequence {pnkl }, and the sequence {pnkl , ¢nkl} would satisfy all those properties above

and we can just simply replace the original sequence with this subsequence.

Again, as in the proof of Theorem 2.4.3, for any z( € interior(csupp(Q®)), we have,

L(pg: @y Quy) = J log(m(@) + Q(do) ~ max(M,,0)

¢nk (x()) > 1-— h(an,u’Co)

As Lemma 2.13 of [27] states that limsup h(Qp,,z) < h(Q,z) for any z € R, we have,

n—00
1}€§i£f (6n (7)) > A — flog(m(:ci —t 2)(6(22(’62)) — max(M,,0) N
Hence, for k large enough,
llglf: ¢n, (x0) > —00, V(o € interior(csupp(Q)). (1.6)
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Again, we can deduce from (1.6) and the boundedness of M, that there exist constants a

and b > 0 such that,

O, (2) < a — blz|, Vk sufficiently large, z € R%. (1.7)

Similar as before we conclude that there exist ¢, € ®? and a subsequence {¢nkl} such that

interior(csupp(Q)) € dom(¢,) C csupp(Q) and,

limsup ¢n, (z) < ¢u(y) <a—blyl, Vy € R,

l—00,x—y

lim  ¢n, (¥) = ¢i(y) > —o0, Vy € interior(csupp(Q)).

l—o0,x—y

Then [ e?*(*)dz = 1 by dominated convergence, which implies that ¢, € .
By Skorohod’s theorem, there exist a probability space (2, F,P) and random
variables Xnkl ~ anl, X ~ @, such that llim X, = X almost surely. Let anl =
— 00

[ log(m() + 1)Q(dz) + a — bl Xn, || ~ 10{(1 ~ Py, ) fo(Xn,,) + Py, exp(uy, (X, ))}. By
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we hav
Fatou’s Lemma, we have,

IN

IN

IN

IN

Jim L (pny, ; by, s @y, ) = Hm / log((1 = pny, ) fo + Py, e’ )dQn,,
Jim { [ log(m(x) + DQ(dz) + [ (@~ bel)Qu, (do) ~ E(Ha,)
[ 1og(m(x) + V@Udz) +a b [ [1s]Q(do) - mint E(Hs,)

[ 1otm(a) + V@(dz) +a b [ I1c]Q(ds) - Eimint (H,,,)
E{hﬁsup IOg((l — Dny, )fO (Xnkl ) + Dy, eXp(¢nkl (Xnkl )))}

E(log((1 = p«) fo(X) + peexp(¢4(X))))

L(Q).

In order to show that A > L(Q), we use the approximations ¢* < ¢*() < ¢*(),

0 < e <1 from Lemma 4.4 of [9], since ¢*(9) €  is Lipschitz continuous, one can show that

1279 4 bounded, and hence by Lemma 4.6 of [9], we have,

1+ |[]]

k:lggo L(pnk’ ¢nk§ an)

i 27,67 o[ " 0a), Q1)

k—o00

L(p*, 6" — log( / @ dy), Q)

/log{(l - P*)fo/e‘z’*(e)("”)dm +pe?” Q- log(/ @ )

/log((l —p")fo+pe?)dQ = L(p*, % Q), as € — 0.

The last step above is by applying dominated convergence on " and monotone conver-
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gence on (1—p*)fo [ e V@) gy 4 pred™ ) 1-p"fo [ " V@) dr — p*e®™ . Thus we have
shown that A = L(Q), and (p*, ¢*) = (p«, ¢«) is the unique maximizer.
With exactly the same argument, we can show that liminf L(Q,) = L(Q) as well,
n—oo

and hence L(Q,) — L(Q), as n — oo.

Also, if we let f* = exp o ¢*, f,, = exp o ¢, we have shown that,

lim = p*
e pnkl D,

limsup fpn, (x) < [ (y), Vy € 0{f" >0},

l—00,x—y

lim  f, (z) = f*(y), Yy € R*\8{f* > 0}.

l—00,x—y

In particular, { fnkl} converges to f* almost everywhere w.r.t. Lebesgue measure and hence
f|fnkl () — f*(z)|de — 0, as | — oo by dominated convergence. Our proof actually
shows that for any subsequence of {@,}, we can further find a subsequence with the above
convergence properties. That means the original sequence must satisfy those properties as

well, otherwise we would arrive at contradictions and that completes the proof.
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1.7.2 More Simulation Result

Table 1.10: Bias(MSE) of estimates of p/u and mean of the classification error for model 1
when n = 250.

‘EM,logconcave Patra Bordes Song EM Song max m Xiang
p=20.2

0.008(0.0019) -0.001(0.0021) 0.018(0.0046) -0.071(0.0057) 0.106(0.0160) 0.021(0.0056)
0.057(0.0738) -0.396(0.3286) -0.166(0.2109) -0.108(0.2243) -0.846(0.9437) 0.243(0.1864)
MCE 0.1029 0.1094 0.1097 0.1138 0.1104 0.1058
p=20.5
D 0.000(0.0023) -0.041(0.0036) 0.005(0.0025) -0.130(0.0185) 0.100(0.0153) 0.014(0.0026)
I 0.017(0.0225) 0.023(0.0167) -0.021(0.0198) 0.143(0.0393) -0.344(0.1635) 0.032(0.0208)
MCE 0.1151 0.1259 0.1232 0.1379 0.1248 0.1138
p=20.8
D -0.001(0.0011) -0.070(0.0057) -0.001(0.0014) -0.104(0.0123) 0.056(0.0040) 0.016(0.0014)
I 0.003(0.0072) 0.059(0.0102) -0.001(0.0085) 0.097(0.0158) -0.147(0.0323) -0.008(0.0079)
MCE 0.0670 0.0781 0.0722 0.0835 0.0752 0.0703

Table 1.11: Bias(MSE) of estimates of p/u and mean of the classification error for model 1
when n = 500.

‘EM,logconcave Patra Bordes Song EM Song max m Xiang

p | 0.000(0.0008) -0.008(0.0014) 0.003(0.0021) -0.077(0.0063) 0.086(0.0102) 0.011(0.0013)
f | 0.059(0.0348) -0.258(0.1430) -0.054(0.1013) 0.001(0.0734) -0.738(0.6525) 0.175(0.0843)
MCE 0.0972 0.1070 0.1060 0.1106 0.1051 0.0990

p |-0.003(0.0009) -0.031(0.0021) 0.000(0.0012) -0.132(0.0181) 0.107(0.0158) 0.011(0.0011)
g | 0.019(0.0097) 0.035(0.0109) -0.003(0.0098) 0.169(0.0363) -0.346(0.1605) 0.020(0.0097)
MCE 0.1111 0.1239 0.1209 0.1359 0.1226 0.1120

p | 0.003(0.0006) -0.053(0.0033) 0.001(0.0007) -0.104(0.0117) 0.056(0.0040) 0.014(0.0006)
g |-0.001(0.0032) 0.065(0.0073) 0.000(0.0041) 0.110(0.0155) -0.121(0.0220) -0.007(0.0040)
MCE 0.0644 0.0758 0.0693 0.0822 0.0711 0.0685

35



Table 1.12: Bias(MSE) of estimates of p/u and mean of the classification aerror for model
2 when n = 250.

‘EMJogconcave Patra Bordes Song EM Song max m Xiang

p | 0.004(0.0051) -0.021(0.0033) -0.006(0.0036) -0.156(0.0248) 0.371(0.1443) 0.056(0.0087)
p|-0.022(0.0038) 0.061(0.0073) -0.019(0.0029) 0.013(0.0032) 0.197(0.0401) -0.011(0.0026)
MCE 0.1368 0.1554 0.1568 0.1746 0.1858 0.1437

D 0.004(0.0043) -0.064(0.0071) -0.037(0.0041) -0.300(0.0916) 0.230(0.0576) -0.013(0.0041)
@ 1-0.005(0.0007) -0.004(0.0004) -0.032(0.0013) -0.034(0.0013) 0.080(0.0070) -0.014(0.0011)
MCE 0.1678 0.2110 0.2031 0.2778 0.1964 0.1764
p=20.8
D 0.009(0.0019) -0.105(0.0124) -0.065(0.0057) -0.312(0.1001) 0.081(0.0078) -0.049(0.0056)
L 0.000(0.0002) -0.020(0.0005) -0.033(0.0012) -0.039(0.0016) 0.010(0.0006) -0.018(0.0010)
MCE 0.1030 0.1384 0.1266 0.2137 0.1124 0.1140

Table 1.13: Bias(MSE) of estimates of p/u and mean of the classification error for model 2
when n = 500.

‘EMJogconcave Patra Bordes Song EM Song max m Xiang
p=20.2

-0.001(0.0028) -0.021(0.0020) -0.007(0.0022) -0.154(0.0238) 0.379(0.1496) 0.035(0.0047)
L -0.019(0.0024) 0.041(0.0030) -0.025(0.0022) -0.006(0.0008) 0.197(0.0393) -0.009(0.0018)
MCE 0.1294 0.1544 0.1520 0.1697 0.1862 0.1369
p=20.5
p 0.002(0.0022) -0.053(0.0045) -0.039(0.0032) -0.292(0.0860) 0.234(0.0583) -0.034(0.0035)
L -0.004(0.0003) -0.008(0.0002) -0.033(0.0013) -0.037(0.0014) 0.080(0.0069) -0.014(0.0009)
MCE 0.1638 0.2031 0.2011 0.2723 0.1940 0.1753
p=20.8
P 0.003(0.0010) -0.086(0.0081) -0.070(0.0058) -0.312(0.0990) 0.097(0.0102) -0.048(0.0038)
I -0.001(0.0001) -0.020(0.0005) -0.034(0.0012) -0.040(0.0016) 0.024(0.0007) -0.022(0.0010)
MCE 0.1001 0.1307 0.1263 0.2119 0.1129 0.1139
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Table 1.14: Bias(MSE) of estimates of p/u and mean of the classification error for model 3
when n = 250.

‘EM,logconcave Patra Bordes  Song EM Song max w Xiang

0.005(0.0011)  0.009(0.0021) NA  -0.050(0.0034) 0.431(0.1889) 0.048(0.0042)
p | 0.026(0.0400) -0.041(0.0581) NA  0.048(0.0591) -1.115(1.2677) -0.139(0.0493)
MCE 0.0737 0.0869 NA 0.0895 0.1718 0.0842

P 0.002(0.0013) -0.019(0.0019) NA -0.069(0.0065) 0.269(0.0742) 0.081(0.0103)
@ -0.001(0.0096) -0.001(0.0126) NA  0.013(0.0120) -0.495(0.2618) -0.174(0.0590)
MCE 0.0623 0.0806 NA 0.0839 0.1271 0.0860
p=0.8
P 0.003(0.0007) -0.046(0.0029) NA -0.225(0.0017) 0.107(0.0122) 0.087(0.0096)
1 0.001(0.0052) 0.003(0.0061) NA -0.004(0.0057) -0.157(0.0316) -0.150(0.0446)
MCE 0.0274 0.0351 NA 0.0354 0.0589 0.0734

Table 1.15: Bias(MSE) of estimates of p/u and mean of the classification error for model 3
when n = 500.

‘EM,logconcave Patra Bordes  Song EM Song max 7 Xiang

0.004(0.0005) 0.004(0.0011) NA -0.055(0.0034) 0.415(0.1746) 0.038(0.0024)
I 0.014(0.0204) -0.039(0.0316) NA  0.047(0.0315) -1.119(1.2657) -0.131(0.0357)
MCE 0.0722 0.0862 NA 0.0855 0.1610 0.0819

D 0.001(0.0005) -0.016(0.0010) NA -0.070(0.0057) 0.260(0.0692) 0.060(0.0059)
I 0.004(0.0047) -0.007(0.0061) NA  0.017(0.0064) -0.489(0.2475) -0.126(0.0338)
MCE 0.0604 0.0787 NA 0.0811 0.1189 0.0790

p | 0.002(0.0003) -0.036(0.0017) NA -0.029(0.0013) 0.106(0.0115) 0.080(0.0078)
g | 0.001(0.0027) 0.001(0.0026) NA  -0.002(0.0030) -0.159(0.0294) -0.117(0.0284)
MCE 0.0270 0.0334 NA 0.0341 0.0557 0.0677
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Table 1.16: Bias(MSE) of estimates of p/u and mean of the classification error for model 4
when n = 250.

‘EM,logconcave Patra Bordes  Song EM Song max w Xiang

-0.001(0.0009) 0.019(0.0021) NA  0.019(0.0013) 0.129(0.0198) 0.113(0.0179)
p | 0.016(0.1454) -0.574(0.5652) NA -0.569(0.5268) -1.296(2.0126) -0.728(1.0325)
MCE 0.0128 0.0168 NA 0.0168 0.0247 0.0438

P 0.003(0.0009) -0.014(0.0014) NA  0.022(0.0014) 0.085(0.0089) 0.086(0.0101)
7 0.025(0.0493) -0.192(0.0898) NA -0.200(0.0878) -0.379(0.2136) -0.605(0.6314)
MCE 0.0096 0.0184 NA 0.0188 0.0204 0.0378
p=0.8
P 0.000(0.0006) -0.039(0.0022) NA  0.013(0.0007) 0.044(0.0026) 0.077(0.0076)
1 0.009(0.0279) -0.024(0.0247) NA -0.073(0.0332) -0.157(0.0572) -0.621(0.4861)
MCE 0.0044 0.0093 NA 0.0115 0.0149 0.0468

Table 1.17: Bias(MSE) of estimates of p/u and mean of the classification error for model 4
when n = 500.

‘EM,logconcave Patra Bordes  Song EM Song max 7 Xiang

-0.002(0.0003) 0.009(0.0009) NA  0.010(0.0005) 0.108(0.0141) 0.074(0.0073)
g |-0.008(0.0721) -0.410(0.2935) NA  -0.404(0.2668) -1.109(1.4363) -0.803(1.1190)
MCE 0.0116 0.0151 NA 0.0147 0.0201 0.0271

p | 0.000(0.0005) -0.011(0.0008) NA  0.017(0.0009) 0.074(0.0066) 0.069(0.0062)
g [-0.011(0.0244) -0.169(0.0525) NA  -0.220(0.0720) -0.374(0.1801) -0.607(0.6089)
MCE 0.0095 0.0167 NA 0.0178 0.0178 0.0288

p | 0.002(0.0004) -0.031(0.0014) NA  0.011(0.0005) 0.042(0.0023) 0.068(0.0054)
g [-0.007(0.0137) -0.034(0.0151) NA -0.072(0.0190) -0.159(0.0447) -0.699(0.5384)
MCE 0.0048 0.0082 NA 0.0103 0.0126 0.0360
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Table 1.18: Bias(MSE) of estimates of p/u and mean of the classification error for model 5
when n = 250.

‘EM,logconcave Patra Bordes  Song EM Song max w Xiang

-0.001(0.0007) 0.020(0.0022) NA  0.030(0.0018) 0.142(0.0240) 0.047(0.0036)
i |-0.026(0.0943) -0.679(0.6177) NA -0.716(0.6592) -1.449(2.3985) -0.895(0.9545)
MCE 0.0017 0.0090 NA 0.0087 0.0185 0.0127

P 0.001(0.0010) -0.015(0.0014) NA  0.031(0.0019) 0.116(0.0162) 0.074(0.0075)
7 0.009(0.0288) -0.208(0.0734) NA -0.267(0.1017) -0.613(0.4915) -0.680(0.5574)
MCE 0.0011 0.0114 NA 0.0136 0.0202 0.0248
p=0.8
P 0.000(0.0006) -0.042(0.0025) NA  0.015(0.0008) 0.069(0.0056) 0.089(0.0096)
1 0.006(0.0216) -0.036(0.0232) NA -0.089(0.0305) -0.296(0.1188) -0.488(0.3336)
MCE 0.0004 0.0037 NA 0.0055 0.0188 0.0544

Table 1.19: Bias(MSE) of estimates of p/p and mean of the classification error for model 5
when n = 500.

‘EM,logconcave Patra Bordes  Song EM Song max 7 Xiang

-0.001(0.0003) 0.012(0.0011) NA  0.023(0.0009) 0.119(0.0176) 0.042(0.0025)
W -0.007(0.0438) -0.500(0.3260) NA -0.553(0.3655) 1.237(1.7273) -0.928(0.9531)
MCE 0.0014 0.0058 NA 0.0061 0.0132 0.0107

D -0.001(0.0006) -0.010(0.0007) NA  0.025(0.0012) 0.120(0.0179) 0.077(0.0073)
I 0.014(0.0170) -0.194(0.0565) NA -0.233(0.0722) -0.630(0.4822) -0.726(0.5840)
MCE 0.0008 0.0094 NA 0.0111 0.0188 0.0240

p | 0.001(0.0003) -0.031(0.0013) NA  0.013(0.0004) 0.078(0.0067) 0.088(0.0087)
p | 0.006(0.0094) -0.020(0.0105) NA -0.065(0.0146) -0.324(0.1188) -0.506(0.3185)
MCE 0.0003 0.0026 NA 0.0039 0.0199 0.0501
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Table 1.20: Bias(MSE) of estimates of p/u and mean of the classification error for model 6
when n = 250.

‘EM,logconcave Patra Bordes Song EM Song max w Xiang
p=20.2
D -0.006(0.0015) 0.003(0.0021) 0.020(0.0036) -0.012(0.0009) 0.109(0.0147) 0.027(0.0023)
0.127(0.1230) -0.200(0.1172) -0.685(0.8830) -0.118(0.0777) -0.654(0.5415) -0.067(0.0877)
MCE 0.0464 0.0468 0.1738 0.0470 0.0509 0.0473
p=20.5
D -0.015(0.0028) -0.044(0.0037) 0.000(0.0024) -0.045(0.0031) 0.057(0.0054) 0.031(0.0061)
I 0.073(0.0525) 0.123(0.0325) -0.009(0.0298) 0.127(0.0329) -0.099(0.0405) -0.068(0.0676)
MCE 0.0688 0.0682 0.0676 0.0688 0.0683 0.0738
p=20.8
D 0.006(0.0016) -0.077(0.0067) -0.003(0.0016) -0.059(0.0044) 0.011(0.0012) 0.006(0.0013)
I -0.024(0.0205) 0.173(0.0369) 0.004(0.0104) 0.155(0.0320) 0.032(0.0125) -0.002(0.0105)
MCE 0.0591 0.0660 0.0595 0.0647 0.0588 0.0572

Table 1.21: Bias(MSE) of estimates of p/u and mean of the classification error for model 6
when n = 500.

‘EM,logconcave Patra Bordes Song EM Song max w Xiang

-0.008(0.0006) -0.001(0.0008) 0.016(0.0021) -0.017(0.0007) 0.095(0.0119) 0.011(0.0007)
g | 0.132(0.0565) -0.066(0.0452) -0.161(0.1613) 0.000(0.0312) -0.538(0.3834) -0.025(0.0370)
MCE 0.0435 0.0457 0.0451 0.0450 0.0479 0.0439

p |-0.011(0.0014) -0.033(0.0019) -0.001(0.0010) -0.049(0.0030) 0.043(0.0032) 0.011(0.0017)
p | 0.069(0.0304) 0.137(0.0272) -0.004(0.0109) 0.161(0.0339) -0.038(0.0183) -0.023(0.0203)
MCE 0.0655 0.0676 0.0666 0.0684 0.0665 0.0664

p | 0.004(0.0005) -0.065(0.0047) -0.002(0.0008) -0.062(0.0043) 0.010(0.0011) 0.002(0.0007)
g |-0.021(0.0069) 0.169(0.0325) -0.002(0.0054) 0.165(0.0311) 0.043(0.0102) 0.002(0.0060)
MCE 0.0541 0.0646 0.0576 0.0642 0.0574 0.0546
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Table 1.22: Bias(MSE) of estimates of p/u and mean of the classification error for model 7
when n = 250.

‘EMJogconcave Patra Bordes Song EM Song max m Xiang
p=0.2

-0.004(0.0007) 0.016(0.0021) -0.002(0.0011) 0.025(0.0015) 0.163(0.033) 0.0273(0.0018)
I 0.011(0.0301) -0.782(0.7361) -0.043(0.0697) -0.822(0.78) -1.695(3.1805) -0.0248(0.0225)

MCE 0.0133 0.0184 0.0174 0.0183 0.0338 0.0169
p=0.5
p 0(0.001) -0.015(0.0017) 0.002(0.0011) 0.028(0.0018) 0.115(0.016) 0.0263(0.0018)
I 0.013(0.008) -0.242(0.0743) -0.008(0.0089) -0.303(0.1082) -0.63(0.4636) -0.0261(0.0083)
MCE 0.0132 0.0173 0.0176 0.0189 0.0284 0.0181
p=0.8

p  |-0.0080(0.0008) -0.037(0.002) -0.003(0.0008) 0.01(0.0009) 0.059(0.0043) 0.0175(0.0010)
@ | 0.022(0.0044) -0.03(0.0061) 0.002(0.0038) -0.102(0.0159) -0.264(0.0828) -0.0080(0.0036)
MCE 0.0104 0.0106 0.0118 0.0126 0.0221 0.0144

Table 1.23: Bias(MSE) of estimates of p/u and mean of the classification error for model 7
when n = 500.

‘EM,logconcave Patra Bordes Song EM Song max m Xiang
p=0.2
D 0.000(0.0003) 0.012(0.0011) 0.000(0.0005) 0.020(0.0008) 0.173(0.038) 0.0196(0.0010)
0.009(0.0102) -0.566(0.3799) -0.01(0.0237) -0.625(0.4484) -1.662(3.1148) -0.0403(0.0127)
MCE 0.0129 0.0157 0.0158 0.0163 0.0338 0.0156
p=20.5
D -0.001(0.0005) -0.011(0.0009) 0.002(0.0006) 0.022(0.001) 0.121(0.0189) 0.0155(0.0007)
I 0.021(0.0038) -0.188(0.043) -0.002(0.0032) -0.243(0.0675) -0.637(0.5017) -0.0083(0.0038)
MCE 0.0128 0.0155 0.0159 0.0168 0.0301 0.0159
p=0.8
D -0.005(0.0004) -0.031(0.0014) 0.000(0.0004) 0.007(0.0004) 0.061(0.0046) 0.0129(0.0004)
7 0.02(0.0021)  -0.023(0.003) -0.001(0.0017) -0.071(0.0076) -0.249(0.0748) -0.0034(0.0017)
MCE 0.0101 0.0096 0.0106 0.0109 0.0204 0.0119
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1.7.3 Source code

EM _logconcave algorithm, R code

library(logcondens)##package for univariate log-concave density estimation
library (ks)##package for Kernal density estimation
S
##custom kmeans with one center fixed##
s S
kmeansi<-function(x,center_fix){
n<-length(x)
cl<-center_fix
c2<-mean(x)
cluster<-numeric(n)##assign points closer to the fixed center as cluster
— 1
for(i in 1:n){
if (abs(x[i]-cl)<abs(x[i]-c2)){
cluster[i]<-1
Yelsed{

cluster[i]<-2

c2<-mean(x[which(cluster==2)])

clusterold<-rep(1,n)
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while(sum(cluster!=clusterold) !=0){
clusterold<-cluster
for(i in 1:n){
if (abs(x[i]-c1)<abs(x[i]-c2)){
cluster[i]<-1
}elsed{

cluster[i]<-2

c2<-mean(x[which(cluster==2)])

res<-list(centers=c(cl,c2),cluster=cluster,size=c(sum(cluster==1),sum(
s cluster==2)))

return(res)

g

## EM algorithm+log concave density estimation ##

g

##a:density from the known component; ini_pi: true mixing proportion; ini_b
< : true density from the unknown component.

mle_logcon<-function(x,a,center_known,ini_pi,ini_b){
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##using estimated initial value from kmeans
true<-0
n<-length(x)
fiti<-kmeansi(x,center_fix=center_known)
pi<-(fit1$size[1])/n
fit2<-activeSetLogCon(x=x[which(fit1$cluster==2)])
b<-evaluateLogConDens (xs=x,res=fit2) [, 3]
1<-sum(log(pi*a+(1-pi)*b))
lold<-1-1
while((1-1lold)/abs(101d)>10"-4){
lold<-1
p<-pixa/(pi*a+(1-pi)*b)##updated probabilities
pi<-sum(p) /n##updated mixing proportion
weight=(1-p)/sum(1-p)
x1<-cbind (x,weight)
x1<-x1[x1[,2]1>107-4,]##delete points with weight<=10"-4
x1<-x1[order(x1[,11),]
fit2<-activeSetLogCon(x=x1[,1] ,w=x1[,2])
b<-evaluateLogConDens (xs=x,res=fit2) [, 3]

1<-sum(log(pi*a+(1-pi)*b))
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mu_loc<-sum((£it2$x) * (fit28$w))/sum(fit2$w) ##use weighted sum to calculate
<~ the mean for the unknown component

res<-list(p=p,pi=pi,mu=mu_loc,x=fit2$x,phi=fit2$phi,usetrueini=true)

##use the true initial value

pil<-ini_pi

bl<-ini_b

11<-sum(log(pil*a+(1-pil)*b1))

loldi<-11-1

while((11-1lold1)/abs(101d1)>107-4){
loldik-11
p<-pil*a/(pil*a+(1-pil)*bl)##updated probabilities
pil<-sum(p)/n##updated mixing proportion
weight=(1-p)/sum(1-p)
x1<-cbind (x,weight)
x1<-x1[x1[,2]1>107-4,]##delete points with weight<=10"-4
x1<-x1[order(x1[,11),]
fit2<-activeSetLogCon(x=x1[,1] ,w=x1[,2])
bil<-evaluateLogConDens (xs=x,res=fit2) [, 3]

11<-sum(log(pil*a+(1-pil)*b1))

##tselect the maximum likelihood fit
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if ((11>1)&& (abs((11-1)/1)>0.0002)){
true<-1
mu_loc<-sum((£it2$x)* (£it2$w))/sum(fit2%w)
res<-list(p=p,pi=pil,mu=mu_loc,x=fit2%x,phi=fit2$phi,usetrueini=true)
}

return(res)
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Chapter 2

Robust Maximum Likelihood
Estimation Based on

Semiparametric Mixture Models

2.1 Introduction

Maximum likelihood estimators are widely used since they have many desirable
properties such as consistency and efficiency. However, most of these estimators are very
sensitive to outliers and might provide biased or even misleading results when the data
are contaminated. Many robust estimators have been proposed to overcome this issue;
see for example, [15], [14], [12], [13], [18], [32], [24]. However, most of the above robust
estimators focus on the robust estimation of a location parameter and/or require the choice

of a tuning parameter, with the exceptions of [13] and [18], which proposed a trimmed
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likelihood estimation method and weighted likelihood estimation method, respectively.
In this article, we propose a new class of robust maximum likelihood estimator by

fitting a semiparametric mixture model to the contaminated data,

9(@) = (1 —=p)fo(x;0) + pf(z), (2.1)

where fj is a known assumed density function with unknown parameters 8 € 0, p € [0, 1]
is the proportion of possible contaminated data/outliers, and f(z) represents the unknown
density for the contaminated component. The above contaminated mixture model is com-
monly used in the literature of robust statistics to describe the situation when there is
violation/departure of the assumed model. Our goal is to find a robust estimation of 6
despite possible contamination from the unknown density f. By estimating the semipara-
metric mixture model (2.1) directly, we can not only estimate the parameter 8 robuslty but
also recover the density of the contaminated component. In addition, based on the new
model, we can also assign a probability of each observation being an outlier. We propose
two methods to estimate the semiparametric mixture model (2.1). The first estimator is
an extension of the method proposed by [21] which assumes the first component is com-
pletely known without unknown parameter 6. For the second estimator, we assume that
f is log-concave and then estimate the model (2.1) by maximizing the corresponding the
semiparametric maximum likelihood over the unknown parameter 6 and the log-concave
density f. One nice of feature of using log-concave density for f is that it can be estimated
by nonparametric likelihood estimator without requiring any tuning parameter. For more

details of log-concave densities, please refer to [5], [8], [34], [9] and the review of the recent
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progress in log-concave density estimation by [26]. We further investigate the identifiabili-
ty conditions of the proposed semiparametric mixture models and propose two innovative
algorithms to estimate @ without assuming a parametric form for the contaminated densi-
ty f(z). Extensive simulation studies demonstrate that our methods provide comparable
performance to traditional MLE whether the data are clean and much better performance
when the data contain outliers.

The rest of the paper is organized as follows. Section 2.2 discusses the identifiability
problem of our model. Our two algorithms are proposed in Section 2.3. Basic theoretical
properties are described in Section 2.4. In Section 2.5, we present our extensive simulation

results. We conclude this article with a brief discussion in Section 2.6.

2.2 Identifiability

We first investigate the identifiability conditions of model (2.1). Without any

constraints, the model (2.1) is non-identifiable. For example,

9() = (1= p)fo(w:0) + pf(r) = (1 = p =) folw:0) + (p+7) (- fo(w:0) + 2 f(2)),

for any 0 < < (1 —p).
When f(x) represents the density of outliers, it is reasonable to assume that f(x)
achieves small densities in situations where fo(z;0) is large. If we restrict f(z) to be 0 on

a fixed set, say A, with non-zero measure, then we have the following identifiable result.

Theorem 2.2.1. Assume fo(x;0) is analytic w.r.t. x on R, then model (2.1) is identifiable
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f(x) =0,Vx € A, (2.2)

where p(A) > 0 and u(-) is a Lebesgue measure in R.

Remark 2.2.1. A function h is said to be real analytic on R if it is infinitely differentiable
and the Taylor series at any point xo converges to h(x) for x in a neighborhood of xy. For
example, the normal density is real analytic.

In Theorem 2.2, the main identifiability condition of the model (2.1) is that there
exists an interval A from which the observations are not outliers with certainty. Such
assumption is reasonable in most of the applications. For example, A can be a very small

interval around the median, say 45% percentile to 55% percentile of the data.

Remark 2.2.2. In fact, the condition we give in Theorem 2.2.1 is quite strong, and the
result still holds even if the parametric form of fo is unknown,. This can be proved with

similar arguments as proof of Theorem 2.2.1 (Section 2.7.2).
Next we establish a local identifiability condition of the model (2.1).

Theorem 2.2.2. Assume fo(x;0) is analytic w.r.t. = on R, differentiable w.r.t. 6 and

8f08(3;9) is bounded. Then, the model (2.1) is identifiable over a sufficiently small neigh-

borhood of ¢ if there exists a € (0,1) and a Lipschitz continuous function C(0) such that

Jnowor=cioy folz; )de = a and

f(xz) =0 when fy(x;0) > C(0). (2.3)

The main assumption of the local identifiability is that there is zero chance for the
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outliers to appear in the area where fo(x;0) is large.

2.3 Proposed Algorithms

2.3.1 Minimum search
Introduction to [21]’s Algorithm

In [21)’s paper, they considered the model

where the CDF Fj is completely known, p and F' (F # Fy) are unknown. They
define
G- (1-7)F

po = inf{y € (0,1] : is a CDF}.

Intuitively, this definition defines the smallest proportion py such that the “signal” distri-
bution F' does not include any background information from the known distribution Fjp.

For an i.i.d. random sample {X;}!' ; from G, let G,, be the empirical CDF of the
random sample. For any ~ € (0, 1], they define the naive estimator of F' to be

Gn —(1—v)Fo
v

/\/Y:
n

In order to improve this estimator to be non-decreasing, they propose to minimize

J W@ - B@)de,@) = - 3w () - F(X)
=1
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over all CDFs W, and use F}/ to denote the minimizer.

Finally, the estimator of pg is defined by

Cn

%":mﬂyemﬂym%@mﬂﬂgf%}:mﬂvemJLdAGmﬂ—wEﬁﬁEﬁg 1,

B

where d,, represents the Lo(G,) distance, ¢, = 0.1loglogn following the recommendation

from simulation results of [21].

Proposed estimator: puyin

Let G, Fy(-,0) and F be the corresponding cumulative distribution functions of g,

fo(+,0) and f, respectively, then, model (2.1) can be written as

G(z) = (1 — p)Fo(z;0) + pF(x).

Therefore,

Inspired by [21], we define,

G—(1—v)F(;§)
Y

Prmin :igf inf{~ € (0,1] : is a c.d.f.}

Apparently, if our model is identifiable, then pyi, = p. We propose to estimate ppin by a

minimum search:

Dmin :igf a(&)gs (2.4)
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~Cp

where &(€)g" represents the &g estimator in [21] with their Fy(x) replaced by our Fy(x;€).

In (2.4), the minimizer £ is the proposed estimator of :
6 =arg min a(&)q

2.3.2 EM log-concave method

Suppose we have a random sample of n i.i.d. observations (X1, Xa, -, X,,) from
the density g(z) = (1 — p)fo(z;0) + pf(z), p € [0,1], f = e® is a log concave density.
Here, we assume ¢ : R — [—00,00) is upper semicontinuous and coercive, i.e. ¢(z) —
—00, as |x| — oo, and we use ®? to denote the family of such functions on R?. Then,
with the empirical distribution @, = % z”: 0x, , where dx, is the degenerate distribution

i=1
function at {X;}, the log likelihood of our random sample can be written as:

L(p.6.6,Q) = [108(9)d@n =+ 3 log {(1 - p)fo(Xis6) +pe? | (25)
=1

subject to the condition that [ e?@dxr = 1. We propose to estimate p, @ and ¢ by maxi-
mizing L(p, 0, ¢,Q,). One advantage of assuming a log-concave density for f is that such
semiparametric maximum likelihood estimate exists without requiring any tuning parame-

ter.

The computation algorithm

Maximizing the log likelihood (2.5) is not easy. To this end, we propose an EM

algorithm to simplify the computation.
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Algorithm 2.3.1. Starting with initial values p©, 0 and O iterate the following two
steps until convergence:

“E step”: Given p), 0% and ),

LD (1 —p®) fo(w;;00)) .
' (1 —p®) fo(zi; 8%)) + p®) £ (z;)

“M step”: Update the estimates of p, @ and f,

P = 1 S - wFFY,

n -
=1

(k+1) — - (k+1) .
7 arg maz ; w; log{ fo(x;0)},

(k+1) _ =1 D
¢ arg gbeog;( wy (),

f(k+1) _ e¢(k+l)'

In M step, the ¢ is updated by the active set algorithm proposed by [7] and
implemented in the package logcondens by [25] in R ([22]).

Throughout this paper, we use “EM logconcave2” to denote this procedure where
“2” indicates the two-component mixture model. Please see the Appendix (Section 2.7) for

details of implementation of this algorithm.
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2.4 Theoretical Properties
2.4.1 Consistency of (Pmin), and 0,

[21] showed the following consistency theorem for their model:
Theorem 2.4.1. If ¢, = o(y/n) and ¢, — oo, then, py" LS Po-

In our setting, if model (2.1) is identifiable, ¢, = o(y/n) and ¢, — oo, then,

1, £#80,

p, £€=20.

If we assume the convergence is uniform, then we have the following consistency

theorem for our estimator (Pmin)n and 0,

Theorem 2.4.2. Suppose

1, £€#80,
P&y —
p, £€=286.

uniformly, then,

(Prmin)n — p, and 6, — 6.

2.4.2 Existence and consistency of our maximum likelihood estimator

In this section, we establish the existence of the maximizer of (2.5) and prove

the consistency of the proposed semiparametric maximum likelihood estimator. For any
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distribution Q on R?, we define,

L(p.0,6.Q) = / log{(1 — p)fo(-» 0) + pe?}dQ,

L@) = sup L(p,0,6,Q).
p€l0,1],0€©
bedd, [e?(@)dg=1

Define the convex support of @ as,
csupp(Q) = ﬂ{C : ' C R? closed and convex, Q(C) =1}.

We first provide the existence result of the maximizer of (2.5) in the following theorem.

Theorem 2.4.3. Assume supp{fo(z,0)} C csupp(Q) for any 6@ € © and © is compact.

Suppose there exists some integer k > 1, such that,

/H:EHkQ(dx) < oo and interior(csupp(Q)) # 0.

For some fized m(x) = coeq”x"k,co,cl >0, let 4 = {¢ € D¢ : fe‘b(f”)dw =1 and fo(x,0) <

m(x)e?®) V0 € ©}. Then

p€l0,1],0€0,pcdd

1s real. In that case, there exists,

(p07007¢0) € argmax B L(p707¢) Q)
p€(0,1],0€0,pcd?
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Moreover,

interior(csupp(Q)) C dom(¢g) = {z € R%: ¢o(x) > —co} C csupp(Q).

Next we establish the consistency of our maximum likelihood estimator. Let

ok = {Q on Re /||x\|kQ(dm) < oo},

Q = {Qon R4 . interior (csupp(Q)) # 0}.

In what follows, we consider the convergence of distributions under Mallows’ dis-

tance D; [17]. Specifically, for two distributions @, Q" € QF,

Dy(Q.Q) = inf  {BI[X - X'|[}1/".
XNQ,’ X'~Q!
It is known that li_>m Di(Qn, Q) — 0 is equivalent to Q,, — Q and [ ||z[|*Qn(dz) —
n—oo
[lz]/*Q(dz) [1, 17]. Here Q, —, Q means the weak convergence, or convergence in

distribution.

Theorem 2.4.4. Assume, (a). supp{fo} C csupp(Q); (b). there exist some integer k > 1,
¢ >0,i=0,1, and m(z) = coe 1" such that, fo(z,0) < m(z)f(z) = m(z)e?™@ V0 € ©.

Let {Q,} be a sequence of distributions in Qy () QF such that li_)m Di(Qn, Q) = 0 for some
n oo

log( fo)
L+ |||

Q€ N QF . Suppose fo is upper semi-continuous and is bounded. Then

lim L(Qn) = L(Q).

n—oo
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Assume there exist mazimizers (pp, @y, ¢n) of L(p, 0, ¢, Qy), and a unique maximizer (p*, 0%, ¢*)

of L(p,8,¢,Q), where p,,p* € [0,1],0,,0" € ©,¢,,¢* € & Let f, = exp(dn), f* =

exp(¢*), then

lim p, = p*,
n—oo
lim 6, = 6,
n—oo

lim  fo(z) = [f"(y), VyeRN\O{f* >0},

n—00, T—Y

limsup fo(z) < f*(y), Vy€o{f" >0},

n—00, T—Y

[ 1)~ F@lds = o

2.5 Simulation

To demonstrate the performances of our proposed algorithms, we generate a finite

random sample (X7, X, -+, X,,) from the following seven models:

Model 1: g(z) = (1 — p)N(po = 0,00 = 1);

Model 2: g(z) = (1 — p)exp(Ag = 2) + pN (1 = 3,01 = 0.5);

Model 3: g(z) = (1 — p)exp(Ao = 2) + p(exp(A1 = 2) + 3);

Model 4: g(z) = (1 — p)gamma(shape, = 2,scaleg = 0.5) + p(F(dy = 100,dy =

100) + 5);

Model 5: g(x) = (1 — p)Weibull(shape, = 2,scaley = 1) + p(beta(0.5,0.5) + 2);

58



e Model 6: g(z) = poN (o = 0,00 = 1) + p1U(10,11) + poU (-5, —4);

e Model 7: g(z) = pologistic(pg = 0,50 = 1) + p1U(—11, —10) + pa Pareto(ms = 5, so =

5).

Model 1 has no outliers and is used to test how our robust maximum likelihood estimates
perform when there are no outliers. Model 2, 3, 4, and 5 are two-component mixtures.
For each model, we generate a random sample of size n = 250 or n = 500, with
the proportion of outliers to be p = 0.2, or p = p1 + ps = 0.2. For model 6 and 7,
p1 = 0.05, ps = 0.15. For each sample, we calculate the estimated proportion of outliers
(p), the parameter of the known component (é), the mean of the unknown component (i),
the Ly distance (dr,) and Kullback Leibler divergence (dgr) between fo(x,0) and fo(z, 6).
To calculate JKL, for each é, we generate a random sample of size m = 10000 under the

distribution fo(z, @), and estimate the distance by

Over K = 200 repetitions, we report the bias and MSE of the estimates of p, 8, and 1,
and the mean of estimates of dr, and dg ..

For comparison, we report the parameter estimation results from MLE (maximum
likelihood estimation without outlier detection), oracle (the MLE after deleting all outliers)
and TLE (trimmed likelihood estimator implemented using FAST-TLE by [20]) methods.
For the TLE method, the trimming parameter is selected to be 0.1, 0.2 and 0.3, we denote

these methods by TLE (0.1), TLE (0.2) and TLE (0.3), respectively. Table 2.1—2.7 reports
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the results for sample size n = 500. The results for sample size n = 250 are included in the
Appendix (Section 2.7).

From the simulation results, we can see that when our data are heavily contam-
inated (with 20% outliers), the MLE estimates are very problematic and thus sensitive to
outliers. On the other hand, the two algorithms we proposed, ppin and EM logconcave
methods, both have very promising performances. In general, they also outperform the
TLE method.

When the generated data does not contain outliers (Model 1), ppin, method works
better than two-component and three-component EM log-concave methods. When simu-
lated data is generated from Model 2—5, both two-component and three-component EM
log-concave methods work well. But when the data is generated from a three-component
mixture, Model 6 and 7, the two-component EM log-concave method fails in these situations
as expected. Instead, three-component EM log-concave method still works very well.

In general, the maximum likelihood criterion and the minimum of the CDF dis-
tance criterion work very similar. The minimum p value criterion works better for Model
2—>5 when we use three-component EM log-concave method, but is less favorable if we use
two-component EM log-concave algorithm. For Model 6 and 7, again this criterion is less

favorable. In general, we recommend the MLE and minimum CDF distance criteria.
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Table 2.1: Bias (MSE) of estimates of p/@ and mean of dyo and dg, for the model 1 when
n = 500.

Model 1 (no outlier): g(z) = N(uo = 0,00 = 1)
TLE(0.1)  TLE(0.2)  TLE(0.3)

method Pmin MLE oracle

p | 0.08(0.0073)
-0.012(0.0031) -0.002(0.0016) -0.002(0.0016) 0.002(0.0036) 0.004(0.0058) 0.008(0.0095)

Ho

oo 10.004(0.0021) 0.002(0.001) 0.002(0.001) -0.209(0.0444) -0.338(0.1148) -0.444(0.198)

dra 0.0259 0.0184 0.0184 0.1171 0.2107 0.3086

dir, 0.0038 0.0018 0.0018 0.07 0.239 0.5574
method | EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3

p | 0.04(0.0023) 0.008(4e-04) 0.021(0.0013) 0.099(0.0116) 0.036(0.0031) 0.064(0.0075)
po  |-0.002(0.0098)  0(0.0031)  -0.002(0.0062) 0.005(0.0081) 0.003(0.0058) 0.007(0.0083)
-0.056(0.0053) -0.011(0.0021) -0.03(0.0035) -0.135(0.0238) -0.049(0.0074) -0.081(0.0144)

00
drs 0.0468 0.0248 0.0344 0.0813 0.0426 0.059
dir, 0.0124 0.0041 0.008 0.0413 0.0132 0.0268

Table 2.2: Bias (MSE) of estimates of p/6/u1 and mean of dro and dg, for the model 2
when n = 500.

Model 2: g(x) = 0.8exp(Ao = 2) + 0.2N (1 = 3,01 = 0.5)

method Dmin MLE oracle TLE(0.1) TLE(0.2) TLE(0.3)
D 0.042(0.0027)
Ao [-0.094(0.0402) -0.996(0.9948) -0.001(0.0093) -0.626(0.4013) 0.046(0.0364) 0.862(0.7883)
w1 |-0.218(0.0585)
dra 0.0591 0.4066 0.0269 0.2415 0.054 0.2751
dkr, 0.0055 0.1929 0.0011 0.065 0.0043 0.0757
method | EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3
0.005(6e-04)

-0.012(6e-04)  0.001(5e-04)  0.001(5e-04) -0.003(4e-04)

P 0.001(4e-04)
-0.015(0.0189) 0.034(0.0278)

Ao |0.017(0.0214) -0.084(0.0335) 0.014(0.027) 0.014(0.0218)

gy |-0.012(0.007) 0.043(0.008)  0.043(0.008)

drs 0.058 0.0585 0.0696 0.0401 0.0382 0.0448
dx1 0.0026 0.0045 0.0033 0.0026 0.0024 0.0033
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Table 2.3: Bias (MSE) of estimates of p/6/u1 and mean of dro and dg, for the model 3

when n = 500.

Model 3: g(x) = 0.8exp(Ag = 2) + 0.2(exp(A1 = 2) + 3)
TLE(0.1)  TLE(0.2)  TLE(0.3)

method Pmin MLE oracle

p  10.045(0.0029)
-0.063(0.0328) -1.089(1.1882) 0.005(0.0109) -0.727(0.5378) 0.017(0.0432) 0.86(0.7794)

Ao

w1 |-0.307(0.1077)

dra 0.0538 0.4515 0.029 0.2848 0.0603 0.2746

dir, 0.0042 0.2435 0.0013 0.091 0.0055 0.0748
EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3

method

p | -0.001(3e-04) -0.006(4e-04) -0.001(3e-04)  0(3e-04)  -0.002(3e-04) 0.001(4e-04)
-0.008(0.0135) -0.061(0.0279) -0.003(0.0182) 0.004(0.0123) -0.019(0.0154) 0.007(0.0165)

Ao

pi 0.003(0.0025) 0.012(0.0037) 0.012(0.0037)

dro 0.0322 0.0478 0.0381 0.0309 0.0355 0.0362
dir 0.0017 0.0038 0.0023 0.0015 0.0019 0.002

Table 2.4: Bias (MSE) of estimates of p/6/u1 and mean of dro and dg for the model 4

when n = 500.
Model 4: g(z) = 0.8gamma(shape, = 2,scaleg = 0.5) + 0.2(F(d; = 100, dz = 100) + 5)
TLE(0.1)  TLE(0.2)  TLE(0.3)

MLE oracle

method Dmin
P 0.037(0.002)
-0.123(0.3)  1.332(1.8739)

-0.042(0.0473) -0.102(0.0664) 0.004(0.0173) -1.142(1.3058)
0.11(0.0708) -0.25(0.0631)

shapeg
0.06(0.0109) 0.001(0.0013) 1.299(1.7065)

scaleg |0.035(0.0055)

w1 |-0.409(0.2006)

dra 0.0504 0.3284 0.0338 0.3605 0.1144 0.2301

dkr, 0.0067 0.3071 0.0027 0.238 0.0327 0.1588
EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3

0.003(3e-04)

method
0.000(3e-04) -0.002(3e-04) -0.001(3e-04) 0.005(4e-04) 0(3e-04)

p
0.008(0.0184) -0.046(0.0255) -0.019(0.0209) 0.051(0.0345) 0.005(0.0186) 0.027(0.0271)

shapeg

scaleg 0(0.0014)  0.023(0.0037) 0.011(0.0024) -0.007(0.0018) 0.001(0.0014) -0.002(0.0019)
11 0.002(4e-04)  0.007(5e-04)  0.007(5e-04)
dro 0.0345 0.0402 0.0372 0.0399 0.0345 0.0376
dk1, 0.0028 0.0042 0.0034 0.0039 0.0029 0.0036
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Table 2.5: Bias (MSE) of estimates of p/6/u1 and mean of dro and dg, for the model 5

when n = 500.
Model 5: g(x) = 0.8Weibull(shapey = 2,scaleg = 1) 4 0.2(beta(0.5,0.5) + 2)
method Pmin MLE oracle TLE(0.1) TLE(0.2) TLE(0.3)
p | 0.034(0.002)

shapeg |-0.085(0.0303) -1.702(3.2258) 0.006(0.0065) -0.206(0.0463) 0.053(0.0114) 0.507(0.2785)

scaleg | 0.052(0.0066) 0.671(1.4677) -0.001(6e-04) 0.164(0.0284) 0.002(0.0015) -0.102(0.0116)
g |-0.158(0.0435)
dra 0.0758 0.271 0.0337 0.1548 0.0475 0.2132
dir 0.0189 0.1675 0.0024 0.0556 0.0056 0.148

method | EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3

p | -0.006(0.001) -0.034(0.0026) 0.003(0.001) 0.015(0.0017) 0.008(0.0011) 0.02(0.0014)
shapeg | -0.011(0.013) -0.087(0.0221) 0.003(0.0159) 0.037(0.0198) 0.001(0.0154) 0.035(0.018)
scaleg | 0.012(0.0028) 0.058(0.0077) 0.001(0.0026)  0(0.0042)  0.001(0.0034) -0.012(0.0028)
gy | 0.022(0.009) 0.09(0.0205)  0.09(0.0205)

drs 0.0494 0.0775 0.0575 0.0643 0.0592 0.0613
dir, 0.0079 0.0185 0.0099 0.0126 0.0106 0.011

Table 2.6: Bias (MSE) of estimates of p/@ and mean of dyo and dx, for the model 6 when

n = 500.
Model 6: g(z) = 0.8N (g = 0,00 = 1) + 0.05U/(10, 11) + 0.15U(—5, —4)
method Dmin MLE oracle TLE(0.1) TLE(0.2) TLE(0.3)
p|0.026(0.0015)
o |-0.004(0.0037) -0.159(0.0441) -0.002(0.0025) -0.48(0.2411) -0.037(0.0074) -0.004(0.0057)
oo | 0.054(0.006) 8.237(69.0208) 0.001(0.0013) 0.652(0.4356) 0.035(0.0172) -0.244(0.0615)
dra 0.0359 0.4714 0.0221 0.2273 0.0512 0.1421
dir 0.0069 1.7218 0.0026 0.2285 0.0163 0.1079
method

EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3

p |-0.151(0.0228) -0.158(0.0251) -0.157(0.0246) -0.001(3e-04) -0.008(4e-04) -0.001(3e-04)
po  |-0.711(0.5136) -0.628(0.4012) -0.645(0.4233) -0.002(0.0027) -0.037(0.0061) -0.005(0.0027)
oo |0.879(0.7773) 1.087(1.2264) 1.046(1.1271) 0.001(0.0019) 0.064(0.0107) 0.005(0.0021)
drs 0.2786 0.291 0.2884 0.023 0.0413 0.0235
dxL 0.3441 0.3962 0.3855 0.0031 0.0106 0.0033
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Table 2.7: Bias (MSE) of estimates of p/@ and mean of dyo and dx, for the model 7 when
n = 500.
Model 7: g(x) = 0.8logistic(ug = 0,59 = 1) + 0.05U(—11, —10) + 0.15Pareto(mg = 5, s2 = 5)
method Pmin MLE oracle TLE(0.1) TLE(0.2) TLE(0.3)
P 0.034(0.0018)
140 0.01(0.0159) 0.466(0.2347) -0.002(0.0069) 0.676(0.4791) 0.091(0.0297) -0.011(0.0113)
so |0.052(0.0073) 0.92(0.8553) 0.002(0.0017) 0.337(0.118) -0.018(0.0072) -0.295(0.0889)
dro 0.0305 0.1852 0.0182 0.1306 0.0369 0.1288
dir 0.0069 0.2507 0.0025 0.1043 0.0101 0.1079
method | EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3
p [-0.148(0.0221) -0.097(0.0103) -0.087(0.0085) 0.001(3e-04) -0.036(0.0017) -0.001(4e-04)
wo | 0.673(0.4777) 0.082(0.1062) 0.032(0.1038) -0.004(0.0074) 0.134(0.0303) 0.002(0.0087)
so | 0.569(0.33) 0.556(0.3262) 0.524(0.2881) -0.001(0.0022) 0.138(0.025)  0.012(0.003)
drs 0.1552 0.1344 0.1291 0.0197 0.0488 0.0214
dixr, 0.1608 0.1286 0.1183 0.0029 0.0177 0.0035

2.6 Discussion

In this paper, we propose a novel semiparametric mixture model to provide ro-
bust maximum likelihood estimation. To incorporate the contaminated data, we assume a
log-concave density for the possible outlier component and thus the whole data can be con-
sidered from a semiparametric mixture model. We propose to estimate the semiparametric
mixture model by maximizing the corresponding semiparametric likelihood. We prove the
existence and consistency of the proposed semiparametric maximum likelihood estimator.
One main advantage of the proposed semiparametric maximum likelihood estimator is that
it does not require choose a tuning parameter unlike many other kernel density estimators.

Based on the new model, we can also assign a probability of each observation being an
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outlier. The simulation results demonstrate that our proposed algorithms perform very
well across a variety of contaminated densities (from which the outliers are generated from)
even when the contaminated densities are not log-concave.

An interesting possible future research is to extend the proposed robust maximum
likelihood estimator to the regression context. For the regression model y = 73 + ¢, in
order to incorporate the possible outliers and get a robust regression estimate of 3, we can
model the density € by the proposed semiparametric mixture model with fy being a normal
density with mean 0. In addition, it will be also interesting to extend the proposed method

to provide robust maximum likelihood estimator for multivariate data.

2.7 Appendix

2.7.1 EM log-concave algorithm
Detailed implementation of the two-component EM log-concave algorithm

We start the algorithm from multiple initial values and propose the following three

criteria to select the final best model:
e EM logconcave2-1: use the maximum likelihood criterion;
e EM logconcave2-2: use the minimum p value criterion;

e EM logconcave2-3: use the minimum of the CDF distance between the estimated

CDF corresponding to the two-component mixture model with the empirical CDF.
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Specifically, the CDF distance is defined by

n

SN (G - L,

n -
=1

where G is the estimated CDF of the proposed model.

0) of our

Suppose fo(x; 0) represents the normal density, the initial probabilities wZ(
algorithm are generated as follows: We randomly select jig from U(X .25y, X(0.75)) of the
random sample (X1, X, -+, X;,), where X(;,) denotes the empirical quantile corresponding
to the probability p. The initial ¢ is randomly selected from U(0.1s, s), where s is the stan-
dard deviation of the random sample. The initial fo is estimated to be fo(z) = Uioqﬁ(z;—é‘o),
where ¢ represents the standard normal density. Let o ~ U(0,0.3), we find one sided
100a% points with lowest fo values, assign wl(O) to be 0 on those points and 1 otherwise,
i.e., we assume those points belong to the component f initially. Here we take a random
toss Z ~ Bernoulli(0.5). If Z = 1, we assign the right hand side points to f; if Z = 0, we
assign the left hand side points to f.

(0)

For the general fj, the initial generation of the probabilities w; ~ is very similar: we
first generate random initial parameter 6, then randomly select one sided lowest 100a%
points with respect to fg = fo(x;éo), and assign these points to the unknown outlier
component.

After we estimate p, @ and f, we want to make sure if z is from the highest 80%

density points of fy, the probability for x to be outliers is relatively low. For example, when
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fo represents the normal density, we define

ratio = max ( 21%) )
ve(it Zo1o. it Z0.90) (1 — p) fo(,0) + pf(x)

The fitted model is discarded if ratio > 0.2. More general, the ratio is defined to be the
maximum value over all  within the highest 80% density points of fo(z, é)

In order to apply our procedure more efficiently, we adopt the FAST-MCD strategy
proposed by [24] which consists of a two-step procedure: a trial step followed by a refinement
step. The pseudocodes are as follows:

e Start from any random initial values of {wgo) . Run 5 steps of EM logconcave2

iteration, the fitted model is selected if ratio < 0.2. Repeat this until we have selected

50 fitted models or until we have used 500 initials.

e Select the top 10 fitted models with respect to the likelihood, the minimum of p value

or the minimum of CDF distance, and run the EM algorithm until convergence.
e Take the best fitted model according to the likelihood, the minimum of p value or the
minimum of CDF distance.
Three-component EM logconcave

If the outliers lie both sides of fj, then the single log-concave density will not be
adequate to approximate f. For such situation, we further propose the following three-

component semiparametric mixture model,

9(z) = pofo(z; 0) + p1fi(z) + pafa(z), (2.6)
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where the contaminated density f is modeled by a two component mixture of log-concave
density functions. We propose to estimate p;, @ and f;, ¢ = 1,2 by using the following EM

algorithm.

Algorithm 2.7.1. Starting with initial values p©, pgo), 0(0), fl(o) and f2(0)7 iterate the
following two steps until convergence:

“E step”: Given p(()k), pgk), pgk), G(k), fl(k) and fg(k);

LD Py folwi; 00)
07 - ’
P8 fo(2i; 09) + pF) 1) () + ) £ ()
S ng)ffk) (z:;0%))

12 )
P oz 08)) + p) £ P () + p8 £ ()

k41 k+1 k+1
éi ) = 1*‘*’(()1' )*W& .
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“M step”:

n
k1 1 k+1
=1

n
(k+1) 1 (k+1)
351 ~ Zwli )
i=1

pékJrl) _q1_ pék+1) B p§k+1)’

0%+ —argmaz Z w(()l;H)lOg(fO(xi? 9)),
0

=1

oy =argmas Y wiy (),

ge2t i

FlD o

(k+1) = (k+1)

Py —argmlax Wo; (i),
Pped i—1

(k+1)
f2(k+1) — o2 '

Similar to the two-component EM logconcave algorithm, we use “EM logconcave3”

to represent three-component EM logconcave algorithm, and denote
e EM logconcave3-1: use maximum likelihood criterion;
e EM logconcave3-2: use minimum of p value criterion;
e EM logconcave3-3: use minimum of CDF distance criterion.

Initial generations are also very similar to the two-component EM logconcave
algorithm: first we generate random initial parameter 6o, then randomly select two sided
lowest 100a% (v ~ U(0,0.3)) points with respect to fo= fo(z; 90), and assign these points

to the unknown component f; and fs.
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After we estimate p, 8, fi and fs, we further restrict that if x is from the highest
80% density points of fy, the probability for z to be from the two unknown outlier compo-

nents is relatively low. For example, when fy represents the normal density, we define

L pfi(x)
ratiol = mazx (= ———— —)
2€(fi+20.16,/1+Z0.96) pofo(a:; 0) + D1 1(37) —i—pgfg(x)
ratio2 = max ( D2f>(2) )

2€ (it 200, Z0.08) o fo(w; 0) + P fi () + Pafo(x)
The pseudocode of our three-component EM logconcave algorithm can be de-

scribed as follows:

e Start from any randomized initial values of {wj(.?) * 1,7 =0,1,2. Run 5 steps of EM
logconcaved iteration, select the ones with ratiol < 0.2 and ratio2 < 0.2. Repeat this

until we have selected 50 fitted models or until we have used 500 initials.

e Select the top 10 fitted models with respect to the likelihood, the minimum of p value

or the minimum of CDF distance, and run EM algorithm until convergence.
e Take the best fitted model according to the likelihood, the minimum of p value or the
minimum of CDF distance.
2.7.2 Sketch of proofs

Proof of Theorem 2.4.2. The condition implies that Ve > 0, 9NV, such that if n > N,

(&) — 1 <e, VE#O
P(0)g" —pl <e.
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Cn

For any € < 1;2‘”, we have p(0);" < p+e < 1# <1—e<p(§)y". In this case,

(Pmin)n =inf p(€)c* = p(8)5". Thus, for n > N,
3

A

’(ﬁmin)n - p‘ = ‘P(e)gn - p‘ <g,

A~

0, = argmginﬁ(ﬁ)ﬁ”:@-

Hence, we have

(Prmin)n — p, and 6,, — 6.

O

Proof of Theorem 2.2.1. Suppose, g(z) = (1—p1) fo(z;01)+p1fi(x) = (1—p2) fo(x; 02)+

p2fa(x). Since f(z) =0 on A, then Vz € A,

g(x) = (1 = p1) fo(z;01) = (1 — p2) fo(z; 02). (2.7)

If both fo(x;01) and fo(x;02) are analytic w.r.t. x on R, then the Identity Theorem
guarantees that (2.7) actually holds on R. Since density functions integrate to one, we have
p1 = p2, and 61 = O,. Throughout this paper, we assume fo(x;0) is identifiable w.r.t .

And it follows that

fil@) = —(g(@) — (1 p)fol@:61)) = —(g(x) — (1 — po) fola: 62) = fo(a).
b1 D2
Hence, the model (2.1) is identifiable. O

71



Proof of Theorem 2.2.2. Without loss of generality, we assume 6 represents a single
parameter. If @ represents more than one parameter, the proof is very similar.

Suppose g(x) = (1 — p1)fo(x; 0o) + p1fi(x) = (1 — p2) fo(w; 0h) + p2 fo(x).

Since C'(0) is Lipschitz continuous, hence 3 k1 > 0, s.t. |C(6p)—C(61)| < k1]0p—61].
The boundedness of W implies 3 k2 > 0, s.t. |%| < ko.

Asa€(0,1),36>0,st. A={z: fo(z;6p) > C(0y) + ¢} is a nonempty open set
in R. Hence, fi(z) =0 on A.

By the Mean Value Theorem, 3 6* € (6y,61), s.t., fo(z;61)—fo(x; 00) = %(w; 0*) (61—
6p). Thus, on the set A,

dfo

folz;01) = folx; ) + — 7 (2;67)(01 — bo)

v

C(0o) + 6 — ka|01 — 6|

v

C(@l) — kl‘el — 90‘ + 6 — k2’91 — 90’

1)
0 if 01 — 6y < —.
C(6y), if |6, 0’—k1+/@2

Y

We have shown that if |#; — 6| < ﬁ, then fo(z;601) > C(61) on A, consequently

fa(z) =0 on A. In this case, we have

9(x) = (L= p1) fo(z;60) = (1 — p2) fo(a; 601), = € A.
By the Identity Theorem, (1 —p1)fo(z;6p) = (1 — p2) fo(x; 01) for = € R, hence p; = py and
0o = 01 as long as fo(x;0) is identifiable w.r.t. 6. O

Proof outline of Theorem 2.4.3. The proof is very similar to the proof we give in [36],
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here we give a brief outline of the proof.
1. L(Q) > —o0.

2. When maximizing L(p,8,$,Q) over all ¢ € ®%, we may restrict our attention to

functions ¢ € ®(Q) C ®? such that dom(¢) = {x € R?: ¢(x) > —oo} C csupp(Q).

3. L(Q) < oo and there exist constants My and M,, such that, L(Q) = sup

p€(0,1],0€0,0€P(Q)
Mo <max(é(x))< Mx

L(p7 07 ¢7 Q)'

4. Let (pn,0n,dn) be a sequence such that p, € [0,1], p, — po, 6, € O, 8,, — Oy,

on € ®(Q), M, = max(¢n(x)) € [My, M,], and —co < L(pp,dn,Q) T L(Q) as

n — 0o. Then, there exist constants a and b > 0 such that,

bn(z) < a—bl|z|], ¥n> 1,z € R

5. There exist ¢g € ®? and a subsequence ®n, such that,

limsup ¢, (r) < ¢o(z) <a—b||z||, V2 € RY,

k—o0

lim ¢p, (z) = ¢o(x) > —o0, Vo € interior(csupp(Q)).

6. Fatou’s Lemma concludes that

L(Q) = L(po, 0o, ¢0, Q).
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Proof outline of Theorem 2.4.4. Again we give a brief outline of the proof similar to

[36).

1. Suppose limsup L(Qp) = A € [—00,00], and L(Qp,) — A. First we show that A\ >

n—o0

—0Q.

2. Let M,, = max,cri¢n,(r). There exist constants My and M,, such that My <

M, < M, for k sufficiently large and thus A < oco.

3. We may assume that p,, — p. € [0,1], 6,, — 0. If not, just replace these sequences

with the convergent subsequences.

4. Show that there exist constants a and b > 0 such that,

dn,,(r) < a —b||z||, Vk sufficiently large, = € R?.

5. There exist ¢, € ®? and a subsequence {¢n,, } such that,

limsup ¢, (#) < u(y) <a—"bllyll, Vy € RY,

l—00,x—y

lim  ¢n, () = ¢i(y) > —o0, Vy € interior(csupp(Q)).

l—00,x—y

6. By Skorohod’s theorem and Fatous Lemma we can show that A < L(Q).

(2.8)

7. By Lemma 4.4 and Lemma 4.6 of [9] we can show that A > L(Q). Hence A = L(Q).

8. With similar arguments, we can show that liminf L(Q,) = L(Q) as well, and hence

n—o0
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L(Qn) — L(Q), as n — oo. The proof also establishes that,

lim p, = p*,
n—00
lim 6, = 6%,
n—oo

lim  fu(z) = f*(y), Yy R\ o{f* >0},

n—00, T—Y

limsup fo(z) < f*(y), Vy€o{f" >0},

n—00, T—Y

Jm [ 1)~ F@lds = o

where f, = exp(on), f* = exp(¢*).

2.7.3

More simulation results

Table 2.8: Bias(MSE) of estimates of p/@ and mean of dyo and di when p =0, n = 250,
K = 200.

model 1(no outlier): g(z) = N (o = 0,00 = 1), 8o = (1o, 00)

method Drmin MLE oracle TLEO.1 TLEO0.2 TLEO0.3
D 0.116(0.0153)
to | -0.014(0.008) -0.002(0.0037) -0.002(0.0037) 0.008(0.0082) 0.007(0.0123) 0.004(0.0199)
oo 10.006(0.0039) 0.003(0.0021) 0.003(0.0021) -0.213(0.047) -0.342(0.1181) -0.448(0.202)
dra 0.0375 0.0269 0.0269 0.3175 0.2178 0.3175
dir, 0.0082 0.0038 0.0038 0.6 0.2599 0.595
method | EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3
D 0.061(0.0056) 0.023(0.0018) 0.042(0.0037) 0.123(0.0177) 0.057(0.0061) 0.091(0.013)
o |-0.001(0.0229) -0.011(0.0093) -0.009(0.0154) -0.006(0.0131) -0.015(0.0106) -0.011(0.0144)
oo |-0.085(0.0117) -0.033(0.0058) -0.059(0.0087) -0.178(0.0392) -0.083(0.0145) -0.128(0.0278)
dra 0.072 0.0444 0.0574 0.1101 0.0633 0.0886
dir, 0.031 0.0128 0.0214 0.0743 0.0273 0.0563
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Table 2.9: Bias(MSE) of estimates of p/8/u; and mean of drs and diy when p = 0.2,
n = 250, K = 200.

model 2: g(z) = (1 — plexp(Ao = 2) + pN (1 = 3,01 = 0.5), Oy = Ao

TLE(0.2)  TLE(0.3)

method Pmin MLE oracle TLE(0.1)
P 0.066(0.0059)
Ao [-0.116(0.0843) -0.995(0.9944) 0.005(0.0217) -0.624(0.4061) 0.037(0.0533) 0.841(0.7777)
w1 |-0.289(0.1041)
dra 0.0868 0.4062 0.041 0.2413 0.066 0.2684
dkr, 0.0118 0.193 0.0026 0.0661 0.0064 0.0741
method | EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3
0.004(0.001) -0.002(8e-04) 0.01(0.0015)

0.003(0.001)

p -0.013(0.001) 0.005(0.0013)
0.041(0.0553) -0.086(0.0611) 0.044(0.0653) 0.036(0.0514) -0.001(0.0444) 0.079(0.0717)

Ao

W1 -0.02(0.0154) 0.046(0.0119) 0.046(0.0119)

dio 0.0619 0.0712 0.0667 0.058 0.0585 0.0696
dxr, 0.0065 0.0083 0.0076 0.0059 0.0054 0.008

Table 2.10: Bias(MSE) of estimates of p/0/u; and mean of drs and dg when p = 0.2,
n = 250, K = 200.

model 3: g(x) = (1 — p)exp(Ag = 2) + p(exp(A1 = 2) + 3), b = Ao

TLE(0.2)  TLE(0.3)

method DPmin MLE oracle TLE(0.1)
D 0.069(0.0062)
Ao -0.1(0.057) -1.084(1.1806) 0.008(0.021) -0.725(0.5468) 0.004(0.0838) 0.855(0.8184)
w1 |-0.383(0.1733)
dra 0.0697 0.4495 0.0398 0.2847 0.0831 0.2717
dkr, 0.0076 0.2419 0.0025 0.094 0.0106 0.0772
method | EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3
P -0.001(7e-04) -0.007(7e-04) -0.001(7e-04) 0.001(6e-04) -0.003(7e-04) 0.001(8e-04)
Ao ]0.005(0.0258) -0.062(0.0375) 0.004(0.0268) 0.023(0.0249) -0.008(0.0259) 0.024(0.0345)
1 0.003(0.006) 0.014(0.0077) 0.014(0.0077)
dra 0.0445 0.0559 0.0459 0.0432 0.0452 0.0473
dkr 0.0033 0.0051 0.0034 0.003 0.0032 0.0039
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Table 2.11: Bias(MSE) of estimates of p/0/u; and mean of dry and dg when p = 0.2,
n = 250, K = 200.

model 4: g(z) = (1 — p)gamma(shapey = 2,scaleg = 0.5) + p(F(di = 100,ds = 100) + 5), 09 = (shapey, scaleg)

method Pmin MLE oracle TLE(0.1) TLE(0.2) TLE(0.3)
p 0.053(0.0042)
shapey |-0.085(0.0758) -0.102(0.0664) 0.015(0.0364) -1.121(1.2608) -0.059(0.4025) 1.354(2.0406)
scaleg | 0.055(0.011)  0.06(0.0109) 0.001(0.0029) 1.26(1.6315) 0.131(0.1234) -0.248(0.0628)
1 |-0.551(0.3588)
dra 0.067 0.3275 0.0482 0.3518 0.1321 0.232
dir, 0.0118 0.3048 0.0056 0.2316 0.0455 0.1667
method | EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3
D -0.001(7e-04) -0.005(6e-04) -0.002(7e-04)  0.01(9e-04) -0.001(7e-04) 0.005(8e-04)
shapeq | 0.02(0.0378) -0.059(0.0526) -0.007(0.0407) 0.133(0.1036) 0.021(0.0409) 0.078(0.0776)
scaleg [-0.001(0.0031) 0.037(0.0094) 0.011(0.0043) -0.018(0.0043) -0.001(0.0032) -0.008(0.0039)
11 -0.001(8e-04) 0.006(0.001) 0.006(0.001)
dra 0.0488 0.0575 0.0505 0.0619 0.0491 0.0566
drr, 0.0057 0.009 0.0063 0.0099 0.0058 0.0082

Table 2.12: Bias(MSE) of estimates of p/6/u; and mean of drs and dgy when p = 0.2,
n = 250, K = 200.

model 5: g(z) = (1 — p)Weibull(shape, = 2, scaley = 1) 4+ p(beta(0.5,0.5) + 2), 8 = (shape, scaleg)

method Pmin MLE oracle TLE(0.1) TLE(0.2) TLE(0.3)
p | 0.042(0.0032)

shapeg [-0.156(0.0664) -1.702(3.2258) 0.009(0.0124) -0.193(0.0454) 0.073(0.0267) 0.52(0.3176)

scaleg | 0.089(0.0178) 0.671(1.4677) 0.002(0.0013) 0.165(0.0304) 0.004(0.0031) -0.096(0.0116)

1 -0.282(0.133)
0.1183 0.2705 0.0474 0.1556 0.0694 0.2171
dir, 0.0414 0.1661 0.0048 0.0566 0.0131 0.1571
method| EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3
p |-0.006(0.0022) -0.044(0.0037) 0.001(0.0021) 0.016(0.0028) 0.003(0.0021) 0.021(0.0026)

dr2

shapeg | 0.004(0.0244)  -0.1(0.0304)  0.009(0.0263) 0.08(0.0461) 0.004(0.0272)  0.063(0.041)
scaleg | 0.013(0.005)  0.075(0.012) 0.005(0.0049) 0.017(0.0079) 0.01(0.0055) -0.007(0.0047)
gy 0.017(0.0167) 0.11(0.0299) 0.108(0.0299)

drs 0.0692 0.1003 0.078 0.0947 0.0785 0.0825
dx1 0.0153 0.0274 0.0187 0.0276 0.0197 0.0237
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Table 2.13: Bias(MSE) of estimates of p/@ and mean of drs and dxr when po

= 0.8,

p1 = 0.05, py = 0.15, n = 250, K = 200.

model 6: g(z) = (1 — p)N(po = 0,00 = 1) + pr1U(10,11) + pU(=5, —4), 6 = (0, 00)

TLE(0.1) TLE(0.2) TLE(0.3)

method Dmin MLE oracle
D 0.043(0.0034)
o |-0.003(0.0084) -0.141(0.0583) -0.002(0.005) -0.486(0.254) -0.05(0.0124) -0.004(0.0103)
oo [0.082(0.0155) 8.299(71.2154) 0.006(0.0028) 0.653(0.4408) 0.047(0.0228) -0.244(0.0625)
dro 0.0555 0.471 0.0318 0.2278 0.0602 0.1459
dir, 0.0159 1.7233 0.0052 0.2307 0.0221 0.116
method | EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3
p |-0.149(0.0225) -0.155(0.0243) -0.154(0.0239) -0.003(6e-04) -0.016(0.001) -0.003(8e-04)
no  |-0.697(0.5057) -0.633(0.4172) -0.646(0.4352) -0.007(0.0058) -0.075(0.0165) -0.012(0.0056)
oo |0.875(0.7742) 1.034(1.1244) 1.002(1.0439) 0.01(0.005) 0.122(0.0333) 0.02(0.0063)
dro 0.2767 0.286 0.2841 0.0349 0.067 0.0375
dir, 0.3417 0.3814 0.3731 0.0071 0.0271 0.0081
Table 2.14: Bias(MSE) of estimates of p/@ and mean of drs and dgx; when py = 0.8,
p1 = 0.05, po = 0.15, n = 250, K = 200.
model 7: g(z) = (1 — p)logistic(uy = 0,80 = 1) + p1U(—11, —10) + pa Pareto(mq = 5,s2 = 5), 8 = (o, o)
method Pmin MLE oracle TLE(0.1) TLE(0.2) TLE(0.3)
p 0.045(0.0032)
fo | 0.017(0.0255) 0.474(0.2635) 0.007(0.0139) 0.662(0.4779) 0.101(0.0418) 0.007(0.021)
so | 0.078(0.0179) 0.891(0.8101) -0.003(0.0038) 0.319(0.1094) -0.034(0.0116)  -0.301(0.0941)
dro 0.0426 0.1826 0.0265 0.1274 0.0471 0.1351
dir 0.0139 0.2431 0.005 0.1008 0.0163 0.1208
method | EM logcon2-1 EM logcon2-2 EM logcon2-3 EM logcon3-1 EM logcon3-2 EM logcon3-3
p |-0.133(0.0193) -0.095(0.0102) -0.083(0.0083) -0.003(8¢-04) -0.049(0.0031)  -0.006(0.001)
fo | 0.565(0.4284) 0.126(0.1169) 0.071(0.1164) 0.004(0.0181) 0.181(0.0647)  0.012(0.0201)
so | 0.509(0.2797) 0.495(0.273) 0.454(0.2282) 0.001(0.0072) 0.168(0.0422)  0.017(0.0093)
dro 0.1423 0.1241 0.1176 0.0307 0.0618 0.0335
dir 0.1404 0.1121 0.0999 0.0077 0.029 0.0091
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2.7.4 Source code

R code for two-component EM log-concave method

HEFHAFHSHBFHAFHEH RS H R R RS H B R R R R
##EM_logcon2: 2-comp EM algorithm from initial probabilities ini_wO##
HAFHAH B HBHHAHHAHBEHBHHEHHEH B HBHHAH B AR RS H R RS RS H R AR RS HRH
EM_logcon2<-function(x,ini_wO,knowndist,iteration){
n<-length(x)
w0<-ini_wO
wil<-1-w0
wl[which(w1<10°-3)]<-0
w0<-1-w1l
lold<-(-1075)
1<-(101d+100)
ite<-0
while((abs(1-1lold)/abs(101d)>10"-6)&&(ite<iteration)){
ite<-ite+l
lold<-1
pO<-sum(w0) /n##update mixing proportion
pl<-(1-p0)
##assume the proportion for the known component>0.5
if (p0<=0.5){

wO<-w1l
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wl<-1-w0
wl[which(w1<10~-3)]<-0
w0<-1-wl

pO<-sum(w0) /n

pi<-(1-p0)

##assume the proportion of the unknown component>=0.02
if ((p1)<0.02){
pO<-1
pl<-0
w0<-rep(1,n)
wil<-rep(0,n)
if (knowndist=="normal"){
muO<-mean (x)
sigma0<-sqrt (mean((x-mu0)~2))
##£0: density estimation of the 1st known component
f0<-dnorm(x,mean=mu0, sd=sigmal)

theta0<-c(mu0,sigma0l)

if (knowndist=="exponential"){
lambdaO<-n/sum(x)

f0<-dexp (x,rate=lambda0)
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theta0<-lambdaO

muO<-1/thetal

if (knowndist=="gamma"){
scaleO<-var(x)/mean(x)
shapeO<-mean(x)/scale0
gammalik<-function(theta){
result<-(-sum(log(dgamma (x,shape=thetal[1],scale=thetal2]))))

return(result)

thetaO<-optim(par=c(shape0,scale0l) ,fn=gammalik, method="L-BFGS-B",
< lower=c(shape0-0.9*shape0,scale0-0.9*scalel) ,upper=c(shape0
— +0.9*shape0,scale0+0.9*scale0))$par

f0<-dgamma (x,shape=thetaO[1] ,scale=theta0[2])

if (knowndist=="logistic"){
muO<-mean (x)
scaleO<-sqrt(var(x)*3/pi~2)
gammalik<-function(theta)q{
result<-(-sum(log(dlogis(x,location=thetal[1],scale=thetal[2]))))

return(result)
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thetaO<-optim(par=c(mu0,scale0) ,fn=gammalik, method="L-BFGS-B",
— lower=c(mu0-2,scale0-0.9*scale0) ,upper=c (mu0+2,scale0+0.9%
— scale0))$par

f0<-dlogis(x,location=thetaO[1],scale=thetal[2])

if (knowndist=="weibull"){
tempf<-function(k){
result<-gamma (1+2/k) - (var (x) /mean(x) "2+1) *gamma (1+1/k) "2

return(result)

shape0<-max(0.1,multiroot (f=tempf,start=1)$root)
scale0<-max(0.1,mean(x)/gamma(1+1/shape0))
weibulllik<-function(theta){

result<-(-sum(log(dweibull (x,shape=theta[1],scale=thetal[2]))))

return(result)

thetaO<-nlm(weibulllik, p = c(shapeO,scale0), hessian=TRUE)$estimate

f0<-dweibull (x,shape=thetal[1],scale=theta0[2])

1<-sum(log(£0))
mui<-"NA"

fit1<-"NA"
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break

}

if (knowndist=="normal"){
mu0<-sum (w0*x) /sum(w0)
sigmaO<-sqrt (sum(wO* (x-mu0) ~2) /sum(w0))
f0<-dnorm(x,mean=mu0, sd=sigma0)
theta0<-c(mu0,sigma0l)

}

if (knowndist=="exponential"){
lambdaO<-sum(w0) /sum (wO*x)
f0<-dexp (x,rate=lambda0)
theta0<-lambda0

muO<-1/thetal

if (knowndist=="gamma"){
muO<-sum(wO*x) /sum(w0)
varO<-sum (w0* (x-mu0) ~2) /sum(w0)
scale0<-var0/mu0
shape0<-mu0/scale0
gammalik<-function(theta){
result<-(-sum(wO*log(dgamma (x,shape=theta[1l],scale=thetal[2]))))

return(result)
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thetaO<-optim(par=c(shape0,scale0) ,fn=gammalik, method="L-BFGS-B",
< lower=c (shape0-0.9*shape0,scale0-0.9*scale0) ,upper=c(shapel
< +0.9*shape0,scale0+0.9*scale0))$par

f0<-dgamma (x,shape=thetaO[1],scale=theta0[2])

if (knowndist=="logistic"){
muO<-sum(wO*x) /sum(w0)
varO<-sum (w0* (x-mu0) ~2) /sum (w0)
scaleO<-sqrt(var0*3/pi~2)
gammalik<-function(theta){
result<-(-sum(wO*log(dlogis(x,location=theta[1],scale=theta[2]))))

return(result)

thetaO<-optim(par=c(mu0,scale0) ,fn=gammalik, method="L-BFGS-B", lower=
— ¢ (mu0-2,scale0-0.9*scale0) ,upper=c (mu0+2,scale0+0.9*scale0))
— $par

f0<-dlogis(x,location=thetalO[1],scale=thetal[2])

if (knowndist=="weibull"){
muO<-sum(wO*x) /sum(w0)

var0<-sum (wO* (x-mu0) ~2) /sum(w0)
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tempf<-function(k){
result<-gamma(1+2/k)-(var0/mu0~2+1)*gamma(1+1/k) "2

return(result)

shape0<-max(0.1,multiroot (f=tempf,start=1) $root)
scale0<-max(0.1,mu0/gamma(1+1/shape0))
weibulllik<-function(theta){

result<-(-sum(wO*log(dweibull (x,shape=thetal1l],scale=thetal2]))))

return(result)

theta0<-nlm(weibulllik, p = c(shapeO,scale0), hessian=TRUE)$estimate

f0<-dweibull (x,shape=theta0[1],scale=theta0[2])

x1<-cbind(x,w1)

x1<-x1[x1[,2]>0,]

x1<-x1[order(x1[,11),]
fitl<-activeSetLogCon(x=x1[,1],w=x1[,2])
mul<-sum((fit1$x)*(fit1%w))/sum(fit1$w)

##f1: density estimation of the 2nd component

fi<-evaluateLogConDens (xs=x,res=fit1) [, 3]
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wO<-pO*f0/ (pO*f0+plxfl)##update probabilities
##if for some point, both fO and f1 are O, then we try to determine

— which component is it more close to.
temp_index<-which(w0=="NaN")
if (length(temp_index)>0){

for(i in 1:length(temp_index)){
if (abs(x[temp_index[i]]-mu0)>abs(x[temp_index[i]]-mul)){
w0 [temp_index[i]]1<-0
Yelse{

w0 [temp_index[i]]<-1

wi<-(1-w0)
wl[which(w1<10~-3)]1<-0
wO<-1-wl

1<-sum(log(pO*f0+pl*f1))

res<-list(ite=ite,p=c(p0,pl) ,w=cbind(w0,wl) ,theta=thetal,mu=mul, L=1,fit=
— fitl)

return(res)
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HEHSHAE RS HA RS R RS RABHBHBHBHBHBHBHBHBHAHAHAHREHEHAEHEHEHEH
##maximum likelihood estimation from random initials##
HEFHEHHEH RS H AR R R R R R
mle_logcon2<-function(data,knowndist,itel, ite2){
data.1l<-data
nil<-length(data.1l)
ini_num<-50
fit<-1ist ()
likelihood<-numeric(ini_num)
pvalue<-numeric(ini_num)
cdf_dist<-numeric(ini_num)
ratio<-numeric(ini_num)##maximum ratio of pf(x)/((1-p)f0(x)+pf(x)) at
— maximal central part of fO0(x)
ite<-0
for(j in 1:500){
##randomly generate initial parameters for the known component
if (knowndist=="normal"){
muO<-runif (1,min=quantile(data.l1,probs=0.25) ,max=quantile(data.1l,probs
< =0.75))

sigma0<-runif(1,0.1*sd(data.1),sd(data.1))
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fO0<-dnorm(data.l,mean=mu0, sd=sigma0)

if (knowndist=="exponential"){
muO<-runif (1,min=quantile(data.1,probs=0.25) ,max=quantile(data.l,probs
— =0.75))
lambda0<-1/max (mu0,0.1)

f0<-dexp(data.l,rate=lambda0)

if (knowndist=="gamma") {
muO<-runif (1,min=quantile(data.l,probs=0.25) ,max=quantile(data.l,probs
— =0.75))
muO<-max (mu0,0.1)
sigmaO<-runif(1,0.1*sd(data.1),sd(data.1))
scale0<-sigma0~2/mu0
shape0<-mu0/scale0

f0<-dgamma(data.1,shape=shape0,scale=scale0)

if (knowndist=="logistic"){
muO<-runif (1,min=quantile(data.1l,probs=0.25) ,max=quantile(data.l,probs
< =0.75))
sigmaO<-runif(1,0.1*sd(data.1),sd(data.1))

scaleO<-sqrt (sigma0~2%3/pi~2)
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f0<-dlogis(data.1l,location=mu0,scale=scale0)

if (knowndist=="weibull"){
muO<-runif (1,min=quantile(data.1,probs=0.25) ,max=quantile(data.l,probs
— =0.75))
sigmaO<-runif(1,0.1*sd(data.1),sd(data.1))
tempf<-function(k){
result<-gamma (1+2/k)-(sigma0~2/mu0~2+1) *gamma (1+1/k) "2

return(result)

shape0<-max(0.1,multiroot (f=tempf,start=1)$root)
scaleO<-max(0.1,mean(data.1)/gamma(1+1/shape0))

f0<-dweibull(data.1,shape=shape0,scale=scale0)

##randomly select one-sided outlier points
perc_outlier<-runif(n=1,min=0,max=0.3)
temp_sign<-rbinom(n=1,size=1,prob=0.5)
if (temp_sign==0){

f0_1<-£0

f0_1[which(data.1>mu0)]<-1

wl<-numeric(nl)

89




wl[order(£f0_1) [1:round(perc_outlier*n1)]]<-1
Yelseq

£0_2<-f0

f0_2[which(data.1<mu0)]<-1

wl<-numeric(nl)

wllorder (£0_2) [1:round(perc_outlier*nl)]]<-1

w0<-1-wl
fit_temp<-EM_logcon2(x=data.l, ini_w0=wO,knowndist=knowndist,iteration=
— itel)
ratio_temp<-0
if (fit_temp$p[2]>0){
if (knowndist=="normal"){
index_temp<-intersect(which(data.1>fit_temp$thetal[1]+qnorm(0.1)*
— fit_temp$thetal[2]),which(data.1<fit_temp$thetal[1]+gnorm(0.9)*

— fit_temp$thetal2]))

if (knowndist=="exponential"){

index_temp<-intersect(which(data.1>0),which(data.1<qexp(0.8,rate=

— fit_temp$thetal1])))
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if (knowndist=="gamma") {
index_temp<-intersect(which(data.1>qgamma(0.1,shape=fit_temp$theta
— [1],scale=fit_temp$thetal[2])) ,which(data.1<qgamma(0.9,shape=

— fit_temp$thetall],scale=fit_temp$thetal2])))

if (knowndist=="logistic"){
index_temp<-intersect(which(data.1>qlogis(0.1,location=
— fit_temp$thetal[l],scale=fit_temp$thetal[2])),which(data.1<
> qlogis(0.9,location=fit_temp$thetal[l],scale=fit_temp$theta

— [21)))

if (knowndist=="weibull"){
if (fit_temp$thetal[1]<=1){
index_temp<-intersect(which(data.1>0),which(data.1<qweibull (0.8,
— shape=fit_temp$thetall],scale=fit_temp$thetal2])))
Yelse{
index_temp<-intersect(which(data.1>qweibull (0.1, shape=
— fit_temp$thetall],scale=fit_temp$theta[2])),which(data.1<
— qweibull(0.9,shape=fit_temp$thetal[l],scale=fit_temp$theta

— [21)))
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ratio_temp<-max(fit_temp$w[index_temp,2])

##select the fitted models with ratio_temp<0.2
if (ratio_temp<0.2){

ite<-ite+l

fit[[itel]l<-fit_temp

ratio[ite]l<-ratio_temp

likelihood[ite]l<-fit[[ite]]$L

pvalue[itel<-fit[[itel]l$p[2]

if (fit_temp$p[2]1>0){

cdf _unknown<-evaluateLogConDens (xs=sort(data.l) ,res=fit_temp$fit,
— which=3) [,4]
Yelse{

cdf_unknown<-0

if (knowndist=="normal"){
cdf _known<-pnorm(sort(data.1) ,mean=fit_temp$thetall],sd=

— fit_temp$thetal[2])

if (knowndist=="exponential"){

cdf _known<-pexp(sort(data.l),rate=fit_temp$thetal[l])

92




if (knowndist=="gamma") {
cdf_known<-pgamma (sort(data.1),shape=fit_temp$thetal[l],scale=

— fit_temp$thetal2])

if (knowndist=="logistic"){
cdf_known<-plogis(sort(data.1l),location=fit_temp$thetal[l],scale=

— fit_temp$thetal[2])

if (knowndist=="weibull"){
cdf _known<-pweibull(sort(data.1),shape=fit_temp$thetall],scale=

— fit_temp$thetal[2])

cdf<-fit_temp$p[1]*cdf_known+fit_temp$p[2] *cdf_unknown
cdf_dist[ite]l<-mean((cdf-seq(1/n1,1,1/n1))"2)
if (ite==ini_num){

break

##select the top 10 fitted models and run EM algorithm until convergence
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top_num<-10
##tcriteria: MLE
likelihood<-likelihood[1:ite]
index_lik<-order(-likelihood) [1:min(top_num,ite)]
n_1<-length(index_1lik)
fit_1<-1list()
likelihood_1<-numeric(n_1)
ratio_l<-numeric(n_1)##maximum ratio of pf(x)/((1-p)f0(x)+pf(x)) at maximal
< central part of fO(x)
for(j in 1:n_1){
weight_temp<-fit[[index_1ik[j]1]1]$w
fit_1[[j]1]<-EM_logcon2(x=data.l, ini_wO=weight_temp[,1], knowndist=
< knowndist,iteration=ite2)
likelihood_1[jl<-fit_1[[j1]$L
if(fit_1[[j11$p[2]>0){
if (knowndist=="normal"){
index_temp<-intersect(which(data.1>fit_1[[j]l]$thetal[1]+qnorm(0.1)=*
— fit_1[[jl]$thetal2]) ,which(data.1<fit_1[[jl]$thetal[1l]+gnorm

— (0.9)*fit_1[[jl]$thetal2]))

if (knowndist=="exponential"){
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index_temp<-intersect (which(data.1>0) ,which(data.1<qexp(0.8,rate=fit_1

— [[j11$thetal1])))

if (knowndist=="gamma"){
index_temp<-intersect(which(data.1>qgamma(0.1,shape=fit_1[[j]]$theta
— [1],scale=fit_1[[jl]$thetal[2])) ,which(data.1<qgamma(0.9,shape=

— fit_1[[jl]$thetal1],scale=fit_1[[jl]$thetal2])))

if (knowndist=="logistic"){
index_temp<-intersect(which(data.1>qlogis(0.1,location=fit_1[[j]]
< $thetal1],scale=fit_1[[j]]$thetal[2])),which(data.1<qlogis(0.9,

< location=fit_1[[jl]$theta[1],scale=fit_1[[jl1]$theta[2])))

if (knowndist=="weibull"){
if(fit_1[[j1]$thetal1l<=1){
index_temp<-intersect(which(data.1>0) ,which(data.1<qweibull (0.8,
< shape=fit_1[[j]]$thetall],scale=fit_1[[jl]$thetal2])))
Yelseq
index_temp<-intersect(which(data.1>qweibull(0.1,shape=fit_1[[j]]
— $thetall],scale=fit_1[[jl]$thetal[2])) ,which(data.1l<qweibull

— (0.9,shape=fit_1[[jl]$thetall],scale=fit_1[[jl]$thetal2])))
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ratio_1[jl<-max(fit_1[[jl]$w[index_temp,2])

index_1<-which(ratio_1<0.2)
ite_temp<-0
while(length(index_1)==0){
ite_temp<-ite_temp+1
if (ite<=(top_num*ite_temp)){
stop("error: no possible fitted models are found for MLE criteria")
Yelseq{
index_lik<-order(-1likelihood) [(top_num*ite_temp+1) :min(top_num* (
— ite_temp+1),ite)]
n_1<-length(index_lik)
fit_1<-1list()
likelihood_1<-numeric(n_1)
ratio_1<-numeric(n_1)##maximum ratio of pf(x)/((1-p)f0(x)+pf(x)) at
— maximal central part of fO(x)
for(j in 1:n_1){
weight_temp<-fit[[index_1ik[j]]]$w
fit_1[[j]]1<-EM_logcon2(x=data.l, ini_wO=weight_temp[,1], knowndist=

< knowndist,iteration=ite2)
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likelihood_1[jl<-fit_1[[j1I$L
if(Fit_1[[j11$p[2]1>0){
if (knowndist=="normal"){
index_temp<-intersect(which(data.1>fit_1[[j]]$theta[1]+qnorm(0.1)*
— fit_1[[jl]1$thetal[2]) ,which(data.1<fit_1[[jI1]$theta[1]l+gnorm

— (0.9)*fit_1[[jl1$thetal2]))

if (knowndist=="exponential"){
index_temp<-intersect(which(data.1>0),which(data.1<qexp(0.8,rate=

< fit_1[[j]1$thetal1])))

if (knowndist=="gamma") {
index_temp<-intersect(which(data.1>qgamma(0.1,shape=fit_1[[j]]
— $thetall],scale=fit_1[[jl]$thetal[2])) ,which(data.1l<qgamma

< (0.9,shape=fit_1[[jl]$thetal[1],scale=fit_1[[jl]$thetal2])))

if (knowndist=="logistic"){
index_temp<-intersect(which(data.1>qlogis(0.1,location=fit_1[[j]]
— $thetall],scale=fit_1[[jl]$thetal[2])) ,which(data.1<qlogis
— (0.9,location=fit_1[[jl]$thetal[l],scale=fit_1[[j]]$theta

— [21)))
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if (knowndist=="weibull"){
if(fit_1[[jl1]1$thetal1]<=1){
index_temp<-intersect(which(data.1>0) ,which(data.1<qweibull (0.8,
< shape=fit_1[[jl]$thetall],scale=fit_1[[jl]$thetal2]1)))
Yelse{
index_temp<-intersect(which(data.1>qweibull(0.1,shape=fit_1[[j]]
— $thetal1],scale=fit_1[[jl]$thetal[2])) ,which(data.1<
— qweibull(0.9,shape=fit_1[[jl]$thetall],scale=fit_1[[j]]

— $thetal2])))

ratio_1[jl<-max(fit_1[[j]l]$w[index_temp,2])

index_1<-which(ratio_1<0.2)

indexa<-order(-likelihood_1[index_1])

fit_mle<-fit_1[[index_1[indexal]ll]

##criteria: min(p)

cdf_dist<-cdf_dist[1:ite]
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index_minprop<-order (cdf_dist) [1:min(top_num,ite)]
n_2<-length(index_minprop)
fit_2<-1listQ
ratio_2<-numeric(n_2)##maximum ratio of pf(x)/((1-p)f0(x)+pf(x)) at maximal
— central part of fO(x)
cdf_dist_2<-numeric(n_2)
prop_2<-numeric(n_2)
for(j in 1:n_2){
weight_temp<-fit[[index_minprop[j]]]$w
fit_2[[j]1]1<-EM_logcon2(x=data.l, ini_wO=weight_temp[,1], knowndist=
< knowndist,iteration=ite2)
prop_2[jl<-fit_2[[j11$p[2]
if(fit_2[[j11$p[2]1>0){
if (knowndist=="normal"){
index_temp<-intersect(which(data.1>fit_2[[j]]$theta[1]+qnorm(0.1)*
— fit_2[[jl]$thetal[2]) ,which(data.1<fit_2[[j]l]$theta[1]+gnorm

< (0.9)xfit_2[[j11$thetal2]))

if (knowndist=="exponential"){
index_temp<-intersect(which(data.1>0) ,which(data.1<qexp(0.8,rate=fit_2

— [[j1]$thetal1])))
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if (knowndist=="gamma") {
index_temp<-intersect(which(data.1>qgamma(0.1,shape=fit_2[[j]]$theta
— [1],scale=fit_2[[jl]1$thetal2])),which(data.1l<qgamma(0.9,shape=

— fit_2[[j1]$thetall],scale=fit_2[[jl]1$thetal2])))

if (knowndist=="logistic"){
index_temp<-intersect(which(data.1>qlogis(0.1,location=fit_2[[j]]
< $thetall],scale=fit_2[[jl]$thetal[2])) ,which(data.1<qlogis(0.9,

<~ location=fit_2[[jl]$thetal1],scale=fit_2[[jl]$thetal[2])))

if (knowndist=="weibull"){
if (fit_2[[j1]$thetal1l<=1){
index_temp<-intersect(which(data.1>0),which(data.1<qweibull (0.8,
— shape=fit_2[[jl]1$thetal[1],scale=fit_2[[jl1]$thetal2]1)))
Yelse{
index_temp<-intersect(which(data.1>qweibull(0.1,shape=fit_2[[j]]
— $thetall] ,scale=fit_2[[jl]1$thetal[2])) ,which(data.1<qweibull

— (0.9,shape=fit_2[[jl]$thetall],scale=fit_2[[jl]$thetal2])))

ratio_2[jl<-max(fit_2[[jl]$wlindex_temp,2])
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if (fit_2[[j11$p[2]1>0){
cdf _unknown<-evaluateLogConDens (xs=sort(data.1) ,res=fit_2[[j11$fit,
— which=3) [,4]
Yelse{

cdf_unknown<-0

if (knowndist=="normal"){
cdf_known<-pnorm(sort(data.1) ,mean=fit_2[[jl]$thetal[1],sd=fit_2[[j]]

< $thetal[2])

if (knowndist=="exponential"){

cdf_known<-pexp(sort(data.1),rate=fit_2 [[jl]$thetal1])

if (knowndist=="gamma"){
cdf_known<-pgamma (sort(data.1),shape=fit_2[[j]l]$thetall],scale=fit_2[[j

— 11$thetal2])

if (knowndist=="logistic"){
cdf_known<-plogis(sort(data.l),location=fit_2[[jl]$thetall],scale=fit_2

< [[jl]$thetal2])

if (knowndist=="weibull"){
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cdf _known<-pweibull(sort(data.1),shape=fit_2[[jl]$thetal[1],scale=fit_2

— [[j11%thetal2])

cdf<-fit_2[[j11$p[1]*cdf_known+fit_2[[j]1]$p[2]*cdf_unknown

cdf _dist_2[jl<-mean((cdf-seq(1/n1,1,1/n1))"2)

#index_2<-intersect (which(ratio_2<0.2) ,which(cdf_dist_2<0.001))
index_2<-which(ratio_2<0.2)
ite_temp<-0
while (length(index_2)==0){
ite_temp<-ite_temp+1
if (ite<=(top_num*ite_temp)){
stop("error: no possible fitted models are found for min(p) criteria")
Yelseq
index_minprop<-order(cdf_dist) [(top_num*ite_temp+1) :min(top_numx* (
— ite_temp+1),ite)]
n_2<-length(index_minprop)
fit_2<-1ist()
ratio_2<-numeric(n_2)##maximum ratio of pf(x)/((1-p)f0(x)+pf(x)) at
< maximal central part of fO(x)
cdf_dist_2<-numeric(n_2)

prop_2<-numeric
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for(j in 1:n_2){
weight_temp<-fit[[index_minprop[jl1]1]1$w
fit_2[[j]1]<-EM_logcon2(x=data.l, ini_wO=weight_temp[,1], knowndist=
< knowndist,iteration=ite2)
prop_2[jl<-fit_2[[j1]1$p[2]
if (£it_2[[j11$p[2]>001{
if (knowndist=="normal"){
index_temp<-intersect(which(data.1>fit_2[[j]]$thetal[1]+gnorm(0.1)*
— fit_2[[jl]$thetal[2]) ,which(data.1<fit_2[[j]l]$thetal[1l]+qnorm

— (0.9)*fit_2[[j]]1$thetal2]))

if (knowndist=="exponential"){
index_temp<-intersect(which(data.1>0),which(data.1<qexp(0.8,rate=

— fit_2[[jl]1$thetal1])))

if (knowndist=="gamma"){

index_temp<-intersect(which(data.1>qgamma(0.1,shape=fit_2[[j]]

— $thetall] ,,scale=fit_2[[jl]$thetal[2])) ,which(data.1l<gqgamma

— (0.9,shape=fit_2[[jl]$thetall],scale=fit_2[[jl]$thetal2])))

if (knowndist=="logistic"){
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index_temp<-intersect(which(data.1>qlogis(0.1,location=fit_2[[j]]
— $thetall],scale=fit_2[[jl]$thetal[2])) ,which(data.1<qlogis
— (0.9,location=fit_2[[jl1]$thetall],scale=fit_2[[jl]$theta

— [21)))

if (knowndist=="weibull"){
if(fit_2[[jl1]$thetal1]<=1){
index_temp<-intersect(which(data.1>0) ,which(data.1<qweibull(0.8,
— shape=fit_2[[j]]$thetal[1],scale=fit_2[[j]]$thetal2])))
Yelseq{
index_temp<-intersect(which(data.1>qweibull(0.1,shape=fit_2[[j]]
— $thetall],scale=fit_2[[jl]$thetal[2])) ,which(data.1<
< qweibull(0.9,shape=fit_2[[jl]$thetal1],scale=fit_2[[j]]

— $thetal2])))

ratio_2[jl<-max(fit_2[[jl]$wlindex_temp,2])

if (£it_2[[j11$p[2]1>0)01{
cdf _unknown<-evaluateLogConDens (xs=sort(data.l) ,res=fit_2[[j]]$fit,
< which=3) [, 4]

Yelseq
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cdf _unknown<-0

if (knowndist=="normal"){
cdf_known<-pnorm(sort(data.l) ,mean=fit_2[[j]1]$thetal1],sd=fit_2[[j]]

s $thetal2])

if (knowndist=="exponential"){

cdf _known<-pexp(sort(data.l),rate=fit_2 [[j]]$thetal1l])

if (knowndist=="gamma"){
cdf _known<-pgamma (sort(data.1) ,shape=fit_2[[j]l]$thetal[l],scale=fit_2

— [[j11%thetal2])

if (knowndist=="logistic"){
cdf_known<-plogis(sort(data.1l),location=fit_2[[j]]$thetal[l],scale=

< fit_2[[j]1]$thetal2])

if (knowndist=="weibull"){
cdf_known<-pweibull(sort(data.1),shape=fit_2[[j]]$thetal[l],scale=

— fit_2[[jl1$thetal2])

cdf<-fit_2[[j]11$p[1]*cdf_known+fit_2[[j]1]$p[2]*cdf_unknown
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cdf _dist_2[jl<-mean((cdf-seq(1/n1,1,1/n1))"2)

#index_2<-intersect(which(ratio_2<0.2) ,which(cdf_dist_2<0.001))

index_2<-which(ratio_2<0.2)

indexb<-intersect (order (prop_2[index_2]), which(prop_2<4*min(prop_2)))

fit_minp<-fit_2[[index_2[indexb]l]]

##criteria: cdf distance
indexc<-order (cdf_dist_2[index_2])

fit_cdf<-fit_2[[index_2[indexc]]]

res<-list(fit_lik=fit_lik,fit_minp=fit_minp, fit_cdf=fit_cdf)

return(res)
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