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Abstract

Given considerable advancements in automated driving sys-
tems, the day when autonomous vehicles will be regularly
present in our everyday life is impending. It is, therefore, very
significant to put emphasis on the effect that giving up auton-
omy might have on an individual. We take into consideration
an experimental data set regarding participants’ reported dis-
comfort levels to tackle the following questions: How can we
represent a discomfort measurement in a meaningful way? Us-
ing this representation, can future discomfort reactions be pre-
dicted? We identify key features, identify baseline models, and
develop a new approach based on the k-nearest neighbor model
to considerably improve the prediction of individual user’s dis-
comfort measurements. A discussion of limits and potentials
concludes the paper.
Keywords: discomfort; autonomous driving; k-nearest neigh-
bors; human-machine interaction;

Introduction
The rapid increase in the automation level of vehicles and the
development of autonomous cars will soon lead to personal
experiences and interactions with this technology in our ev-
eryday lives (ERTRAC, 2019). As a consequence, driving
becomes a cooperative task between a human and a technical
system that perceives, interacts, and decides. Technical chal-
lenges of the steering process have progressively been solved
within the last years (Guo et al., 2018).

Whenever humans are involved, however, there is more
than the technical level that needs to be taken into account for
a smooth interaction. Human drivers are not technical sys-
tems. The cognitive, emotional, and affectionate state of the
human is of high importance when aiming for successful co-
operation and enhancing the driver’s enjoyment, pleasure and
most important – feeling of safety, while they transfer auton-
omy to the car. If the system has a general understanding
of how specific actions affect the user, then it has the oppor-
tunity to perform an appropriate action towards achieving a
goal while minimizing feelings of discomfort within the user.

Discomfort is hereby understood as any unpleasant expe-
rience during (automated) driving and is conceptualized as
opposite part of comfort. Comfort is defined as a subjec-
tive, pleasant state of relaxation resulting from confidence in
safe vehicle operation, which is achieved by the removal or
absence of uneasiness and distress (Beggiato, Hartwich, &
Krems, 2019). Traditional comfort aspects like noise, vibra-
tion, and harshness have been identified as main variables af-
fecting driving comfort. However, in automated driving addi-

tional psychological determinants are discussed such as trust
in the system, apparent safety or familiarity of driving ma-
noeuvres (Elbanhawi, Simic, & Jazar, 2015).

These new comfort aspects do also differ from being a co-
driver of a manually driven vehicle, mainly because 1) a hu-
man driver shares the same life-threatening risk in case of an
accident (vs. a technical system) and 2) the social interac-
tion with a human driver makes it easier to mention and re-
duce discomfort by changing the driving style. Even though,
a starting point for identifying potentially uncomfortable au-
tomated driving scenarios is to categorize situations and pa-
rameters that affect comfort as manual driver and co-driver
(for an overview see Beggiato et al. (2019)).

One of the most often mentioned uncomfortable situations
as co-driver relate to distance keeping, i.e. driving too close
behind a vehicle ahead. Thus, this potentially uncomfortable
scenario (close approach) was selected and implemented in
the driving simulator study from which these data originate
(Beggiato, Hartwich, et al., 2020). As a consequence, the
presented results are limited to such distance-related driving
situations and not e.g. discomfort due to lateral deviations
from the expected trajectory, driving too fast in curves, unpre-
dictable behaviour of others etc. However, distance keeping is
already an issue in currently available driving assistance sys-
tem like Adaptive Cruise Control and thus, these assistance
systems could also benefit from detecting discomfort due to
subjectively perceived short distances.

In this paper, we focus specifically on individual differ-
ences in the extent of discomfort, which are important to
adapt the behaviour of an autonomous vehicle (AV) to its re-
spective user. So, once discomfort is detected the AV can
make a more informed decision on how to react in a certain
situation to reduce the user’s discomfort.

Previous predictive approaches have focused on the detec-
tion of discomfort in a classification manner (Dommel, Pich-
ler, & Beggiato, 2021). However, we are interested in more
than solely predicting whether discomfort is present or not.
How intense was the experienced discomfort? When did it
start? We aim to find an appropriate representation for dis-
comfort such that similar questions are answered, while also
providing the basis for a predictive modeling task of an indi-
vidual’s experienced discomfort? This leads to the research
questions that are approached in the following:

RQ 1: Given an individual’s measurement of discomfort in
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the range 0-100, how can we represent it through meaningful
features that can capture individuals?

RQ 2.1: How can a predictive modeling task based on the
features in RQ1 be defined and evaluated?

RQ 2.2: Can the predictive performance be pushed be-
yond the level of performance achieved by static and aggre-
gate models by successfully leveraging the information avail-
able in the individual data?

The paper is structured as follows: We will first introduce
the relevant data. Afterwards, we introduce a meaningful dis-
comfort measurement feature representation. Based on this
we derive our predictive modeling task. We approach this
modeling task, by using a user-based recommender method
for predicting individual discomfort. Finally, we present
and discuss the results of the prediction of discomfort in au-
tonomous driving.

Data
The present data set was collected by Beggiato, Hartwich, et
al. (2020). 40 participants took part in the stationary driving
simulator experiment. The study was conducted in 2 sessions,
separated by two months. The participants were presented
with identical driving scenarios for both sessions, where they
experienced the simulation of driving in a fully automated car
that is approaching a truck on a straight rural road three times
and they had no possibilities to influence the ego car’s be-
havior (see Figure 1). The approaching speed was about 102
km/h whilst the speed of the truck was constantly 80 km/h.
At a minimum distance of 4 meters the ego car was slow-
ing down to 60-70 km/h and increasing the distance again.
Afterwards the next phase begun by accelerating to the origi-
nal speed again. The overall time for the scenario was about
three minutes. Altogether, in both sessions each participant
experienced six minutes of autonomous driving including six
discomfort inducing events.

Figure 1: Ego perspective of the participants car approaching
the truck

During the whole driving session the participants had the
task to indicate their perceived level of discomfort with a
handset controller. So according to the deflection of the con-
troller lever the amount of felt discomfort could be recorded.

At the beginning of each session the participants were
asked to push the discomfort lever for testing and synchro-
nization purposes. Thus, these first 15 seconds, 1000 data
points, are excluded from the used data set. Additionally, all
measurements beyond second 157, the 10500th data point,
are not considered due to demounting noise after the driving
session.

Furthermore we excluded two participants as outliers from
our final data set, because their single discomfort events could
not be distinguished from each other, which leaves 38 avail-
able participants. In the following, we refer to the 3 discom-
fort inducing events from the first session as Event 1–3 and
from the second session, Event 4–6.

Discomfort Measurements Representation
Telpaz et al. (2018) performed an on-road wizard-of-oz study
in an urban area focusing on exterior features related to other
road users. The subjects were asked to indicate their com-
fort by using a potentiometer dial ranging from one to ten.
They found that car and context related features, are a main
factor to identify discomfort inducing events. Specifically,
they showed that vehicle dynamics, i.e., speed under consid-
eration of external features like velocity or position of other
traffic participants are a main factor for classifying comfort
and respectively discomfort in autonomous driving.

Following that, we found that the ratio between the ego car
speed and distance to the vehicle in front is a good approxi-
mation of the aggregate discomfort among all participants as
shown in Figure 2.

Figure 2: Mean discomfort and the speed-to-distance ratio

However, on an individual level this ratio does not always
depict the events in an adequate way as shown in Figure 3
for a selected participant as an example. For example, the
ratio underestimates the intensity experienced discomfort in
Event 1, and it cannot pinpoint the moment in time when the
discomfort started in Event 4.

Within the data set we found a wide variety between the
measurements of expressed discomfort by participants (cf.
Figure 4). A static model like the speed-to-distance ratio can
obviously not represent every individual accurately.

The standard deviation of discomfort for all participants
over time is shown in Figure 5 and equals sd = 12.058 over all
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Figure 3: Example difference between speed to distance ratio
and a participant’s discomfort

Figure 4: Example for variety in discomfort between two par-
ticipants for the same driving session

events. This observation can be explained by the fact, that dis-
comfort is a very subjective feeling that differs between indi-
viduals (Kuijt-Evers, Groenesteijn, de Looze, & Vink, 2004).

Figure 5: Standard deviation of discomfort over time for all
participants

Given this extent of variability among the discomfort
curves, a prediction focusing only on the presence or absence
of discomfort is not sufficient. Therefore, in contrast to sim-
ply binarizing the events, we introduce a representation of
discomfort based on meaningful curve features, that we will
use for our predictive modeling task, as described in the fol-
lowing section. Given a discomfort curve, such as the one de-
picted in Figure 4, we describe it using the following five fea-
tures. Starting with the area under the curve (AUC) which de-

scribes the amount of discomfort overall. Then, global maxi-
mum is the maximum intensity of the experienced discomfort.
The onset tells us when the discomfort feeling started. Slope
indicates how fast is the maximum discomfort reached. And,
finally, duration explains how long did the discomfort last. A
visual representation of these five features applied on an in-
dividual’s discomfort curve is shown in Figure 6. With these
features, a discomfort curve during a single event can be rep-
resented numerically, facilitating the modeling and prediction
process, while additionally answering questions that provide
more detailed insight into describing the experienced discom-
fort.

Figure 6: Representation of an example participant’s discom-
fort curve using the five derived features. This representation
is used as a ground truth for modeling

Predictive Modeling Task
The main objective of the predictive modeling task is predict-
ing an individual’s discomfort curve. We represent a discom-
fort curve using the 5 features as described previously: the
AUC, global maximum, onset, slope, and duration. When
a discomfort inducing event occurs, an individual’s reaction
is obtained, which is then used to predict discomfort curves
for future events, through our 5-feature curve representation.
In order to evaluate a model’s individual predictive perfor-
mance, we calculate the root mean squared error (RMSE) be-
tween the predicted values, and the true values for the 5 fea-
tures representing the individual’s discomfort curve, for each
participant. Finally, the mean of all RMSE values is taken to
determine the model’s overall performance. In the following,
we propose a new modeling approach which is based on the
k-nearest neighbors algorithm.

k-Nearest Neighbors
k-nearest neighbors (k-nn) is a learning algorithm used for
classification and regression that predicts a target value for
unseen data based on previously learned data points. For
a new data point, a neighborhood consisting of the k near-
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Table 1: Predictive performance of all models: Mean RMSE values for the predicted discomfort curve feature values across
all participants for each event. Speed-to-Distance Ratio – The 5 feature values of the speed-to-distance ratio curve; Aggregate
Discomfort – The mean values of every other participant for a specific event; Individual Discomfort – The mean values of
previous experienced events by the individual; k-Nearest Neighbor Model – Our approach based on the k-nearest neighbors
model

Event
Approach 1 2 3 4 5 6 Overall

Speed-to-Distance Ratio 0.427 0.408 0.425 0.408 0.409 0.424 0.417
Individual Discomfort 0.374 0.206 0.261 0.204 0.111 0.213 0.228
Aggregate Discomfort 0.134 0.129 0.164 0.124 0.134 0.132 0.136

k-Nearest Neighbor Model 0.134 0.118 0.126 0.108 0.101 0.096 0.114

est (most similar) known data points is created. The sim-
ilarity is thereby determined based on a set of features de-
scribing the instances. The prediction is then calculated by
building the average target value of the neighbors. In order
to select a model that represents the data well enough, but
does not overfit and can perform accurately against unseen
data, the value for k is often determined using cross-validation
(Kramer, 2013), where the data is split into training and vali-
dation sets. In the specific case of smaller data sets, in order
to maximize the number of training instances, leave-one-out
cross-validation (LOO-CV) is used, where k-nn models with
different k values are fit on every data point (training set) ex-
cept the one whose target value is to be predicted (validation
set). This process is repeated for each data instance. The
prediction on the validation set is evaluated and based on the
overall lowest validation error, the best performing k is cho-
sen. Given the chosen k, we have a k-nn model that is ready
to be applied to new, unseen data (test set).

Given an individual’s discomfort curves, using k-nn we
find the nearest neighbors who reacted in a similar manner
to all events until now and then make a prediction for the
individual’s future reactions. More specifically, the exact fea-
tures that the k-nn algorithm trains on are the five features
describing discomfort curves. As the model relies on simi-
larity measures, the interval ranges of the feature values are
of utmost importance, as for adequate results they should be
on the same scale (Aggarwal, 2016). Therefore, we normal-
ized the feature values, i.e. their value ranges are in the [0, 1]
interval.

In our data scenario, we iterate over the 6 events, trying to
predict an individual’s 5-feature representation of their dis-
comfort curves for each one of them, using the knowledge
about the neighbors with most similar reactions to all already
recorded events. E.g., when making a prediction for Event
3, k-nn looks for the individual’s nearest neighbors for both
events 1 and 2 together.

Naturally, with this approach it is expected that as more
events are recorded, the predictions should have a better accu-
racy, given that the participant’s neighborhood becomes more
well-defined. One drawback, however, is the lack of infor-
mation to make a prediction for the very first event, which

is common in such neighborhood recommender approaches
and is referred to as the cold start problem (Aggarwal, 2016).
In order to overcome this, we use the aggregated discomfort
curve feature values of all other participants, in contrast to a
refined neighborhood.

Figure 7: Mean RMSE values of predicted discomfort curve
feature values across all participants for each event. ratio -
speed-to-distance ratio; ind. - individual; aggr. - aggregate;
k-NN - k-Nearest Neighbor Model

In order to determine which value for k is best suitable for
our scenario, we followed the standard procedure (Dangeti,
2017) to randomly assign the data into a 70% training set
and a 30% test set, leading to 26 and 12 participants respec-
tively. Given the small data set size, we performed LOO-CV
on the training set and determined the validation errors using
the root mean squared error (RMSE) metric. We calculated
the average RMSE value between the model’s predictions and
the individuals’ true discomfort curve feature values, for each
value of k. Performing LOO-CV on 26 data points means we
have 25 participants in the training set, leading to the max-
imum possible number of neighbors for the validation data
point to be 25, which sets the possible values of k in the inter-
val [1, 25]. The best performance was achieved with k = 11,
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based on the minimal validation RMSE value of 0.071. Ap-
plying the model on the unseen test set delivered an RMSE of
0.113. Therefore, in our approach we use the 11-nn model.
Python’s scikit-learn library1 was used for data splitting,
RMSE calculations and k-nn regression with multiple out-
puts.

Results
In this section we report our evaluation outcomes, mainly
through root mean squared error (RMSE) values.

In a previous section we showed a representation of dis-
comfort measurements using the ratio of the car’s velocity
and the distance to the vehicle in front. We calculated the
RMSE between the area under the curve values for the ratio
curve and the true mean discomfort curve (Figure 2), lead-
ing to a value of 0.127 – as usual an RMSE of 0 is a perfect
fit. In order to confirm that this is not a good representation
on an individual basis, we also calculated the RMSE between
the ratio curve and each participant’s discomfort curve (e.g.
Figure 3) which is 0.200. Moreover, we evaluated our pro-
posed 5-feature curve representation in the same manner, for
each participant, leading to a much better mean RMSE value
of 0.102, proving that this is indeed a more accurate way of
representing the individual’s discomfort curve.

Following is the performance evaluation of our approach
for the predictive modeling task based on RMSE values be-
tween the model’s predictions and the true individual values
for each of the five features representing a participant’s dis-
comfort curve. First, we establish a baseline by using three
other models. The first baseline model is the five feature rep-
resentation of the speed-to-distance ratio curve as a predictor.
This is a static predictor that cannot adapt to an individual.
Following is a model based on an individual’s experienced
discomfort. For each event, the mean of the previous events’
five feature representation values is taken as a predictor. Nat-
urally, given the fact there is no available information for the
first event, the prediction is that there is no discomfort. Fi-
nally, the last baseline model is based on the aggregate dis-
comfort amongst all other participants. For each event, the
means of the five feature representation values of every other
participant for the to-be-predicted event is taken as a predic-
tor. Similarly to before, the RMSE values we evaluate are
based on scaled feature values in the interval [0, 1]. All
RMSE values for each model overall and every event sepa-
rately are reported in Table 1.

In our approach the overall mean RMSE across all par-
ticipants and events is 0.114, outperforming the speed-to-
distance ratio curve (0.417), the individual model (0.228) and
the aggregate model (0.136). Given the nature of our ap-
proach, a meaningful point to consider is the evaluation of
the predictive performance for each event separately and how
they compare to each other. When examining Figure 7 it be-
comes apparent that once the model starts gathering infor-
mation about the individuals, it is capable to understand and

1https://scikit-learn.org/stable/

predict their discomfort reaction much more accurately in the
subsequent events, which is noticeably shown through the
overall improvement in the RMSE values over the course of
the events. Particularly the reduction from a starting RMSE
of 0.134 for Event 1 to 0.096 for Event 6. Naturally, such
a trend can not be found when analyzing the separate event
RMSE values for the speed-to-distance ratio as a predictor,
as it is a static model that does not take individuals into ac-
count. The individual and aggregate discomfort models do
not display such improvements as well.

Comparing our k-nn approach to the aggregate discom-
fort model more closely, we see an improvement overall and
per event. The improvement is significant on the individual
RMSE values achieved by both models (Wilcoxon W = 38,
p = .0000014212).

In addition, we also analyze the results visually by recon-
structing the discomfort curve using the predicted feature val-
ues for each participant. An example is shown in Figure 8
for a selected participant, which shows the ability of our ap-
proach to reconstruct an individual’s discomfort curve using
our five feature representation.

Discussion and Conclusion
The quest to predict individual discomfort in autonomous
driving lead to two research questions. Firstly, we focused
on finding a suitable representation of measurements of hu-
man’s experienced discomfort in an autonomous vehicle (RQ
1). Given measured discomfort over time, a discomfort curve
can be represented by using five features: Area under curve
(AUC), global maximum, onset, slope, and duration. With
these expressive features, we can not only characterize at-
tributes, such as the discomfort intensity and rapidity, but
also generate both – a numerical and geometrical depiction
that assists in modeling the discomfort. Most importantly, we
showed that with this approach the differences among indi-
viduals can be effectively captured. Using this representa-
tion, we formulated a predictive modeling task, addressed in
our second research question.

Following is RQ 2.1: Given information regarding an in-
dividual’s discomfort reaction to a driving scenario, how well
can we predict their discomfort in future events? Having the
ability to make an accurate prediction would aid the auto-
mated vehicle to tailor its actions to accommodate the indi-
vidual’s preferences and increase their feeling of comfort and
safety. We presented our method of predicting an individual’s
discomfort reaction to 6 events using data from an experi-
mental driver study (Beggiato, Hartwich, et al., 2020). Our
model is based on the k-nearest neighbor algorithm which
takes into consideration the neighborhood of individuals who
during previous events reacted most similarly to the individ-
ual whose discomfort we are aiming to predict. This approach
is capable of adapting to individuals, shown through the im-
provement of the prediction error over time. This also con-
firms that the more information about an individual is gath-
ered, a better neighborhood is found. The used data con-
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Figure 8: Example of a reconstructed predicted discomfort curve for a selected participant

tained only 38 participants and their discomfort reactions to 6
events. With a smaller number of individuals, there is a big-
ger chance for some participants to not have neighbors that
are similar enough. Technically, they would be “outliers” in
the current scenario, but with more data, that would not nec-
essarily be the case. The availability of more participants and
events would provide an opportunity to refine an individual’s
neighborhood and therefore increase the prediction accuracy.
Moreover, it would be of interest to research how to handle
and adapt to an individual when the neighbors are not do-
ing enough. The detection of such situations could be done
through e.g. setting a similarity value threshold.

We tackled the cold start problem by relying on all avail-
able participants for the prediction of the first event, which
gives a good starting point if there is no individual informa-
tion is available. However, once the information is available,
the model performance improves substantially. In regard to
RQ 2.2, we were able to demonstrate that our model can
leverage the additional information available in the data when
considering individuals instead of the aggregate.

The participants in the experiment were constantly exposed
to the same discomfort inducing scenario, which naturally
rises the question of possible habituation effects. Such effect
was not found among the participants (Beggiato, Hartiwch, &
Krems, 2018, p.3):

“The main reasons for inviting the participants twice
were to: (a) obtain a higher overall number of discom-
fort situations per person; and (b) assess habituation ef-
fects within subjects over short and longer time periods
(3 min vs. 2 months). Evaluation of habituation effects
resulted in small to almost no effects, both for short- and
long-term periods. Thus, all situations were included in
the subsequent analyses.”

However, this is not something that would be an issue for
an approach like k-nn. If a habituation effect would have been
found among some individuals, they would be present in each
other’s neighborhoods.

This paper focused on the close vehicle approach scenario,
which is just one of several potential discomfort inducing sit-
uations. We demonstrated that – even for the same scenarios –

a users’ experienced discomfort can differ vastly from the dis-
comfort others experience and from the discomfort the same
user has experienced in events before. In fact, the speed-to-
distance ratio is the worst predictor, then even the individual
predicting itself, then the aggregate of all drivers. By em-
ploying methods from machine learning it was possible to
improve considerably the predictions of an individual’s dis-
comfort based on the identification of similar drivers profiles.
Even more so, participants could in fact be better predicted by
their neighbors than by their own history of previous events.
This indicates that the neighborhood indeed captures charac-
teristics of the individual in a meaningful way.

This is only a starting point for the individual discomfort
predictive task. Future models using these data could include
additional sensor data such as body movements, heart rate,
pupil dilation and eye blink frequency (Beggiato, Hartwich,
et al., 2020; Dommel et al., 2021) as well as facial expressions
(Beggiato, Rauh, & Krems, 2020).
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