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ABSTRACT
We introduce a new communication scheme for mobile wire-
less ad hoc networks (MANETs) utilizing the concept of co-
operative many-to-many communication, called opportunis-
tic cooperation1, as opposed to the traditional approach that
emphasizes on point-to-point communication. In the new
paradigm, the adjacent nodes no longer interfere with each
other but rather cooperate. Our analysis is for MANETs
when all the nodes in the network are endowed with M an-
tennas. We derive two upper bounds on the ergodic capacity
per node in the network. These upper bounds are compared
with Monte-Carlo simulation of point-to-point and many-
to-many communications. We show that one of our upper
bounds is a tight bound. Also, we demonstrate that the ca-
pacity of MANETs with multiple antennas is improved sig-
nificantly using cooperation as compared to non-cooperative
schemes, i.e., point-to-point communication.

Categories and Subject Descriptors: B.4.1 [Data Com-
munications Devices]: Receivers and Transmitters.

General Terms: Design, Theory, Performance.

Keywords: Ad hoc networks, MIMO systems.

1. INTRODUCTION
The capacity of multiple-input multiple-output (MIMO)

systems has received considerable attention [1], [2], [3]; how-
ever, all these studies concentrate on the communication be-
tween two nodes , i.e., point-to-point communication. Even
the work by Jovičić et al [6] studies the capacity of wire-
less ad hoc networks by assuming that the entire network
is a single MIMO system in which some nodes are part of
the transmitter and the remaining nodes in the network are
part of the receiver, and where all the nodes have only one
antenna. Their results are optimistic by assuming all the

1The term opportunistic communication in literature means
to transmit at higher rates when the channel condition is
good. Our opportunistic cooperation definition is different
as will be explained throughout the paper.
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receiving nodes in the network are capable of cooperating
with each other to decode the data. Furthermore, Chen and
Gans [5] and Blum [4] addressed the problem of capacity
for MIMO ad hoc networks assuming fading for the wireless
channel. However, both works only consider small-scale fluc-
tuations of the fading channels. Hence, Chen and Gans [5]
showed that the node capacity of a MIMO ad hoc network
goes to zero as n increases, because all the interfering nodes
have the same average power at the receiver node regardless
of their distance from the receiving node. If we also consider
large-scale fluctuations of the channel, on average, adjacent
interfering nodes have more destructive effects than farther
nodes. The computation of capacity considering both fading
and path loss parameters for wireless channels is a tedious
task due to complexity and dynamic nature of the MIMO
MANETs. We present a tight bound on the channel capac-
ity of MIMO MANETs when the wireless channel is modeled
with both large and small-scale fluctuations.

Also, we propose that a more appropriate strategy for
communications among nodes in wireless ad hoc networks is
a new approach based on cooperative many-to-many com-
munication [9]. In this new paradigm, multiple nodes that
are close to each other attempt to communicate concur-
rently. Nodes transmit and receive simultaneously using dif-
ferent portions of the available spectrum, which character-
izes an FDMA/MIMO approach. During transmission, the
node sends packets from only one of its antennas, while dur-
ing reception, it uses all of its antennas to receive and decode
packets from multiple nodes simultaneously. Thus, each dis-
tributed MIMO system in this scheme consists of multiple
transmitting nodes acting as a single-array of multiple an-
tennas, and a single receiver node with multiple antennas
in a cell. This approach does not require any coordination
among receiving nodes for decoding the received packets.

We show that per node capacity does not depend on the
total number of nodes n; however, it is a function of other
network parameters such as the number of receiving anten-
nas, cell area, average node density, noise, and the path loss
parameter. We also demonstrate that each node capacity
grows as its transmit power increases up to a point, after
which the capacity becomes constant. This result proves
that increasing interference up to a certain point does not
reduce each node capacity if the interference is properly
treated. We show that the total bandwidth required is finite
for the proposed FDMA/MIMO system. Section 2 presents
the network and communication models. Section 3 reports
the capacity analysis. Section 4 shows the numerical and
simulation results. We conclude the paper in section 5.



2. MODEL

2.1 Network Model
Consistent with prior work [7], [8], [9], we make the follow-

ing sets of assumptions. There is a total of n mobile nodes
in the network. Each node has an arbitrary destination to
send packets and this association does not change with time.
The power chosen by a node to transmit to another node is
constant and equal to P . Each node transmits data to an-
other node using a half-duplex2 wireless link of frequency
bandwidth ∆W . Also, we assume that the total area of the
network grows linearly with n. The network is divided in
cells. The cells have square shapes, each with area equal
to a

cell

that does not depend on n. Our model resembles
the one introduced by Grossglauser and Tse [8], who con-
sider a packet to be delivered from source to destination via
one-time relaying. The position of node s at time t is indi-
cated by X

s

(t). Nodes are assumed to move according to
the uniform mobility model [9], [8], in which the steady-state
distribution of the mobile nodes is uniform. Accordingly, the
average node density Ω and the total network area A

T

(n) are
related by the following definition A

T

(n) := n

Ω

.

Each node is assumed to know its own position (but not
the position of any other node) by utilizing GPS [9], and to
store a geographical map of the cells in the network with the
associated frequencies as described later. The GPS receiver
is also assumed to be used to provide an accurate common
time reference to keep all nodes synchronized.

We use two types of channels. Control channels are used
by nodes to obtain such information as the identities of
strong interference sources, the data packets expected by
destinations, and the state channel information (CSI). The
detailed description of the control channel is beyond the
scope of this paper but it can be found in [9].

Each node simultaneously transmits and receives data
during a communication time period, through different (non-
overlapping) frequency bands. This time period of commu-
nication is called a communication session or simply ses-
sion. Furthermore, each session is divided in two parts. A
neighbor discovery protocol is used by nodes during the first
part to obtain their neighbors information (e.g., node identi-
fier (ID)), and the transmission of data is performed during
the second part. Each node has a unique ID that does not
change with time.

As illustrated in Fig. 1, there are nine different cell num-
bers. Hence, many cells use the same number, but they
are placed regularly far apart from each other to reduce in-
terference. Thus, the frequency division assignment is such
that each set of cells numbered from 1 to 9 employs different
frequency channels (bandwidths). Let ª

i

denote the set of
non-overlapping data frequency bands (channels) used in cell
i. Accordingly, the data channels are ordered and grouped
as follows. ª1 = {W (1)

1 , ..., W

(1)
A }, ª2 = {W (2)

A+1, ..., W
(2)
2A },

..., ª9 = {W (9)
8A+1, ..., W

(9)
9A }, in which W

(i)
j

stands for the j

th

bandwidth in cell i, and A is the maximum number of nodes
allowed 3 to communicate in any cell. As mentioned earlier,

2Half-duplex means that a node cannot transmit and receive
data simultaneously through the same spectrum ∆W .
3The limitation on the number of nodes allowed to commu-
nicate in each cell is due to practical reasons of the MIMO
systems (e.g., hardware complexity, maximum number of
receive antennas, power consumption constraint, etc.).

the signaling in the control channel provides each node in
cell i knowledge of who the other nodes in the same cell are,
and the node uses this information to choose a data channel
to receive data in the following order based on its own ID
and the IDs of its neighbors: (i) The node with the highest
ID in cell i is associated (for reception) with the data chan-

nel ∆W centered at W

(i)
(i°1)A+1 in ª

i

. (ii) The node with the

second highest ID in cell i is associated (for reception) with

the data channel ∆W centered at W

(i)
(i°1)A+2 in ª

i

, and this
continues for all nodes in cell i.
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Figure 1: Cells numbering in the network with a

cell

as the cell area.

Accordingly, the total bandwidth required for the entire
network is ∆W

total

= 9A∆W . Because ∆W and A are
finite, the total bandwidth necessary for the FDMA/MIMO
ad hoc network is also finite.

For the cell configuration given, nodes s and j in cell 5
at the center of Fig. 1 use different frequency bandwidths
to communicate with each other such that, for any other
node k located in another cell numbered as 5 and using the
same frequency channels, it is true that |X

k

(t) ° X

j

(t)| ∏
(1 + ∆)|X

s

(t) ° X

j

(t)|, where ∆ > 0, so that X

k

is at a
distance greater than |X

s

(t)°X

j

(t)| to node j. This is called
the protocol model and fulfills the condition for successful
communication [7].

At time t, a cell has S nodes such that the data commu-
nication is S-to-S (see Fig. 2) where S is a random vari-
able due to the mobility of the nodes. Each node transmits
through a single antenna (employing FDMA) the same or
different data packets to the other S°1 nodes in the same
cell, using S°1 distinct data channels (downlink), while it
simultaneously receives (through M antennas) up to S°1
different data packets from the other S°1 nodes through
its assigned data channel (uplink). Hence, every node can
concurrently transmits (receives) to (from) all other nodes
in the same cell. Thus, multi-copies of the same packet can
be simultaneously relayed to reduce delay [9].

Now, it can be shown that the fraction of cells containing
S = s nodes is obtained by [9]

lim
n!1

{S = s} = 1
s! (Ω a

cell

)s

e

°Ω acell
. (1)

Consequently, the fraction of cells having more than A nodes
can be designed to be very small, for a small positive integer
A [9]. If a cell contains more than A nodes, only A nodes
are allowed to participate in each communication session.
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Figure 2: FDMA/MIMO downlink and uplink de-
scription for data channels in a cell. Communication
is S-to-S (i.e., many-to-many).

2.2 Communication Model
Without loss of generality (wolog), let the cell where node

j is currently located be denoted by cell 0. Also, assume
that the other cells (employing the same set of frequencies
as cell 0) are numbered from i = 1 to 1. P is the transmit
power chosen by node s to transmit to node j. The distance
between a transmitting node s (located at cell i) and the
receiver j is denoted as r

s,j

(i). Assuming no fading, the
received signal power at node j from node s is 4

P

s,j

(i) =
P/ (1 + r

s,j

(i))Æ, where Æ is the path loss parameter and
assumed to be greater than or equal to 2. r

s,j

(i) is not a
function of receive antennas, because the distances between
the transmitting node s and all M antennas of the receiver
j are assumed to be equal for practical considerations.

We consider that CSI is only known at the receiver. Fur-
thermore, as illustrated in Fig. 2, in every cell, each MIMO
system consists of multiple transmitting nodes and a single
receiver node (with M receiving antennas).

We use boldface capital letters to represent matrices and
boldface lower case letters to denote vectors. In addition,
the following standard notation will be used: 0 for vector
transpose, † for conjugate transpose of a matrix (or vec-
tor), § for conjugate transpose of a scalar, tr(·) for trace,
and det(·) for determinant of a matrix. Also, diag(...) is
used to represent a diagonal matrix. The received signal
vector (from cell i) for one receiver node j is defined as
y

j

(i) = [y1,j

(i), y2,j

(i), ..., y
M,j

(i)]0. The transmission vec-
tor from cell i is x(i) = [x1(i), x2(i), ..., xLi(i)]

0, where L

i

=
min(A, S

i

) ° 1 is the number of nodes in cell i transmit-
ting in the same frequency (we assume that the nodes in
cell i are transmitting in the same frequency band as that
node j is using to receive data). Furthermore, all trans-
mit nodes in each cell only use one antenna while receiving
nodes utilize all their M antennas for communication. Thus,
the total transmitted power for the cell is L

i

P (for the fre-
quency band in consideration). The received signal (from a
cell i) for each node is defined as y

j

(i) = H
j

(i)x(i) + z
j

,
where z

j

= [z1,j

, z2,j

, ..., z

M,j

]0 is a zero-mean complex addi-
tive white Gaussian noise (AWGN) vector. We assume that
E[z

j

z†
j

] = æ

2
zIM

, where I
M

is the M £M identity matrix

and æ

2
z is the noise variance. H

j

(i) is the M £ L

i

channel
matrix from cell i to node j with its elements defined as [6]

h

ms,j

(i) := (H
j

(i))
ms

=
¡ms,j(i)

(1+rs,j(i))Æ , (2)

where 1 ∑ m ∑ M , 1 ∑ s ∑ L

i

. Note that this channel
modeling considers both the fading and distance effects. The
fading coefficient ¡

ms,j

(i) is zero-mean, Gaussian, with inde-
pendent real and imaginary parts, each with variance 1/2.
Equivalently, ¡

ms,j

(i) is a stationary and ergodic stochas-

4This path loss channel model ensures that the received
power is never greater than the transmitted power [6], as
opposed to the common approach of 1/r

Æ

s,j

(i) [7], [8], [9].

tic fading process that is independent for each sender and
receiver antenna pair, where E

¡

[|¡
ms,j

(i)|2] = 1. The fad-
ing coefficients can also be given in matrix notation, i.e.,
¡

ms,j

(i) = (Φ
j

(i))
ms

. Thus, Φ
j

(i) is a M £ L

i

matrix
of complex variates whose columns are independently nor-
mally distributed with mean vector 0 and covariance ma-
trix Ψ

j

(i) = I
M

8(i, j), i.e., N(0, I
M

) [10]. Consequently,
Φ

j

(i)Φ†
j

(i) is a positive definite Hermitian matrix having
the complex Wishart distribution characterized by the fol-
lowing probability density function [10]

f(Φ
j

(i)Φ†
j

(i)) = 1

º

1
2 M(M°1){det[Ψj(i)]}Li M

k=1 Γ(Li°k+1)

· e° tr[Ψ°1
j (i)Φj(i)Φ†

j (i)] {det[Φ
j

(i)Φ†
j

(i)]}Li°M

. (3)
This complex Wishart distribution for a matrix Φ

j

(i)Φ†
j

(i)

will be denoted by Φ
j

(i)Φ†
j

(i) ªW
M

(L
i

,Ψ
j

(i)).

3. ERGODIC CAPACITY
Let H

j

(0) represent the channel matrix for cell 0, i.e.,
H

j

(0) describes the channel matrix to node j from the nodes
in the same cell as j is located. The analysis is asymptotic in
n, i.e., n !1. Thus, A

T

(n) !1, and wolog, we consider
that the cell 0 is located at the center of the network area.
Given that each node transmits to another node with power
P using only one antenna, and CSI is only known at the
receiver side, the ergodic capacity of a receiving node j is
given (in units of bits/s/Hz) by [5], [4], [2]

C

j

= min(A,Ω acell)°1
9Ω acell

EH log2 det I
M

+ PH
j

(0)H†
j

(0)

· æ

2
zIM

+
i∏1 PH

j

(i)H†
j

(i)
°1

, (4)

where the term min(A,Ω acell)°1
Ω acell

averages over the number

of nodes allowed to communicate per cell, 1
9 accounts for

the frequency division multiple access, EH[·] denotes the
ergodic expectation over all instantaneous H

j

(i), and the
summation in i refers to the interference coming from all
cells in the network using the same frequency band ∆W as
j uses for reception. Noting that log2 det(·) is concave and
using Jensen’s inequality and the fact that, given j, H

j

(i)
is independent distributed for all i, we obtain
C

j

∑ min(A,Ω acell)°1
9Ω acell

log2 det I
M

+ PEH[H
j

(0)H†
j

(0)]

· EH æ

2
zIM

+ P

i∏1 H
j

(i)H†
j

(i)
°1

. (5)

This upper bound is computed in three cases according to
the transmit power level P . Compared with noise, we con-
sider the cases of strong interference, no interference, and the
intermediate case. The intermediate case is analyzed first.
Accordingly, we present the following lemma and corollary.

Lemma 1 Let the same order square Hermitian matrices
G and V be positive definite. Then

(G + V)°1 ∑ 1
4
(G°1 + V°1), (6)

with equality if and only if G = V.
Proof: See Theorems 6.6 and 6.7 in [11].

Corollary 1 Let the square Hermitian matrix Y(i) be pos-
itive definite, where i 2 [1,1) and Y(i) has same order for
all i. Then 1

i=1 Y(i)
°1 ∑ 1

i=1
1
4i Y

°1(i), (7)

with equality if and only if Y(i) = 1
k=i+1 Y(k) 8 i ∏ 1.

Proof: In Lemma 1, put G = Y(i), V = 1
k=i+1 Y(k), and

the result follows.



EH[H
j

(0)H†
j

(0)] = diag E

h

L0

s=1

h1s,j

(0)h§1s,j

(0) , E

h

L0

s=1

h2s,j

(0)h§2s,j

(0) , · · · , E

h

L0

s=1

h

Ms,j

(0)h§
Ms,j

(0) . (8)

From (5) and Lemma 1, we obtain

C

j

∑ min(A,Ω acell)°1
9Ω acell

log2 det I
M

+ PEH[H
j

(0)H†
j

(0)]

· 1
4æ

2
z
I

M

+ 1
4P

EH
i∏1 H

j

(i)H†
j

(i)
°1

. (9)

3.1 Data Signal Strength Computation
Because H

j

(0) is a M £L0 matrix with independent and
identically distributed (iid) zero mean unit variance entries,
then we arrive at (8) (see top of the page).

Because the distance between the transmit antenna from
any other node and each receiving antenna in node j is as-
sumed to be the same, we have

E

h

L0

s=1

h

ms,j

(0)h§
ms,j

(0) = E

S,r

L0

s=1

1

(1+rs,j(0))2Æ , (10)

for 1 ∑ m ∑ M .
Therefore, we obtain

EH[H
j

(0)H†
j

(0)] = E

S,r

L0

s=1

1

(1 + r

s,j

(0))2Æ

I
M

. (11)

Lemma 2 For the uniform mobility model,

E
S,r

L0

s=1

1

(1+rs,j(0))2Æ = g(a
cell

, Æ) q(A, Ω a
cell

) (12)

where g(a
cell

, Æ) = 4
acell

1+
acell

2

2Æ°1
°1° acell

2 (2Æ°1)

(2Æ°2)(2Æ°1) 1+
acell

2

2Æ°1

and q(A, Ω a

cell

) = 1
S0=2

[min(A,S0)°1](Ωacell)
S0

e

°Ωacell

S0! .

Proof: Because the steady state node distribution is uni-
form, the distances between the nodes in cell 0 and node j

are iid distributed. Therefore,

E

S,r

L0

s=1

1

(1+rs,j(0))2Æ =
1

L0=2

L0 {S = S0}
rm

0

fR(r)dr

(1+r)2Æ , (13)

where f

R

(r) is the probability density function for the dis-
tance between a sender node and node j in cell 0, and r

m

is their maximum distance. For a uniform node distribution
and considering node j located at the center of cell 0 (for a
circular cell shape), we have that [12]

f

R

(r) =
2r

r

2
m

if 0 ∑ r ∑ r

m

0 otherwise.
(14)

This assumption is justified by observing that each cell in
Fig. 1 can be circumvented by a circle of radius acell

2 . Be-
sides, the analytical results will be contrasted with Monte-
Carlo simulations for the actual ergodic capacity. Noting
that the maximum possible distance inside a cell between
two nodes is r

m

= acell
2 , we obtain the following result

rm

0

2rdr

r

2
m (1+r)2Æ = 4

acell

acell
2

0

rdr

(1 + r)2Æ

= 4
acell

1+
acell

2

2Æ°1
°1° acell

2 (2Æ°1)

(2Æ°2)(2Æ°1) 1+
acell

2

2Æ°1 . (15)

Now, from (1), the summation term in (13) becomes
1

S0=2

L0 {S = S0}=
1

S0=2

[min(A,S0)°1](Ωacell)
S0

e

°Ωacell

S0! . (16)

Combining (13), (15) and (16), the final result follows.

3.2 Interference Computation
To simplify the derivations, we assume that the distance

between the receiver node j in cell 0 and the interferer in
cell i is on average the distance from center to center of
these two cells. Accordingly, due to the cell arrangement
illustrated in Fig. 1, the path loss from each interfering cell
using the same frequency band ∆W as j can be written by
5

1

(1+rj(i))Æ = 1

1+3
p

acell

p
k

2
i +`

2
i

Æ , (17)

where (3
p

a

cell

k

i

, 3
p

a

cell

`

i

) are the coordinates of cell i

with respect to cell 0 (i.e., cell 0 is taken as the origin for
the coordinates), in which k

i

2 and `

i

2 , and both k

i

and `

i

cannot be zero simultaneously. Consequently,
H

j

(i)H†
j

(i) = 1

1+3
p

acell

p
k

2
i +`

2
i

2Æ Φ
j

(i)Φ†
j

(i). (18)

In addition, we need the following lemma.

Lemma 3 Let GG† ªW
p

(q,Ψ). Then, for q ° p > 0

EG[(GG†)°1] =
1

q ° p

Ψ°1
. (19)

Proof: See [13] considering the complex Wishart distribution
given in (3).

From (18), Corollary 1 and Lemma 3, the term associated
with the total interference in (9) can be developed as

EH

i∏1

H
j

(i)H†
j

(i)

°1

∑
i∏1

1
4i EΦ

1

(1+rj(i))2Æ Φ
j

(i)Φ†
j

(i)
°1

=
i∏1

(1+rj(i))2Æ

4i E

S

1
Li°M

Ψ°1
j

(i)

= E

S

1
Li°M

≥(Ω,acell,M,A)

ki2 `i2

1+3
p

acell

p
k

2
i +`

2
i

2Æ

4i

u1(acell,Æ)

I
M

= ≥(Ω, a

cell

, M,A) u1(acell

, Æ) I
M

:= w1(Ω, a

cell

, Æ, M,A) I
M

, (20)

where we used the fact that Ψ
j

(i) = I
M

8(i, j), and 8 i

≥(Ω, a

cell

, M,A) := E

S

1
L

i

°M

=
A

Si=M+2

e

°Ωacell (Ω acell)
Si

[Si°1°M ]Si!
+ e

°Ω acell

A°1°M

1

Si=A+1

(Ωacell)
Si

Si!
. (21)

5In this case, r

j

(i) is the distance between the center of cell
i and the center of the cell in which j is currently located
(i.e., cell 0).



The function w1 is used later to obtain one bound for the
capacity of the distributed MIMO ad hoc network.

For practical computation of the interference, it can be
shown that the function u1(acell

, Æ) in (20) converges very
fast. This result demonstrates that only adjacent interfering
cells are dominant, which is commonly considered for MAC
protocol design [14].

3.3 Interference Analysis for a Tighter Bound
By inspecting Fig. 1, we observe that the interfering nodes

for cell 5 in the center of Fig. 1 are located in symmetry.
To clarify our next approach, consider Fig. 3 which is ob-
tained from Fig. 1, where we consider at most only the
two hops away cells [14] that are interfering with the center
cell (designated as cell 0). Accordingly, we can bundle the
set of symmetric cells in the computation of (9) in order to
obtain a tighter bound, because the channel matrix associ-
ated to these interfering cells are equivalent on the average,
for a uniform distribution of the nodes. Consequently, con-
sider the following bundling and respective associated dis-
tances to receiver node j in cell 0. A = 4

i=1 Φ
j

(i)Φ†
j

(i)

with r

j

(A) = 3
p

a

cell

, B = 8
i=5 Φ

j

(i)Φ†
j

(i) with r

j

(B) =

3
p

2a

cell

, C = 12
i=9 Φ

j

(i)Φ†
j

(i) with r

j

(C) = 6
p

a

cell

, D =
20
i=13Φj

(i)Φ†
j

(i) with r

j

(D)=3
p

5a

cell

, E= 24
i=21Φj

(i)Φ†
j

(i)
with r

j

(E) = 6
p

2a

cell

, and consider the following lemma.

Lemma 4 Let G(1), ...,G(K) be independently distributed

with G(i) ª W
p

(q
i

,Ψ) for i = 1, ..., K. Then K

i=1 G(i) ª
W

p

( K

i=1 q

i

,Ψ).
Proof: See Theorem 3.3.8 in [15, page 94].

Accordingly, because the steady-state node distribution is
uniform, it results that A, B, C and E are iid with dis-
tribution W

M

( 4
i=1 L

i

, I
M

), and D ª W
M

( 20
i=13 L

i

, I
M

).
From (9), Corollary 1 and Lemma 3, we obtain for two hops

EH
24
i=1Hj(i)H

†
j(i)

°1

= E�
A

(1+rj(A))2Æ + B
(1+rj(B))2Æ + C

(1+rj(C))2Æ + D
(1+rj(D))2Æ

+ E
(1+rj(E))2Æ

°1

∑ E�[D°1]
(1+3

p
5acell)

2Æ

256

u3(acell,Æ)
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· (1+3pacell)
2Æ

4 +
(1+3

p
2acell)

2Æ

16 +
(1+3

p
4acell)

2Æ

64 +
(1+3

p
8acell)

2Æ

1024

u2(acell,Æ)

= u2(acell, Æ)

S1> M
4 +1,...,S4> M

4 +1

4
i=1 P{S=Si}

4
i=1 min(A,Si)°4°M

IM

+ u3(acell, Æ)

S13> M
8 +1,...,S20> M

8 +1

20
i=13 P{S=Si}

20
i=13 min(A,Si)°8°M

IM

:= w2(Ω, acell, Æ, M,A) IM , (22)

where {S = S

i

} is given by (1) 8 i, and we used the fact
that EΦ[A°1] = EΦ[B°1] = EΦ[C°1] = EΦ[E°1].

We also show this by comparing our analytical results with
Monte-Carlo simulation of (4) to demonstrate the tightness
of capacity upper bound.

3.4 Capacity
The ergodic capacity of a node j follows from (9), (11),

Lemma 2, and (20). Hence,
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p
acell

Figure 3: Cell classification for bundling Wishart
matrices.

C

j

∑ M[min(A,Ω acell)°1]
9Ω acell

log2 [1 + P q(A, Ω a

cell

)g(a
cell

, Æ)

· 1
4æ

2
z

+ w(Ω,acell,Æ,M,A)
4P

, (23)

where the function w(Ω, a

cell

, Æ, M,A) represents either w1

or w2 from (20) or (22), respectively.
For the case of no interference, the upper bound capacity

is obtained from (5) and (12), where the term associated
with interference is ignored. Accordingly, we have

C

j

∑ M[min(A,Ωacell)°1]
9Ωacell

log2 1+ P

æ

2
z

q(A, Ωa

cell

)g(a
cell

, Æ) .(24)

On the other hand, if interference is strong, the term asso-
ciated with noise can be neglected. Consequently, we obtain

C

j

∑ M[min(A,Ω acell)°1]
9Ω acell

log2 [1 + q(A, Ω a

cell

)g(a
cell

, Æ)

·w(Ω, a

cell

, Æ, M,A)] . (25)

Thus, from (23), (24) and (25), the node capacity grows
with the number of receiving antennas M . Furthermore,
because the terms in these equations do not depend on n,
the node capacity does not decrease with n. Note that our
channel matrix H

j

(i) incorporates the decay with distance,
i.e., 1

(1+rj(i))Æ , which is the large scale representation of the

channel.
This result shows that the ergodic upper bound capacity

for a node increases with power P , as in (23) and (24), up
to a point where it remains constant and there can be no
gain in capacity, as in (25), by increasing P .

4. RESULTS
The numerical and simulation results presented here were

obtained assuming that the maximum number of nodes al-
lowed to communicate in a cell is A (as said in Section 2.1),
and considering the effect from the two hops of interference.

Fig. 4 shows the resultant node capacity upper bound
indicated by the solid line as a function of the transmit
power P , obtained by considering the lower-part curve from
the intersection of the three curves given by (23), (24) and
(25) where w2 from (22) was used. The bound using w1

from (20) is also shown. In this figure, we also plot the



Monte-Carlo simulation of (4) by averaging over 15000 ran-
dom network topologies. Unlike our analytical model that
interfering nodes are assumed to be located in the center
of each interfering cell, the nodes are distributed randomly
and uniformly in the simulation area. We observe that the
ergodic capacity increases with the increase of the power up
to a point where interference is dominant such that no in-
crease in capacity is possible by increasing P . The result
clearly shows that our upper bound obtained by bundling
the Wishart matrices is close to the simulation. The in-
tuition behind it is based on the fact that it is commonly
known that the major portion of interference is caused by
two adjacent hops in wireless ad hoc networks [14].

Our proposed cooperation allows nodes inside a cell to co-
operate and no longer compete, by employing a distributed
MIMO concept. Also, note that the adjacent interfering
cells are in the same symmetric distance for any given cell.
Therefore, the Wishart matrices for these channels can be
bundled together which makes Lemma 1 a reasonable ap-
proach for computation of the capacity. This figure also
shows that the approach in (20) provides a looser bound
because there the Wishart matrices with the same distance
from the center cell are considered separately, i.e., multiplied
by different coefficients.

In addition, Fig. 4 presents the Monte-Carlo simulation
for a MIMO point-to-point communication approach. In
this case, we model each node using M antennas for trans-
mission and reception. Each node uses transmit power P in
each antenna such that the total transmitted power is MP .
Also, in the point-to-point technique, only one pair of nodes
per cell is able to communicate successfully [8]. We observe
that our scheme outperforms the point-to-point case. The
opportunistic cooperation is a framework that allows simul-
taneous many-to-many communication. Moreover, our ap-
proach is a distributed MIMO system that supports more
than M transmit antennas (i.e., A°1 > M). Hence, oppor-
tunistic cooperation increases the average node capacity.

5. CONCLUSIONS
The computation of a tight bound on the achievable ca-

pacity of MANETs with nodes having multiple antennas is
an important and difficult problem. We have introduced a
new cooperation scheme for such networks and computed
a tight bound for the per node ergodic capacity of these
networks. Our proposed opportunistic cooperation scheme
demonstrates significant capacity improvement as compared
to non-cooperative communication schemes. This capacity
improvement is achieved at the expense of increase in re-
ceiver complexity for each node. The results also demon-
strate that with cooperation among nodes, the capacity of
the ad hoc networks increases by increasing the transmit
power of the nodes for some practical values of P .
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