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Abstract

The marine microbial natural product salinosporamide A (Marizomib) is a potent proteasome 

inhibitor currently in clinical trials for the treatment of brain cancer. Salinosporamide A is 

characterized by a complex and densely functionalized γ-lactam-β-lactone bicyclic warhead, the 

assembly of which has long remained a biosynthetic mystery. Here, we report an enzymatic 

route to the salinosporamide core catalyzed by a standalone ketosynthase, SalC. Chemoenzymatic 

synthesis of carrier protein-tethered substrates, as well as intact proteomics, allowed us to probe 

the reactivity of SalC and understand its role as an intramolecular aldolase/β-lactone synthase 
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with roles in both transacylation and bond forming reactions. Additionally, we present the 2.85 

Å SalC crystal structure that, combined with site-directed mutagenesis, allowed us to propose a 

bicyclization reaction mechanism. This work challenges our current understanding of the role of 

ketosynthase enzymes and establishes a basis for future efforts towards streamlined production of 

a clinically relevant chemotherapeutic.

INTRODUCTION

Salinosporamide A (1), also known as Marizomib, is a potent 20S proteasome inhibitor 

originally isolated from the obligate marine actinomycete Salinispora tropica and presently 

in phase III clinical trials for the treatment of glioblastoma, an aggressive form of 

brain cancer with a poor prognosis and few therapeutic options (Fig. 1a).1,2 Despite the 

discovery of numerous natural analogs of 1,3 as well as extensive efforts to generate 

derivatives via chemical synthesis4 and mutasynthesis,5,6 it is the originally discovered 

natural product itself that entered clinical trials. Salinosporamide A’s compact yet densely 

functionalized γ-lactam-β-lactone pharmacophore is distinct amongst proteasome inhibitors, 

including the FDA-approved bortezomib, carfilzomib, and ixazomib. The electrophilic β-

lactone warhead of 1 serves as the covalent attachment site for the N-terminal catalytic 

threonine residue found in all three proteasome β-subunits (β1, β2, β5), resulting in pan-

proteasome irreversible inhibition with nanomolar potency (Supplementary Fig. 1).7 Unlike 

other proteasome inhibitors, salinosporamide crosses the blood-brain barrier, leading to its 

advancement through glioblastoma clinical trials.

Stable isotope feeding8 and gene inactivation experiments9 revealed salinosporamide A is 

naturally assembled from three distinct metabolic building blocks (Fig. 1a): acetate (orange), 

cyclohexenylalanine (blue), and chloroethylmalonate (red). These molecules are processed 

by a hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) enzymatic 

assembly line to produce a protein-bound linear intermediate that undergoes cyclization 

and offloading to yield 1 (Fig. 1a). While the pathway to the unprecedented PKS extender 

unit chloroethylmalonyl-CoA9 and the origins of the unusual nonproteinogenic amino acid 

cyclohexenylalanine are established,10 the biosynthetic reactions and enzyme(s) responsible 

for the assembly of the γ-lactam-β-lactone pharmacophore are unknown.

Terminal cyclization reactions in microbial biosynthesis are varied and numerous, leading 

to a diversity of products (Fig. 1b). However, none resemble the suspected bicyclization 

reaction to 1 that would invoke a two-step intramolecular aldol reaction to install the 

γ-lactam ring, followed by an offloading β-lactonization reaction. The chemical foundation 

for this proposed enzymatic reaction was achieved by an elegant biomimetic synthesis of 

salinosporamide.11,12 Classically, terminal thioesterase (TE) domains in microbial assembly 

line megasynth(et)ases are responsible for offloading via macrocyclization.13 Importantly, 

the first cyclizing TE capable of β-lactone formation, ObiF, was recently identified in 

obafluorin (2) biosynthesis.14 While there is a TE encoded within the sal biosynthetic gene 

cluster, it is hypothesized to be an editing type II TE responsible for removing misprimed 

molecules from the assembly line,15 and it does not harbor the conserved GxCxG motif 

from ObiF required for β-lactone synthesis.14 Microbial biosynthetic pathways have also 
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found alternative routes outside of the TE to catalyze cyclization reactions, including fungal 

terminal condensation domains (CT), as seen in fumiquinazoline F (3) biosynthesis;16 the 

hydrolase required for formation of the fused bicyclic ring system in vibralactone (4) 

biosynthesis;17 and the condensation domain responsible for β-lactam formation in the 

biosynthesis of the antibiotic nocardicin A (5).18 Recently, a terminal ketosynthase (KS) 

domain in the tenuazonic acid (6) PKS was shown to catalyze the Dieckmann cyclization of 

an amino acid β-keto thioester to yield a tetramic acid product.19–21 While these examples 

demonstrate a wide variety of non-canonical terminal enzymes that could be involved in 

a cyclization reaction, none of these previously reported examples resemble a biosynthetic 

precedent for the proposed bicyclization in salinosporamide A biosynthesis.

Here, we report the identification, biochemical investigation, and structural characterization 

of the ketosynthase homolog SalC, which catalyzes the unprecedented tandem aldol-

lactonization bicyclization reaction and offloading to assemble the γ-lactam-β-lactone 

salinosporamide A pharmacophore. This discovery establishes the biosynthetic logic of this 

brain penetrant drug candidate and provides a clear roadmap for the generation of new 

KS-based biocatalysts in medicinal chemistry.

RESULTS

SalC, a KS, is required for salinosporamide biosynthesis

To determine the enzyme responsible for the formation of the bicyclic salinosporamide core, 

gene inactivation experiments were used to sequentially disrupt candidate genes in the sal 
BGC as described previously (Fig. 2a).9 Disruption of salO, a putative cyclase, had no effect 

on salinosporamide production. As expected, disruption of salA, encoding for the mixed 

PKS/NRPS assembly line, abolished production of salinosporamides A (1) and B (7), as did 

disruption of salD, which encodes a P450 enzyme. Instead, the △salD strain accumulated 

8, the deoxy analog salinosporamide J. A ketosynthase, for which no other role in the 

pathway could be attributed, caught our attention when disruption of its encoding gene, salC, 
completely abolished production of 1 and 7 (Fig. 2a). Importantly, salC is conserved in all 

salinosporamide and cinnabaramide22 producing strains (Supplementary Fig. 2). BLAST23 

and NaPDoS24 analysis of salC revealed that its gene product is a standalone ketosynthase 

(KS) (Supplementary Fig. 3 and 4). However, SalC lacks the canonical Cys-His-His catalytic 

triad associated with KSs,25 and instead has an asparagine in place of the first histidine, a 

variation often associated with “non-elongating” or “condensation-incompetent” KSs (KS0s) 

(Supplementary Fig. 5).26,27 Recent work on tenuazonic acid biosynthesis suggests KSs 

are capable of catalyzing cyclization reactions, and type III KSs have long been known to 

catalyze cyclization reactions via aldol condensations on coenzyme A-bound substrates,28 

which led to our hypothesis that SalC might function as a bicyclase capable of forming the 

γ-lactam-β-lactone salinosporamide core.

Characterizing late-stage cyclization and offloading reactions in assembly line biosynthetic 

pathways presents a unique set of challenges. The substrates required to probe these 

reactions are fully elongated and functionalized as they prepare for offloading, and 

thus are challenging to access synthetically. To circumvent the need for building these 
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synthetically demanding linear substrates, previous studies of TE domains that perform 

macrolactonization reactions have capitalized on the reversibility of enzymatic reactions 

and utilized cyclized compounds as substrates for the TE to perform the reverse hydrolysis 

reaction.29 Therefore, to determine if salinosporamide A is the product of SalC, we chose 

to first probe the reaction in the reverse direction. To do so, we heterologously prepared 

SalC in Streptomyces (Supplementary Fig. 6 and 8), as all attempts to obtain soluble 

protein in E. coli failed, and incubated the recombinant enzyme with salinosporamide A. 

In the presence of SalC we observed a modest decrease in hydrolysis of the β-lactone 

(compound 9) compared to the no enzyme control, as well as decreased formation of buffer 

adduct products in which tris and glycerol open the β-lactone of 1 (Extended Data Fig. 

1). Incubation with SalC consistently resulted in the formation of unique, non-chlorinated 

products indicative of the intramolecular formation of a stable tetrahydrofuran ring (10, 11) 

by displacement of the chloride, as judged by LCMS. Notably, this THF ring formation 

is the same reaction that occurs in the proteasome (Supplementary Fig. 1).7 While 9 
could ultimately react to yield 10 and 11, the presence of SalC clearly increased this 

reaction rate. The formation of these new products as well as fewer buffer and hydrolytic 

cleavage products suggested that, in the presence of SalC, the hydrolysis of 1 occurs in a 

low-hydration environment, such as within the SalC active site. SalC’s ability to hydrolyze 

the β-lactone of 1 through apparent acylation further implicated SalC in the offloading 

bicyclization reaction.

SalC is a γ − lactam − β-lactone bicyclase

As our initial experiments suggested a role for SalC in the salinosporamide bicyclization 

reaction, we sought to develop an assay to directly explore this activity. To do so we first 

had to generate an appropriate substrate. The organization of the mixed PKS/NRPS modules 

in the sal pathway indicated that the bimodular PKS (SalA) and the NRPS didomain (SalB) 

work together to generate the SalB peptidyl carrier protein (PCP)-tethered β-ketoamide 

intermediate (Fig. 1a) prior to the bicyclization reaction. Therefore, we expressed and 

purified the excised SalB-PCP domain (Supplementary Fig. 7) in its apo form, confirmed 

by intact proteomics (Supplementary Fig. 8) as well as trypsin digestion and peptide mass 

fingerprinting (Supplementary Fig. 9), with the goal of modifying the serine residue with a 

variety of CoA-activated linear precursors.

Salinosporamide A is composed of reactive sidechain functional groups that, while essential 

for the potent bioactivity of this compound, complicate both chemical synthesis and in 
vitro enzymatic assays. To circumvent possible analytical complications,11,12 we designed 

a simplified analog of the linear salinosporamide chain elongation intermediate. Once 

cyclized, this linear precursor would yield 5-deoxy-7,8-dihydro-salinosporamide B, which 

we refer to as “simplisporamide”. This substrate was inspired by salinosporamide analogs 

that have been isolated from the bacterium itself, including the deschloro compound 

salinosporamide B (7), the deoxy version salinosporamide J (8), and antiprotealide (12) 

which contains leucine in lieu of the cyclohexenylalanine residue (Extended Data Fig. 2). 

As all three of these molecules are isolated from Salinispora cultures,3,30,31 we hypothesized 

that a substrate lacking these moieties would be recognized by the putative cyclization 

enzyme.
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The synthesis of the linear pantetheine-activated simplisporamide precursor (13) is based 

on the wealth of literature precedent for the total synthesis of the salinosporamides 

(Supplementary Note).11,12,32 Simplisporamide linear precursors were synthesized as a 

mixture of diastereomers and preparative HPLC was used to separate them as confirmed 

by NMR. However, upon addition to buffer, these pure diastereomers rapidly equilibrated to 

a ~1:1 mixture (Supplementary Note), which was used for all subsequent experiments and is 

referred to as 13.

To generate the PCP-tethered linear substrate we utilized a one-pot biocatalytic synthesis 

beginning with the pantetheine-activated substrate (13) and proceeding through the 

CoA-activated substrate (14), as described previously (Fig. 3a, Extended Data Fig. 3, 

Supplementary Fig. 10).33 Carrier protein acylation was confirmed by both intact protein 

liquid chromatography mass spectrometry (LCMS) (Fig. 3b and Supplementary Fig. 11) 

as well as trypsin digestion of SalB and high-resolution LCMS analysis of the resulting 

peptide fragments (Fig. 3c). The MS-based phosphopanthetheine (PPant) ejection assay was 

additionally used to verify the formation of the linear precursor-acylated-SalB substrate (15) 

(Fig. 3c).34

Upon incubation of SalC (20 μM) with in situ generated 15, we observed two products 

with m/z 284.19 [M+H]+ at retention time (rt) 15.2 and 15.6 minutes (Fig. 3d and 3e). 

Co-elution with a synthetic standard revealed them to be the hydrolyzed linear β-keto amino 

acid (16). However, the major product of the reaction (m/z 266.17 [M+H]+, rt 19.2 min), was 

indicative of the formation of simplisporamide (R-17) (Fig. 3d and 3e, Supplementary Fig. 

12). We noted the appearance of a minor peak with the same molecular ion at 18.9 minutes 

(S-17) (Fig. 3e). Critically, neither of these compounds were evident in control reactions 

without SalC. In a time course experiment, we visualized the depletion of these compounds 

accompanied by formation of a new product (rt 13.7 min) consistent with the mass (m/z 
284.19 [M+H]+) of the hydrolyzed β-lactone (18) (Fig. 3e) due to degradative hydrolysis 

over time, which was also observed with salinosporamide A (Extended Data Fig. 1).

After demonstrating the formation of an enzymatic reaction product indicative of the 

bicyclic product (R-17), we sought to perform the SalC assay at a preparative scale suitable 

for purification of the product and NMR characterization. However, the reliance on a single 

turnover reaction with respect to a carrier protein presented a substantial challenge to scaling 

up the SalC bicyclization reaction, and as such we sought to utilize diffusible substrates to 

circumvent the need for stoichiometric SalB-PCP. Given the literature precedent for KSs 

utilizing CoA-mimics as activating groups,35 we tested SalC activity with pantetheine-, and 

CoA-activated linear substrates, as well as the products of the CoaA and CoaD reactions en 

route to the CoA activated substrate (19 and 20, respectively). When SalC was incubated 

with these diffusible substrates, minimal putative bicyclized product was formed (Extended 

Data Fig. 3), and the primary product of the reaction appeared to be 16. Therefore, we 

proceeded with carrier protein dependent reactions to scale up the SalC activity assay.

The inherent instability of the simplisporamide β-lactone presented an additional challenge 

for a larger scale reaction in an aqueous environment.36 During fermentative production 

of 1, degradation via hydrolysis of the β-lactone is mitigated by the addition of the 
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absorbent resin XAD-7 to the culture media, which stabilizes and captures 1 for subsequent 

purification.37 Inspired by this strategy, we included an absorbent resin in a large scale SalC 

assay to protect the cyclized product as it is offloaded from the protein. Without resin, the 

product degraded rapidly to yield 18. The major product (R-17) was captured by the resin 

(Supplementary Fig. 13), purified, and confirmed by NMR (for complete tables of NMR 

assignments, spectra, and key correlations, see Supplementary Note).

The strained β-lactone of 1 is the key pharmacophore of the molecule, serving as the 

electrophilic trap for proteasome inhibition, and so we aimed to directly link SalC to the 

formation of this molecular warhead and therefore the bioactivity of the molecule. We 

performed the SalC activity assay with resin to trap the simplisporamide product, as well 

as control assays without SalC or 13. The extracts of these resins (Supplementary Fig. 

14) were directly tested for in vitro inhibitory activity against the human 20S proteasome 

chymotrypsin-like protease activity (β5 subunit) (Extended Data Fig. 4). Importantly, this 

fluorescence-based assay is robust, commercially available, and performed in a 96-well plate 

format which makes it amenable for high-throughput work. The bioassay showed that SalC 

was required for proteasome inhibition, and that the proteasome was not inhibited when 

SalC or substrate were excluded from the assay. This result further confirmed that SalC is 

responsible for the formation of the bioactive β-lactone moiety.

SalC is acylated by SalB-PCP

The proposed bicyclization reaction performed by SalC is intramolecular, in contrast to 

the intermolecular nature of canonical KS biosynthesis. As such, SalC-mediated cyclization 

could occur on the carrier protein, or the substrate could be transferred onto SalC itself 

for cyclization to occur (Supplementary Fig. 15a). To distinguish between these two 

possibilities, we synthesized a mechanistic probe lacking the β-ketone group (21) that 

would be capable of acylating SalB and SalC, but would be incompetent for cyclization 

and offloading. Therefore, this substrate would remain trapped on the protein, potentially 

allowing for detection via intact protein mass spectrometry (Fig. 4a). Using 21, we 

performed the previously described chemoenzymatic acylation assay with apo-SalB-PCP to 

yield holo-acylated-SalB-PCP (22). 22 was then purified away from residual CoA proteins 

and small molecule intermediates to ensure all transacylation originated from the carrier 

protein. Column purified 22 was incubated with SalC (m/z 66613 [M+H]+) and then 

subjected to intact protein LC-HRMS analysis, revealing a new peak (m/z 66864 [M+H]+) 

(Fig. 4b) indicative of chain transfer of the mechanistic probe from the SalB-PCP domain 

to SalC (Supplementary Fig. 16 and 17). We also performed this transacylation assay with 

diffusible substrates: the pantetheine-activated linear probe (21), the products of the CoaA 

and CoaD reactions with 21 (23 and 24, respectively), as well as the CoA-activated linear 

probe (25) (Extended Data Fig. 5, and Supplementary Figs. 18–23). While SalC was capable 

of being acylated by diffusible substrates, the largest amount of acylated SalC was observed 

with carrier protein-activated substrate. Finally, small molecule LCMS revealed that once 

acylated with the mechanistic probe, SalC was able to hydrolyze off 21 over time as well 

(Supplementary Fig. 15b).
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Structure-guided mutagenesis investigated bicyclization

To elucidate the molecular basis for the observed bicyclase activity of this unusual 

ketosynthase, we solved a crystal structure of SalC to 2.85 Å resolution (PDB: 7S2X, 

Supplementary Tables 3 and 4). Crystallography revealed that the oligomeric state of SalC 

is a homotetramer (Fig. 5a), verified via size exclusion chromatography (Supplementary 

Fig. 24).38 Overall, SalC possesses high structural homology39 to trans-AT KSs (Extended 

Data Fig. 6), although they only share less than 40% sequence identity. Each monomeric 

subunit of SalC is composed of two domains, the N-terminal KS domain, which forms 

tetrameric interfaces, and the C-terminal flanking domain, which does not contact domains 

from other subunits. The KS domain of SalC resembles a canonical ketosynthase with the 

classic αβαβα thiolase fold40 (Extended Data Fig. 7); whereas the C-terminal flanking 

subdomain resembles those seen in trans-AT KSs (Extended Data Fig. 6), a ~100 residue 

structure homologous to the KS-AT adapters in cis-AT PKS systems but with an unknown 

function.41,42

The active site of SalC lacks the established Cys-His-His catalytic triad found in canonical 

KS domains25 and instead contains a Cys180-Asn316-His353 triad similar to non-elongating 

KSs (Supplementary Fig. 5, Supplementary Fig. 25). The SalC active site (Fig. 5b) also 

contains a conserved lysine (Lys348) found in both PKS KSs and fatty acid synthase (FAS) 

β-keto-acyl-ACP synthases. Examination of the active site also revealed the presence of a 

tyrosine residue (Tyr284) located 3.6 Å from Cys180 and positioned on a loop that protrudes 

into the active site. Tyr284 is conserved in all SalC homologs from salinosporamide 

producing Salinispora strains and the cinnabaramide SalC homolog CinC (Extended Data 

Figs. 7 and 8). Superimposition of SalC with a KS from the bacillaene PKS pathway 

(bae) (Extended Data Fig. 9) bound to its native chain elongation intermediate (PDB ID: 

4NA2)42 revealed the SalC Tyr284 residue is oriented towards the thioester α-carbonyl of 

the bae intermediate, suggesting it may play a key role in salinosporamide bicyclization. 

To investigate the role these residues play in SalC bicyclization, we performed site-directed 

mutagenesis experiments of active site residues implicated in catalysis (Supplementary Fig. 

26). Resulting SalC variants were subjected to SalB-to-SalC transacylation assays with 22 
(Fig. 5c, Supplementary Fig. 27–30), as well as SalC cyclization activity assays with 15 
(Fig. 5d).

As SalC is acylated by the SalB-PCP domain to form a linear acyl-enzyme intermediate 

prior to cyclization, it stands to reason that mutating the active site Cys180Ala both 

abrogated chain transfer and abolished production of the cyclized product (Fig. 5c and 

5d, Supplementary Fig. 27). Furthermore, the Cys180Ser mutation had the same effect 

(Supplementary Fig. 28).43 The Asn316Ala mutant did not retain full transacylation activity 

in the chain transfer assay, and showed reduced production of the bicyclized product to 

less than 4% of wild type SalC (Fig. 5c and 5d, Supplementary Fig. 29). The His353Asn 

mutation was selected as type III KSs, known to perform cyclization reactions, typically 

have an asparagine in place of the final histidine in the catalytic triad. In the case of SalC, 

this mutant retained roughly 40% of the wild type SalC cyclization activity, but, notably, it 

largely appeared to convert SalC from a bicyclase to a hydrolase (Fig. 5c, Supplementary 

Fig. 30). This mutant produced 43-times the amount of 16 compared to wild type SalC, 
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which may be due to a potential role of His353 in deprotonating the thioester α-proton. 

Without this deprotonation, the intramolecular aldol reaction cannot occur and the stuck 

linear intermediate is hydrolyzed off SalC as 16. The Tyr284Phe mutation, unfortunately, 

resulted in unstable protein and was thus unable to be assessed.

Based on the structure of SalC and results from our mutagenesis campaign, we propose a 

possible mechanism (Fig. 6, Extended Data Fig. 10) initiated by deprotonation of Cys180 by 

His353, followed by acylation of the resulting thiolate with the SalB-PCP-tethered substrate 

(15).25 Lys348 may serve as a general base capable of deprotonating His353, although there 

are other basic residues near the active site that could perform this deprotonation. Asn316 

may play a stabilizing role in this reaction as this residue appears critical for transacylation. 

Hydrogen bonding of the thioamide carbonyl to the Tyr284 phenol facilitates deprotonation 

of the thioester α-carbon by His353, thereby generating an enol intermediate that could 

react via an intramolecular aldol reaction to form the γ-lactam. The resulting oxyanion is 

presumably stabilized by dipole interactions with backbone amides, as is hypothesized for 

KSs.25 Subsequent β-lactonization through a tetrahedral intermediate releases the bicyclic 

simplisporamide product from SalC. Finally, Cys180 is reprotonated by His353 to restart the 

catalytic cycle as previously proposed for KSs from type I PKS systems.25

DISCUSSION

The proteasome is a well-established target for cancer therapeutics due to its essential role 

in intracellular protein degradation, a process that is upregulated in rapidly proliferating 

cancer cells.44 Three constitutive proteasome inhibitors (PIs) are currently FDA approved 

as cancer therapeutics. Marizomib, however, is fundamentally different from these approved 

PIs as it is the only non-peptidic compound in advanced clinical trials, and targets all 

three catalytic subunits of the human 20S proteasome with single-digit nanomolar inhibitory 

activity against the β5 subunit.7 This pan-proteasome inhibitory activity allows 1 to retain 

clinical activity in patients resistant to other PIs as resistance is typically due to mutations 

in a single proteasome subunit.45 Resistance is a major obstacle towards using PIs in the 

clinic, which underscores the importance of the continued development of 1 and its analogs. 

Finally, salinosporamide A’s ability to cross the blood-brain barrier facilitates a new route 

to treat neurological diseases, which often require invasive surgery for drug delivery to the 

brain. While salinosporamide A is still in Phase III clinical trials, 1’s potent activity and 

ability to enter the brain could provide hope for patients with glioblastoma.

The work described here establishes a ketosynthase homolog, SalC, acts as a bicyclase 

and installs the salinosporamide pharmacophore responsible for 1’s clinically relevant 

bioactivity. This discovery not only solves a long-standing biosynthetic enigma, but also 

expands the repertoire of known reactivities for the ketosynthase family of enzymes. Rather 

than a decarboxylative Claisen condensation to extend a nascent polyketide chain, the 

KS SalC plays an unexpected dual role in the sal pathway as an intramolecular aldolase/

β-lactone synthase, a reaction for which there is no biosynthetic precedent. Furthermore, 

by using a proteasome inhibition assay to screen for formation of this reactive feature, we 

were able to directly link the biosynthetic activity of this enzyme to the bioactivity of the 

molecule.
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This ability to use a fluorescence-based assay to validate SalC’s biosynthetic ability is 

especially intriguing as it opens the door for high-throughput screening efforts to generate 

SalC variants with desirable qualities for biocatalysis. The unusual reactivity of SalC has 

the potential to be harnessed for chemoenzymatic routes to β-lactone synthesis, as well as 

complement existing syntheses of 1 that perform bicyclization as the terminal step.12 Several 

features of SalC make the enzyme well suited for this.

First, SalC is notable for its ability to perform a complex biosynthetic reaction on a variety 

of substrates. Typically, the scaffold of assembly line-based natural products is constructed 

by a PKS and/or NRPS and then functionalized post-release from the terminal module via 

tailoring reactions such as oxidations or glycosylations which are essential for the bioactivity 

of these compounds. Instead, the sal pathway expends metabolic energy upfront to generate 

complex precursors that are then assembled by SalC, a standalone enzyme that zips together 

complex pieces in a single step. While TEs are known to be highly selective for their 

native substrate,46 SalC is able to perform a complex cyclization reaction on a variety of 

precursors to form the fused bicyclic core that is the constant feature amid the wealth of 

salinosporamide biosynthetic diversity.

Beyond its flexible substrate preference, SalC also appears capable of resolving a 

diastereomeric substrate mixture, with a strong preference for forming simplisporamide with 

the R stereocenter at the ethyl side chain. The minor epimer is produced as well (S-17), 

but in an approximately 1:10 ratio. This preference is borne out in the native bacterium as 

well; naturally produced salinosporamide F is the C2 epimer of salinosporamide A but is 

produced in very low yield compared to 1.30 Furthermore, this work also lays the foundation 

to engineer or design SalC biocatalysts capable of working on small molecule diffusible 

substrates (Extended Data Fig. 3).

Finally, SalC is potentially useful as a biocatalyst because it is capable of installing a 

β-lactone, a chemical moiety known for its reactivity. While the assembly of β-lactam 

natural products has been studied for decades,18 the study of β-lactone biosynthesis has 

largely been hindered by the instability of these molecules. Only in the last five years have 

routes to β-lactone biosynthesis been discovered, with just three examples prior to this work. 

Furthermore, SalC catalyzes an entirely new reaction type from the previously characterized 

enzymes which include adenylate-forming β-lactone synthetases47,48, thioesterases,14 and 

α/β hydrolases.17 SalC is also different in that it must first perform an aldol reaction to 

generate the moieties required for β-lactonization; the nucleophilic alcohol is not already 

installed on the molecule as in the obafluorin and olefinic hydrocarbon pathways. The 

discovery of SalC as a standalone KS capable of forming a β-lactone suggests the possibility 

of this type of reactivity in other pathways, particularly where terminal standalone C or 

KS domains are evident. In fact, NaPDoS analysis reveals that SalC and its homologs, 

including the cinnabaramide homolog CinC, belong to their own unique clade among known 

KSs (Supplementary Fig. 4), demonstrating the unique functionality of this enzyme and the 

potential for discovery of other bicyclized natural products.

Almost 18 years after its initial discovery, and four years after entering phase III 

clinical trials, a key mystery in the biosynthesis of salinosporamide A has finally been 

Bauman et al. Page 9

Nat Chem Biol. Author manuscript; available in PMC 2022 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



revealed. Using biochemical and structural data, we identified and characterized an unusual 

ketosynthase responsible for performing previously unprecedented biochemistry. The 

salinosporamide bicycle is the most synthetically challenging portion of the molecule and, 

as such, salinosporamide derivatives are prepared by slow and low-yielding fermentative 

approaches. To this day, salinosporamide A is produced by fermentation for clinical 

trials, a process which requires the use of specialized reactors to handle the saltwater 

media necessary for Salinispora spp. growth. However, the identification of SalC as 

a bicyclase capable of generating the γ-lactam-β-lactone pharmacophore completes the 

minimum genetic architecture required for assembly of the salinosporamide scaffold and 

has the potential to fundamentally alter how salinosporamides are produced. As our clinical 

understanding of alternative proteasomes grows,44 and we begin to understand the role 

these cellular machines play not just in cancer but in autoimmune and parasitic diseases as 

well, a hybrid synthetic-biocatalytic blueprint for producing brain-penetrant salinosporamide 

molecules is now feasible. Understanding the unique reactivity of the SalC bicyclase is the 

first step towards harnessing that activity towards the efficient, straightforward production of 

new-to-nature bioactive salinosporamides.

METHODS

Software and tools used

The SalC protein sequence was analyzed via BLAST,23 and all alignments were made using 

Clustal Omega (1.2.4) software. Geneious Prime 2019.2.3 software was used for plasmid 

maps and primer design. The NaPDoS platform24 was used to examine SalC in relation 

to other KSs, cblaster (1.2.9)49 was used to examine SalC homologs in salinosporamide 

producing strains, and clinker (v0.0.21) was used for visualization.50

Bacterial strains and growth conditions

E. coli strains were grown in LB broth or agar at 37 °C with appropriate antibiotics for 

selection (apramycin 50 μg/mL, chloramphenicol 25 μg/mL, kanamycin 50 μg/mL, nalidixic 

acid 25 μg/mL). For conjugation purposes, E. coli was grown using 2TY media (1.6% 

w/v tryptone, 1% w/v yeast extract, 0.5% w/v NaCl) with appropriate antibiotic selection. 

For protein production, TB media (1.2% w/v tryptone, 2.4% w/v yeast extract, 0.4% (v/v) 

glycerol, 2.31% w/v KH2PO4, 12.54% w/v K2HPO) was used. All liquid cultures were 

shaken at 200 rpm

Streptomyces strains were grown on SFM agar plates (2% w/v D-mannitol, 2% w/v soya 

flour, 2% w/v agar) for conjugation and strain maintenance at 30 °C, or in TSBY liquid 

media (3% w/v tryptic soy broth, 10.3% w/v sucrose, 0.5% w/v yeast extract) at 30 °C with 

shaking at 220 rpm.

For protein production in S. coelicolor CH999, a TSBY preculture (100 μL) was used to 

inoculate the 30 mL ‘primary culture’ of Super YEME media (0.3% w/v yeast extract, 0.5% 

w/v peptone, 1% w/v glucose, 0.3% w/v malt extract, 34% w/v sucrose, 0.5% w/v glycine, 

0.235% v/v MgCl2∙6H2O (2.5 M), 7.5×10−3% w/v L-proline, 7.5×10−3 w/v % L-arginine, 

7.5×10−3 % w/v L-cysteine, 0.01% L-histidine, 1.5×10−3 % w/v uracil, pH 7.2) with 50 
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mg/mL apramycin in a 250 mL flask with bottom spring. This culture was grown at 30 

°C with shaking at 220 rpm. After 4 days, 4 mL of primary culture was used to inoculate 

40 mL of Super-YEME supplemented with apramycin to generate the ‘secondary culture’. 

This culture was grown at 30 °C for 2 days. Finally, 600 mL of ‘expression culture’ was 

inoculated using 30 mL of secondary culture supplemented with apramycin (50 mg/mL) in 

2.8 L flasks with metal springs. After 2 days, thiostrepton was added to a final concentration 

of 10 ug/mL to induce protein expression.

Salinispora strains were grown in sea water based A1 media (1% w/v soluble starch, 0.4% 

w/v yeast extract, 0.2% w/v peptone, 0.1% w/v CaCO3) at 30 °C with shaking at 220 rpm, or 

A1 agar at 30 °C supplemented with apramycin (50 mg/mL) and naldixic acid (25 mg/mL) 

for mutant strains. For production of salinosporamide, liquid A1 was supplemented with 

2% v/v KBr (20 g/L) and 0.8% v/v Fe2(SO4)3, (8 g/L) and XAD7 resin was added to the 

cultures after 24 hrs of growth.

DNA isolation and manipulation

Genomic DNA (gDNA) was isolated following standard procedures from Practical 
Streptomyces Genetics.51 Phusion High-Fidelity DNA Polymerase (NEB) with GC buffer 

was used to amplify genes from the sal cluster using gDNA as a template.

PCR reactions were carried out in a BioRad MyCycler with gradient option. PCR 

products were purified using Qiagen QIAquick PCR and Gel Cleanup Kit according to 

the manufacturer’s instructors. Vectors (pET28, pET28-MBP, and pCJW93) were linearized 

with restriction enzymes for cloning purposes. For cloning, Gibson assembly (NEB HiFi 

DNA Assembly Master Mix) was used to combine linearized vector and purified PCR 

products before subsequent transformation into chemically competent E. coli DH10B cells. 

Plasmid DNA was isolated using the QIAPrep Spin Miniprep Kit (Qiagen) and cloning was 

verified by Sanger sequencing (Genewiz).

For protein expression and production of SalC in Streptomyces, pCJW93-SalC was 

transformed into E. coli ET1256752 and then conjugated into S. coelicolor CH999 

via triparental intergeneric mating facilitated by E. coli ET12567/pUB30753 following 

established procedures.54 Exconjugates were grown on SFM media containing 10 mM 

MgCl2 for exactly 18 hours at which time plates were overlaid with 0.5 mg/mL naldixic acid 

followed by 1 mg/mL apramycin. Plates were incubated at 30 °C until the appearance of 

exconjugants, which were subsequently replated for further rounds of selection.

Salinispora tropica CNB440 mutants were made by inactivating each gene by replacement 

with an apramycin resistance cassette (aac(3)IV) using λ-Red recombination, as described 

previously.9

Salinosporamide identification and purification

Wild type and knockout S. tropica CNB440 strains were grown for five days after addition 

of XAD7 absorbent resin. Resin was harvested and extracted with ethyl acetate. The organic 

phase was evaporated and samples were reconstituted in acetonitrile and filtered through a 

0.2 μm filter for subsequent LCMS analysis.

Bauman et al. Page 11

Nat Chem Biol. Author manuscript; available in PMC 2022 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Salinosporamides were identified by LCMS analysis using an Agilent 1260 Infinity LC 

system coupled to an Agilent 6530 Accurate-Mass Q-TOF. A solvent system of acetonitrile 

and water both containing 0.1% formic acid (v/v) was used. A 10 μL aliquot was injected on 

a Phenomenex Kinetex C18 reversed-phase HPLC column (5 μm, 250 mm × 4.6 mm) and 

eluted over a 40 minute method with a gradient from 20% to 100% over 25 minutes. 100% 

acetonitrile was held for 5 minutes before acetonitrile percentage was dropped to 20%. Flow 

rate was 0.75 mL/min. Eluent was detected using electrospray ionization-mass spectrometry 

(ESI-MS) monitoring m/z 70–3,200 in positive mode with a speed of 32,500 m/z /s and 30 

kV collision energy. MS data were analyzed using Agilent MassHunter Qualitative Analysis 

B.05.01 software. Salinosporamide A was purified via methods described previously.5

SalC expression and purification from Streptomyces

S. coelicolor CH999-pCJW9354-SalC were grown as described above and harvested at 4 

°C by centrifuging at 16,000 x g for 20 min. The cell pellet was resuspended in harvest 

buffer (100 mM Tris, 300 mM NaCl, 0.8 mM TCEP, 10% glycerol) and lysed on ice with 

a QSonica sonicator (6 mm tip at 60% amplitude for 15 cycles of 15 seconds pulse on 

followed by 45 seconds pulse off). The lysate was then centrifuged for 60 min at 4 °C, 

44,000 x g and subjected to column chromatography.

Protein purification was performed on an ÄKTApurifier instrument (GE Healthcare) with 

the modules Box-900, UPC-900, R-900 and Frac-900 with all buffers filtered through 

a nylon membrane 0.2 μm GDWP (Merck) prior to use. FPLC data was analyzed 

with UNICORN 5.31 (Built 743) software. SalC was initially purified by Ni2+-affinity 

chromatography using 5 mL HisTrap FF (GE Healthcare) columns pre-equilibrated in buffer 

A (300 M NaCl, 100 mM Tris, 25 mM imidazole, 0.8 mM TCEP, pH 8.0). Lysate was 

loaded onto column at 1.5 mL/min after which the column was washed with 8 column 

volumes (40 mL) of buffer A. Protein was eluted by a linear gradient of 0 – 100% buffer B 

(300 M NaCl, 100 mM Tris, 250 imidazole, 0.8 mM TCEP, pH 8.0) over 30 min at a flow 

rate of 2.0 mL/min. Protein-containing fractions were identified by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis in the presence of reducing agents (SDS-PAGE, 12% 

acrylamide) and then combined and concentrated to a volume of ~3 mL using Amicon Ultra 

centrifugal filters with 50 kDa molecular weight cut-off (EMD Millipore). Concentrated 

protein was then loaded onto a HiLoad Superdex 200 prep grade size exclusion (SEC) 

column (16 cm x 60 cm, GE Healthcare) equilibrated in 50 mM Tris, 150 mM NaCl, 0.8 

mM TCEP, 10% glycerol, pH 8.0 buffer and eluted at a constant flow rate of 1.0 mL/min. 

Fractions containing the target protein were pooled, concentrated, aliquoted, and flash frozen 

for storage at −80 °C. Protein concentration was determined by Bradford assay.

Protein expression and purification from E. coli

E. coli BL21Gold(DE3) transformed with expression plasmids for CoaA, CoaD, CoaE, 

Sfp, and SalB-PCP were inoculated in 10 mL LB containing kanamycin. After overnight 

incubation, this 10 mL culture was used to inoculate 1 L of TB media in a 2.8 L baffled 

flask supplemented with kanamycin. Flasks were incubated at 37 °C, 220 rpm until OD600 

reached 0.6–0.8 at which time flasks were cooled for 1 hr at 18 °C before induction with 1 

M isopropyl-β-D-thiogalactopyranoside (IPTG) to a final concentration of 0.2 mM. Flasks 
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were incubated overnight at 18 °C, 220 rpm, and harvested by centrifugation at 4 °C, 5,000 

× g for 10 min. From this point on all subsequent steps were performed at 4 °C or on ice. 

The cell pellet was subsequently resuspended in lysis buffer (500 mM NaCl, 20 mM Tris, 

10% glycerol, pH 8.0) and lysed by sonication with a Qsonica sonicator (6 mm tip at 40% 

amplitude for 10 cycles of 15 seconds pulse on followed by 45 seconds pulse off). Lysate 

was then centrifuged at 14,000 × g for 45 min at 4 °C. Protein purification was performed as 

described in the previous section using buffer A (1 M NaCl, 20 mM Tris, 25 mM imidazole, 

pH 8.0) and buffer B (1 M NaCl, 20 mM Tris, 250 imidazole, pH 8.0).

CoaA, CoaD, CoaE, and Sfp proteins were buffer exchanged using PD-10 desalting columns 

(GE Healthcare) to storage buffer (20 mM Tris, 10% glycerol, pH 8.0) as described 

previously.33 Protein concentration was determined by Bradford assay before the samples 

were aliquoted, flash frozen, and stored at −80 °C.

SalB-PCP was further purified by SEC using a HiLoad Superdex 75 prep grade gel filtration 

column (16 cm x 60 cm, GE Healthcare) preequilibrated with storage buffer (20 mM Tris, 

200 mM NaCl, 10% glycerol, pH 8.0). Fractions with the target protein were pooled and 

concentrated with centrifugal filters again. Protein concentration was determined using the 

Bradford assay and then flash frozen and stored at −80 °C.

Tryptic fingerprinting SalB protein

To confirm the identity of the purified SalB protein as well as monitor conversion from 

apo to the holo and acylated-holo forms, the protein was digested using the Trypsin Single 

Proteomics Grade Kit (Sigma Aldrich) and analyzed by High Resolution-LCMS analysis. 

A 10 μL aliquot was injected onto a Phenomenex Aeris WIDEPORE XB-C18 200 Å, LC 

column(3.6 μM, 250 mm x 4.6 mm) and analyzed with an Agilent 1260 Infinity LC system 

coupled to an Agilent 6530 Accurate-Mass Q-TOF. A solvent system of acetonitrile and 

water both containing 0.1% formic acid (v/v) was used. Peptide fragments were eluted 

over a 43-min method with a gradient from 5 to 30% acetonitrile over 4 min, 30 to 65% 

acetonitrile over the next 15 min, and then to 100% over 5 min. 100% acetonitrile was 

held for 6 minutes before concentration was dropped to 5%. Flow rate was 0.75 mL/min. 

Eluent was detected using electrospray ionization-mass spectrometry (ESI-MS) monitoring 

m/z 70–3,200 in positive mode with a speed of 32,500 m/z /s and 30 kV collision energy. 

MS data were analyzed using Agilent MassHunter Qualitative Analysis B.05.01 software. 

Peptide fragments were compared to predicted trypsin digest fragments using the ExPASy 

PeptideMass tool.

SalC hydrolysis assay

To probe the SalC reaction in the reverse direction, 50 μL assays containing purified SalC 

(20 μM), SalB-PCP (50 μM), and 1 mM salinosporamide A were incubated in SalB buffer 

(20 mM Tris, 200 mM NaCl, 0.8 mM TCEP, 10% glycerol pH 8.0). After three hours the 

assays were quenched with three volumes of acetonitrile and centrifuged at 21,000 × g for 

30 minutes to precipitate protein. Samples were filtered and then analyzed by LCMS with 

the method for salinosporamide identification described earlier.
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Chemical synthesis

The syntheses and accompanying spectral data of the pantetheine-tethered substrates 13 and 

21 are described in the Supplementary Notes file.

SalC activity assays

Linear pantetheine activated substrates (13 or 21, 250 μM) were incubated with purified 

CoaA (7 μM), CoaD (10 μM), CoaE (10 μM), Sfp (10 μM) and SalB-PCP (250 μM) in 

reaction buffer (50 mM phosphate, 100 mM NaCl, 0.8 mM TCEP, 10 mM MgCl2, pH 7.5) 

in a 50 μL reaction to allow carrier protein loading to occur. The reaction was initiated with 

the addition of 5 mM ATP. After 3 h, 25 μL of acylated SalB-PCP was removed and used 

for trypsin fingerprinting or intact MS. SalC (20 μM) was added to the remaining 25 μL for 

activity assays. Upon testing different reaction conditions (buffer, pH, concentrations of all 

proteins, time), these conditions were found to be optimal.

Assays with diffusible substrates omitted required CoA or Sfp proteins. After the addition 

of SalC, reactions were incubated for an additional 3 h at 30 °C. Reactions were quenched 

by the addition of three volumes of acetonitrile and centrifuged at 21,000 × g for 30 min 

to precipitate protein. Finally, samples were analyzed via HR-LCMS using the method for 

salinosporamide identification described earlier.

Preparative scale SalC activity assay

For purification of the SalC assay product, reactions were set up as described above at a 50 

mL scale in an Erlenmeyer flask. SalB-PCP loading was allowed to proceed for 12 hours, 

at which point approximately 1 gram of XAD7 resin and SalC (20 μM) were added to 

the reaction mixture and assays were allowed to proceed overnight. In the morning, resin 

was extracted (3×) with ethyl acetate. Organic extracts were combined and evaporated to 

dryness. Samples were resuspended in acetonitrile and the peak corresponding to R-17 was 

purified by preparative HPLC using a Phenomenex Luna C18 column (5 μm, 100 mm, 

2mm i.d.), along with an Agilent Technologies system composed of a PrepStar pump, a 

ProStar 410 autosampler, and a ProStar UV detect (Agilent Technologies, Inc, Santa Clara, 

USA). The sample were eluted by a gradient from 20–100% acetonitrile over 40 min at 

a flow rate of 10 mL/min. The peak corresponding to R-17 was collected and dried by 

rotary evaporation and lyophilization. Finally, R-17 was purified using a small-scale silica 

column with a dichloromethane/acetonitrile solvent system. All stages of purification were 

monitored by LCMS analysis.

Structural characterization of R-17

All NMR data were collected at the UCSD Skaggs School of Pharmacy and Pharmaceutical 

Sciences NMR Facility on a 600 MHz Varian NMR spectrometer (Topspin 2.1.6 software, 

Bruker) with a 1.7 mm cryoprobe. Deuterated chloroform containing TMS standard was 

used as a solvent. All spectra for purified R-17 can be found in the Supplementary Notes.
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Proteasome inhibition assay

SalC activity assays (+/− SalC and +/− 13) were run on a 1 mL scale with the addition of 

resin, as described in the Preparative scale SalC activity assay section. Resin extracts were 

resuspended in 50 μL buffer and used for proteasome inhibition assays and LCMS analysis.

Proteasome inhibition assays were performed using the QUANTIZYME® Assay System 

(Enzo Life Sciences), designed to measure chymotrypsin-like protease activity (β5 subunit) 

of the purified 20S human proteasome using the fluorogenic substrate Suc-LLVY-AMC. 

Inhibitor (0.5 μM epoxomicin, 0.5 μM salinosporamide A, or 10 μL of resuspended SalC 

activity assay extracts) was added to 0.2 μg proteasome in kit buffer (50 mM Tris-HCl, pH 

7.5, 25 mM KCl, 10 mM NaCl, 1 mM MgCl2, 0.03% SDS) and incubated for 15 minutes. 

Substrate was added to a final concentration of 75 μM. Proteasome activity was measured by 

reading fluorescence of the cleaved substrate at 355 nm (excitation) and 460 nm (emission) 

using Spectra max M2 (Molecular Devices) every 5 minutes for 30 minutes. All assays 

performed in duplicate.

Chain transfer assays and intact protein MS

SalB-PCP was acylated with the panthetheine-activated mechanistic probe 21 using the same 

methods described earlier. This holo-acyl-SalB-PCP was purified away from residual CoA 

proteins and small molecules using a Superdex 75 prep grade gel filtration column (16 cm 

x 60 cm, GE Healthcare) preequilibrated with buffer (50 mM Tris, 150 mM NaCl, 5% 

glycerol, pH 8.0). Purified 22 or diffusible substrates (21–25) were incubated with SalC or 

a SalC variant (20 μM) for 3 h, and then subjected to LC-HRMS analysis. All intact protein 

LC-HRMS was performed by the UC San Diego Molecular Mass Spectrometry Facility on 

an Agilent 1260 Infinity Binary LC coupled with a 6230 Accurate-Mass TOFMS.

Crystallization of SalC

SalC was crystallized by hanging drop crystallization at room temperature. 1.0 μL 1.7–3.4 

mg/mL SalC in gel filtration buffer was mixed with 1.0 μL well solution (0.10 M HEPES pH 

8.5, 30 % (w/v) PEG 3350, and 0.30 M KCl) to make a 2 μL hanging drop in a sealed well 

with 400 μL well solution. Transparent plate crystals grew in 24–48 h. The crystals were 

then transferred to a drop of LV Cryo Oil (MitGen) and flash-cooled in liquid nitrogen.

Data collection and processing

A data set of SalC was collected at Advanced Light Source (Berkeley, California, USA) on 

beamline 8.2.2 using a ADSC Q315R detector at a temperature of 100 K. Reflections could 

be observed to 2.85 Å. Data were indexed and integrated using XDS,55 with high resolution 

cut-off to 2.85 Å, based on CC1/2 = ~ 0.7. Data statistics are listed in Supplementary Table 3.

Structure determination and refinement

The structure of SalC was determined to 2.85-Å resolution by molecular replacement 

(MR) using Phaser56 implemented in CCP4. The ketosynthase domain of DEBS1 from 

Saccharopolyspora erythraea (PDB ID: 2HG4)57, which shared 33.5% identity with SalC, 

was used to generate a homology model of SalC by I-TASSER58 as the MR search model. 
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The MR results in one SalC tetramer per asymmetric unit (ASU). Resulting LLG, Rval 

and TFZ were 8178.1, 44.8 and 66.5, respectively. The MR solution was used as an input 

for AutoBuild implemented in Phenix59 for initial model building. After the AutoBuild 

run, the atomic coordinates and B-factors were iteratively refined in Phenix Refine with 

model building and manual adjustment of the model in Coot.60 Water molecules were added 

manually throughout real space refinements using Fo-Fc electron density contoured to 3.0 σ 
as criteria. Four-fold non-crystallographic symmetry (NCS) restraints were used throughout 

refinement. Final cycles of refinements include Translation-Libration-Screw-rotation (TLS) 

parameterizations with two TLS group per SalC monomer. The division is assigned based on 

the two domains of SalC. A composite-omit electron density map calculated by Phenix 

Composite_omit_map was used to verify the model. The refinement statistics are in 

Supplementary Table 3, and the final model of the SalC structure contains residues listed in 

Supplementary Table 4. All structure figures were rendered in PyMOL.

SalC mutagenesis

SalC mutagenesis was performed by generating two PCR products using the salC forward 

primer and a mutagenic reverse primer and a mutagenetic forward primer and the salC 
reverse primer. Three-piece Gibson assembly was used to assemble these two amplicons into 

linearized pCJW93. pCJW93-SalC mutants were subsequently conjugated into S. coelicolor 
CH999. Following expression and purification, SalC variants were subjected to SalC activity 

assays and chain transfer assays as described above.

Data availability

Strains and plasmids used in this study are described in Supplementary Table 1. All 

oligonucleotides (Integrated DNA Technology) are shown in Supplementary Table 2. The 

salinosporamide (sal) biosynthetic gene cluster from S. tropica CNB440 is available in 

the MIBiG database (accession BGC0001041). Other salinosporamide BGCs and the 

cinnabaramide BGC used for alignments are available in the IMG JGI database. Functional 

KS and non-elongating KS protein sequences used for alignments can be found in the 

Supplementary material and through MIBiG. Atomic coordinates and structure factors for 

the reported crystal structures in this work have been deposited to the Protein Data Bank 

under accession number 7S2X (native SalC). Additionally, the following PBD datasets 

were used for SalC structural comparison: 2HG4, 4WKY, 2QO3, 4NA2. Source data for 

the proteasome inhibition assay (Extended Data Fig. 4) is provided with this paper. Other 

relevant data supporting the findings of this study are available in this published article or its 

Supplementary files.

Bauman et al. Page 16

Nat Chem Biol. Author manuscript; available in PMC 2022 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Fig. 1. Salinosporamide A hydrolysis and subsequent THF ring formation is 
accelerated by the presence of SalC
a, LCMS chromatograms of salinosporamide A (1) hydrolysis assay with and without SalC. 

* indicates compound retains chloride and no THF ring formation has occurred as evidenced 

by characteristic isotope pattern. b, Structures of compounds putatively identified by LCMS 

in a.
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Extended Data Fig. 2. Naturally produced analogs of salinosporamide A that served as 
inspiration for simplisporamide
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Extended Data Fig. 3. SalC activity assay with diffusible substrates
a, Reaction scheme depicting chemoenzymatic synthesis and subsequent SalB-PCP 

acylation assay to generate (15). b, LCMS chromatograms (BPCs and EICs m/z 266.18) 

of SalC activity assay with diffusible substrates shown in part (a) including pantetheine-

activated (13), CoaA product-activated (19), CoaD product-activated (20), CoA activated 

(14), and carrier protein-activated substrate (15). Substrates were activated via in vitro CoA 

enzyme biosynthesis. All SalC activity assays contained apo-SalB-PCP as well.
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Extended Data Fig. 4. Proteasome inhibitory activity of SalC assay product using purified 
human 20S proteasome
a, Proteasome activity determined by reading fluorescence (AFUs) of the cleaved substrate 

(Suc-LLVY-AMC) at 355 nm (excitation) and 460 nm (emission) every five minutes after 

substrate was added for 30 min in the presence of various inhibitors. Blank (no proteasome 

added) = black, control (no inhibitor) = gray, epoxomicin (0.5 μM) = green, SalC reaction 

product = red, no SalC control = dark blue, no substrate control = orange, salinosporamide A 

(0.5 μM) = light blue. Samples run in duplicate, all data points shown. b, Magnification 
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of y-axis of plot from a to examine successful inhibition of the 20S proteasome by 

epoxomicin, SalC reaction product, and salinosporamide A. c, Percent proteasome inhibition 

at 30 min, relative to control (no inhibitor, 0% inhibition). See Supplementary Fig. 14 for 

corresponding LCMS traces of extracts used in these assays.

Extended Data Fig. 5. Acylation of SalC with diffusible substrates
a, Reaction scheme depicting chemoenzymatic synthesis to generate (22) b, UV 

chromatograms (215 nm) of intact protein LCMS for transacylation assay with diffusible 
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substrates. Transacylation assay utilized linear mechanistic probe (21) activated in different 

ways (CoA-precursor-activated (23, 24), CoA-activated (25), and SalB-PCP-tethered, all 

generated in situ) and SalC. Transacylation assay with column purified 22 shown for 

comparison.

Extended Data Fig. 6. SalC overlay with a trans-AT KS
SalC structure aligned with closest Dali server homolog, the trans-AT KS OzmN KS2 (PDB 

ID: 4WKY) from the hybrid NRPS/PKS oxazolomycin pathway, RMSD 0.842 Å. Overall 

structure of SalC dimer (colors shown as previous, KS monomers in brown and green, 

flanking subdomains in yellow and teal) with OzmN KS2 (gray).
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Extended Data Fig. 7. SalC overlay with functional type I KS
SalC KS aligned with DEBS KS3 (PDB: 2QO3), RMSD 1.225 Å. a, Overall structure 

of SalC dimer (colors shown as previous, KS monomers in brown and green, flanking 

subdomains in yellow and teal) with DEBS KS3 (gray). b, Active site overlay of SalC 

(green) and DEBS KS3 (gray).
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Extended Data Fig. 8. Tyr284 is conserved in SalC homologs
Condensed alignment showing conservation of Tyr284 in all SalC homologs from 

Salinispora and Streptomyces cinnabarigriseus JS360 (CinC) but not in canonical elongating 

KSs. All SalC homologs from Salinispora strains found in JBI IMG database. For functional 

KS sequences refer to Supplementary Figure 5.
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Extended Data Fig. 9. SalC structure overlaid with bacillaene PKS (bae) KS2 bound to its 
natural intermediate
SalC is shown in green and BaeKS2 is shown in grey, bae intermediate in gold. PDB ID: 

4NA2, RMSD 1.071 Å.
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Extended Data Fig. 10. Proposed active site mechanism of SalC
Catalysis is initiated by deprotonation of Cys180 followed by transacylation of the SalB-

PCP tethered substrate through a tetrahedral intermediate (not shown). Lys348 deprotonates 

His353, and hydrogen bonding of the thioamide carbonyl to Tyr284 facilitates deprotonation 

of the thioester α-proton by His353. An intramolecular aldol reaction forms the γ-lactam; 

the oxyanion is presumably stabilized by dipole interactions with backbone amides, as is 

hypothesized for KSs.25 Subsequent β-lactonization through a tetrahedral intermediate leads 

to release of simplisporamide from SalC. Finally, Cys180 is reprotonated by His353.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Microbial natural products assembled by terminal cyclization reactions.
a, salinosporamide biosynthetic gene cluster (sal BGC) and proposed bicyclization 

of the SalB-PCP-tethered linear intermediate to assemble the salinosporamide A (1) 

pharmacophore. Bonds formed by unknown cyclization enzyme(s) are highlighted in gray. 

b, Representative additional examples of microbial natural products assembled via terminal 

cyclization reactions: obafluorin (2), fumiquinazoline F (3), vibralactone (4), nocardicin A 

(5), tenuazonic acid (6). Bond(s) formed in cyclization reaction and catalyzing enzyme class 

shown in red.
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Fig. 2: SalC is involved in late-stage salinosporamide A biosynthesis.
LCMS chromatograms of salinosporamide A standard and extracts from Salinispora 
cultures: wild type Salinispora tropica CNB440; S. tropica CNB440△salO; S. tropica 
CNB440△salA; S. tropica CNB440△salD; S. tropica CNB440△salC. 7 = salinosporamide 

B, 8 = salinosporamide J.
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Fig. 3: SalC is a γ-lactam-β-lactone bicyclase.
a, Reaction scheme for the chemoenzymatic synthesis of PCP-tethered linear substrate (15) 

from pantetheine-activated simplisporamide precursor (13) via in vitro CoA biosynthesis 

and Sfp-mediated loading. b, Intact protein LCMS chromatogram of SalB-PCP acylation 

assay (UV, 215 nm). See Supplementary Fig. 11 for intact proteomics HRMS data. c, 
LCMS chromatogram of SalB-PCP tryptic digest post acylation assay and MS2 Ppant 

ejection assay. d, Reaction scheme for SalC activity assay. e, LCMS chromatograms of 

linear hydrolysis product (16) standard, SalC activity assay with no SalC (3 h), SalC activity 
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assay (3 h), and SalC activity assay (overnight). See Supplementary Fig. 12 for HRMS data 

for R-17 and Supplementary Note for full characterization.
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Fig. 4: Transacylation of SalC by acylated-SalB.
a, Reaction scheme for the chemoenzymatic synthesis of 22 and subsequent transacylation 

assay with SalC. b, UV chromatograms (215 nm) of intact protein LCMS of apo-SalB-PCP 

and SalC (bottom trace; small amount of holo-SalB-PCP present likely due to native 

E. coli PPTase modification), SalB-PCP acylated with the mechanistic probe (21) and 

purified by size exclusion chromatography to yield 22 (middle trace), and the complete 

transacylation assay using 22 and SalC (top trace). See Supplementary Figs. 16 and 17 for 

intact proteomics HRMS data.
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Fig. 5: SalC structure and active site mutagenesis.
a, SalC overall tetrameric structure with each monomeric domain colored differently (KS 

domains in green and brown, flanking subdomain in teal and yellow). b, SalC active 

site with proposed catalytic residues labeled. c, UV (215 nm) chromatograms from intact 

protein LCMS transacylation assays using column purified 22 and SalC mutants. d, LCMS 

chromatograms of SalC activity assays (3 h) with WT SalC and SalC active site variants 

using 15. See Supplementary Figs. 27–30 for intact proteomics HRMS data.
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Fig. 6: Abbreviated key bicyclization steps of the proposed SalC mechanism with 15.
Once substrate undergoes transacylation from acylated SalB (15) to Cys180 of SalC 

(not shown), hydrogen bonding by Tyr284 facilitates deprotonation of the thioester α-

proton by His353. An intramolecular aldol reaction forms the γ-lactam and the resulting 

oxyanion is presumably stabilized by dipole interactions with backbone amides (not 

shown).25 Subsequent β-lactonization through a tetrahedral intermediate leads to release 

of simplisporamide (R-17) from SalC. See Extended Data Fig. 10 for further details.
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