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Abstract

Single-cell sequencing technologies have revolutionized molecular and cellular biology and 

stimulated the development of computational tools to analyze the data generated from these 

technology platforms. However, despite the recent explosion of computational analysis tools, 

relatively few mathematical models have been developed to utilize these data. Here we compare 

and contrast two cell state geometries for building mathematical models of cell state-transitions 

with single-cell RNA-sequencing data with hematopoeisis as a model system; (i) by using 

partial differential equations on a graph representing intermediate cell states between known 

cell types, and (ii) by using the equations on a multi-dimensional continuous cell state-space. 

As an application of our approach, we demonstrate how the calibrated models may be used to 

mathematically perturb normal hematopoeisis to simulate, predict, and study the emergence of 

novel cell states during the pathogenesis of acute myeloid leukemia. We particularly focus on 

comparing the strength and weakness of the graph model and multi-dimensional model.
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1. Introduction

The ability to apply genome sequencing methods to single-cells has revolutionized biology 

[1]. Technologies enabling single-cell sequencing are advancing rapidly, with datasets as 

large as hundreds of thousands of cells are common [2]. RNA-sequencing is currently 

the most prevalent form of single-cell genomic analysis [1]. The sequencing of RNA 

at the cellular level enables the interrogation of gene transcription, which is used as a 

high-dimensional fingerprint which characterizes the identity of the cell. For this reason, 

single-cell RNA-sequencing data (scRNA-seq) has been used as a tool to study cell identity 

and state-transitions at the cellular level.

The most frequently studied cell state-transition is cellular differentiation; the process of 

a cell and its progeny to perform specialized tasks through transformation from a less 

differentiated stem-like state to a more differentiated state. ScRNA-seq is used to identify 

cells in various states of differentiation primarily through one or both of two primary 

methods: 1) clustering of cells with similar features [3], or 2) though trajectory inference 

(TI) [4]. Clustering analysis relies on the definition of a similarity metric, and may rely 

on a pre-defined number of clusters (e.g., k-means), or may use optimization methods to 

identify clusters (e.g., Leiden). There are a wide variety of clustering methods and similarity 

metrics to choose from, which may give drastically different results [5]. Similarly, trajectory 

inference methods may use pre-defined relationships between cells or may use optimization 

methods to identify these relationships to construct graphs which are then used to infer 

paths, or trajectories, between cell states. In addition, various approaches aim to characterize 

the cell fate landscape, for instance, by a parameterized landscape based on bifurcation 

analysis [6, 7], by using a measure of entropy of cell states: SCENT [8] and scEpath [9], or 

by mapping cells to a landscape on optimized parameters: HopLand [10] and Topslam [11].

A significant limitation of these approaches is if the graph structure and underlying 

relationships between the cells is unknown. As shown in a comprehensive review of 

trajectory inference methods by Saelens et al. (2019) [4], most TI algorithms have difficulty 

inferring even simple graphs which may include cycles or disconnected subgraphs. Because 

of the limitations of clustering and trajectory inference in analysing these data, we suggest 

that a hypothesis-driven and mathematical approach to the analysis of scRNA-seq data to 

study cell state transitions is warranted.

Moreover, single-cell genomic sequencing suffers from a number of challenges in analysis. 

Beyond the several choices to be made for even simple analyses such as clustering or 

visualization, the data may be sparse and incomplete. Gene “drop outs” and background 

signal (noise) can complicate differential expression and clustering analyses. For this reason, 

analysis of these data have remained fairly superficial despite the wealth of information 

contained in these high-dimensional datasets. Moreover, results obtained from analysis of 

single-cell sequencing datasets may be very sensitive to choices in the method of analysis 

and algorithm parameters. To date, single-cell sequencing data have not been effectively 

leveraged as inputs into mathematical models.
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Here we compare two cell state geometries of cell state-transitions modeling with scRNA-

seq data. Building on our prior work [12], we model cell differentiation as a continuous 

process. To elaborate this concept, when cell type-A becomes cell type-B, the cell states 

during the transition process are often classified into more steps as type-A½ or types-

A¼, , A¾. The continuous cell states can be considered as a limit of these states. 

We develop phenotype structured cell state models assuming continuous cell states using 

reaction-diffusion-advection partial differential equations (PDE) solved on: (i) an abstracted 

graph and (ii) a multi-dimensional continuum space. We compare and contrast these two 

cell state geometries with hematopoeisis as a model system. This manuscript is structured as 

follows: first we present the PDE model on a graph and in continuous space, then we apply 

the model to two datasets, see [13,14]. We examine the impact of various graph construction 

and trajectory inference methods on the geometry of the cell state space, and solve the model 

on these geometries. We then use the model the study the effects of perturbing 1) the graph 

structure 2) expression of select subsets of genes 3) and cell state transition dynamics by 

perturbing flow on the graph or by modifying the dynamics in the continuous space. We 

predict novel dynamics of leukemia pathogenesis by perturbing normal hematopoeisis and 

conclude with a comparative analysis of our approach and description of future directions 

for mathematical modeling with single-cell genomic sequencing data. A summary of our 

workflow is shown in Figure 1.

2. Materials and method

2.1. Modeling cell state-transitions in a continuous cell state-space

In this section we develop PDE models of cell dynamics in the continuous phenotype space 

identified by dimension reduction techniques. For a given single-cell genomic sequencing 

dataset

gi
i = 1
N , gi = g1

i , g2
i , …, gG

i ∈ ℝG,

where N is the number of cells and gi is a G-dimensional vector of gene expression of the 

i-th cell, the dimension reduction method can be written as an operator P:ℝG Γ ⊂ ℝn

where the reduced dimensional space is truncated at the n-th dimension and n ≪ G. We 

denote the reduced space variable as

θ = P(g) ∈ Γ ⊂ ℝn, θ = θ1, θ2, …, θn , (2.1)

and the i-th single-cell data can be transformed into the reduced space as 

P gi = θi = θ1
i , θ2

i , …, θn
i . Various dimension reduction techniques exist to construct a 

mapping P, including principal component analysis (PCA), diffusion mapping, and t-

distributed stochastic neighbor embedding (t-SNE). While different techniques provide 

different shapes and differentiation spaces, we choose diffusion mapping due to its ability 

to capture non-linear structure of high-dimensional data, and to well reproduce global 

trajectory of data [15]. We comment that if the reduced dimensional space is not clear to 

truncate at a low-dimension, one can consider low-dimensional marker genes according to 
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the cell state of interest, and semi-supervised learning approach can be applied to obtain the 

low-dimensional reduced space. We also comment that it is common to remove the effect of 

cell cycles from the gene expression data to eliminate the cell state regarding their location 

along the cell cycle [16].

2.2. PDE model of cell state-transitions on a multi-dimensional reduced component 
space

We first develop a cell state model that describes the dynamics of cell distribution u(t, θ) 

on the reduced component space Γ, where θ ∈ Γ is the variable that represents continuous 

cell state. Three highly distinctive dynamic regimes of the cell states are considered, namely, 

directed cell transition, birth-death process, and random phenotypic instability. Such model 

can be written as an advection-reaction-diffusion PDE that governs the cell distribution u(t, 
θ) as

∂tu(t, θ) = − ∇ ⋅ (V (t, θ)u(t, θ)) + R(θ, u(t, θ)) + ∇ ⋅ (D(θ)∇u(t, θ)), (2.2)

with zero Dirichlet boundary condition. The three terms in our equation that involve 

parameterized functions V, R, and D, represent cell differentiation, population growth, and 

phenotypic instability, respectively.

Let us first describe the advection term V ∈ ℝn that represents directed cell differentiation, 

where we propose two candidates for modeling V, denoted as v1 and v2. The first 

candidate v1 assumes an attractor cell states of homeostasis. Assuming that the magnitude 

of phenotypic instability is with a magnitude v, that is, D(θ) = ν, one can compute the 

advection term v1 as

v1(θ) = ν∇θU(θ), (2.3)

where U(θ) can be computed from the homeostasis distribution us(θ) that can be regarded as 

the cell landscape that the hematopoiesis system desires to maintain. As in the Boltzmann-

like distribution from equilibrium statistical mechanics [17], we compute U(θ) as the 

exponent of us(θ) in the exponential form, in other words, U θ = − ln us θ . There are 

multiple methods to compute the cell landscape, so called quasi-potential, that focuses on 

relative stability of multiple attractors and models cell differentiation as transition between 

the attractor states [6–11]. Here, we compute the cell landscape empirically by assuming that 

the entire single-cell data is a representative subset of the entire hematopoiesis system, and 

by using density approximation methods. In particular, we use kernel density estimation [18] 

from the projected single-cell data θi ∈ Γ, i.e., us θ = 1
N i = 1

N Kℎ θ − θi  where we chose the 

standard normal density function as the kernel function Kh with bandwidth parameter h > 0.

The second candidate v2 models the dynamics of cell state transition. We model this term 

using a mechanistic approach that describes the symmetric and asymmetric cell division of 

stem cells to more differentiated cells. In particular, we consider the following form
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v2(t, θ) = c(θ)[2(1 − a(θ))r(θ)]s(t), (2.4)

that is parameterized by the proliferation rate r(θ) and the self renewal rate a(θ) [19]. 

c θ ∈ ℝn represents the direction and magnitude of differentiation on the phenotype space 

that we can estimate with either temporal data or pseudotime inference methods [4]. We note 

that the self renewal rate a(θ) is the proportion of cells that remains in cell state θ, while 1–

a(θ) cells further differentiate into matured states. This can be counted from symmetric and 

asymmetric stem cell division. In addition, we assume a signal parameter s(t) that controls 

the active differentiation term, where s(t) = 1/(1 + km(t)) and m(t) is the number of matured 

cells. Finally, we comment that the directed cell transition is simulated as V = v1 + v2, that is 

a sum of cell transition to attain homeostasis and active cell differentiation.

The reaction term represents the growth rate that consists of proliferation and apoptosis. We 

comment that the calibration of this term requires additional data to scRNA-seq, particularly, 

the population level growth data, to uniquely calibrate the model. It has been studied that the 

cell dynamics cannot be uniquely determined without imposing the reaction term [20]. More 

recently, there has been efforts to estimate the proliferation rate directly from scRNA-seq 

data by cellular barcoding techniques [21]. In our simulations, we cluster the single-cell 

data into biologically well known cell types, for instance, in case of hematopoiesis, myeloid 

progenitors, lymphoid progenitors, macrophages, and obtain the proliferation rate and self 

renewal rate from the literature. We consider the logistic growth term as following

R(θ, u) = r(θ)(1 − d(θ, u))u, (2.5)

where r(θ) is the proliferation rate and d(θ) is the apoptosis term assuming a logistic growth 

as d θ, u = min u
us θ , d , where d models the maximum magnitude of apoptosis rate.

The second-order diffusion term represents the instability on the phenotypic landscape of 

the cells that should be taken into account when modeling the macroscopic cell density. We 

simply consider a constant term D(θ) = v. Assuming that the cell state trajectory is subject 

to Gaussian white noise, the diffusion coefficient can be estimated as the variance of the cell 

trajectory θ(t) on the reduced space, ν = Var(θ(t))/4. However, since we do not have the data 

of cell trajectories, one can estimate the value as a limit of random walk as ν = (Δx2)/(4Δt), 
assuming that Δx is the step size of the phenotypic fluctuation in Δt time [22]. See Appendix 

A for the detail of the model.

2.3. PDE model of cell state-transitions solved on a graph

Although the continuum-based multi-dimensional model provides a framework to study 

cell states, it is not always straightforward to map back locations in the space to novel 

or otherwise unknown cell states. Moreover, a central feature of contemporary analysis of 

scRNA-seq data is clustering and inferring relationships between clusters of known cell 

types [4]. Therefore, we develop a model that can describe cell state-transition dynamics 

on a graph that represents relationships between known cell types identified with clusters, 

extended from our previous work in [12]. An immediate advantage of this cell state 
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geometry is that it is convenient to employ biological insights from well-known classical 

discrete cell states.

The continuum of differentiation cell states is assumed to be on the graph obtained from 

the scRNA-seq data, for instance, using partition-based graph abstraction (PAGA) algorithm 

[23]. We project the graph on the reduced component space, and denote the nodes as 

vk k = 1
nv  and the edges as eij connecting in the direction from the i-th to the j-th node. For 

convenience of notation, the edges are also denoted as ek k = 1
ne  with the index mapping 

I :J 1, …, ne  on the set of nontrivial edges (i, j) ∈ J. The end points in the direction of 

cell transition are ak k = 1
ne  and bk k = 1

ne , where k = 1
ne ak, bk = vk k = 1

nv .

The model follows the dynamics of the cell distribution on the graph, u(x, t), where x 
∈ ek is a one-dimensional variable that parameterizes the differentiation continuum space 

location along the edges. We annotate the cell distribution on each edge ek as uk(x, t) such 

that u(x, t) = uk(x, t) k = 1
ne , and model the cell density by an advection-reaction-diffusion 

equation [24] as

∂uk
∂t = − ∂

∂x V k(x)uk + Rk(x)uk + ∂
∂x (Dk(x)∂uk

∂x ), x ∈ ek = akbk . (2.6)

The three terms are similarly modeled as the multi-dimensional model in Eq (2.2), 

representing cell differentiation, population growth, and phenotypic instability. To 

summarize once more, the advection coefficient Vk(x) models the cell differentiation and 

the transition between the nodes, that is, different cell types. We model the advection term in 

two parts as in the reduced component space model, Vk(x) = vk,1(x) + vk,2(x), and compute 

them as

vk, 1(x) = v∂xUk(x), vk, 2(t, x) = 2 1 − ak(x) rk(x) s(t) . (2.7)

Here, us,k(x) = e−Uk(x) is the homeostasis cell distribution on the k-th edge, ν is the 

magnitude of phenotypic instability, rk(x) is the proliferation rate, ak(x) is the self-renewal 

rate, and s(t) is the signal parameter. Cell proliferation and apoptosis can be modeled by the 

reaction coefficient Rk(x) as

Rk(x, u) = rk(x) 1 − dk(x, u) u . (2.8)

Finally, the diffusion term that represents phenotypic fluctuation is taken as Dk(x) = ν.

In addition to the governing equation on the edges, the boundary condition at the nodes 

are critical when describing the dynamics on the graph. The boundary condition on the 

cell fate PDE model can be classified into three types, the initial nodes that do not 

have inflow NI ≐ vk ∉ j = 1
ne bj , k = 1, …, nv , e.g., stem cells, the final nodes without 

outflow NF ≐ vk ∉ j = 1
ne aj , k = 1, …, nv , e.g., the most differentiated cells, and the 
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intermediate nodes, NT ≐ j = 1
ne aj ∩ j = 1

ne bj . On the intermediate nodes vn ∈ NT, 

mixed boundary condition is imposed for continuity of the density and flow as following,

i, n ∈ J
ℬI i, n u, bI i, n =

n, j ∈ J
ℬI n, j u, aI n, j ,

u bI i, n = u aI n, j , for all i, n ∈ J, n, j ∈ J,
(2.9)

where ℬI[i, j](u, x) ≐ V I[i, j](x)u(x) − DI[i, j](x) ∂
∂x u(x) xI i, j , bI[i,n] is the right end point of the 

edge between nodes i and n, and aI[n, j] is the left end point of the edge between nodes n 
and j. The cell outflow boundary conditions on the final nodes, vn ∈ NF, are imposed as 

reflecting boundary conditions

(i, n) ∈ J
ℬI[i, n] u, bI[i, n] = 0,

and u(bI[i,n]) = u(bI[j,n]) for all (i, n) and (j, n) in J, and similarly on the initial nodes vn ∈ 
NI.

2.4. Quantification of cell state-transition dynamics

Let us define some useful quantities to interpret model predictions in the multi-dimensional 

cell state-space and on a graph. The total number of cells from the cell distribution on either 

a graph or a continuous manifold can be computed as

ρ(t) ≐
k ek

uk(t, x)dx, ρ(t) ≐
Γ

u(t, θ)dθ, (2.10)

respectively. In addition, we compute the number of cells of a specific cell type by assigning 

a weight, wk, that corresponds to cells in the k-th cluster as

ρk(t) ≐
Γ

u(t, θ)wk(θ)dθ, (2.11)

with ∑kwk(θ) = 1. We assign weights based on the relative cell density of each clusters 

estimated with kernel density estimation. In the graph model, we assign the cell states along 

the edge to be the cell type of the closest node, so that we can compute the number of the 

k-th node cell type as ρk(t) ≐
m = I k, j

am

am + bm
2 um(t, x)dx +

m = I i, k
am + bm

2

bm
um(t, x)dx.

Although we can understand the continuum of cell states by mapping cells in intermediate 

states back to known discrete cell types, we also desire to interpret the continuous cell states 

in their location without reference to the canonical cell identities. For such purpose, we 

characterize cell states by identifying genes that are strongly correlated to a location in the 

space or moving in a direction toward a cell state. This extends finding the genes that are 

correlated to specific reduced space components to analyze the reduced cell state space [25]. 

First, to characterize the cell state θ* in the reduced space, we use a function fθ*(θ) centered 
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at θ* as fθ∗(θ) = 1
2πσ exp − θ − θ∗ 2/2σ2 , and compute the correlation between the function 

values and the j-th gene expression levels as

rf, j ≐ corr f, gj , (2.12)

where f represents the vector of function evaluation at each single-cell data point θi, that is, 

f = fθ* θi
i = 1
N

 and gj = gji i = 1
N . An alternate quantity to examine is the genes that are 

related to a certain direction in the reduced component space. For instance, the correlation 

between the j-th gene and the k-th reduced component θk = θk
i

i = 1
N

 and to a certain vector 

v = vk i = 1
n  can be computed as

rk, j ≐ corr θk, gj , rv, j ≐
k

vkrk, j, (2.13)

respectively. Regarding Eq (2.13) as global quantities, we can also compute the local 

correlation on the subdomain of the reduced space Ωd by collecting the cell indices 

that lie within the subdomain Γd = i θi ∈ Ωd , that is, rk, j |Γd ≐ corr((θk, gj)|i ∈ Γd) and 

rv, j |Γd ≐ kvkρk, j|Γd. Although these metrics may provide candidates of potential genes 

that are related to the cell state to be analyzed, we emphasize that these need to be verified 

experimentally by observing the cell state change after perturbing the genes. See Section 4.2 

for the limitations of this approach.

3. Simulation of continuous cell state models on multi-dimensional space 

versus graph

In this section, we employ the framework developed in the previous section to the mouse 

hematopoiesis cell data from Nestorowa et al. (2016) [13] and Paul et al. (2015) [14]. We 

obtain the graph and multi-dimensional space models of hematopoiesis cell state and focus 

on comparing the strengths and weaknesses of the two models.

The hematopoiesis single-cell data from [13, 14] projected on the first two diffusion 

component space are shown in Figure 2A, where distinct cell types, including 

lymphoid-primed multipotent progenitors (Lymph); common myeloid progenitors (CMP); 

megakaryocyte-erythroid progenitors (MEP); granulocyte-macrophage progenitors (GMP); 

erythrocytes (Ery); neutrophils (Neu); monocytes (Mo); megakaryocytes (Mk); basophils 

(Baso), classified in the original papers are illustrated with different colors. We truncate the 

diffusion component at two since the reduced two-dimensional space describes the dynamics 

of our interest, that is, from strong to weak stemness. The first two diffusion components 

θ1 and θ2 represent cell maturation in both data sets. In Nestorowa data, the first diffusion 

component separates the stem cells to myeloid lineages, particularly MEP cells and the 

second diffusion component describes GMP cells and the lymphoid lineages. In Paul data, 

the first and second reduced component represents MEP and GMP lineage, respectively. We 

remark that the cells that are the most stem-like in Paul data are CMPs, that is more matured 
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than the ones in Nestorowa data, that includes the long-term and short-term HSCs. In 

addition to the single-cell data, the Figure 2B presents the abstracted graphs obtained using 

PAGA [23]. Further refinements of the graph will eventually become the full single-cell 

data, where each single-cell being counted as distinct cell states, and it depicts the hierarchy 

of cell states (see Figure A5).

The homeostatic cell distribution us on the reduced dimensional space is computed by kernel 

density approximation [18, 26]. The computed cell landscapes viewed in different angles are 

shown in Figure 2C,D. The cell distribution on the graph can be similarly obtained after 

reallocating the cells to the node, that is, the center of each cluster. The cell distribution on 

the continuum space provides an intuitive method to compare the relative concentration of 

different cell lineages, including the intermediate cell states. We observe high concentration 

of MEP and Ery cells that are localized at the far right (large θ1) in both data. The 

Nestorowa data has more diverse cells including the common lymphoid progenitors that are 

visible on the left (small θ1, and intermediate θ2), while the Paul data has evenly distributed 

cell states among the most stem-like cells (CMP) and the two different lineages.

Let us summarize the properties of the graph and multi-dimensional space models before 

we present simulation results. The graph model has its strength that the cell lineages 

between the known cell states can be more easily identified as compared to the multi-

dimensional space model. The cell concentration moving toward different edges can be 

clearly distinguished as the cell lineages to different cell states. Accordingly, counting 

the number of cells in each discrete cell state is more straightforward, for instance, by 

integrating the cell distribution along the edges half way. Although the multi-dimensional 

space model has ambiguity on classifying the cells into discrete cell types, the number of 

cells in each discrete cell type can be computed by assigning weights to integrate as in Eq 

(2.11). Moreover, we emphasize that the advantage of clear cell states in the graph model 

is also its limitation at the same time, since it restricts the model to only study the known 

cell types and lineages. The advantage of the multi-dimensional space model is its potential 

of exploring novel cell states that deviates from known cell types. While the graph model 

cannot explore the cell states that are not already included in the graph structure, the multi-

dimensional space model can immediately study the abnormal trajectories and emergence 

of cells at any space location. We will show later in our simulation that the hypothesis of 

genetic alterations can be studied directly in the multi-dimensional space model, without 

projecting it on the graph structure. Moreover, the multi-dimensional space model is more 

sensitive to genetic variations than the graph model, although when the variation is large and 

a considerably distinct cell state arises, the graph model can append another cluster node. 

See Table 1 for a summary.

In the following sections, we consider mainly two application problems, namely, normal 

hematopoiesis and abnormal hematopoiesis differentiation, resulting in myeloid leukemia as 

application examples of our modeling approach.

3.1. Calibrating the mathematical models to normal hematopoiesis

We demonstrate that normal hematopoiesis can be visualized by both models on the graph 

and on the space of two-dimensional diffusion components, (see Figures A1 and A2 for the 
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advection and reaction terms used in the multi-dimensional space model). Figure 3 shows 

a cluster of stem cells differentiating into the entire cell states on the graph and reduced 

space using Nestorowa data [13] and Paul data [14]. The initial condition is imposed as 

approximately 10% of cell capacity in normal condition mostly composed with stem cells. 

On both graph and multi-dimensional space models, nontrivial amount of most matured 

cell states, particularly, Ery and Neu/Mo cells arise around pesudotime t = 30, and further 

recovers the full landscape after approximately t = 50. In particular, the observation that 

the matured cells quickly proliferate to fill in the space agrees in both simulations from 

Nestorowa and Paul, while the effect is more significant in Paul’s data due to shorter 

distances of the matured cell states from the initially administered cells.

The advantage of the graph model is apparent that we can observe distinct cell states as 

a mass of cells shifting from a node to distinct edges toward different cell states. For 

instance, the cells differentiating from the MPP cluster to either Neu/Mo lineage and Ery 

lineage can be clearly separated in the graph models, while those can be ambiguous in the 

two-dimensional distribution. Still, we can compute the number of cells in each cell types 

in both models as shown in Figure 3B. We observe that the number of cells reaches the 

maximal capacity at later times around t = 100, with the intended ratio of cell numbers in 

each discrete cell type approximating the given data [13] in Figure 3C. The recovery is more 

rapid for larger values of ν and larger number of initial stem cells ρ(0) (see Figure A6). We 

remark that the continuous cell states of hematopoeisis is also depicted in conventional flow 

cytometry which is typically used to identify distinct cell populations based on expression 

of cell surface markers. We performed Fluorescence Activated Cell Sorting (FACS) analysis 

of bone marrow cells isolated from normal C57Bl/6 mice (age 6-8 weeks). Distinct myeloid 

progenitor types (CMP, GMP and MEP) are typically differentiated by the expression of 

CD16/32 and CD34 markers within the myeloid lineage progenitor cell compartment. Figure 

3D shows representative FACS data with respect to CD16/32 and CD34 expression that is 

used to identify the CMP, GMP, and MEP cell types within the normal myeloid progenitor 

compartment. Although the FACS data is conventionally clustered and gated into three cell 

types, continuity of CD16/32 and CD34 expression can be observed that agrees with our 

graph abstraction and multi-dimensional cell state geometries.

3.2. Using the model framework to simulate acute myeloid leukemia (AML) pathogenesis 
and progression

In this section, we once more compare the graph and multi-dimensional space models with 

an application to abnormal differentiation under leukemia pathogenesis and progression. We 

first consider AML model in the context similar to the previous section that involves known 

progenitor cells that exemplifies the advantage of graph models. However, we will show 

how aberrant differentiation and phenotypic plasticity of leukemia pathogenesis motivates 

the spatial model.

AML results from aberrant differentiation and proliferation of transformed leukemia-

initiating cells and abnormal progenitor cells. We model AML pathogenesis based on 

known behavior of a genetic Cbfb-MYH11 (CM) knock-in mouse model that recapitulates 

somatic acquisition of a chromosomal rearrangement, inv(16)(p13q22) [28, 29], commonly 
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found in approximately 12 percent of AML cases. Inv(16) rearrangement results in 

expression of a leukemogenic fusion protein CBFβ-SMMHC, which impairs differentiation 

of multiple hematopoietic lineages at various stages [30–32]. Most notable in such leukemia 

pathogenesis and progression is the increased in abnormal myeloid progenitors, which has 

an MEP-like immunophenotype and a CMP-like differentiation potential [31]. Experimental 

studies [27, 33] show that such MEP attains a predominant increase in pre-megakaryocyte/

erythroid (Pre-Meg/Ery) population (ranging from 5 to 12 fold) accompanied by impaired 

erythroid lineage differentiation as shown in Figure 4E. This refined phenotypic Pre-

Meg/Ery population consists partly of the CMP and MEP populations which are identified 

using conventional markers [13, 34].

In our model, abnormal leukemic progenitors are regarded as intermediate cell states 

along the edges connecting CMP (or MPP) and MEP (and Ery) in the graph model, and 

the corresponding locations in the multi-dimensional space model. We assume a 10-fold 

increase on average in those population by lowering d(θ) and dk(x) in Eqs (2.5) and (2.8) 

that controls the local cell capacity. In addition to over-proliferation, another aspect of the 

leukemia pathogenesis of our interest is the impaired differentiation of erythroid lineage 

differentiation, where it can be modeled by blocking the cell differentiation V(θ) in Eq (2.6) 

and Vk(x) in Eq (2.2) toward Ery.

The corresponding results are shown in Figure 4, where we modify the model to leukemia 

progression at t = 10. The cell distribution changes from the normal cell landscape at t 
= 10 to an increased population of Ery (MEP) and nearby cells at t = 20 in both graph 

and continuum models. We observe a 10-fold increase in the Ery (MEP) population, which 

includes the abnormal myeloid progenitors, in both graph and multi-dimensional space 

model across the data sets as shown in Figure 4D,E. The rapid emergence of AML occurs 

within two week period, corresponding to the expansion of the leukemic cell phenotype. We 

observe a rise in the MPP or CMP cluster as shown in the results from Nestorowa data, that 

is similar in Paul data as well. The total proportion of leukemic cells comprise 50–60% of 

the total population.

In the leukemia pathogenesis simulation in this section, we focus on studying the leukemic 

cells as a variation of cell states classified using conventional markers. In this case, the graph 

model can interpret and include the dynamics of such cells, as well as the multi-dimensional 

space model. While the simulation outcome between the graph and multi-dimensional space 

model is similar, the graph model is computationally more efficient due to the fewer number 

of unknowns as compared to the two-dimensional space model. However, to study the 

abnormal cell states that may appear far away from the known or existing landscape, we 

will show in the following section that the multi-dimensional space model has more freedom 

to include those new cell states and disrupted trajectories. We will study the impact of 

perturbation of genes in the graph and multi-dimensional space model, particularly focusing 

on alterations of genes known to be involved in leukemia pathogenesis.

3.3. In silico experiments of gene expression perturbation

In this section we investigate the sensitivity of altering specific genes in a prescribed manner 

and the impact of this perturbation in the graph and multi-dimensional space models. We 
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keep our focus on leukemia pathogenesis and progression and consider alterations of 38 

genes that are reported to be related to leukemia stem cells [35, 36], although we emphasize 

that these genes serve simply as examples, and are not intended to model the precise 

biological process of AML pathogenesis. The j-th gene expression level of i cell, gji, is 

modified as

gj
i = 2γjgji, 0 ≤ log2 gj

i + 1 ≤ 16, (3.1)

where γj is the log2-fold change compared to normal cells. The full list of altered genes 

and magnitudes γj from [35, 36] are shown in A1. Details of the model equation and 

parameters, and the log2-fold change is in the range of γj ∈ [−3.5, 2.7]. In addition, we 

consider the extreme case of gene alteration as the maximum level log2 gj
i + 1 = 16 for 

up-regulated genes and log2 gj
i + 1 = 0 for down-regulated genes. Figure 5 shows examples 

of the gene expression levels in log scale that we modify including the up-regulated genes, 

GPR56, GATA2, and MZB1, and the down-regulated genes, LGALS3, LY86, and ANXA5. 

The given single-cell data in normal condition is plotted together with the hypothetically 

altered levels of gene expressions in regular leukemia pathogenesis and extreme levels of 

alteration. Although the case of extreme alteration is unrealistic, we consider such case to 

illustrate an example where the graph abstraction and dimension reduction algorithm clearly 

distinguishes the leukemic cells.

3.4. Effects of gene perturbation on graph abstraction and multi-dimensional reduced 
component space

We first study the sensitivity of the reduced component space using diffusion mapping [15]. 

Figure 6A,B compares the altered leukemic single-cell data gi projected on the normal 

reduced space (θ1,θ2). The left-most column shows the projected leukemic single-cell 

data P gi  in the normal reduced space, where the leukemic cells are located toward the 

left-bottom compared to the normal cells in Nestorowa data, and upwards in Paul data. The 

effect of gene modification is shown more clearly in the presented vector field P gi − P gi .

Similarly, we study the impact of leukemia-associated gene perturbation in graph abstraction 

using PAGA [23]. Figure 6C,D shows the clustered cell types and the corresponding 

graph using perturbed leukemic scRNA-seq data. The presented results are computed with 

Nestorowa data. The clustered cell types and leukemic cells are annotated to depict the 

cluster properties. In Figure 6C, which is the case of leukemia progression with single-cell 

data altered in regular magnitude, we observe that there is no cluster that separates the 

leukemic cells. Thus, the information of leukemic gene alteration is lost within the clustering 

algorithm, and the model on such abstracted graph is not capable of studying the perturbed 

cells. On the other hand, when the gene levels are modified to their extreme levels, the 

perturbed leukemic single-cell data are clustered into separate nodes as shown in Figure 6D. 

In this case, although the graph model is able to study the perturbed cells as separate nodes, 

we comment that this level of perturbation is an unrealistic scenario due to the extreme 

levels of gene expression.
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A strength of the multi-dimensional cell state model is its capability of interpreting the 

perturbation of gene expression levels or new incoming cell data regardless of its relation to 

the primary data (Figure 6). As shown in our results, the leukemic alteration is successfully 

projected in the reduced space, while the abstracted graph lost the information. Although 

the projected directions in the reduced space can be once more projected on the graph, 

it does not make sense to do so when the direction is orthogonal to the edges. The multi-

dimensional space model has its advantage especially in this case, where the projected 

direction of cell states can be directly implemented.

3.5. Simulating AML pathogenesis by perturbing known leukemia-associated genes

In this section, we incorporate the perturbed leukemia-associated gene data in the AML 

simulation using the multi-dimensional space model. In particular, we are interested in 

studying the impact of leukemia-associated gene alteration on the cell distribution during 

AML progression. We compute the abnormal differentiation of leukemic cells by projecting 

the altered single-cell data of MEP and Ery cells to the normal diffusion component space 

P gi  as it is shown in Figure 7. The aberrant differentiation vector vaml
1 = P gi − P gi

shows the shifts of cells toward the location where no cell data occupies. Therefore, in 

addition to modifying the advection term according to the altered gene data, we assume an 

emergence of new abnormal cell state. In particular, we take the cell state location at θ* 

= (0.610, 0.215) in Nestorowa data, and at θ* = (0.6, 1.0) in Paul data, and use Gaussian 

functions centered at θ* to obtain vaml
2 . The corresponding vector fields are also shown in 

Figure 7.

For AML progression, the advection term is modeled with the prescribed vector field as 

V = v1 + camlvaml
1  or V = v1 + camlvaml

2 , where caml parameterizes the perturbation magnitude. 

We further perturb the model by increasing the proliferation of the new leukemic cells 

at θ* by appending raml fθ*(θ) to R, where raml parameterizes the over-proliferation. The 

cell distribution u(t, θ) with vaml
1  and vaml

2  for different values of caml = 1, 2, 10 are 

presented in Figure 8 and Abnormal cell state transitions during leukemia pathogenesis 

and progression. The distribution of cell states u(t, θ) show abnormal cell states emerging 

during leukemic progression after t = 10 modeled in the advection term as V = camlvaml
1  (top) 

and V = v1 + camlvaml
2  (bottom), with various levels of caml = 1, 2, 10. Larger magnitude of 

caml results in more disrupted cell landscape. . In the cell landscape with vaml
1 , we observe 

increased MEP cells and abnormal progenitors arising in the direction of left-bottom, 

especially for large values of caml. The model with vaml
2 , a new cell state further down 

in the cell space emerges and dominates the population. With the model V = v1 + 2vaml
2 , 

new abnormal cells appear around t = 10 and dominate the population at t = 30. The total 

number of cells is plotted in Figure 8B, where the effects of the parameters, caml and raml, 

are shown more clearly. The total number of cells increases more than 10 times the initial 

size after t = 30 when caml = 10 and raml = 0. When the over-proliferation term is appended 

as raml = 1, the total number of cells increases more rapidly, for example, up to 100 times the 

initial size and the number of cells in most of the myeloid lineage increases. Our simulation 
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results agree with the experimental data, where unconventional cell states emerge during 

leukemia progression and eventually overtakes the entire progenitor population as observed 

by FACS analysis of bone marrow progenitor cells isolated from CM knock-in preleukemic 

and leukemic mice (Figure 8C). The predominant population observed in leukemic bone 

marrow does not fall within the typical gates in conventional cell clustering based on data 

from normal control mice (Figure 4E). Although this novel population would had been 

classified as MEP, pre-Meg/E, Pre-GM, and GMP cells in the graph model (Figure 4A,B), 

we emphasize that they are distinct population and the multi-dimensional model is capable 

of incorporating novel cell states. Although we comment that, in the graph model, a new cell 

type can be included by adding a new node to the original graph.

3.6. Interpretation of new cell states in the multi-dimensional model

The remaining question is how to interpret the new cell states in the multi-dimensional 

space model that may arise far away from the cell states identified by conventional markers. 

Hence, we propose some measures in Eqs (2.12),(2.13) to guide the interpretation. Figure 9 

shows an example of the rescaled correlation quantities rf,j and rv,j computed with Nestorowa 

data. The first row show results of the correlation rv,j to the average leukemic directional 

vector v = (−0.068, −0.206). The gene expression levels of genes that have large values of 

rv,j are depicted in the figure, namely, PLAC8 and CAR2. We remark that those genes have 

strong local correlation rv,j|Γd on Γd = {0.3 ≥ θ1 ≥ 0.9, 0.3 ≥ θ2 ≥ 0.5} as well. Figure 9 

shows the correlation of all 3991 genes, where the red bars highlight the leukemia related 

genes we modify (A1. Details of the model equation and parameters) and we observe large 

magnitudes in some of the genes. The second row shows the correlation rf,j to a specific cell 

state at the reduced space, where we choose θ* = (0.5, 0.35), which is approximately an 

intermediate location between MEP and CMP cells, and fθ∗(θ) = 1
2π0.05exp − θ − θ∗ 2/0.1 . 

APOE and CLEC12a genes show the largest magnitude of rf,j, and similarly, we can 

identify the leukemia related genes that show strong correlation to cell state θ*. Although 

more careful and rigorous approach should be developed to characterize the new arising 

cell states, rf,j and rv,j defined in Eqs (2.12),(2.13) provides an efficient method of initial 

screening of possible related genes.

4. Discussion

We have shown how to construct mathematical models of cell state-transitions using scRNA-

seq data. We compare two cell state geometries: solving equations on graphs and solving 

equations on a multi-dimensional cell state-space. Each cell state geometry has its strengths 

and limitations. Selecting a model for a given application or dataset will depend on the type 

of biological data and the nature of the scientific question.

When the modeling application and quantity of interest includes well-known cell lineages 

and relation between the conventional cell states, the graph model is more appropriate 

due to its ability of distinguishing distinct cell lineages more clearly compared to the 

multi-dimensional space model. Dynamics of cell numbers in specific cell states, alteration 

of proliferation and apoptosis in particular cell state, differentiation block, and emergence 

of intermediate cell states can be quantified and studied in a straightforward manner. 
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However, to explore cell states beyond known cell lineages, the continuum space model 

is more advantageous since it includes all intermediate and pathological cell states, rather 

than confining the model into presumed cell lineages. Moreover, the continuum model can 

incorporate a relatively small genetic and epigenetic alteration that the graph abstraction 

may not recognize, and study abnormal trajectories that yield unconventional cell states.

We selected and perturbed genes to simulate AML based on genes known to be associated 

with leukemia pathogenesis. We do not intend for this to be an accurate model of the 

biological process, rather, as an illustration of how one may select sets of genes and 

perturb them in a prescribed fashion in order to study the effect on cell state-transition 

dynamics. This approach assumes that AML pathogenesis originates from changes in gene 

expression in specific cell subsets, which is limited by our identification of these genes 

based on published literature. We acknowledge this is a limitation of the modeling approach, 

although we also note that our model predictions are consistent with known features of AML 

progression.

4.1. Comparison to other approaches

Although at the time of this work there are relatively few mathematical models published 

which utilize single-cell sequencing data, there are a few notable exceptions. Of particular 

note are works which use modeling and simulation to generate synthetic in silico gene 

expression datasets [37]. These important approaches to mechanism-based mathematical 

modeling may also be used to study and predict the effects of perturbations on cell state 

distributions. They may also be used as computational controls to benchmark analysis tools 

and potentially to benchmark and compare mathematical models, although using a model 

to benchmark other models can lead to consistent but incorrect circular reasoning and 

caution is warranted. Another example is Ferrall-Fairbanks and Papalexi et al, who use 

mathematical analysis to generate novel quantifications of cell heterogeneity in cancer or 

immune cell subsets respectively [38, 39]. These methods may be used to map and interpret 

novel cell states predicted by mathematical models or similarly as a method to interpret 

model-predicted changes in cell heterogeneity following a perturbation.

Schiebinger et al compute and predict differentiation trajectories in cell development using 

optimal transport (OT) [40,41]. This approach considers the optimal transport of cells as 

a mass flowing along differentiation trajectories, and is conceptually the most similar to 

our approach. As presented, Schiebinger et al do not use the OT framework to examine 

perturbations of cell states or genes along the differentiation trajectory, although this is 

possible with an OT model. Setty et al present a method to compute cell fate probabilities 

[42], which may also be achieved by inferring cell state-transition dynamics with lineage 

trees [43]. Fischer et al have demonstrated a method for inferring population dynamics from 

single-cell sequencing data [44], where the model equation is identical to our graph based 

model developed in [12]. Jiang et al develops a dynamic inference approach to derive a 

Fokker-Planck type PDE on a graph considering an energy landscape and optimal transport 

[45]. Sharma et al use longitudinal sequencing to study drug-induced infidelity in the stem 

cell hierarchy [46], and Karaayvaz et al show how to use single-cell sequencing to examine 

drug resistance in breast cancer [47]. These approaches and analysis methods may be used 
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to inform and potentially calibrate mathematical models of cell population dynamics or 

response to treatment-induced perturbations.

Recently, vector fields derived from RNA velocity [48] have been used to infer potential 

energy or fitness landscapes for cell state-transitions. These approaches may be used to 

inform the computational domain for mathematical models that we present here, however, 

an important limitation of the RNA-velocity approach is extrapolation of the vector field 

outside of the data range. This underscores the need for hypothesis-based and model-guided 

approaches to inform the shape of these fields. This limitation also applies to the rapidly 

growing field of deep learning approaches [49] to analyze single-cell sequencing data, 

namely, whether the learning algorithm can effectively make predictions to datasets which 

are not sufficiently similar to those upon which it has been trained. We believe that the 

future likely involves a merger of mathematical modeling with machine learning, in which 

mathematical models are used to inform learning approaches and impute sparse data as 

has been recently shown by Gaw and Rockne et al [50, 51]. Among the recent works that 

align with this direction, PRESCIENT algorithm aims to learn the underlying differentiation 

landscape from time-series scRNA-seq data [21]. Moreover, dynamo framework improves 

RNA velocity using kinetic models to reconstruct continuous vector fields that predict cell 

fates [52].

4.2. Opportunities and limitations of modeling with single-cell sequencing data

There are pros and cons, opportunities and limitations to mathematical modeling with 

single-cell sequencing data. The advantages and potential opportunities include: a wealth 

of available data, richness and complexity of each data set, a focus on the cell level, 

opportunity to study dynamics in hierarchically structured state-based relationships between 

cells, and an ability to perturb individual cells and/or genes within cells to predict dynamics 

of state-change at cellular level. The most significant strength of mathematical modeling is 

the ability to use and generate hypotheses that may not be directly evident from the data; for 

example, extrapolation of RNA velocity fields beyond the dataset boundaries or to interpret 

and predict novel cell states which may not otherwise be clearly identified with known 

canonical cell state markers. Another advantage of our approach is the use of pseudo-time 

analysis of data collected at a single timepoint to calibrate the models, however, the models 

can also be calibrated directly to time-sequential single-cell datasets, which we expect to 

become more commonly available as single-cell sequencing continues to be used as a tool to 

study cell dynamics.

The disadvantages and limitations include: the potential for misleading or incorrect 

inference due to poor data quality including drop-outs, small non-representative samples of 

large heterogeneous populations, batch effects, no physical or micro-environmental context, 

no direct or physical interactions between cells, and the possibility of model predictions to 

be sensitive to methods of dimension reduction, graph abstraction, state-space construction, 

and potentially sequencing platform. Sensitivity of the modeling to experimental and 

computational methods may be directly studied and mitigated as we have shown in this 

work, however this remains potentially a significant source of uncertainty and variability 

in the modeling calibration and predictions. Studying the sensitivity of our modeling 
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framework regarding different noise scenarios and applying noise reduction methods is our 

future work [53].

In terms of computational cost, the graph model is more efficient since it is a multiple 

of one-dimensional cost, while the cost of implementing the space model increases 

exponentially as the dimension of reduced space increases. In our simulation, the 

computational cost to simulate up to time t = 50 with step size Δt = 10−3 and O(1002) 

degrees of freedom in one-dimension is around 25 seconds in the graph model with 8 nodes, 

while it takes around 230 seconds in the continuum model with two dimensions. In short, 

the continuum model runs approximately 10 times longer than the graph model with 8 nodes 

in our example. Therefore, the multi-dimensional cell state geometry will be reasonable 

only when the reduced component can be truncated at two- to three-dimension, unless the 

numerical method is carefully implemented, and we emphasize that the graph model will 

be more advantageous in terms of computational cost than the continuum model especially 

when higher dimensional reduced space is necessary.

4.3. Future work and applications

Future applications of this approach is to explore hypothesis in the resolution of single-cell 

genomics and study altered and novel cell states with genetic and epigenetic alterations 

in various biological systems and pathogenesis. We look forward to compare the model 

prediction to sampling/sequencing of perturbed biological system, for instance, to examine 

scRNA-seq data from leukemic progenitor cells. Moreover, we anticipate to incorporate 

effects of external perturbations such as therapy in future studies.

There are opportunities for further enhancements in our model in improving the model 

of cell landscape dynamics to accurately estimate cell transition pathways in the reduced 

component space, for instance, minimum action paths [6] and bifurcation [7, 54]. The model 

can be improved by obtaining parameter functions or mappings of biological quantities 

directly from single-cell sequencing data, for example, more precisely infer the proliferation 

rate function. Also, developing methodologies to obtain reduced component space that 

captures desired characteristic of cell states [55] will help us explore our approach for other 

biological settings where cell states are less clearly characterized. Moreover, we propose to 

develop quantities, such as index of critical state transitions [54,56], in the phenotype space 

that could be used to predict forthcoming major alterations in development and diseases. We 

also expect to be able to infer the potential landscape directly from the RNA velocity vector 

field [48,52].

5. Conclusions

In summary, despite the explosion of computational tools to analyze single-cell sequencing 

data, there have been relatively few mathematical models developed which utilize this 

data. Here we begin to explore the possibilities—and limitations—of dynamical modeling 

with single-cell RNA-seq data. We hope this work paves the way for development of 

mathematical models to guide the interpretation of these complicated datasets as they begin 

to be collected after biological perturbations (eg., cancer, treatment, altered developmental 

processes), sequentially over time, or sampled spatially within biological tissues.
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Appendix

A1. Details of the model equation and parameters

The model terms require interpolation of single-cell data to the continuum cell state space. 

We use clustering to identify cell types and their cell type properties to assign those to each 

single-cell. The following are the values we take for cluster properties.

By denoting ri as the assigned proliferation rate of the i-th cluster, we compute the 

intermediate level of proliferation in the graph model by linear interpolation as

rk x = rI i, j x = ri + rj − ri x, x ∈ 0, 1 , (A.1)

assuming that the overall proliferation of intermediate cell states change gradually. In the 

multi-dimensional model, we compute the interpolation based on local means as

r θ = 1
Iθ i ∈ Iθ

ri, Iθ = i θi − θ < θ , (A.2)

where we take θ = 0.04. The self-renewal rate functions ak(x) and a(θ) are computed 

similarly. See Cell proliferation rate r(θ) and self-renewal rate a(θ) computed from the 

single-cell data. The black dots are the rates of data. for r(θ) and a(θ) computed for 

Nestorowa data.

To compute the multi-dimensional function on the continuum space from the single-cell 

data, we employ the kernel density method [18,26], that is a non-parametric way to estimate 

the density function based on a finite data sample. Using the single-cell samples in the 

reduced component space, θi
i = 1
N

, the method approximates the density function as

us θ = 1
Nℎ i = 1

N
K

θ − θi

ℎ ,

where K is the kernel smoothing function that we take it as a Gaussian function and h is 

the bandwidth. The optimal bandwidth to estimate normal densities can be computed by 

4σ5/3N 1/5
, where σ is the standard deviation and N is the sample size, and the optimal 

bandwidth for our data is computed as 0.0383 to 0.0456, however in our simulation, we 

choose a slightly smaller value, h = 0.03, to reveal more features of multiple modes. Figure 

2(C,D) shows the results computing us(θ) using Nestorowa and Paul data, and A2(a) shows 

the corresponding ν1(θ).
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In the diffusion term, we explore the parameter ν so that the phenotypic instability does 

not dominate the cell maturation. We compute the parameter in the range of v ≤ L/Td
2/4, 

where the distance in the diffusion space is L = 1 and the time that HSC differentiates to 

the progenitors is Td = 5 ~ 30 (day), that is, ν < 0.0027 ~ 0.01, and we consider ν = 0.001. 

Quantifying the local phenotypic instability in the reduced component space, and justifying 

this term is our future work.

To compute the reduced component space using dimension reduction approaches, we 

employ diffusion mapping. See [15, 62] for the detail of the algorithm. We take the cosine 

distance, k(xi, xj) = 1 − corr(xi, xj) for the Nestorowa data and the gaussian distance 

k xi, xj = exp − xi − xj 2

2σ2  for Paul data with σ = 50. From L(i, j) = k(xi, xj), the diffusion 

mapping use parameter α to tune the influence of density of the data points as

L α = D−αLD−α, M = D α −1L α ,

where D α i, j = jL α i, j , and we choose α = 0.5. From the eigen-decomposition of 

Mϕ = λϕ and ordered eigenvalues 1 = λ0 ≤ λ1 ≤ λ2 ≤ ⋯, the corresponding right 

eigenvectors, ϕ1, ϕ2, ⋯ are the diffusion components. We truncate the reduced space at 

the second diffusion component, where the eigenvalues are λ1 = 0.1039, λ2 = 0.0326, λ3 

= 0.0167, λ4 = 0.0135 for Nestorowa data, and λ1 = 2.4653e-03, λ2 = 5.8338e-04, λ3 

= 9.7792e-05, λ4 = 7.0364e-05 for Paul data. For a comparison of diffusion mapping to 

two-dimensional reduced component space using other dimension reduction algorithms, see 

Comparison of dimension reduction methods. Dimension reduction algorithms that focus 

on preserving local structure are not appropriate to infer global trajectory. Compare the 

following figures to diffusion component space. They are computed with Nestorowa (top) 

and Paul (bottom) data and projected on the reduced component space of ForceAtlas2 (FA) 

[64] and t-stochastic neighbor embedding (tSNE). .

For the pseudotime inference, we use the algorithm developed in [63]. The diffusion 

distance between two cells are computed as

Dt2 xi, xj =
k = 1

n
λk

2t ϕk
i − ϕk

j 2
,

and the pseudotime distances are computed based on this distance. We choose three extreme 

points in each of the three clusters, stem cell, Ery, and Neu cell types, that are the furtherest 

in the diffusion component space, and infer the lineage between the extreme cells. After 

computing the pesudotime of each single-cell we compute the local average direction to the 

neighborhood cells that are in later pesudotime similar as in Eq (A.2). The computed results 

are shown in Pseudotime dynamics. The homeostasis cell differentiation vector v1 (a), and 

the direction of active cell differentiation obtained from diffusion pseudotime analysis (b), 

and that interpolated at the grid points v2 (c) are presented. We remark that, v2 corresponds 
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to the cell differentiation along the edges in the graph model. (b) with the interpolated 

vector at the grid points, Pseudotime dynamics. The homeostasis cell differentiation vector 

v1 (a), and the direction of active cell differentiation obtained from diffusion pseudotime 

analysis (b), and that interpolated at the grid points v2 (c) are presented. We remark that, v2 

corresponds to the cell differentiation along the edges in the graph model. (c).

Figure A1. 
Cell proliferation rate r(θ) and self-renewal rate a(θ) computed from the single-cell data. 

The black dots are the rates of data.

Cho et al. Page 20

Math Biosci Eng. Author manuscript; available in PMC 2022 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure A2. 
Pseudotime dynamics. The homeostasis cell differentiation vector v1 (a), and the direction 

of active cell differentiation obtained from diffusion pseudotime analysis (b), and that 

interpolated at the grid points v2 (c) are presented. We remark that, v2 corresponds to the cell 

differentiation along the edges in the graph model.
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Figure A3. 
Comparison of dimension reduction methods. Dimension reduction algorithms that focus 

on preserving local structure are not appropriate to infer global trajectory. Compare the 

following figures to diffusion component space. They are computed with Nestorowa (top) 

and Paul (bottom) data and projected on the reduced component space of ForceAtlas2 (FA) 

[64] and t-stochastic neighbor embedding (tSNE).
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Figure A4. 
Abnormal cell state transitions during leukemia pathogenesis and progression. The 

distribution of cell states u(t, θ) show abnormal cell states emerging during leukemic 

progression after t = 10 modeled in the advection term as V = camlvaml
1  (top) and 

V = v1 + camlvaml
2  (bottom), with various levels of caml = 1, 2, 10. Larger magnitude of 

caml results in more disrupted cell landscape.
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Figure A5. 
From discrete to continuum cell states. The hierarchy of graphs using partition-based graph 

abstraction [23] and single cell data from Nestorowa et al. (2016) (a) and Paul et al. (2015) 

(b). The single-cell data can be regarded as the most refined graph. The simulation of normal 

hematopoiesis on graph with 19 nodes (c), that is comparable to Figure 3A, illustrates the 

hierarchy of cell distribution toward the entire reduce space.
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Figure A6. 
Model sensitivity to parameters. Using single cell data from Nestorowa et al. (2016), number 

of cells and its dynamics in each cluster up to t = 50 for different values of ν and initial stem 

cell numbers ρ(0) are shown in (a–c). The dynamics of cells in each cluster for ν = 10−3 

with ρ(0) = 0.1 (a), ν = 10−2 with ρ(0) = 0.1 (b), and ν = 10−2 with larger initial number of 

cells, ρ(0) = 0.5 (c) shows that the recovery is more rapid for larger values of ν and larger 

number of initial stem cells ρ(0). Cell distribution u(θ, t) at intermediate time t = 14 for 

advection terms v1 and v1 + v2, and ν = 10−4 or ν = 10−3 are shown in (d). The distributions 

are distinct, where larger values of ν increases overall rate of differentiation, while adding v2 

prioritizes recovery of the most matured cells.
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Table A1.

Summary of the required parameters. The following table summarizes the parameters in our 

model terms, V, R, D, Vk, Rk, and Dk, and their biological meaning with the range. The 

ranges are found from the literature [19,57–61] experimentally measuring the cell cycle and 

self-renewal rate of the well known hematopoeisis cell types.

Parameters Biological meaning Range

r(θ), rk(x) proliferation rate [0.00215, 1] [57–60]

a(¸), ak(x) self-renewal rate [0.1, 0.8] [19,61]

c(θ) differentiation vector [0, 1] estimated

v phenotypic fluctuation [0, 0.0027] estimated

d apoptosis rate 0.6925 [61]

Table A2.

Parameter values of proliferation and self-renewal rate. The following values are taken for 

each single-cell, ri and ai, based on their clustered cell types [19,57–61], and then used for 

computing r(θ), rk(x), a(θ), and ak(x).

hematopoietic stem cells (HSC) ↔ progenitor cells (HPC)

cell type HSC MPP, LMPP, CMP MEP, GMP Neu/Mo, Ery

proliferation 0.01125 0.05658 0.1612 0.6931

(8.8 weeks) (12.25 days) (4.3 days) (1 day)

self-renewal 0.77 0.7689 0.7359 0.66

Table A3.

Gene alterations in Leukemic stem cells. From the genes that are reported in [35, 36], we 

find all the gene that are in Nestorowa and Paul data. The following table is the genes 

and their altered magnitude. See [35] Extended Data Table 1 for the 17 genes and [36] 

Supplemental Table S4 for approximately 80 genes.

Up-regulated Gene log2-fold change Down-regulated Gene log2-fold change

CD34 2.1500 LGALS3 −3.4901

LAPTM4B 1.8000 CYBB −2.9546

MMRN1 1.3600 CD36 −2.7661

SOCS2 1.2400 ANXA5 −2.6349

CDK6 1.2300 LY86 −2.5564

CPXM1 1.2000 IRF8 −2.4982

EMP1 1.0100 SAMHD1 −2.4580

GPR56 2.7004 GRN −2.3659

GATA2 1.8875 RNASE6 −2.3585

LPIN1 1.6323 FCER1G −2.2934
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Up-regulated Gene log2-fold change Down-regulated Gene log2-fold change

MZB1 1.4854 S100A9 −2.2447

ZSCAN18 1.3219 TLR4 −2.1078

GUCY1A3 1.2630 FCGRT −2.1016

SPNS2 1.2016 S100A8 −2.0116

PTK7 1.2016 CLEC12A −1.8730

ABCC1 1.1375 MNDA −1.8417

SYTL1 1.0704 IL13RA1 −1.7515

MAGED1 1.0704 SGK1 −1.7418

ARHGAP25 1.0704

SLA2 1.0000
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Figure 1. 
Step-by-step illustration of our modeling process. 1. Processed single-cell sequencing 

expression matrices are represented in a reduced dimension space through one of many 

dimension reduction techniques such as diffusion mapping, PCA, t-SNE, or UMAP. 2. 

Cell clusters are inferred to construct the cell state geometry either the graph or multi-

dimensional continuum of cell states. 3. From these representations, models are calibrated 

to the transport of cell distribution along the graph or in the cell state space. 4. The models 

can then be utilized to perturb genes and cell states. The calibrated models predict cell 

state-transitions and the emergence of novel cell states.
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Figure 2. 
From discrete to continuum cell states. A) Single-cell data from Nestorowa et al. (2016) 

and Paul et al. (2015) projected on the first two diffusion component space. B) Graph 

obtained by PAGA algorithm projected on the diffusion component space. Distinct cell types 

classified in the original paper are either illustrated with different colors (A) or annotated 

on the graph nodes (B). C, D) Multi-dimensional continuum cell state distribution on 

the diffusion component space computed by kernel density estimation. They are used as 

homeostasis distribution.
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Figure 3. 
Dynamics of cell distribution during normal hematopoeisis. A) Evolution of cell state 

densities u(t, x) on the graph with 8 to 9 nodes, and u(t, θ) on the diffusion component 

space during normal hematopoeisis using single-cell data from Nestorowa et al. (2016) and 

Paul et al. (2015). The shown dynamics is in pseudotime t. B) The pseudotime dynamics 

of the number of cells in each cell cluster, where the number is normalized so that the total 

cell number in equilibrium state is one. The initial stem cells differentiate to progenitors and 

more matured cell states and recover the entire cell landscape. C) Numbers of cells in each 

type/cluster using the multi-dimensional space model and the graph model are successfully 

calibrated to the observed data so that at t = 100 each model predicts the correct cell 
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ratios to within ±5%. D) The continuous cell states of hematopoeisis is also depicted in 

the FACS data set collected from the normal mouse bone marrow. Bone marrow cells were 

gated for myeloid progenitor cell markers (lineage-negative, Sca1-negative, cKit-positive). 

Conventionally, the expression levels of CD16/32 and CD34 are used to distinguish CMP, 

GMP, and MEP cell types within the myeloid progenitor compartment, however, the 

continuity of marker expression agrees with our graph abstraction and multi-dimensional 

cell state geometries.
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Figure 4. 
Predicting abnormal cell differentiation during leukemia progression. A,B,C) Cell 

distributions during leukemia pathogenesis and progression are shown on the graph model 

(A, B) and the multi-dimensional space model (C). Plot (B) shows an alternative way to plot 

the graph based model solution by stacking the cell distribution on each edge horizontally. 

The number on the left and right shows the node numbers shown in Figure 2B. They 

show the effect of over-proliferation and differentiation block in the myeloid lineages. In 

particular, we observe a rapid expansion of cell states near MEP and Ery in both Nestorowa 

and Paul data, after the initiation of AML at t = 10. D) The number of leukemic Ery cells 

show an increase within ten days in both graph and multi-dimensional space models. E) 
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Experimental result reproduced from [27] that shows a rapid expansion of pre-Meg/E (MEP) 

population in leukemic mouse compared to normal mouse (Control).
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Figure 5. 
Perturbing genes associated with leukemia stem cells. Examples of expression levels 

of genes in log2 scale, that are associated with leukemia stem cells and pathogenesis, 

including up-regulated GPR56, GATA2, and MZB1, and down-regulated LGALS3, LY86, 

and ANXA5. We show these subset of genes simply to illustrate the process. The normal 

single-cell data log2 gji + 1  (blue circle) and modified gene expression log2 gj
i + 1  (red 

square) computed as Eq (3.1) are shown together, with the case of extreme levels of either 16 

or 0 (purple diamond).
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Figure 6. 
Effects of perturbing genes on cell state-space. A,B) Projection of perturbed leukemic 

single-cell data on the normal diffusion component space, and the directional vectors 

P gi − P gi  representing the altered cell state by leukemic perturbation. The top figures 

are computed with Nestorowa data [13] (A) and the bottom figures with Paul data [14] 

(B). C,D) Graph computed from perturbed leukemic single-cell data and their cluster 

information. The annotation shows that the graph abstraction algorithm does not distinguish 

the perturbed leukemic cells in regular magnitude to the normal cells, so that the perturbed 

information is lost (C). However, when single-cell data is modified to the extreme values of 

gene expression level, the algorithm distinguishes the leukemic cells, although the data is 

unrealistic (D).
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Figure 7. 
Modeling AML pathogenesis and progression by perturbing cell states directly in the cell 

state-space. The direction of abnormal cell differentiation vaml
1  (black) is computed from the 

projection of altered leukemic MEP and Ery cells (×) to the normal diffusion component 

space as P g − P g . Alternatively, we assume a source of abnormal cell state (Θ) at θ* = 

(0.610, 0.215) in Nestorowa data (A) and at θ* = (0.6, 1) in Paul data (B) to model vaml
2

(blue).
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Figure 8. 
Cell state-transition dynamics during leukemia pathogenesis and progression. A) The 

evolution cell state distribution u(t, θ) with caml = 2. B) The total number of cells in 

AML condition is computed using model V = v1 + camlvaml
2 . More rapid progression of 

AML in terms of cell number is observed for larger values of caml and raml. C) FACS 

analysis for CD34 and CD16/32 expression in myeloid progenitor compartment of control 

(left), preleukemic (center) and leukemic (right) CM knock-in mouse shows emergence of 

unconventional cell states during leukemic progression that eventually dominate the entire 

progenitor population. Our multi-dimensional cell state model is capable of incorporating 

those novel cell states.
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Figure 9. 
Interpretation and mapping of model-predicted novel cell states. In order to identify novel 

cell states predicted by the mathematical model, gene expression levels log2 gji + 1  that are 

strongly correlated to the direction of leukemic alteration v = (−0.068, −0.206) (A), and to 

the reduced space location θ* = (0.5, 0.35) (C). The rescaled correlation rf,j (B) and rv,j (D) 

computed for all the genes in Nestorowa data are shown, and the leukemia related genes are 

marked in red bars.
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Table 1.

Comparison of the cell state model on graph versus multi-dimensional space in n dimensions. The 

computational cost is estimated by denoting M as the number of discretized grid points in one-dimension. 

We comment that the computational cost of a PDE solver can be up to a third power of the degree of freedom.

Graph model Multi-dimensional model

Cell state Interpretation Comprehensible as intermediate cell states Difficult to interpret

Cell state Exploration Limited to graph structure Freedom to explore novel and unconventional cell 
states

Computational cost (Degree of freedom) O(M) O(Mn)
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