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Abstract

The multiplicative coalescent X(t) is a l2-valued Markov process representing co-
alescence of clusters of mass, where each pair of clusters merges at rate proportional
to product of masses. From random graph asymptotics it is known (Aldous (1997))
that there exists a standard version of this process starting with infinitesimally small
clusters at time −∞. In this paper, stochastic calculus techniques are used to describe
all versions (X(t);−∞ < t <∞) of the multiplicative coalescent. Roughly, an extreme
version is specified by translation and scale parameters, and a vector c ∈ l3 of relative
sizes of large clusters at time −∞. Such a version may be characterized in three ways:
via its t → −∞ behavior, via a representation of the marginal distribution X(t) in
terms of excursion-lengths of a Lévy-type process, or via a weak limit of processes
derived from the standard multiplicative coalescent using a “coloring” construction.
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1 Introduction

1.1 The multiplicative coalescent

Consider the Markov process whose states are unordered collections x =
{xi} of positive real numbers (visualize x as a configuration of clusters of
matter, with xi as the mass of the i’th cluster) and whose dynamics are
described by

for each pair of clusters of masses (x, y), the pair merges at rate xy

into a single cluster of mass x+ y. (1)

For a given initial state x(0) with a finite number of clusters, (1) specifies
a continuous-time finite-state Markov process. This of course would remain
true if we replaced the merger rate xy in (1) by a more general rate K(x, y)
(see section 1.6), but the case K(x, y) = xy has the following equivalent
interpretation. Regard each cluster i of the initial configuration x(0) as a
vertex, and for each pair {i, j} let ξi,j be independent with exponential (rate
xi(0)xj(0)) distribution. At time t ≥ 0 consider the graph whose edge-set is
{(i, j) : ξi,j ≤ t} and let X(t) be the collection of masses of the connected
components of that graph. Then (X(t), 0 ≤ t < ∞) is a construction of
the process (1). Aldous [1] shows that we can extend the state space from
the “finite-length” setting to the “l2” setting. Precisely, let us represent
unordered vectors via their decreasing ordering. Define (l2↘, d) to be the

metric space of infinite sequences x = (x1, x2, . . .) with x1 ≥ x2 ≥ . . . ≥ 0
and

∑
i x

2
i < ∞, where d is the natural metric d(x, y) =

√∑
i(xi − yi)2.

Then the “graphical construction” above defines a Markov process (the
multiplicative coalescent) which is a Feller process ([1] Proposition 5) on
l2↘ and which evolves according to (1). The focus in [1] was on the ex-
istence and properties of a particular process, the standard multiplicative
coalescent (X∗(t),−∞ < t < ∞), which arises as a limit of the classical
random graph process near the phase transition (see section 1.3). In par-
ticular, the marginal distribution X∗(t) can be described as follows. Let
(W (s), 0 ≤ s <∞) be standard Brownian motion and define

W t(s) = W (s) + ts− 1
2s

2, s ≥ 0. (2)

So W t is the inhomogeneous Brownian motion with drift t − s as time s.
Now construct the “reflected” analog of W t via

Bt(s) = W t(s)− min
0≤s′≤s

W t(s′), s ≥ 0. (3)
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The reflected process Bt has a set of excursions from zero. Then ([1] Corol-
lary 2) the ordered sequence of excursion lengths of Bt is distributed as
X∗(t). Note in particular that the total mass

∑
iX
∗
i (t) is infinite.

1.2 The entrance boundary

The purpose of this paper is to describe (in Theorems 2 – 4 below) the
entrance boundary at time −∞ of the multiplicative coalescent. Call a mul-
tiplicative coalescent defined for −∞ < t < ∞ eternal. General Markov
process theory (see e.g. [7] section 10 for a concise treatment) says that any
eternal multiplicative coalescent is a mixture of extreme eternal multipli-
cative coalescents, and the extreme ones are characterized by the property
that the tail σ-field at time −∞ is trivial. We often refer to different mul-
tiplicative coalescents as different versions of the multiplicative coalescent;
this isn’t the usual use of the word version, but we don’t have a better word.

Write l3↘ for the space of infinite sequences c = (c1, c2, . . .) with c1 ≥
c2 ≥ . . . ≥ 0 and

∑
i c

3
i <∞. Define parameter spaces

Ī = [0,∞)× (−∞,∞)× l3↘
I+ = (0,∞)× (−∞,∞)× l3↘.

For c ∈ l3↘ let (ξj, j ≥ 1) be independent with exponential (rate cj) distri-
butions and consider

V c(s) =
∑
j

(
cj1(ξj≤s) − c

2
js
)
, s ≥ 0. (4)

We may regard (cf. section 2.5) V c as a “Lévy process without replacement”.
It is easy to see (section 2.1) that the condition for (4) to yield a well-defined
process is precisely the condition

∑
i c

3
i <∞. Now modify (2,3) by defining,

for (κ, τ, c) ∈ Ī,

W̃κ,τ (s) = κ1/2W (s) + τs− 1
2κs

2, s ≥ 0 (5)

Wκ,τ,c(s) = W̃κ,τ (s) + V c(s), s ≥ 0 (6)

Bκ,τ,c(s) = Wκ,τ,c(s)− min
0≤s′≤s

Wκ,τ,c(s′), s ≥ 0. (7)

So Bκ,τ,c(s) is a reflected process with some set of excursions from zero.
Now define l0 to be the set of c ∈ l3↘ such that, for each −∞ < τ <∞ and
each δ > 0,

B0,τ,c has a.s. no infinite excursion and only finitely many
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excursions with length ≥ δ (8)

(note here κ = 0). If
∑
i c

2
i < t, the process W 0,t,c(s) has asymptotic

(s → ∞) drift rate t − ∑i c
2
i > 0 and hence B0,τ,c ends with an infinite

incomplete excursion. So l0 ⊆ l3↘ \ l
2
↘. In fact we shall prove (section 5.5)

Lemma 1 l0 = l3↘\ l
2
↘.

Defining
I = I+ ∪ ({0} × (−∞,∞)× l0) ,

we can now state the main results.

Theorem 2 For each (κ, τ, c) ∈ I there exists an eternal multiplicative coa-
lescent X such that for each −∞ < t <∞, X(t) is distributed as the ordered
sequence of excursion lengths of Bκ,t−τ,c.

Write µ(κ, τ, c) for the distribution of the process X in Theorem 2. Note
also that the constant process

X(t) = (y, 0, 0, 0, . . .), −∞ < t <∞ (9)

for y ≥ 0 is an eternal multiplicative coalescent: write µ̂(y) for its distribu-
tion.

Theorem 3 The set of extreme eternal multiplicative coalescent distribu-
tions is {µ(κ, τ, c) : (κ, τ, c) ∈ I} ∪{µ̂(y) : 0 ≤ y <∞}.

Underlying Theorem 3 is an intrinsic characterization of the process with dis-
tribution µ(κ, τ, c). From the definition of l2↘, in X(t) = (X1(t), X2(t), . . .)

the cluster masses are written in decreasing order, so that Xj(t) is the mass
of the j’th largest cluster. Write

S(t) =
∑
i

X2
i (t)

Sr(t) =
∑
i

Xr
i (t) , r = 3, 4.

Theorem 4 Let (κ, τ, c) ∈ I. An eternal multiplicative coalescent X has
distribution µ(κ, τ, c) if and only if

|t|3S3(t) → κ+
∑
j c

3
j a.s. as t→ −∞ (10)

t+
1

S(t)
→ τ a.s. as t→ −∞ (11)

|t|Xj(t) → cj a.s. as t→ −∞, each j ≥ 1. (12)
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With this parametrization, the standard multiplicative coalescent has dis-
tribution µ(1, 0, 0). The parameters τ and κ are time-centering and scaling
parameters:

if X has distribution µ(1, 0, c)

then X̃(t) = κ−1/3X(κ−2/3(t− τ)) has distribution µ(κ, τ, κ1/3c) . (13)

From (12) we may interpret c as the relative sizes of distinguished large
clusters at time −∞. Further interpretations of c are addressed in the next
two sections, leading to a recipe for constructing the general such process
from the standard multiplicative coalescent.

While Theorems 2 – 4 provide concise mathematical characterizations of
the processes µ(κ, τ, c), they are not very intuitively informative about the
nature of these processes. Indeed we have no appealing intuitive explanation
of why excursions of a stochastic process are relevant, except via the proof
technique (section 2.3) which represents masses of clusters in the multiplica-
tive coalescent as lengths of excursions of certain walks. The technical reason
for using Theorem 2 (rather than Theorem 4) as the definition of µ(κ, τ, c) is
that we can appeal to familiar weak convergence theory to establish existence
of the multiplicative coalescent with κ = 0, which we do not know how to
establish otherwise.

1.3 Relation to random graph processes

The “random graph” interpretation of the standard multiplicative coale-
scent X∗ is as follows ([1] Corollary 1). In G(n, P (edge) = 1

n + t
n4/3 ), let

Cn1 (t) ≥ Cn2 (t) ≥ . . . be the sizes of the connected components. Then as
n→∞, for each fixed t

n−2/3(Cn1 (t), Cn2 (t), . . .)
d→ X∗(t) on l2↘.

Consider c = (c1, . . . , ck, 0, 0, . . .), and write v =
∑
i c

2
i . The eternal multi-

plicative coalescent with distribution µ(1,−v, c) arises as the corresponding
limit, where in addition to the random edges there are initially k “planted”
components of sizes bcin1/3c. (This is a special case of Proposition 7.) From
the viewpoint of random graph asymptotics, it is hard to see which infinite
vectors c are appropriate, but in the next section we reformulate the same
idea directly in terms of multiplicative coalescents.

The genesis of this paper and [1] was a question posed informally by Joel
Spencer (personal communication) in the random graphs context, asking
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roughly for the existence and essential uniqueness of some process like the
standard multiplicative coalescent. The following corollary of Theorems 3
and 4 is perhaps the simplest formalization of “essential uniqueness”.

Corollary 5 The standard multiplicative coalescent has the property

X1(t)/S(t)→ 0 a.s. as t→ −∞.

Any eternal multiplicative coalescent with this property is a mixture of lin-
early-rescaled standard multiplicative coalescents.

1.4 The coloring construction

The same idea of “initially planted clusters” can be formulated directly in
terms of the multiplicative coalescent. Given a configuration x ∈ l2↘ and a

constant c > 0, a random configuration COL(x; c) can be defined as follows
(see section 5.1 for more details of the following). Imagine distinguishing
and coloring atoms according to a Poisson process of rate c per unit mass,
so that the i’th cluster (which has mass xi) contains at least one colored
atom with chance 1 − e−cxi . Then merge all the clusters containing col-
ored atoms into a single cluster. The notation COL is a mnemonic for
“color and collapse”. This operation commutes with the evolution of the
multiplicative coalescent; that is, for a version (X(t), t1 ≤ t ≤ t2), the distri-
bution COL(X(t2); c) is the same as the time-t2 distribution of the version
started at time t1 with distribution COL(X(t1); c). So given an eternal
version X of the multiplicative coalescent, we can define another eternal
version COL(X; c) whose marginal distribution at time t is the distribution
of COL(X(t); c). For finite c = (c1, . . . , ck) we can construct COL(X; c)
recursively as COL(COL(X; (c1, . . . , ck−1)); ck). It turns out that the con-
struction extends to c ∈ l2↘.

Theorem 6 (a) Let X∗ be the standard multiplicative coalescent, and let
c ∈ l2↘. Then COL(X∗; c) is the eternal multiplicative coalescent with dis-

tribution µ(1,−∑i c
2
i , c).

(b) For c ∈ l3↘,

µ(1, 0, (c1, . . . , ck, 0, 0, . . .))
d→ µ(1, 0, c).

(c) For c ∈ l0,

µ(κ, τ, c)
d→ µ(0, τ, c) as κ ↓ 0.
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This allows us to give a “constructive” description of the entrance boundary.
We remark that if c is not in l2↘ then COL(X∗; c) does not exist, so one

might first guess that (up to rescaling) the entrance boundary consisted
essentially only of the processes COL(X∗; c) for c ∈ l2↘. But Theorem 6
says that the process

Yk(t) = COL

(
X∗(t−

k∑
i=1

c2
i ); (c1, . . . , ck)

)
(14)

has distribution µ(1, 0, (c1, . . . , ck)), which as k → ∞ converges weakly to
µ(1, 0, c) for all c ∈ l3↘, not just l2↘. The point is that the increase in l2-
norm caused by the color-and-collapse operation can be compensated by the
time-shift. This is loosely analogous to the construction of Lévy processes as
limits of linearly-compensated compound Poisson processes. Now by linear
rescaling (13) we can define µ(κ, τ, c) for κ > 0, and the final surprise (from
the viewpoint of the coloring construction) is that for c ∈ l0 one can let
κ→ 0 to obtain a process µ(0, τ, c).

A related intuitive picture was kindly suggested by a referee. As noted
earlier, from (12) we may interpret c as the relative masses of distinguished
large clusters in the t → −∞ limit. In this limit, these clusters do not in-
teract with each other, but instead serve as nuclei, sweeping up the smaller
clusters in such a way that relative masses converge. The asymptotic non-
interaction allows a comparison where these large clusters may be succes-
sively removed, reducing the process to the standard multiplicative coale-
scent. In the case where the limit (12) holds with c ∈ l2↘ this is the right
picture, and is formalized in Proposition 41. But as described above, the
case c ∈ l3↘ is more complicated.

1.5 Remarks on the proofs

The proofs involve three rather different techniques, developed in turn in
sections 2, 3 and 5. Proposition 7, proved in section 2, gives a “domain of
attraction” result generalizing the “if” assertion of Theorem 4. As discussed
in section 2, the argument follows in outline the argument (“code as random
walk, and use standard weak convergence methods”) in [1] for a special
case, so we shall omit some details. In section 3 we use stochastic calculus
to show (Proposition 18) that for a non-constant extreme eternal multipli-
cative coalescent the limits (10 – 12) must exist. Section 4 brings these
results together with the Feller property to prove Theorems 2 – 4. Section 5
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develops the coloring construction, where a central idea (cf. Proposition 41)
is that replacing X by COL(X; c) has the effect of appending the vector c to
the vector of t→ −∞ limits in (12). The proof of Theorem 6 is completed
in section 5.4.

For at least two of the intermediate technical results (Propositions 14(b)
and 30) our proofs are clumsy and we suspect simpler proofs exist.

1.6 General stochastic coalescents

Replacing the merger rate xy in (1) by a general kernel K(x, y) gives a
more general stochastic coalescent. Such processes, and their determinis-
tic analogs, are the subject of an extensive scientific literature, surveyed
for probabilists in [2]. Rigorous study of general stochastic kernels with
infinitely many clusters has only recently begun. Evans and Pitman [9]
work in the l1 setting, where the total mass is normalized to 1, and give
general sufficient conditions for the Feller property. This is inadequate
for our setting, where X∗(t) has infinite total mass: Theorem 3 implies
that in l1 the only eternal multiplicative coalescents are the constants.
But the l1 setting does seem appropriate for many kernels. For the case
K(x, y) = 1 the “standard” coalescent is essentially Kingman’s coalescent
[11], say Z = (Z(t); 0 < t < ∞), and it is easy to prove that Z is the
unique version satisfying maxiZi(t) → 0 a.s. as t ↓ 0. The “additive” case
K(x, y) = x + y seems harder: the “standard” version of the additive coa-
lescent is discussed in [9, 4] and the entrance boundary is currently under
study.

The stochastic calculus techniques based on (68) used in section 3 can
partially be extended to certain other kernels and yield information about
the “phase transition” analogous to the emergence of the giant component
in random graph theory: see [3].

Acknowledgement. We thank a conscientious referee for helpful comments
on this paper.
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2 The weak convergence argument

2.1 A preliminary calculation

Let (ξj) be independent with exponential (rate cj) distributions. For fixed
j, it is elementary that cj1(ξj≤s)−c2

js is a supermartingale with Doob-Meyer

decomposition Mj(s)−c2
j(s−ξj)+, where Mj is a martingale with quadratic

variation 〈Mj〉(s) = c3
j min(s, ξj). Consider, as at (4),

V c(s) =
∑
j

(
cj1(ξj≤s) − c

2
js
)
, s ≥ 0.

For c ∈ l3↘ we claim that V c is a supermartingale with Doob-Meyer decom-
position

V c(s) = Mc(s)− Ac(s) (15)

where
Ac(s) =

∑
j

c2
j (s− ξj)+

and where Mc is a martingale with quadratic variation

〈Mc〉(s) =
∑
j

c3
j min(s, ξj). (16)

To verify the claim, it is enough to show that Ac(s) and the right side of
(16) are finite. The latter is clear, and the former holds because

E(s− ξj)+ ≤ sP (ξj ≤ s) ≤ s2cj. (17)

Thus the processes Wκ,τ,c and Bκ,τ,c featuring in the statement of Theorem
2 are well-defined.

2.2 The weak convergence result

The rest of section 2 is devoted to the proof of the following “domain of
attraction” result. Given x ∈ l2↘ define

σr(x) =
∑
i

xri , r = 1, 2, 3, 4, 5.
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Proposition 7 For each n ≥ 1 let (X(n)(t); t ≥ 0) be the multiplicative
coalescent with initial state x(n), a finite-length vector. Suppose that, as
n→∞,

σ3(x(n))

(σ2(x(n)))3
→ κ+

∑
j

c3
j (18)

x
(n)
j

σ2(x(n))
→ cj, j ≥ 1 (19)

σ2(x(n)) → 0 (20)

where 0 ≤ κ <∞ and c ∈ l3↘. If (κ, 0, c) ∈ I then for each fixed t,

X(n)
(

1

σ2(x(n))
+ t

)
d→ Z (21)

where Z is distributed as the ordered sequence of excursion lengths of Bκ,t,c.
If κ = 0 and c 6∈ l0 then the left side of (21) is not convergent.

The special case where c = 0 and κ = 1 is Proposition 4 of [1]. The proof
of the general case is similar in outline, so we shall omit some details.

It will be important later that Proposition 7 is never vacuous, in the
following sense.

Lemma 8 For any (κ, 0, c) ∈ I we can choose (x(n)) to satisfy (18 – 20).

Proof. In the case κ > 0 we may (cf. the random graph setting, sec-
tion 1.3) take x(n) to consist of n entries of size κ−1/3n−2/3, preceded
by entries (c1κ

−2/3n−1/3, . . . , cl(n)κ
−2/3n−1/3), where l(n) → ∞ sufficiently

slowly. In the case κ = 0 and c ∈ l0, take x(n) to consist of entries

(c1n
−1/3, . . . , cl(n)n

−1/3), where l(n) → ∞ fast enough so that
∑l(n)
i=1 c

2
i ∼

n1/3.

2.3 Breadth-first walk

Fix a finite-length initial configuration x ∈ l2↘, and fix 0 < q < ∞. In

section 1.1 we described the graphical construction of X(q), the state at q
of the multiplicative coalescent started at state x. Here we copy from [1]
section 3.1 an augmentation of the graphical construction, in which there
is another notion of “time” and each vertex has a “birth-time” and most
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vertices have a “parent” vertex. Simultaneously we construct the breadth-
first walk associated with X(q).

For each ordered pair (i, j), let Ui,j have exponential(qxj) distribution,
independent over pairs. The construction itself will not involve Ui,i, but
they will be useful in some later considerations. Note that with the above
choice of rates

P ( edge i↔ j appears before time q) = 1− exp(−xixjq) = P (Ui,j ≤ xi) .

Choose v(1) by size-biased sampling, i.e. vertex v is chosen with probability
proportional to xv. Define {v : Uv(1),v ≤ xv(1)} to be the set of children of
v(1), and order these children as v(2), v(3), . . . so that Uv(1),v(i) is increasing.
The children of v(1) can be thought of as those vertices of the multiplicative
coalescent connected to v(1) via an edge by time q. Start the walk z(·) with
z(0) = 0 and let

z(u) = −u +
∑
v

xv1(Uv(1),v≤u), 0 ≤ u ≤ xv(1) .

So z(xv(1)) = −xv(1) +
∑

v child of v(1)

xv.

Inductively, write τi−1 =
∑
j≤i−1 xv(j). If v(i) is in the same component as

v(1), then the set

{v 6∈ {v(1), . . . , v(i− 1)} : v is a child of one of {v(1), . . . , v(i− 1)}}

consists of v(i), . . . , v(l(i)) for some l(i) ≥ i. Let the children of v(i) be {v 6∈
{v(1), . . . , v(l(i))} : Uv(i),v ≤ xv(i)}, and order them as v(l(i) + 1), v(l(i) +
2), . . . such that Uv(i),v is increasing. Set

z(τi−1 +u) = z(τi−1)−u+
∑

v child of v(i)

xv 1(Uv(i),v≤u), 0 ≤ u ≤ xv(i). (22)

After exhausting the component containing v(1), choose the next vertex by
size-biased sampling, i.e. each available vertex v is chosen with probabil-
ity proportional to xv. Continue. After exhausting all vertices, the above
construction produces a forest. Each tree in this forest is also a connected
component of the corresponding multiplicative coalescent. After adding ex-
tra edges (i, j) for each pair such that i < j ≤ l(i) and Uv(i),v(j) ≤ xv(i),
the forest becomes the graphical construction of the multiplicative coales-
cent. By construction, both the vertices and the components appear in the
size-biased random order.

11
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0.4
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1.1

Figure 1

Figure 1 illustrates a helpful way to think about the construction, pictur-
ing the successive vertices v(i) occupying successive intervals of the “time”
axis, the length of the interval for v being the weight xv. During this time
interval we “search for” children of v(i), and any such child v(j) causes a
jump in z(·) of size xv(j). The time of this jump is the birth time β(j) of v(j),
which in this case (i.e. provided v(j) is not the first vertex of its component)
is β(j) = τi−1 +Uv(i),v(j). These jumps are superimposed on a constant drift
of rate −1. If v(j) is the first vertex of its component, its birth time is the
start of its time interval: β(j) = τj−1. If a component consists of vertices
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{v(i), v(i+ 1), . . . , v(j)}, then the walk z(·) satisfies

z(τj) = z(τi−1)− xv(i),

z(u) ≥ z(τj) on τi−1 < u < τj.

The interval [τj−1, τi] corresponding to a component of the graph has length
equal to the mass of the component (i.e. of a cluster in the multiplicative co-
alescent), and this interval is essentially an “excursion above past minima”
of the breadth-first walk. This connection is the purpose of the breadth-first
walk, and will asymptotically lead to the Theorem 2 description of eternal
multiplicative coalescents in terms of excursions of Wκ,τ,c.

2.4 Weak convergence of breadth-first walks

Fix (x(n), n ≥ 1) and t satisfying the hypotheses of Proposition 7. Let
(Zn(s), 0 ≤ s ≤ σ1) be the breadth-first walk associated with the state at
time q = 1

σ2(x(n))
+ t of the multiplicative coalescent started in state x(n).

Our first goal is to prove (Proposition 9) weak convergence of 1
σ2(x(n))

Zn(s).

The argument is an extension of the proof of [1] Proposition 10, in which
the terms Rn(s) did not arise.

By hypotheses (18 - 20) we may choose m(n) to be an integer sequence
which increases to infinity sufficiently slowly that∣∣∣∣∣∣

m(n)∑
i=1

(x
(n)
i )2

(σ2(x(n)))2
−
m(n)∑
i=1

c2
i

∣∣∣∣∣∣→ 0 ,

∣∣∣∣∣∣
m(n)∑
i=1

(
x

(n)
i

σ2(x(n))
− ci

)3
∣∣∣∣∣∣→ 0 , (23)

and σ2(x(n))

m(n)∑
i=1

c2
i → 0 . (24)

In the sequel, we will sometimes omit n from the notation, and in particular
we write σ2 for σ2(x(n)) and write x for x(n). Consider the decomposition

Zn(s) = Yn(s) +Rn(s) , where Rn(s) =
m(n)∑
i=1

(
x̂i1{ξni ≤s} −

x2
i

σ2
s

)
,

with ξni = β(j) when v(j) = i, and

x̂i = xi , if i is not the first vertex in its component

= 0 , else .

13



Define

Z̄n(s) =
1

σ2
Zn(s) =

1

σ2
Yn(s) +

1

σ2
Rn(s) = Ȳn(s) + R̄n(s), say.

Proposition 9 As n → ∞ (Ȳn, R̄n)
d→ (W̃κ,t, V c), where V c and W̃κ,t

are independent, and therefore Z̄n
d→ Wκ,t,c.

First we deal with Ȳn(s) = Z̄n(s) − R̄n(s). We can write Yn = Mn + An,
M2
n = Qn + Bn where Mn, Qn are martingales and An, Bn are continuous,

bounded variation processes. If we show that, for any fixed s0,

sup
s≤s0

∣∣∣∣∣An(s)

σ2
+
κs2

2
− ts

∣∣∣∣∣ p→ 0 (25)

1

σ2
2

Bn(s0)
p→ κ s0 (26)

1

σ2
2

E sup
s≤s0
|Mn(s)−Mn(s−)|2 → 0 , (27)

then by the standard functional CLT for continuous-time martingales (e.g
[8] Theorem 7.1.4(b)) we deduce convergence of Ȳn to W̃κ,t. Note that (27)
is an immediate consequence of (19, 23) and the fact that the largest possible
jump of Mn has size xm(n)+1. Here and below write m for m(n). Define

σ̄r = σr −
m∑
i=1

xri , r = 2, 3, 4, 5 .

It is easy to check that hypotheses (18, 19) and conditions (23, 24) imply

σ̄2 ∼ σ2 ,
σ̄3

σ̄3
2

→ κ as n→∞. (28)

Lemma 11 of [1] extends easily to the present setting, as follows.

Lemma 10

dAn(s) = (−1 +
m∑
i=1

x2
i /σ2) ds + (t+ 1

σ2
)(σ̄2 −Q2(s)− Q̃2(s)) ds

dBn(s) = (t+ 1
σ2

)(σ̄3 −Q3(s)− Q̃3(s)) ds

14



where, for τi−1 ≤ s < τi,

Q2(s) =
∑
j≤i

x2
v(j), Q3(s) =

∑
j≤i

x3
v(j)

Q̃2(s) =
∑

j>i,β(j)<s

x2
v(j), Q̃3(s) =

∑
j>i,β(j)<s

x3
v(j),

and all sums above are over vertices j with v(j) /∈ {1, 2, . . . , m}.

Because 1
2κs

2 − ts =
∫ s

0 (κu− t) du, showing (25) reduces, by Lemma 10, to
showing

sup
u≤s0
|d(u)| p→ 0

where

d(u) =
−1 + (t+ 1

σ2
)(σ2 −Q2(u)− Q̃2(u))− t∑m

i=1 x
2
i

σ2
+ (κu− t).

Using (23, 24) and hypotheses (18) and (20), this in turn reduces to proving
Lemmas 11 and 12 below. Similarly, (26) reduces to showing

Q3(s0) + Q̃3(s0)

σ3
2

p→ 0.

Since Q3(s0) ≤ xm+1Q2(s0) and Q̃3(s0) ≤ xm+1Q̃2(s0), this also follows
from Lemma 11 and 12, using (28) and hypothesis (19).

Lemma 11 supu≤s0 Q̃2(u)/σ2
2

p→ 0.

Lemma 12

sup
u≤s0

∣∣∣∣ 1

σ2
2

Q2(u) − σ̄3

σ3
2

u

∣∣∣∣ p→ 0.

Proof of Lemma 11. Q̃2(s) ≤ xm+1Q̃1(s), where for τi−1 ≤ s < τi

Q̃1(s) =
∑

j>i,β(j)<s

xv(j) ,

and the index j of summation above is not additionally constrained. By
(23) and hypothesis (19) we have xm+1/σ2 → 0, so it is enough to prove

1

σ2
sup
s≤s0

Q̃1(s) is stochastically bounded as n→∞.

15



This was proved in [1] under the hypothesis x1/σ2 → 0, but examining
the argument reveals that our weaker hypothesis (19) is sufficient for the
conclusion.

Proof of Lemma 12. This argument, too, is only a slight variation on the
one given in [1]. We exploit the fact that the (v(i)) are in size-biased random
order. Introduce an artificial time parameter θ, let (Ti) be independent with
exponential(xi) distribution, and consider

D1(θ) =
∑
j≥1

xj1(Tj≤θ) − σ2θ

D2(θ) =
∑

j≥m+1

x2
j1(Tj≤θ) − σ̄3θ

D0(θ) =
1

σ2
2

D2(θ) − σ̄3

σ3
2

D1(θ).

Ordering vertices i according to the (increasing) values of Ti gives the size-
biased ordering. So the process(

1

σ2
2

Q2(τi)−
σ̄3

σ3
2

τi, i ≥ 0

)
is distributed as the process (D0(θi), i ≥ 0), where

θi = min{θ : Tj ≤ θ for exactly i different j’s from {m+ 1, m+ 2, . . .} }.

In order to prove Lemma 12 it is enough to show that

D(s0) = sup {|D0(θ)| : D1(θ) + σ2θ ≤ s0}
p→ 0 . (29)

For u = 1, 2 the process Du(θ) is a supermartingale, and so by a maximal
inequality ([12] Lemma 2.54.5), for ε > 0

1
3 εP (sup

θ′≤θ
|Du(θ′)| > 3ε) ≤ E|Du(θ)| ≤

(
|EDu(θ)|+

√
var Du(θ)

)
.

Now

|ED2(θ)| = −ED2(θ)

=
∑

j≥m+1

x2
j (xjθ + exp(−xjθ)− 1)

≤
∑

j≥m+1

x2
j (xjθ)

2/2

= θ2σ̄4/2

16



var D2(θ) =
∑

j≥m+1

x4
jP (Tj ≤ θ)P (Tj > θ)

≤
∑

j≥m+1

x4
j (xjθ)

= θσ̄5.

Similarly
|ED1(θ)| ≤ θ2σ3/2; var D1(θ) ≤ θσ3. (30)

Combining these bounds,

1
3εP (sup

θ′≤θ
|D0(θ′)| > 6ε) ≤ 1

σ2
2

(
θ2σ̄4

2
+ θ1/2σ̄

1/2
5

)
+
σ3

σ3
2

(
θ2σ3

2
+ θ1/2σ

1/2
3

)
.

Setting θ = 2s0/σ2 and using the bounds σ̄4 ≤ xm+1σ3, σ̄5 ≤ x2
m+1σ3, the

bound becomes

O

(
xm+1σ3

σ4
2

+
σ

1/2
3 xm+1

σ
5/2
2

+
σ2

3

σ5
2

+
σ

3/2
3

σ
7/2
2

)

and this → 0 using (18,19,20). A simple Chebyshev inequality argument
shows that for θ = 2s0/σ2,

P (D1(θ) + σ2θ ≤ s0)→ 0 ,

which together with (29) verifies Lemma 12. 2

We have now shown that Ȳn
d→ W̃κ,t. In order to complete the proof of

Proposition 9 we need to show R̄n
d→ V c, and moreover that (Ȳn, R̄n)

d→
(W̃κ,t, V c), where V c and W̃κ,t are independent.

As a preliminary, note that σ2
2 ≤ σ1σ3 by the Cauchy-Schwarz inequality,

and so by (18,20)
σ1 ≥ σ2

2/σ3 →∞. (31)

Define ξ̃ni to be the first time of the form τk−1 +Uv(k),v(i) for some k with
Uv(k),v(i) ≤ xv(k) (this is where we need Uv(i),v(i)). In case Uv(k),v(i) > xv(k)

for all k, let ξ̃ni = σ1 + ξ∗i , with ξ∗i
d
= exponential((t + 1

σ2
)xi), inde-

pendent of the walk. By elementary properties of exponentials, ξ̃ni has
exponential((t + 1

σ2
)xi) distribution, and ξ̃ni , ξ̃

n
j are independent for i 6=

j , i, j ≤ n. Obviously ξni ≤ ξ̃ni and ξ̃ni = ξni on the event

{ vertex i is not the first in its component}. (32)
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By (19) we conclude that ξ̃ni
d→ ξi

d
= exponential(ci), implying that for

any fixed integer M(
M∑
i=1

(
xi
σ2

1{ξ̃ni ≤u}
− x2

i

σ2
2

u

)
, 0≤u≤s

)
d→
(
M∑
i=1

(
ci1{ξi≤u} − c

2
iu
)
, 0≤u≤s

)
, (33)

as n→∞, where the limit (ξi, i ≥ 1) are independent with ξi
d
= exponential

(rate ci), i ≥ 1. We now need a uniform tail bound.

Lemma 13 For each ε > 0

lim
M→∞

lim sup
n→∞

P

 sup
u≤s

∣∣∣∣∣∣
m(n)∑
i=M

(
xi
σ2

1{ξ̃ni ≤u}
− x2

i

σ2
2

u

)∣∣∣∣∣∣ > ε

 = 0 . (34)

Proof. First split the sum in (34) into

m∑
i=M

[(t+ 1
σ2

)xi1{ξ̃ni ≤u}
− (t+ 1

σ2
)2x2

iu] +
m∑
i=M

[−txi1{ξ̃ni ≤u} + tx2
i u

2 + 2tu
x2
i
σ2

] ,

where we recognize the leading term as the supermartingale V c̃(u) with

c̃ ≡ (t+ 1
σ2

)(xM , xM+1, . . . , xm, 0, . . .) .

Each remaining term gets asymptotically (uniformly in u) small, as n→∞,
uniformly in M . For example, for the first one we calculate

E

(
sup
u≤s

t
m∑
i=M

xi1{ξ̃ni ≤u}

)
≤ t s

m∑
i=M

x2
i + s

∑m
i=M x2

i

σ2
→ 0 by (20, 24) ,

and the other two terms are even easier to bound. So it is enough to show

lim
M→∞

lim sup
n→∞

P

(
sup
u≤s

∣∣∣∣∣
m∑
i=M

(t+ 1
σ2

)xi1{ξ̃ni ≤u}
− (t+ 1

σ2
)2x2

i u

∣∣∣∣∣ > ε

)
= 0 .

(35)
For (M c̃, Ac̃) defined in (15), estimates (16, 17) give

E(M c̃)2(s) ≤
m∑
i=M

(t+ 1
σ2

)3x3
i s , EA

c̃(s) ≤
m∑
i=M

(t+ 1
σ2

)3x3
i s

2.

Hypotheses (18 – 20) and conditions (23, 24) imply

lim
n→∞

m∑
i=M

(t+ 1
σ2

)3x3
i =

∞∑
i=M

c3
i ,
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and now a standard maximal inequality application yields (35). 2
Lemma 13 and (33) imply, by a standard weak convergence result ([6]

Theorem 4.2),
m∑
i=1

(
xi
σ2

1{ξ̃ni ≤s}
− x2

i

σ2
2

s

)
d→ V c(s) . (36)

Because (ξ̃ni , i < m) is independent of Yn(s), we have joint convergence(
Ȳn(s),

m∑
i=1

(
xi
σ2

1{ξ̃ni ≤s}
− x2

i

σ2
2

s

))
d→ (W̃κ,t, V c(s)) , (37)

with independent W̃κ,t and V c(s). To complete the proof of Proposition 9
it is enough to show that

sup
u≤s

∣∣∣∣∣
m∑
i=1

(
xi
σ2

1{ξ̃ni ≤u}
− x̂i
σ2

1{ξni ≤u}

)∣∣∣∣∣ = sup
u≤s

∣∣∣∣∣
m∑
i=1

xi
σ2

1{ξni <ξ̃
n
i ≤u}

∣∣∣∣∣
=

m∑
i=1

xi
σ2

1{ξni <ξ̃ni ≤s}
(38)

p→ 0. (39)

For the event {ξni < ξ̃ni ≤ s} to occur at some random time U ≤ s the
walk must exhaust some finite number of components ending with a vertex
v(J), and then v(J + 1) must be i. Since v(J + 1) is chosen by size-biased
sampling,

P (v(J + 1) = i|U, J) =
xi

σ1 − U
≤ xi
σ1 − s

on {U ≤ s} a.s. .

In other words P (ξni < ξ̃ni ≤ s) ≤ xi
σ1−s on {U ≤ s}. So the expectation of

(38) equals

m∑
i=1

xi
σ2
P (ξni < ξ̃ni ≤ s) ≤

m∑
i=1

xi
σ2
· xi
σ1 − s

≤ 1

σ1 − s
→ 0 ,

by (31).

2.5 Properties of the Lévy-type limit process

Having proved Proposition 9, to prove Proposition 7 we need to verify that
the excursions of the reflected version of the normalized walk Z̄n converge
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in (l2↘, d) to the excursions of reflected Wκ,t,c, which is defined to be Bκ,t,c.
This will be done in section 2.6. As a preliminary, we need the following
properties of the limit process, which were routine, and hence not explicitly
displayed, in the “purely Brownian” c = 0 setting of [1]. In principle one
should be able to prove Lemma 1 also directly from the definition, but we
are unable to do so.

Proposition 14 Let (κ, t, c) ∈ I and write W (s) = Wκ,t,c(s) and B(s) =
Bκ,t,c(s). Then

(a) W (s)
p→ −∞ as s→∞.

(b) P (B(s) = 0) = 0, s > 0.

(c) max{y2 − y1 : y2 > y1 ≥ s0, (y1, y2) is an excursion of B(·)} p→ 0 as
s0 →∞.
(d) With probability 1, the set {s : B(s) = 0} contains no isolated points.

The proof occupies the rest of section 2.5. As at (15) write

W (s) = κ1/2W ∗(s) + ts− 1

2
κs2 +Mc(s)−Ac(s) , (40)

where W ∗ is a standard Brownian motion. It follows easily from (16) that

s−1Mc(s)→ 0 a.s. as s→∞. (41)

Moreover (1− ξi
s )+c2

i ↑ c2
i for all i, so by the monotone convergence theorem

Ac(s)

s
=
∑
i

(
1− ξi

s

)+

c2
i →

∑
c2
i ≤ ∞ a.s. .

Recall that
∑
i c

2
i = ∞ if κ = 0. Since of course s−1W ∗(s) → 0 a.s.,

representation (40) implies s−1W (s)→ −∞ a.s., which gives assertion (a).
Assertion (c) is true by definition of l0 in the case κ = 0. If κ > 0 we

may assume κ = 1 by rescaling. Restate (c) as follows: for each ε > 0

number of (excursions of B with length > 2ε) <∞ a.s. (42)

Fix ε > 0 and define events Cn = {sups∈[(n−1)ε,nε](W ((n+1)ε)−W (s)) > 0}.
For t1, t2 ∈ R, write t1 ∼ t2 if both t1 and t2 are straddled by the same
excursion of B. Note that {(n− 1)ε 6∼ nε ∼ (n+ 1)ε} ⊂ Cn, so it suffices to
show P (Cn i.o. ) = 0. In fact, by (41) it is enough to show∑

n≥s0/ε
P (Cn ∩ Cs0) <∞ , for all large s0 , (43)
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where Cs0 = {sups≥s0 |M(s)/s| ≤ ε2

4 }. From (40) we get

Cn ⊆ { sup
s∈[(n−1)ε,nε]

W ∗(ε(n+ 1))−W ∗(s) > (−2tε) ∧ (−εt)

+
ε2

2
(2n+ 1) +A((n+ 1)ε)−A(nε)− sup

s∈[(n−1)ε,nε]
M((n+ 1)ε)−M(s)} .

Consider n large enough so that n−1 ≥ s0/ε and 2tε < (2n+1)ε2/8. Then,
while on Cs0 ,

sup
s∈[(n−1)ε,(n+1)ε]

∣∣∣∣ M(s)

(2n+ 1)ε

∣∣∣∣ < ε2

8
,

and so

Cn ∩Cs0 ⊆
{

sup
s∈[(n−1)ε,nε]

W ∗(ε(n+ 1))−W ∗(s) ≥ ε2

8
(2n+ 1)

}
.

Since the increment distribution of W ∗ doesn’t change by shifting time, nor
by reversing time and sign,

P (Cn ∩Cs0 ) ≤ P ( sup
s∈[ε,2ε]

W ∗(s) >
ε2

8
(2n+ 1))

≤ P (W ∗(ε) >
ε2

16
(2n+ 1)) + P ( sup

s∈[0,ε]
W ∗(s) >

ε2

16
(2n+ 1))

≤ 512

ε3(2n+ 1)2
, by a maximal inequality.

This establishes (43) and hence assertion (c).
The proofs of (b) and (d) involve comparisons with Lévy processes, as

we now discuss. Given (κ, t, c) ∈ I, one can define the Lévy process

L(s) = κ1/2W ∗(s) + ts+
∑
i

(ciNi(s)− c2
i s)

where W ∗ is standard Brownian motion and (Ni(·), i ≥ 1) are independent
Poisson counting processes of rates ci. Clearly

W (s) ≤ L(s), s ≥ 0. (44)

By a result on Lévy processes (Bertoin [5] Theorem VII.1)

T(0,−∞) := inf{s > 0 : L(s) < 0} = 0 a.s. (45)
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This is already enough to prove (d), as follows (cf. [5] Proposition VI.4). For
a stopping time S forW (·), the incremental process (W (S+s)−W (S), s≥ 0)
conditioned on the pre-S σ-field is distributed as Wκ,t′,c′(s) for some random
t′, c′. Applying this observation to Sr = inf{s ≥ r : W (s) = inf0≤u≤sW (u)},
and then applying (44,45) to Wκ,t′,c′(s) and the corresponding Lévy process,
we see that Sr is a.s. not an isolated zero. This fact, for all rationals r,
implies (d).

It remains to prove assertion (b). We first do the (easy) case κ > 0. Fix
s, look at the process just before time s, and Brownian-scale to define

Wε(u) = ε−1/2(W (s− uε)−W (s)), 0 ≤ u ≤ 1.

We claim that
Wε(·) d→ κ1/2W ∗(·) as ε→ 0. (46)

Clearly κ1/2W ∗ arises as the limit of the κ1/2W ∗(u) + tu − 1
2κu

2 terms of
W , so it is enough to show

(ε−1/2(V c(s− uε)− V c(s)), 0 ≤ u ≤ 1)
d→ 0 as ε→ 0. (47)

Now the contribution to the left side of (47) from the (cj1(ξj≤u)− c2
ju) term

of V c is asymptotically zero for each fixed j; and as in section 2.1 a routine
variance calculation enables us to bound sup0≤u≤1 ε

−1/2(V c(s−uε)−V c(s))
in terms of

∑
j c

3
j . This establishes (47) and thence (46). Combining (46)

with the fact that inf0≤u≤1 κ
1/2W ∗(u) < 0 a.s. implies P (infs−ε≤u≤sW (u) <

W (s))→ 1 as ε→ 0. Thus P (W (s) = infu≤sW (u)) = 0, which is (b).
It remains to prove assertion (b) in the case κ = 0. Recall that in this

case
∑
i c

2
i = ∞ and

∑
i c

3
i <∞. By ([5] Theorem VII.2 and page 158) the

analog of (b) holds for L(·): for fixed s0,

P (L(s0) = inf
0≤u≤s0

L(u)) = 0. (48)

To prove (b) we will need an inequality in the direction opposite to (44):
this will be given at (50).

Fix s0. Define a mixture of Lévy processes by

Qm(s) =

(
t−

m∑
i=1

c2
i

)
s +

∑
i≥m+1

(
ci1AiMi(s)− c2

i s
)

where (Ai) are independent events with P (Ai) = (1 − 2cis0)+ and where
(Mi(·)) are independent Poisson processes of rates c̄i = cie

−cis0. The sum
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converges by comparing with the sum defining L(s), because E(Ni(s) −
1AiMi(s)) = O(c2

i ) as i → ∞. Applying to (Qm) the Lévy process result
(48),

P

(
Qm(s0) = inf

0≤u≤s0
Qm(u)

)
= 0. (49)

We shall show that the processes (Q2m(u), 0 ≤ u ≤ s0) and (W (u), 0 ≤ u ≤
s0) can be coupled so that

P (Q2m(s0)−Q2m(u) ≤W (s0)−W (u) for all 0 ≤ u ≤ s0)→ 1 as m→∞.
(50)

Then (49,50) imply

P

(
W (s0) = inf

0≤u≤s0
W (u)

)
= 0

which is assertion (b).
We shall need the following “thinning” lemma.

Lemma 15 Given s0, λ, λi, i ≥ 1 such that λ ≤ λie
−λis0 , let (ξi, i ≥ 1)

be independent, with ξi having exponential (λi) distribution. Then we can
construct a rate-λ Poisson point process on [0, s0] whose points are a subset
of (ξi, 1 ≤ i ≤ V ) where V − 1 has Poisson(λs0) distribution.

Proof. If ξ1 > s0, set V = 1. If ξ1 = s ≤ s0, toss a coin independently,
with λe−λs

λ1e−λ1s
probability of landing heads. If tails, delete the point ξ1 and

set V = 1. If heads, the point ξ1 becomes the first arrival of the Poisson
process. Next consider the interval I1 = [ξ1, s0] = [s, s0] and the point ξ2.
If ξ2 6∈ I1, set V = 2. Else, the point ξ2 = s+ t becomes the second arrival
of the Poisson process with probability λe−λt

λ2e−λ2(s+t) . Continue in the same
manner. 2

Recall that, in the present κ = 0 setting,

W (s) = ts+
∑
i

(ci1(ξi≤s) − c
2
i s)

where ξi has exponential(ci) distribution. Write (ξi,j, j ∈ Ji) for the set of
points of Mi(·) in [0, s0] if Ai occurs, but to be the empty set if Ai does
not occur. We seek to couple the points (ξi,j, 2m < i < ∞, j ∈ Ji) and
the points (ξi, 1 ≤ i <∞) in such a way that ξi,j = ξh(i,j) for some random
h(i, j) ≤ i such that the values {h(i, j) : i > 2m, j ∈ Ji} are distinct. Say the
coupling is successful if we can do this. Clearly a successful coupling induces
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a coupling of (Q2m(u), 0 ≤ u ≤ s0) and (W (u), 0 ≤ u ≤ s0) such that the
inequality in (50) holds. So it will suffice to show that the probability of
a successful coupling tends to 1 as m → ∞. The construction following
involves ξi for i ≥ m. Since we are proving the m → ∞ limit assertion
(51), we may suppose that cie

−cis0 is non-increasing in i ≥ m and that ci is
sufficiently small to satisfy several constraints imposed later.

Fix M > 2m. We work by backwards induction on k = M,M − 1,M −
2, . . . , 2m + 1. Suppose we have defined a joint distribution of (ξi,j,M ≥
i ≥ k + 1, j ∈ Ji) and (ξi,M ≥ i ≥ k + 1 − D(k + 1)), for some random
D(k+ 1) ≥ 0. For the inductive step, if Ak does not occur then the set Jk is
empty, so the induction goes through for D(k) = (D(k+1)−1)+. If Ak does
occur, we appeal to Lemma 15 to construct the points (ξk,j, j ∈ Jk) as a
subset of the points (ξi, k−D(k+1) ≥ i ≥ k−D(k)), where D(k)−D(k+1)
has Poisson(c̄ks0) distribution and is independent of D(k+ 1). We continue
this construction until

TM = max{k < M : D(k) ≥ k −m} ,

after which point the “λ ≤ λi” condition in the Lemma 15 might not hold.
Provided TM < 2m we get a successful coupling. Thus it is enough to prove

lim
m→∞

lim sup
M→∞

P (TM ≥ 2m) = 0. (51)

By construction, (D(k) : M ≥ k ≥ TM−m) is the non-homogeneous Markov
chain specified by D(M + 1) = 0 and

D(k) = (D(k + 1)− 1)+ on an event of probability min(1, 2cks0);

otherwise D(k)−D(k+ 1) has Poisson(c̄ks0) distribution . (52)

We analyze this chain by standard exponential martingale techniques.

Lemma 16 There exist θ > 1 and α > 0 such that, provided ck is suffi-
ciently small,

E(θD(k)|D(k+ 1) = d) ≤ θd exp(−αck), d ≥ 1.

Proof. We may take 2cks0 < 1, and then the quantity in the lemma equals

2cks0θ
d−1 + (1− 2cks0)θd exp((θ− 1)c̄ks0).

Since c̄k ≤ ck, we obtain a bound θdf(ck) where

f(c) = 2cs0θ
−1 + (1− 2cs0) exp((θ− 1)cs0).
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So f(0) = 1 and

f ′(0) = 2s0(θ−1 − 1) + (θ − 1)s0

= −2 s0
15 , choosing θ = 6/5.

So α = s0/8 will serve. 2
Now fix i and consider ζi = max{j ≤ i : D(j) = 0}. Lemma 16 implies

that the process

Λ(k) = θD(k) exp(α(ci−1 + . . .+ ck)), i ≥ k ≥ ζi

is a supermartingale. On the event {TM ≥ max(2m, ζi)} we have

Λ(TM) ≥ θTM−m exp(α(ci−1 + . . .+ cTM )) ≥ θm exp(α(ci−1 + . . .+ c2m))

the second inequality because we may assume c2m is sufficiently small that
exp(αc2m) < θ. Since Λ(i) = θD(i), the optional sampling theorem implies

P (i ≥ TM ≥ max(2m, ζi)|D(i))≤ θD(i)−me−α (ci−1+...+c2m) on {D(i) ≥ 1}

and the conditional probability is zero on {D(i) = 0}. From the transition
probability (52) for the step from i+ 1 to i,

E(θD(i)1(D(i)≥1)|D(i+ 1) = 0) = exp((θ− 1)c̄is0)− exp(−c̄is0)

≤ θc̄is0 ≤ θcis0.

Combining with the previous inequality,

P (i ≥ TM ≥ max(2m, ζi)|D(i+ 1) = 0) ≤ θ−me−α(ci−1+...+c2m) θcis0 . (53)

By considering the smallest i ≥ TM such that D(i+ 1) = 0,

P (TM ≥ 2m) =
M∑

i=2m

P (D(i+ 1) = 0, i ≥ TM ≥ max(2m, ζi))

≤
M∑

i=2m

P (i ≥ TM ≥ max(2m, ζi)|D(i+ 1) = 0).

Substituting into (53), to prove (51) it suffices to prove

θ−m
∞∑

i=2m

ci exp(−α(ci−1 + . . .+ c2m))→ 0 as m→∞. (54)
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In fact the sum is bounded in m, as we now show. For integer q ≥ 0 write
A(q) = {i : q ≤ ci−1 + . . .+ c2m < q + 1}. Then (since we may take each
ci < 1) we have

∑
i∈A(q) ci ≤ 2. So∑

i∈A(q)

ci exp(−α(ci−1 + . . .+ cm)) ≤ 2 exp(−αq)

and the sum over q is finite, establishing (54).

2.6 Weak convergence in l2

The remainder of the proof of Proposition 7 follows the logical structure of
the proof of Proposition 4 in [1]. We are able to rely on the theory of size-
biased orderings for random sequences in l2↘ and convergence, developed in

[1], section 3.3, which we now repeat.
For a countable index set Γ write l2+(Γ) for the set of sequences x =

(xγ; γ ∈ Γ) such that each xγ ≥ 0 and
∑
γ x

2
γ <∞. Write ord : l2+(Γ)→ l2↘

for the “decreasing ordering” map.
Given Y = {Yγ : γ ∈ Γ} with each Yγ > 0, construct r.v.’s (ξγ) such

that, conditional on Y, the (ξγ) are independent and ξγ has exponential(Yγ)
distribution. These define a random linear ordering on Γ, i.e. γ1 ≤ γ2 iff
ξγ1 ≤ ξγ2 . For 0 ≤ a <∞ define

S(a) =
∑
{Yγ : ξγ < a}. (55)

Note that

E(S(a)|Y) =
∑
γ

Yγ(1− exp(−aYγ)) ≤ a
∑
γ

Y 2
γ .

So if Y ∈ l2+(Γ) then we have S(a) < ∞ a.s.. Next we can define Sγ =
S(ξγ) <∞ and finally define the size-biased point process (SBPP) associated
with Y to be the set Ξ = {(Sγ, Yγ) : γ ∈ Γ}. So Ξ is a random element of
M, the space of configurations of points on [0,∞)×(0,∞) with only finitely
many points in each compact rectangle [0, s0]×[δ, 1/δ]. Note that Ξ depends
only on the ordering, rather than the actual values, of the ξ’s. Writing π for
the “project onto the y-axis” map

π({(sγ, yγ)}) = {yγ} (56)

we can recover ord Y from Ξ via ord Y = ord π(Ξ).
Convergence in (57) below is the natural notion of vague convergence of

counting measures on [0,∞)× (0,∞): see e.g. [10].
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Proposition 17 ([1] Proposition 15) Let Y(n) ∈ l2+(Γn) for each 1 <

n ≤ ∞, and let Ξ(n) be the associated SBPP. Suppose

Ξ(n) d→ Ξ(∞), (57)

where Ξ(∞) is a point process satisfying

sup{s : (s, y) ∈ Ξ(∞) for some y} =∞ a.s. (58)

if (s, y) ∈ Ξ(∞) then
∑
{y′ : (s′, y′) ∈ Ξ(∞), s′ < s} = s a.s. (59)

max{y : (s, y) ∈ Ξ(∞) for some s > s0}
p→ 0 as s0 →∞. (60)

Then Y(∞) = ord π(Ξ(∞)) is in l2↘, and ord Y(n) d→ ord Y(∞).

Let Ξ(∞) be the point process with points

{(l(γ), |γ|), γ an excursion of Bκ,t,c },

where l(γ) and |γ| are the leftmost point and the length of an excursion γ.
In the setting of Proposition 7, let Y(n) be the set of component sizes
of the multiplicative coalescent at time t + 1/σ2. If the k’th component
of the breadth-first walk consists of vertices {v(i), v(i + 1), . . . , v(j)}, let
l(n, k) = τi−1 and C(n, k) = τj − τi−1 be the leftmost point and the size
of the corresponding excursion. Let Ξ(n) be the point process with points
{(l(n, i), C(n, i)) : i ≥ 1}. Since the components of the breadth-first walk
are in size-biased order, Ξ(n) is distributed exactly as the SBPP associated
with Y(n). So the proof of convergence (21) in Proposition 7 will be com-
pleted when we check the hypotheses of Proposition 17. But (58,59,60) are
direct consequences of Proposition 14(a,b,c). Moreover, the weak conver-

gence Z̄n
d→ W given by Proposition 9, combined with the property of

Proposition 14(d), implies by routine arguments (cf. [1] Lemma 7) the weak
convergence (57) of starting-times and durations of excursions: we omit the
details.

To establish the “non-convergence” assertion of Proposition 7, suppose
κ = 0 and c ∈ l3↘ \ l0. So for some t and δ,

P (B0,t,c has infinitely many excursions of length > δ) > δ (61)

(infinite excursions are impossible by Proposition 14(a)). Choose x(n) sat-
isfying the hypotheses of Proposition 7. Proposition 9 and the argument in
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the paragraph above show that for some ω(n)→∞

lim inf
n

P

(
X(n)

(
1

σ2(x(n))
+ t

)
contains ≥ ω(n) clusters of size ≥ δ

)
> δ

(62)
implying non-convergence in l2↘.

3 Analysis of eternal multiplicative coalescents

This section is devoted to the proof of

Proposition 18 Let Xbe an extreme eternal multiplicative coalescent.Then
either X is a constant process (9) or else

|t|3S3(t) → a a.s. as t→ −∞ (63)

t+
1

S(t)
→ τ a.s. as t→ −∞ (64)

|t|Xj(t) → cj a.s. as t→ −∞, each j ≥ 1 (65)

where c ∈ l3↘, −∞ < τ <∞, a > 0 and
∑
j c

3
j ≤ a <∞.

3.1 Preliminaries

As observed in [1] section 4, when X(0) = x is finite-length, the dynamics (1)
of the multiplicative coalescent can be expressed in martingale form as fol-
lows. Let x(i+j) be the configuration obtained from x by merging the i’th and
j’th clusters, i.e. x(i+j) = (x1, . . . , xu−1, xi + xj, xu, . . . , xi−1, xi+1, . . . , xj−1

, xj+1, . . .) for some u. Write F(t) = σ{X(u);u≤ t}. Then

E(∆g(X(t))|F(t)) =
∑
i

∑
j>i

Xi(t)Xj(t)
(
g(X(i+j)(t))− g(X(t))

)
dt (66)

for all g : l2↘ → R (for all g because there are only finitely many possible

states). Of course, our “infinitesimal” notation E(∆Y (t)|F(t)) = A(t)dt is
just an intuitive way of expressing the rigorous assertion that M(t) = Y (t)−∫ t

0 A(s)ds is a local martingale; similarly the notation var (∆Y (t)|F(t)) =
B(t)dt means that M2(t) −

∫ t
0 B(s)ds is a local martingale. Throughout

section 3 we apply (66) and the strong Markov property to derive inequalities
for general (l2↘-valued rather than just finite-length) versions of the multi-
plicative coalescent. These can be justified by passage to the limit from
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the finite-length setting, using the Feller property ([1] Proposition 5). In
this way we finesse the issue of proving the strong Markov property in the
l2↘-valued setting, or discussing exactly which functions g satisfy (66) in the

l2↘-valued setting.
Because a merge of clusters of sizes xi and xj causes an increase in S of

size (xi + xj)
2 − x2

i − x2
j = 2xixj, (66) specializes to

E(∆f(S(t))|F(t)) =
∑
i

∑
j>i

Xi(t)Xj(t) (f(S(t) + 2Xi(t)Xj(t))− f(S(t)))dt

(67)
which further specializes to

E(∆S(t)|Ft) = 2
∑
i

∑
j>i

X2
i (t)X2

j (t)dt =

(
S2(t)−

∑
i

X4
i (t)

)
dt. (68)

3.2 Martingale estimates

In this section we give bounds which apply to the multiplicative coalescent
(X(t), t≥ 0) with arbitrary initial distribution.

Lemma 19 Let T = min{t ≥ 0 : S(t) ≥ 2S(0)}. Then

E

∫ T

0
(S(t)−X2

1(t))dt ≤ 5.

Proof. Assume X(0) is deterministic, and write s(0) = S(0). Since
∑
iX

4
i (t)

≤ X2
1(t)S(t), by (68)

E(∆S(t)|Ft) ≥ S(t)(S(t)−X2
1(t)) dt ≥ s(0)(S(t)−X2

1(t)) dt.

By the optional sampling theorem,

ES(T )− s(0) ≥ s(0)E

∫ T

0
(S(t)−X2

1(t)) dt.

But S(T−) ≤ 2s(0) and S(T )− S(T−) ≤ 2X2
1(T−) ≤ 2S(T−), so S(T ) ≤

6s(0), establishing the inequality asserted in the Lemma. 2

Lemma 20 ([1] Lemma 19) Write Z(t) = t+ 1
S(t) . Then

0 ≤ E(∆Z(t)|F(t)) ≤
(
S4(t)

S2(t)
+

2(S3(t))2

S3(t)

)
dt (69)
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and

var (∆Z(t)|F(t)) ≤ 2(S3(t))2

S4(t)
dt. (70)

Lemma 21 Define Y (t) = logS3(t)− 3 logS(t). Then
(i) |E(∆Y (t)|F(t))| ≤ 15X2

1(t)dt
(ii) var (∆Y (t)|F(t)) ≤ 36X2

1(t)dt.

Proof. Write S2(t) for S(t). By (66) E(∆Y (t)|F(t)) equals dt times the
following expression, where we have dropped the “t”:∑

i

∑
j>i

XiXj[log(S3 + 3X2
iXj + 3XiX

2
j )− logS3]

−3
∑
i

∑
j>i

XiXj[log(S2 + 2XiXj)− logS2].

Using the inequality | log(a+ b)− loga − b
a | ≤

b2

2a2 for a, b > 0, we see that
|E(∆Y (t)|F(t))| is bounded by dt times∣∣∣∣∣∣ 1

S3

∑
i

∑
j>i

XiXj(3X
2
iXj + 3XiX

2
j ) − 3

S2

∑
i

∑
j>i

2X2
iX

2
j

∣∣∣∣∣∣ (71)

+
∑
i

∑
j>i

XiXj

(3X2
iXj + 3XiX

2
j )2

2S2
3

+ 3
∑
i

∑
j>i

XiXj
(2XiXj)

2

2S2
2

. (72)

The quantity (72) is at most

9

2

(
S5

S3
+
S2

4

S2
3

)
+

3S2
3

S2
2

(73)

which is bounded by 12X2
1 , using the fact Sr+1/Sr ≤ X1. The quantity in

(71) equals
3|Z|
S2S3

, where

Z =
∑
i

∑
j 6=i

∑
k

X3
iX

2
jX

2
k −

∑
i

∑
j

∑
k 6=j

X3
iX

2
jX

2
k

= −S5S2 + S3S4,

and so the quantity in (71) equals 3
∣∣∣S4
S2
− S5

S3

∣∣∣ ≤ 3X2
1 . Combining these

bounds gives (i). For (ii), note that var (∆Y (t)|F(t)) equals dt times an
expression bounded from above by∑

i

∑
j>i

XiXj[log(S3 + 3X2
iXj + 3XiX

2
j )− logS3]2

30



+9
∑
i

∑
j>i

XiXj[log(S2 + 2XiXj)− logS2]2.

Since (log(a+ b)− loga)2 ≤ (b/a)2 for a, b > 0, we repeat the argument via
(72,73), with slightly different constants, to get the bound

9

(
S5

S3
+
S2

4

S2
3

)
+

18S2
3

S2
2

≤ 36X2
1 . 2

Now imagine distinguishing some cluster at time 0, and following that
distinguished cluster as it merges with other clusters. Write X∗(t) for its
size at time t. It is straightforward to obtain the following estimates.

Lemma 22 E(∆X∗(t)|F(t)) = (X∗(t)S(t)−X3
∗(t)) dt

var (∆X∗(t)|F(t)) ≤ X∗(t)S3(t) dt.

Our final estimate relies on the graphical construction of the multiplicative
coalescent, rather than on martingale analysis.

Lemma 23

P (S(t) ≤ tX1(0), X2(t) ≥ δ|X(0)) ≤ δ−2tX1(0) exp(−δtX1(0)).

Proof. We may assume X(0) is a non-random configuration x(0). We may
construct X(t) in two steps. First, let Y(t) = (Yj(t), j ≥ 1) be the state at
time t of the multiplicative coalescent with initial state (x2(0), x3(0), . . .).
Second, for each j ≥ 1 merge the cluster Yj(t) with the cluster of size x1(0)
with probability 1− exp(−tx1(0)Yj(t)), independently as j varies. Write N
for the number of j such that Yj(t) ≥ δ, and let M ≤ N be the number
of these j which do not get merged with the cluster of size x1(0). Since
S(t) ≥ Nδ2, the probability we seek to bound is at most

P (N ≤ δ−2tx1(0),M ≥ 1) ≤ P (M ≥ 1|N ≤ δ−2tx1(0))

≤ E(M |N ≤ δ−2tx1(0))

≤ δ−2tx1(0) exp(−tx1(0)δ).

3.3 Integrability for eternal processes

Proposition 24 Let Xbe an extreme eternal multiplicative coalescent.Then
either X is a constant process (9) or else

lim sup
t→−∞

|t|X1(t) <∞ a.s. (74)
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∫ 0

−∞
X2

1(t)dt <∞ a.s. (75)

and ∫ 0

−∞
S2(t)dt <∞ a.s. . (76)

Proof. By extremality

lim sup
t→−∞

|t|X1(t) = C a.s. (77)

for some constant 0 ≤ C ≤ ∞. Suppose C = ∞. Fix a large constant M
and define

Tn = inf{t ≥ −n : |t|X1(t) ≥M}.

Applying Lemma 23 to (X(Tn + u), u ≥ 0) and t = −Tn, on the event
{Tn < 0}, gives

P (Tn < 0, S(0)≤ |Tn|X1(Tn), X2(0) ≥ δ)

≤ δ−2E|Tn|X1(Tn) exp(−δ|Tn|X1(Tn)).

The supposition C = ∞ implies that P (Tn < 0, |Tn|X1(Tn) ≥ M) → 1 as
n→∞, and so

P (S(0) ≤M,X2(0) ≥ δ) ≤ δ−2 sup{y exp(−δy) : y ≥M}. (78)

Letting M →∞ we see P (X2(0) ≥ δ) = 0. But δ is arbitrary, and so X(0)
consists of just a single cluster. The same argument applies to X(t) for each
t, and hence X is a constant process. So now consider the case C <∞, i.e.
where (74) holds. Then (75) follows immediately. So we can define U > −∞
by ∫ U

−∞
X2

1(t)dt = 1.

Note that a.s. limt→−∞ S(t) = 0. Otherwise we would have S(t) → s∗,
s∗ > 0 a constant by extremality, and Lemma 19 would give X1(t) →

√
s∗,

contradicting (74). Now define

T̃m = inf{t : S(t) ≥ 2−m}, m = 1, 2, . . .

Tm = min(T̃m, U) ,
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so that P (Tm > −∞) = 1 for all m and Tm ↓ −∞. Using Lemma 19,

E

∫ Tm

Tm+1

(S(t)−X2
1(t))dt ≤ 5.

Because S(t) ≤ 2−m on Tm+1 ≤ t < Tm,

E

∫ Tm

Tm+1

S2(t)dt ≤ 2−mE
∫ Tm

Tm+1

S(t)dt ≤ 2−m
(

5 +E

∫ Tm

Tm+1

X2
1(t)dt

)
.

Summing over m,

E

∫ T1

−∞
S2(t)dt ≤ 5 + E

∫ T1

−∞
X2

1(t)dt ≤ 6

establishing (76).

3.4 Proof of Proposition 16

We quote a version of the L2 maximal inequality and the L2 convergence
theorem for (reversed) martingales.

Lemma 25 Let (Y (t);−∞ < t ≤ 0) be a process adapted to (F(t)) and
satisfying

|E(∆Y (t)|F(t))| ≤ α(t) dt, var (∆Y (t)|F(t)) ≤ β(t) dt.

(a)For T0 < T1 bounded F(t)-stopping times

P

(
sup

T0≤t≤T1

|Y (t)− Y (T0)| ≥
∫ T1

T0

α(t)dt + y

)
≤ P

(∫ T1

T0

β(t)dt ≥ b
)

+b/y2.

(b) If ∫ 0

−∞
α(t) dt <∞ a.s. and

∫ 0

−∞
β(t) dt <∞ a.s.

then limt→−∞ Y (t) exists and is finite a.s.

To prove Proposition 18 we consider an extreme eternal multiplicative
coalescent X which is not constant, so that by Proposition 24 we have the
integrability results∫ 0

−∞
X2

1(t)dt <∞ a.s.
∫ 0

−∞
S2(t)dt <∞ a.s.

∫ 0

−∞
X1(t)S(t)dt <∞ a.s.

(79)
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the final inequality via Cauchy-Schwarz. First, apply Lemma 25(b) to the
process Y (t) defined in Lemma 21: we deduce that as t→ −∞

S3(t)

S3(t)
→ a a.s. (80)

where 0 < a < ∞ is a constant, by extremality. Next we want to apply
Lemma 25(b) to the process Z(t) defined in Lemma 20. Because S4(t) ≤
X1(t)S3(t) and because S3(t) = O(S3(t)) by (80), the bounds in Lemma 20
are O(X1(t)S(t) + S3(t) + S2(t)), which are integrable by (79). So Lemma
25(b) is applicable to Z(t) = 1

t + S(t), and we conclude

t+
1

S(t)
→ τ a.s. (81)

where −∞ < τ <∞ is also a constant. Note in particular the consequence

lim
t→−∞

|t|S(t) = 1 a.s..

So (80,81) establish (63,64), and it remains only to establish (65).
Recall that Lemma 22 deals with the notion of the size X∗(t) at time t ≥

0 of a cluster which was distinguished at time 0. Consider the (rather impre-
cise: see below) corresponding notion of a distinguished cluster (X∗(t), t >
−∞) in the context of the eternal multiplicative coalescent X. Given such
a cluster, for t < 0 consider Y (t) = |t|X∗(t). Using Lemma 22,

E(∆Y (t)|F(t)) =
(

(|t|S(t) − 1)X∗(t) − |t|X3
∗(t)

)
dt (82)

var (∆Y (t)|F(t)) ≤ t2X∗(t)S3(t) dt. (83)

To verify that the bounds are integrable, note that (81) implies (|t|S(t)−1) =
O(S(t)) and Proposition 24 implies |t|X∗(t) = O(1), so the first bound is
O(X∗(t)S(t) + X2

∗(t)) which is integrable. And |t|S(t) → 1, so using (80)
t2S3(t) = O(S(t)), hence the second bound is O(X∗(t)S(t)). Thus Lemma
25(b) is applicable, and we deduce that as t→ −∞

|t|X∗(t)→ c∗ a.s.

for some constant c∗ ≥ 0. This argument is rather imprecise, since the
notion of “a distinguished cluster starting at time −∞” presupposes some
way of specifying the cluster at time −∞. We shall give a precise argument
for

|t|X1(t)→ c1 a.s. for some constant c1 ≥ 0 , (84)
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and the general case can be done by induction: we omit details. For η > 0
define

m(η) = lim sup
t→−∞

max{j : |t|Xj(t) > η} ,

with the convention max{empty set} = 0. Then m(η) <∞ by (80) andm(η)
is constant by extremality. In fact, m(η) is a decreasing, right-continuous
step function. Define c1 = sup{η : m(η) = 1}. By definition of m(η) we
have

lim sup
t→−∞

|t|X1(t) = c1 .

Fix η1 < c1, a continuity point of m(·), with m(η1) = 1. Define

Tn = min{t ≥ −n : |t|X1(t) ≥ η1} ∧ −1

so that Tn ↓ −∞ by definition. At time Tn consider the largest cluster, and
its subsequent growth as a distinguished cluster, its size denoted by X∗(t).
As before let Y (t) = |t|X∗(t), t < 0. Define events

C1(t′) = {|t|S(t) ≤ 2 , ∀t < t′} , C2(t′) = {|t+
1

S(t)
| ≤ 1 , ∀t < t′} ,

C3(t′) = {|t|3S3(t) ≤ a+ 1 , ∀t < t′} , C4(t′) = {|t|X1(t) ≤ c1 + 1 , ∀t < t′} ,

and C(t′) =
⋂4
i=1 Ci(t

′), so that P (C(t′)) → 1 as t′ → −∞. For t < t′ and
while on C(t′), the quantities (82, 83) are bounded in absolute value by

α(t) =
2(c1 + 1) + a + 1

|t|2 , β(t) =
(c1 + 1)(a+ 1)

|t|2 .

Thus, if Tn < t′, then for all k ≥ 1∫ Tn

Tn+k

α(t)dt = O

(
1

|Tn|

)
= O

(
1

|t′|

)
and

∫ Tn

Tn+k

β(t)dt = O

(
1

|t′|

)
.

Now Lemma 25(a) gives

P

(
sup

Tn+k≤t≤Tn
|Y (t)− Y (Tn+k)| ≥ ε

)
≤ 1−P (C(t′))+P (Tn > t′)+O

(
1

|t′|

)
.

Taking limits as k →∞, n→∞ and t′ →∞, in this order, yields

P (lim inf
t→−∞

|t|X1(t) ≤ c1 − ε) = 0, for all ε > 0 ,

and (84) follows.
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4 Proof of Theorems 2 - 4

Proposition 5 of [1] established the Feller property of the multiplicative co-
alescent as a l2↘-valued Markov process. Roughly speaking, Theorems 2 -
4 are easy consequences of Propositions 7 and 18 and the Feller property,
though we shall see that a subtle complication arises.

We first record the following immediate consequence of the Feller prop-
erty and the Kolmogorov extension theorem.

Lemma 26 For n = 1, 2, . . . let (X(n)(t), t ≥ tn) be versions of the multipli-

cative coalescent. Suppose tn → −∞ and X(n)(t)
d→ X(∞)(t), say, for each

fixed −∞ < t < ∞. Then there exists an eternal multiplicative coalescent

X such that X(t)
d
= X(∞)(t) for each t.

Proof of Theorem 2. Fix (κ, 0, c) ∈ I and use Lemma 8 to choose (x(n))
satisfying (18 – 20). Time-shift and regard Proposition 7 as specifying ver-
sions (X(n)(t); t ≥ − 1

σ2(x(n))
) of the multiplicative coalescent with initial

states X(n)(− 1
σ2(x(n))

) = x(n). Then Proposition 7 asserts the existence, for

fixed t, of the limit

X(n)(t)
d→ Z(t).

By Lemma 26 there exists an eternal multiplicative coalescent Z with these
marginal distributions. Define µ(κ, 0, c) as the distribution of this Z, and for
−∞ < τ <∞ define µ(κ, τ, c) as the distribution of (Z(t−τ),−∞ < t <∞).
2

Before continuing to the proofs of Theorems 3 - 4, we record a few
consequences of the Feller property.

Lemma 27 Suppose (X(n)) are versions of the multiplicative coalescent

such that X(n)(t)
d→ X(t) for each t. If tn → t then X(n)(tn)

d→ X(t).

Remark. Conceptually, this holds because by general theory the Feller
property implies weak convergence of processes in the Skorokhod topology.
Rather than relying on such general theory (which is usually [12] developed
in the locally compact setting: of course l2↘ isn’t locally compact) we give
a concrete argument.
Proof of Lemma 27. Write ||x|| for the l2 norm. For any version of the
multiplicative coalescent, t → ||X(t)|| is increasing and (by [1] Lemma 20)

continuous in probability. Then convergence ||X(n)(t)|| d→ ||X(t)|| easily

implies ||X(n)(tn)|| − ||X(n)(t)|| d→ 0. But then by [1] Lemma 17 (restated
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as Lemma 36(i) below) ||X(n)(tn)−X(n)(t)|| d→ 0, establishing the lemma.
2

Recall that Proposition 7 was stated for finite-length initial states x(n).
The last step needed for the generalization to all x(n) ∈ l2↘ is the following

Lemma 28 Suppose x(n) ∈ l2↘, n ≥ 1 satisfies (18-20). Define x(n,k) to be

the truncated vector (x
(n)
1 , . . . , x

(n)
k ) and X(n,k) the corresponding multiplica-

tive coalescent. Take k = k(n) → ∞ sufficiently fast so that (x(n,k), n ≥ 1)
satisfies (18 - 20) with the same limits as does (x(n), n ≥ 1), and so that
Then there exists a coupling (X(n,k),X(n)) such that∥∥∥∥X(n)

(
t+

1

σ2(x(n))

)
−X(n,k)

(
t+

1

σ2(x(n))

)∥∥∥∥ p→ 0 as n→∞ .

The proof uses estimates derived later, and is given after the proof of
Lemma 35.

Lemma 29 Proposition 7 remains valid for any sequence x(n) ∈ l2↘ satis-

fying (18-20).

Proof. Combining the conclusion of Proposition 7 for (x(n,k), n ≥ 1) with
Lemmas 27 and 28 gives the conclusion of Proposition 7 for (x(n), n ≥ 1). 2

Proof of Theorems 3 and 4. The “if” part of Theorem 4 follows from
Proposition 7 (in the extended setting of Lemma 29) by taking the initial
state x(n) in Proposition 7 to be X(−n).

Now consider an arbitrary extreme eternal non-constant multiplicative
coalescent X. Proposition 18 shows the existence as t → −∞ limits of
constants (κ, τ, c), where κ := a −∑i c

3
i ≥ 0. Applying Proposition 7 with

initial state X(−n), we see that (κ, τ, c) ∈ I and that X has distribution
µ(κ, τ, c). (Note that here we use the non-convergence part of Proposition
7.) It follows that the extreme points of the set of eternal multiplicative
coalescents are {µ(κ, τ, c) : (κ, τ, c) ∈ J } ∪{µ̂(y) : 0 ≤ y < ∞} for some
J ⊆ I. Now consider X with distribution µ(κ, τ, c). As above, Proposition
18 implies the existence of some (maybe random) limits for the left sides of
(10 – 12), but – and this is the subtle point – do not directly imply these
limits are the specific constants asserted on the right side of (10 – 12). All
we can deduce is that the distribution of X is a mixture:

µ(κ, τ, c) =
∫
I
µ(·)dν(·), ν a distribution on I (85)
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where ν is supported on J ⊂ I. We need to show the representation (85)
holds only for the measure ν degenerate at the point (κ, τ, c). This will
imply J = I and establish the “only if” part of Theorem 4, completing the
proof of Theorems 3 and 4.

Proposition 30 Given (κ, τ, c) ∈ I, the representation (85) holds only for
the measure ν degenerate at the point (κ, τ, c).

In principle it should be possible to prove Proposition 30 from Theorem 2
by showing that the parameters κ, τ, c can be recovered as t→ ±∞ limits of
functionals of the excursion lengths of Bκ,t−τ,c (cf. Lemma 33 below). But
it seems hard to recover τ in that manner. Instead we modify the proof of
Proposition 18 to obtain Lemma 31 below.

Proof of Proposition 30. By scaling, we may assume τ = 0 and κ = 1 or
κ = 0. As at the beginning of this section, for initial states (x(n)) given by
Lemma 8,

(X(n)(t); t ≥ − 1
σ2(x(n))

)
d→ (X(t);−∞ < t <∞)

where X has distribution µ(κ, τ, c).

Lemma 31 As t→ −∞

(i)
S3(t)

S3
2(t)

→ κ+
∑
i

c3
i , a.s.

(ii) t+
1

S2(t)
→ τ , a.s.

(iii) For each j ≥ 1 with cj > 0

|t|Xk(t)→ cj a.s., . (86)

for some finite integer-valued random variable k ≥ 1.

Proof. Proposition 18 and representation (85) ensure the existence of the
above limits as t→ −∞. So it suffices to show the corresponding assertions
where the limits are taken over a deterministic sequence of times tm → −∞.
Consider assertion (i). To simplify the notation, define f : l2↘ → R+

by f(·) = log σ3(·) − 3 logσ2(·), and let Y (t) = f(X(t)) and Y (n)(t) =
f(X(n)(t)). We want to check that limt→−∞ Y (t) = log(a), where a =
κ +

∑
i c

3
i . We know limn Y

(n)(t) = Y (t) and limn Y
(n)(−1/σ2(x(n))) =

limn f(x(n)) = log(a). The idea of the proof is, of course, Y (t) ≈ Y (n)(t) ≈
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Y (n)(−1/σ2(x(n))) when t is large negative, and n is large . To make these
notions precise, a simple adaptation of the argument in Proposition 24, using

X(n)(0)
d→ X(0) as the only additional ingredient, gives

Corollary 32 Interpret X(m)(t) = 0 for t < − 1
σ2(x(m))

. Then

lim sup
t→−∞

sup
m≥1

|t|X (m)
1 (t) <∞ , lim

t→−∞
sup
m≥1

∫ t

−∞
(X

(m)
1 (u)) 2 du = 0 a.s. (87)

and

lim
t→−∞

sup
m≥1

∫ t

−∞
(S(m)(u)) 2 du = 0 a.s. (88)

Proof. We modify the proof of (74) to show (87). Suppose

lim sup
t→−∞

sup
m≥1
|t|X (m)

1 (t) =∞ ,

fix a large constant M and define

Tn = inf{t ≥ −n : supm≥1 |t|X
(m)
1 (t) ≥M} ,

and provided Tn <∞, let kn = inf{m ≥ 1 : |Tn|X (m)
1 (Tn) ≥ M} . Applying

Lemma 23 to (X(kn)(Tn + u), u ≥ 0) and t = −Tn, on the event {Tn < 0},
gives

P (Tn < 0, S(kn)(0) ≤ |Tn|X (kn)
1 (Tn), X

(kn)
2 (0) ≥ δ)

≤ δ−2E|Tn|X (kn)
1 (Tn) exp(−δ|Tn|X (kn)

1 (Tn)).

The supposition C =∞ implies that P (Tn < 0, |Tn|X (kn)
1 (Tn) ≥M)→ 1 as

n→∞. Moreover Tn → −∞ implying kn →∞. Let n→∞ to get (78). 2
Now an application of Lemma 25(a), using Lemma 21 and (87), provides

a sequence tm ↓ −∞ such that

lim sup
n≥1

P

(
sup

t∈[−1/σ2(x(n)),tm]

|Y (n)(t)− Y (n)(−1/σ2(x(n)) ) | ≥ εm
)
≤ 1

m2
,

where εm is some fixed sequence, εm → 0. Then after taking limits as
n→∞, we get

P (|Y (tm)− log(a)| ≥ εm) ≤ 1/m2
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establishing (i). Now let g(·, t) = t + 1
σ2(·) , Z(t) = g(X(t), t), Z(n)(t) =

g(X(n)(t), t). From part (i) we have

lim sup
n

P

(
sup

u∈[−1/σ2(x(n)),t]

S
(n)
3 (u)/S

(n)
2 (u) ≥ a+ 1

)
→ 0 as t→ −∞.

Let C0 = 2(a + 1)2. Using estimates in Lemma 20, and arguing as in the
proof of Proposition 18, we see that

|E(∆Z(n)(u)|F(u))| ≤ C0

(
X

(n)
1 (u)S(n)(u) + (S(n)(u))3

)
du

and
var (∆Z(n)(u)|F(u)) ≤ C0(S(n)(u))2du

for all u ∈ [− 1
σ2(x(n))

, t] and all large n, with probability converging to 1 as

t→ −∞. By Lemma 25(a) and Corollary 32, we find a sequence tm so that

lim sup
n≥1

P

(
sup

t∈[−1/σ2(x(n)),tm]

|Z(n)(t)− Z(n)(−1/σ2(x
(n)) ) | ≥ εm

)
≤ 1

m2
,

implying (ii) and

lim sup
n≥1

P

 sup
u∈[− 1

σ2(x(n))
,t]

| |u|S(u)− 1|
S(u)

≥ εm + |τ |

→ 0 , t→ −∞. (89)

The proof of (iii) is a similar “extension” of the corresponding argument in
Proposition 18. Fix some integer j ≥ 1, and consider X(n) for n such that
the initial state x(n) in Lemma 8 has l(n) ≥ j. For simplicity assume cj 6=
ck, j 6= k. Follow the initial cluster of size cj/n

1/3 as it merges with other

clusters, and denote its size at time t by X
(n)
∗ (t), t > − 1

σ2(x(n))
. Using (89),

we are able to write E(∆(|t|X (n)
∗ (t))|F(t)) and var (∆(|t|X (n)

∗ (t))|F(t)) as

O(X
(n)
∗ (t)S(n)(t)+(X

(n)
∗ )2(t)), uniformly in n (recall the discussion following

(82,83)). Hence

lim sup
n≥1

P

(
sup

t∈[−1/σ2(x(n)),tm]

| |t|X (n)
∗ (t)− cj | ≥ εm

)
≤ 1

m2
, (90)
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for some sequence tm → −∞. Let k
(n)
m = sup{i ≥ 1 : X

(n)
i (tm) ≥ X

(n)
∗ (tm)}

be the rank of the distinguished cluster. We may assume εm < cj/2 so that

k
(n)
m is tight since X(n)(tm)

d→ X(tm) ∈ l2↘. In fact

lim
M→∞

lim sup
n

P ( min
1≤i≤M

| |t|X (n)
i (tm)− cj | ≥ εm) ≤ 1

m2
, implying

lim
M→∞

P ( min
1≤i≤M

| |t|Xi(tm)− cj | ≥ εm) ≤ 1

m2
.

In words, at least one component of X(tm) falls into the εm neighborhood
of cj with probability at least 1 − 1/m2. Denote by km the rank of largest
such component, and set km =∞ if no such component exist. Now we may
take k = lim infm km.

In the general case with ties cj−1 > cj = cj+1 = . . . = cj+r−1 > cj+r
for some finite r ≥ 1, one needs to follow all r clusters of size cj/n

1/3

simultaneously, but since with large probability no pair of these clusters
coalesces by time tm (easy!) the argument does not change essentially. 2

Lemma 33 Let ψ(t) denote the length of the largest excursion of Bκ,t−τ,c

with left end-point in [0, 2
κt]. Then

t−1ψ(t)
d→ 2/κ as t→ +∞.

Proof. The excursions of Bκ,t−τ,c away from 0 are the excursions of W =
Wκ,t−τ,c above past minima. In the sequel, we simply call them excursions.
Recall the representation (40) from section 2.5. Denote by W̃ (s) the rescaled
process

1

t2
W (s t) = s− 1

2
κs2 + κ1/2 1

t2
W ∗(s t) +

1

t2
V c(s t)− τ

t
.

Then the excursion-length process of W̃ (·) is precisely the excursion-length
process of W (·), shrunk by a factor 1

t . Let ψ̃t be the length of the largest W̃ -
excursion that started in [0, 2/κ]. The assertion of the lemma is equivalent

to the assertion ψ̃t
d→ 2

κ as t→ +∞. This reduces to showing

sup
s∈[0,α]

|W̃ (s)− (s− 1
2κs

2)| d→ 0 , t→∞ for any fixed α > 0 .
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Since sups∈[0,α]W
∗(s t)/ t2

d→ 0 as t→ +∞ it suffices to check

sup
s∈[0,α]

V c(s t)/ t2
d→ 0

by showing

sup
s∈[0,α]

Mc(s t)/ t2
d→ 0 , Ac(αt)/ t2

d→ 0 as t→ +∞ .

But this is easy (cf. Proposition 14). 2
Remark. ψ(t) depends on both the lengths and the order in which excur-

sions of Bκ,t−τ,c appear. But since components appear in size-biased order
in the breadth-first walk, Proposition 9 implies the excursions of Bκ,t−τ,c

appear in size-biased order (in the l2 sense of section 2.6). Therefore the dis-
tribution of ψ(t) is determined by the distribution of the decreasing-ordered
vector X(t) of excursion lengths.

Proof of Proposition 30, continued. Given x, x′ ∈ l3↘, write x ⊆ x′ if

{x} ⊆ {x′}, where {x} denotes the multiset {x1, x2, . . .} of x-coordinates,
and the relation⊆ is in terms of mutisets. Let a = κ+

∑
i c

3
i . Due to Lemma

31, (85) becomes

µ(κ, τ, c) =

∫
J1

µ(κ′, τ ′, c′)dν(κ′, τ ′, c′),

where J1 = J ∩ {(κ′, τ, c′) : κ′ +
∑
i c
′
i
3 = a, c ⊆ c′, 0 ≤ κ′ ≤ κ} . If κ = 0,

then all points in J1 have the first coordinate κ (= 0). The same is true, by
Lemma 33, for all positive κ. But κ′ = κ implies c′ = c, so (12) holds with
the original κ, τ, c, and the mixing measure ν in (85) is concentrated on the
point {(κ, τ, c)}.
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5 The coloring construction

In this section we develop the coloring construction outlined in section 1.4,
providing the basis for the proof of Theorem 6.

For x, y ∈ l2↘ write x ≤ y for coordinatewise inequality xi ≤ yi ∀i. Write

x � y if x is the decreasing ordering of {yi,j, i, j ≥ 1}, where
∑
j yi,j ≤ yi ∀i.

Note that either inequality implies ||x|| ≤ ||y||, where || · || is the l2 norm.

5.1 Graphical construction of COL(X; c)

We first show that the graphical construction ([1] section 4) of the multi-
plicative coalescent can be extended to give a construction of the process
COL(X; c) described informally in section 1.4. Fix nonnegative sequences
x = (xi) and c = (ck), and fix t ≥ 0.

1 · · · . . .

0

1 2 3 4

· · ·

n

. . .

Figure 2

Consider the random graph, illustrated in figure 2, on vertex-set {(i, 0),
i ≥ 1} ∪ {(k, 1), k ≥ 1} with

(for i, j ≥ 1) a Poisson(xixjt) number of edges (i, 0)↔ (j, 0) (91)

(for i, k ≥ 1) a Poisson(xick) number of edges (i, 0)↔ (k, 1) (92)

where the Poisson numbers are independent for different pairs. All edges
connecting a pair of vertices are represented by one single edge in the fig-
ure. For each connected component C of this graph, calculate the “weight”
w(C) =

∑
i:(i,0)∈C xi, and temporarily write Y(t) for the sequence of com-

ponent-weights, in decreasing order. At time t = 0 only solid line edges
(92) exist. Write COL(x; c) = Y(0). As t varies, link the Poisson ran-
dom variables in (91) via the natural Poisson processes. New edges (91)
are the dashed lines in the figure. Provided we prove Y(t) is l2↘-valued (see
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Lemma 34 below), it is clear that Y(t) evolves as a multiplicative coalescent,
because components Ca, Cb merge when an edge (i, 0) ↔ (j, 0) appears for
some (i, 0) ∈ Ca, (j, 0) ∈ Cb, which occurs at rate

∑
(i,0)∈Ca

∑
(j,0)∈Cb xixj =

w(Ca)w(Cb).
To link this construction to the “coloring” description in section 1.4,

first consider t = 0. For each k, regard each cluster i as containing a
number of “atoms of color k” instead of a number of edges (i, 0)↔ (k, 1).
Do the minimal amount of coalescence of clusters required to ensure that
all similarly-colored atoms are in the same cluster. Then COL(x; c) is the
vector of cluster-sizes.

Now consider t > 0. We could obtain Y(t) by first drawing the edges (92)
and then the edges (91). Because (91) is the original graphical construction
of the multiplicative coalescent, this means we are running the multipli-
cative coalescent from state COL(x; c) for time t. Alternatively, we could
first draw the edges (91) and then the edges (92). This means we run the
multiplicative coalescent from initial state x to obtain X(t), and then apply
the coloring construction x′ → COL(x′; c). (In both cases we appeal to the
additivity property of the Poisson semigroup). In brief, we say that coloring
commutes with the evolution of the multiplicative coalescent, and we may
unambiguously write COL(X(t); c) for Y(t).

Lemma 34 If c ∈ l2↘ and X(0) ∈ l2↘ then the process (COL(X(t); c), t≥ 0)
given by the graphical construction above is distributed as the multiplicative
coalescent.

Proof. By the discussion above, it suffices to show that COL(X(t); c) takes
values in l2↘, and since X(t) takes values in l2↘ we only need to show that

COL(x; c) takes values in l2↘ when x ∈ l2↘. Consider again the random

graph defined by relations (91) and (92), with t set to 1, and add

( for k, l ≥ 1) a Poisson(ckcl) number of edges (k, 1)↔ (l, 1).

For each connected component C of the new graph define full weight by
wf (C) =

∑
i:(i,0)∈C xi+

∑
k:(k,1)∈C ck , and let Z(1) be the vector of full weights

in decreasing order. Then Z(1) is distributed as the time-1 distribution of the
multiplicative coalescent started at time 0 with configuration x 1 c ∈ l2↘,
where the “join” b 1 c is defined by

b 1 c is the decreasing ordering of the multiset {bi, i ≥ 1} ∪ {ci, i ≥ 1}.
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In particular, Z(1) takes values in l2↘. Since COL(x; c) � Z(1) a.s. , it

follows that COL(x; c) ∈ l2↘. 2

We will sometimes say “the color-k cluster of COL(X(t); c)”, which is for-
mally the union of clusters Xi(t) for which (i, 0) is in the same component
as (k, 1) in the graphical construction.

It is easy to see from the graphical construction that

COL(COL(x; c̃); ĉ)
d
= COL(x; c̃ 1 ĉ) (93)

and hence
COL(COL(X(t); c̃); ĉ)

d
= COL(X(t); c̃ 1 ĉ). (94)

For x, c as above, let i ∼ j mean that (i, 0) and (j, 0) are merged together
within a component of COL(x; c), and let i

c∼ j mean that (i, 0) and (j, 0)
share a common color. Clearly {i c∼ j} ⊆ {i ∼ j}, for all i, j. We will need
the following

Lemma 35 (i) P (i ∼ j) ≥ P (i
c∼ j) = 1−∏k{1− (1− e−xick)(1− e−xjck)}

(ii) If ‖c‖ ‖x‖ < 1 , then for i 6= j

P (i ∼ j) ≤ xixj
‖c‖2

1− ‖c‖2‖x‖2 .

Proof. Assertion (i) is immediate from the construction. For (ii) we have
i ∼ j iff there exists a finite path in the COL(x; c)-graph which connects
vertices (i, 0) and (j, 0), for instance a path

(i, 0)↔(k1, 1)↔(i1, 0)↔(k2, 1)↔(i2, 0)↔ . . . (im−1, 0)↔(km, 1)↔(j, 0)

of length 2m. The probability of an edge (il, 0) ↔ (k, 1) is less than xilck,
so the chance that the particular path above exists is at most

xixjc
2
k1
c2
k2
. . . c2

kmx
2
i1 . . .x

2
im−1

.

Summing over all paths of length 2m gives

P (i ∼ j via a path of length 2m) ≤ xixj‖c‖2m‖x‖2m−2.

Summing over m ≥ 1 establishes (ii). 2
We digress to give a defered proof.
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Proof of Lemma 28. Write σ
(n)
2 for σ2(x(n)), let y(n,k) = (x

(n)
k+1, x

(n)
k+2, . . .) and

let Y(n,k) be a multiplicative coalescent with initial state y(n,k), independent

of X(n,k). From the assumptions of the lemma we have ‖y(n,k)‖/σ(n)
2 → 0 as

n→∞. Let {y(n,k)
i ∼ y(n,k)

j } be the event that the i’th and the j’th cluster

of y(n,k) become merged within the same component of Y(n,k)(t+ 1/σ
(n)
2 ).

Since {y(n,k)
i ∼ y

(n,k)
j } happens iff a finite path in the multiplicative coale-

scent graph connects i and j, and the probability of a link l↔ m occurring

is bounded by (t+ 1/σ
(n)
2 )y

(n,k)
l y

(n,k)
m , we obtain a bound similar to the one

in Lemma 35(ii)

P (y
(n,k)
i ∼ y(n,k)

j ) ≤
y

(n,k)
i y

(n,k)
j (t+ 1/σ

(n)
2 )

1− (t+ 1/σ
(n)
2 ) 2 ‖y(n,k)‖2

,

for all j > i ≥ 1. Therefore

(t+ 1/σ
(n)
2 ) ‖Y(n,k)(t+ 1/σ

(n)
2 )‖ → 0 in L2 as n→∞ . (95)

Write X(n,k) and Y(n,k) for X(n,k)(t + 1/σ
(n)
2 ) and Y(n,k)(t + 1/σ

(n)
2 ), and

write F (n,k) for the σ-field generated by X(n,k),Y(n,k). By the random graph

construction, a realization of X(n)(t+ 1/σ
(n)
2 ) can be obtained from X(n,k)

and Y(n,k) by appending independent edges connecting components X
(n,k)
i

and Y
(n,k)
j at rate (t+ 1/σ

(n)
2 )X

(n,k)
i Y

(n,k)
j for i, j ≥ 1, and merging the con-

nected components. The conditional expected second moment mass increase

E(S
(n)
2 (t+ 1/σ2)− S(n,k)

2 (t+ 1/σ2) | F(n,k))

is bounded by

‖Y(n,k)‖2 + 2
∑
i<j

Y
(n,k)
i Y

(n,k)
j P (Y

(n,k)
i ∼ Y (n,k)

j | F(n,k))

+ 2
∑
i<j

X
(n,k)
i X

(n,k)
j P (X

(n,k)
i ∼ X (n,k)

j | F(n,k))

+ 2
∑
i,j

X
(n,k)
i Y

(n,k)
j P (X

(n,k)
i ∼ Y (n,k)

j | F (n,k)) .

Since X(n,k) is tight, by (95) we have (t+1/σ2) ‖X(n,k)‖ ‖Y(n,k)‖ p→ 0, and
we can apply again the reasoning of Lemma 35(ii) to bound the conditional

probabilities above. For example, if we consider { Y (n,k)
i ∼ Y

(n,k)
j } then
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(t+ 1/σ(n))X(n,k) plays the role of the color weights c in Lemma 35(ii). We
conclude (omitting the tedious details) that the conditional probabilities

above are respectively O(Y
(n,k)
i Y

(n,k)
j (t+ 1/σ2)2 ‖X(n,k)‖2), O(X

(n,k)
i X

(n,k)
j

(t+1/σ2)2 ‖Y(n,k)‖2) and O(X
(n,k)
i Y

(n,k)
j (t+1/σ2)), uniformly over all pairs

i, j. Together with (95), this establishes the lemma.

5.2 Technical lemmas

For subsequent arguments we need two technical facts. The first lemma
gives some topological properties of (l2↘, || · ||).

Lemma 36 (i) If x � y then ||y− x||2 ≤ ||y||2 − ||x||2.
(ii) For each y ∈ l2↘ the set {x : x � y} is pre-compact.

(iii) Given a sequence (xn, n ≥ 1) define x[m] by: x
[m]
i = supn≥m x

n
i . If

yk → x then there exists a subsequence xn = ykn such that x[m] → x.

Proof. Assertion (i) is the (easy) Lemma 17 of [1]. For (ii), if yi,j ≥ 0 and∑
j yi,j ≤ yi then

∑
j y

2
i,j1(yi,j≤ε) ≤ εyi. Since also

∑
j y

2
i,j ≤ y2

i , we have∑
j

y2
i,j1(yi,j≤ε) ≤ min(εyi, y

2
i ).

So for fixed y,
sup
x�y

∑
j

x2
j 1(xj≤ε) ≤ ε

∑
i≤k

yi +
∑
i>k

y2
i

for any k. Letting ε→ 0 and then k →∞

lim
ε→0

sup
x�y

∑
j

x2
j 1(xj≤ε) = 0.

By monotonicity, x � y implies xk ≤ ε for k ≥ ε−2||y||2, and so

lim
k→∞

sup
x�y

∑
j≥k

x2
j = 0.

This and norm-boundedness imply pre-compactness. For (iii), by replacing
yk by max(yk, x) we may assume yk ≥ x, and then by subtracting x we
may assume x = 0. But in that case x[m] ≤ ∑

n≥m xn, so we need only
choose the subsequence xn so that

∑
n ||xn|| <∞. 2

Lemma 36(i) and monotone convergence easily imply that for x, c ∈ l2↘

COL(x; (c1, . . . , cn, 0, . . .))
d→ COL(x; c).

The next lemma provides a more general result on joint continuity.
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Lemma 37 Let Xn, Cn be two sequences of l2↘-valued random variables

such that Xn d→ X and Cn → C a.s.. Then

COL(Xn; Cn)
d→ COL(X; C).

Proof. First observe the following. If x′ ≤ x′′ and c′ ≤ c′′, then the graphical
constructions (91,92) for (x′, c′) and (x′′, c′′) may be coupled in such a way
that the components C ′ are a refinement of the components C ′′, and therefore
COL(x′; c′) � COL(x′′; c′′).

To prove the lemma, it suffices to consider deterministic xn → x and
cn → c. By the subsequence method and Lemma 36(iii) we may assume
x[m] → x and c[m] → c in the notation of that lemma, where x[m] ≥ x and
c[m] ≥ c. Make the coupling mentioned above, and apply Lemma 36(i) to
obtain

‖COL(x[m]; c[m])− COL(x; c)‖2 ≤ ‖COL(x[m]; c[m])‖2 − ‖COL(x; c)‖2.

The same argument gives another coupling for which

‖COL(x[m]; c[m])−COL(xm; cm)‖2≤ ‖COL(x[m]; c[m])‖2−‖COL(xm; cm)‖2.

From the hypothesis of convergence xm → x, cm → c, these couplings
have the property that any pair of clusters (xi, xj) of x which are joined
in COL(x; c) will be joined in COL(xm; cm) for all sufficiently large m. It
follows via Fatou’s lemma that

lim inf
m
||COL(xm; cm)|| ≥ ||COL(x; c)||.

Combining these inequalities, we see that the lemma reduces to proving

Lemma 38
‖COL(x[m]; c[m])‖ → ‖COL(x; c)‖. (96)

We start by proving the finite-length case.

Lemma 39 Let x[m], x be as above, and let c[m] = (c
[m]
1 , . . . , c

[m]
n , 0, . . .) ,

c = (c1, . . . , cn, 0, . . .). Then

‖COL(x[m]; c[m])‖ → ‖COL(x; c)‖ and

COL(x[m]; c[m])
d→ COL(x; c) .
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Proof. First let c[m] = (c[m], 0, . . .), and think in terms of the (coupled)
simple coloring construction of section 1.4.

E‖COL(x[m]; c[m])‖2=
∑
i

(x
[m]
i )2+

∑
i6=j

x
[m]
i x

[m]
j (1− e−c[m]x

[m]
i )(1− e−c

[m]x
[m]
j )

→
∑
i

x2
i +

∑
i6=j

xixj(1− e−cxi)(1− e−cxj )

= E‖COL(x; c)‖2 ,

by Lemma 36(ii). Since ‖COL(x[m]; c[m])‖ ≥ ‖COL(x; c)‖ always, the first
assertion of Lemma 39 is true in this case, and therefore

COL(x[m]; (c[m], 0, . . .))→ COL(x; (c, 0, . . .)) a.s. ,

as discussed above. The rest follows by repeated application of (93) and
induction. 2
Proof of Lemma 38. To shorten the notation let

c(n) = (c1, . . . , cn, 0, . . .) , c[m](n) = (c
[m]
1 , . . . , c[m]

n , 0, . . .)

and let

X(n) d
= COL(x; c(n)) , X = COL(X(n); (cn+1, cn+2, . . .)) ,

X[m](n) d
= COL(x[m]; c[m](n)) ,X[m] = COL(X[m](n); (c

[m]
n+1, c

[m]
n+2, . . .))

be coupled in such a way that

X(n) � X[m2](n) � X[m1](n) for all 1 ≤ m1 ≤ m2, 1 ≤ n. (97)

From Lemma 39 and (97) we deduce

lim inf
m→∞

‖X[m]‖ ≥ ‖X‖ .

At the same time, by the nesting (97)

Bn :=
⋂
m

{ ‖X[m](n)‖
∞∑

k=n+1

(c
[m]
k )2 < 1/2} ⊇ { ‖X[1]‖

∞∑
k=n+1

(c
[1]
k )2 < 1/2} ,

so that P (Bn)→ 1. While on Bn, we are able to use estimate Lemma 35(ii)
to bound the distance between X[m] and X[m](n). Precisely,

P (i ∼ j in X[m] | X[m](n)) ≤ 2X
[m](n)
i X

[m](n)
j

∞∑
k=n+1

(c
[1]
k )2 ,
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therefore E(‖X[m]‖2 − ‖X[m](n)‖2 | X[m](n))

≤ 2
∑
i

∑
j 6=i

(X
[m](n)
i )2(X

[m](n)
j )2

∞∑
k=n+1

(c
[1]
k )2

≤ 2‖X[1]‖4
∞∑

k=n+1

(c
[1]
k )2 ,

implying specially, for any ε > 0,

lim sup
m→∞

P (‖X[m]‖2 − ‖X[m](n)‖2 > ε) ≤ P (Bcn)

+ ε−1E

1 ∧ 2‖X[1]‖4
∞∑

k=n+1

(c
[1]
k )2

 .
The assertion of the lemma follows from Lemma 39 by letting n→∞. 2

5.3 Coloring and t→−∞ limits

From an eternal multiplicative coalescent (X(t),−∞ < t <∞) and c ∈ l2↘
we may construct another eternal multiplicative coalescent COL(X; c) =
(COL(X(t); c),−∞< t <∞), using Lemma 34 and the Kolmogorov exten-
sion. We will assume without explicit comment that X(t)→ 0 as t→ −∞,
so that by Proposition 18 the t→ −∞ limits (a, τ, c) in (63 – 65) exist for
X. In the non-extreme case these limits may be random, but even in that
case (64) implies

|t|S(t)
p→ 1 as t→ −∞. (98)

We now study the connection between the c in the coloring construction
and the c appearing as the t→ −∞ limit (65).

Lemma 40 (a) Let Y = COL(X; (c1, 0, 0, . . .)). Let Y∗(t) be the size of the
color-1 cluster. Then as t→ −∞

|t| Y∗(t)
p→ c1 (99)

|t|2
(∑

i

Y 2
i (t) −

∑
i

X2
i (t)

)
p→ c2

1 (100)

|t|3
(∑

i

Y 3
i (t) −

∑
i

X3
i (t)

)
p→ c3

1. (101)
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(b) Let Y = COL(X; c). Then

|t|
(
Y[j](t)−Xj(t)

)
p→ 0 as t→ −∞

where Y[j](t) is the size of the cluster of Y(t) containing Xj(t).

Proof. (a) As t→ −∞,

E(|t|Y∗(t)|X(t)) = |t|
∑
i

Xi(t)(1−exp(−c1Xi(t)))
p∼ |t|c1S(t)

p→ c1 by (98)

var (|t|Y∗(t)|X(t)) ≤ |t|2
∑
i

X2
i (t)(1− exp(−c1Xi(t))) = O(|t|2S3(t))

p→ 0

by (63). So (99) follows from Chebyshev’s inequality. The left side of (100)
equals |t|2(Y 2

∗ (t)−A2(t)), where A2(t) =
∑
X2
i (t) summed over the colored

clusters. So it suffices to prove |t|2A2(t)
p→ 0. But arguing as above,

|t|2E(A2(t)|X(t)) ≤ |t|2
∑
i

X2
i (t) · c1Xi(t)

= c1|t|2S3(t)
p→ 0 by (63).

Similarly, the left side of (101) equals |t|3(Y 3
∗ (t) − A3(t)), with A3(t) =∑

X3
i (t) summed over the colored clusters. To prove |t|3A(t)

p→ 0, we
bound as above,

|t|3E(A3(t)|X(t)) ≤ |t|3
∑
i

X3
i (t) · c1Xi(t)

= c1|t|3S4(t)

≤ c1X1(t) · |t|3S3(t)

= O(X1(t))
p→ 0 by (63).

For (b), Lemma 35(ii) implies that (provided the denominator is positive)

|t|E(Y[j](t)−Xj(t)|X(t)) ≤ |t|Xj(t)
||c||2

1− ||c||2||X(t)||2
∑
i

X2
i (t)

and the right side
p→ 0 by (98). 2

Here is the central result of section 5.
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Proposition 41 Fix c ∈ l2↘. An eternal multiplicative coalescent X sat-

isfies (65) with limit c if and only if X
d
= COL(X̃; c), where X̃ is some

eternal multiplicative coalescent satisfying (65) with limit c̃ = 0.

Proof. Let X be an eternal multiplicative coalescent satisfying (65) with
limit c. For a fixed time t and a sequence of negative times tn < t, let Xn(t)
be the time-t distribution of the multiplicative coalescent started at time tn
with distribution (Xn+1(tn), Xn+2(tn), . . .), and let

Ci := Xi(tn)(t− tn) .

Assumption (65), together with the fact limt→−∞ |t|S2(t) = 1, allows us to
choose tn → −∞ fast enough in order to have

(C1, C2, . . . , Cn, 0, . . .) → c a.s. in l2↘ (102)

n ·
n∑
i=1

Xi(tn) → 0 a.s. , n→∞. (103)

Lemma 42 For fixed (n, t) we may construct a random vector X̄n(t) jointly

with COL(Xn(t); (C1, . . . , Cn, 0, 0, . . .)), so that X̄n(t)
d
= X(t) and

d
(
X̄n(t),COL(Xn(t); (C1, . . . , Cn, 0, 0, . . .))

) p→ 0 as n→∞.

Proof. It is again helpful to think in terms of the corresponding random
graphs on the vertices {(i, 0), i≥ 1} ∪ {(k, 1), k ≥ 1}. First put

(for i, j ≥ 1) a Poisson((t− tn)Xi+n(tn)Xj+n(tn)) edges (i, 0)↔ (j, 0) (104)

(for i ≥ 1, k = 1, . . . , n ) a Poisson(Xi(tn)Ck) edges (i, 0)↔ (k, 1). (105)

As in the graphical construction, let Yn= COL(Xn(t); (C1, . . . , Cn, 0, 0, . . .))
be the vector of ordered component-weights w(C). Let Zn be the vector of
ordered full weights wf(C), where (k, 1) is given weight Xk(tn).

Figure 3 is an illustration: the components connected via solid edges
(104, 105) generate Zn. Next include (dashed) extra edges

(for 1 ≤ k < l ≤ n ) a Poisson(Xk(tn)Cl) number of edges (k, 1)↔ (l, 1) ,
(106)

and write X̄n(t) for the sequence of (new) full weights wf (C). Then X̄n(t)
d
=

X(t) (in fact, this construction was previously used in Lemma 23).
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Figure 3

For 1 ≤ k ≤ n and i ≥ 1 write k ∼ i if, after formation of Yn, vertex
(k, 1) gets connected via (solid) edge to the i’th component of Yn. From
the construction,

d2(Zn,Yn) ≤ (
n∑
k=1

Xk(tn))2 + 2
∑
i

(Y n
i

n∑
k=1

Xk(tn)1{k∼i})

≤ (
n∑
k=1

Xk(tn))2 + 2(
∞∑
i=1

(Y ni ) 2 )1/2(
∞∑
i=1

(
n∑
k=1

Xk(tn)1{k∼i})
2 )1/2

by the Cauchy-Schwarz inequality, and since for each k, there is only one i
such that k ∼ i,

d2(Zn,Yn) ≤ (
n∑
k=1

Xk(tn))2 + 2‖Yn‖1/2
n∑
k=1

Xk(tn)
p→ 0 ,

by (102, 103) and tightness of ‖Yn‖ since Yn � X̄n(t)
d
= X(t) ∈ l2↘.

Since X̄(t) equals Yn, on the event { no dashed edges }, it suffices to
show they appear rarely. Precisely, conditional on X(tn), the chance that
their number is non-zero is at most∑ ∑

1≤k<l≤n
Xk(tn)Cl =

∑ ∑
1≤k<l≤n

(t− tn)Xk(tn)Xl(tn)

≤ (t− tn)X1(tn) × n
n∑
k=1

Xk(tn)

p→ 0 by (102, 103). 2

Returning to the proof of Proposition 41, note that in the construction
above,

Xn(t) � X̄n(t)
d
= X(t)
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and so by Lemma 36(ii) the sequence (Xn(t), n ≥ 1) is tight. By passing to a
subsequence we may assume Xn(t) converges in distribution, and appealing

to the Feller property we may assume Xn(t)
d→ X̃(t) for some eternal

multiplicative coalescent X̃(t). By (102) and Lemma 37

COL(Xn(t); (C1, . . . , Cn, 0, 0, . . .))
d→ COL(X̃(t); c)

and then Lemma 42 implies X(t)
d
= COL(X̃(t); c). We need to prove

c̃ = 0. If not, then limt→−∞ |t|X̃1(t) = c̃1 > 0, and for simplicity we may
suppose c̃1 is constant and is distinct from the entries of c (the general case
involves only modifying notation). But then Lemma 40(b) would imply
that c̃1 does indeed appear as a limit limt→−∞ |t|X[1](t) for some cluster
of X(t), a contradiction. This establishes the “only if” part of Proposition
41. Conversely, suppose X is distributed as COL(X̃; c), where X̃ is some
eternal multiplicative coalescent satisfying (65) with limit c̃ = 0. Write
Y(k) = COL(X̃; (c1, . . . , ck, 0, 0, . . .)). Applying Lemma 40 inductively on k
it is easy to see that the limit (65) for Y(k) is (c1, . . . , ck, 0, 0, . . .). Write
c(k) = (ck+1, ck+2, . . .), so that by (94) we may use the representation

X = COL(Y(k); c(k)).

Applying Lemma 40(b) to this representation, we see that the limits (65)
for X include each entry of (c1, . . . , ck) and hence each entry of c. Define
Mk(t) to be the maximum size of a cluster of X(t) which does not contain

any of the clusters Y
(k)

1 (t), . . . , Y
(k)
k (t). We will show

lim sup
t→−∞

|t|Mk(t)
p→ 0 as k →∞ (107)

and it follows that X can have no limit (65) except for the entries of c,
establishing the “if” part of Proposition 41.

Fix k, and to ease notation write Y for Y(k). Write S̄2(t) =
∑
i Y

2
i (t)

and define events

B1(t) = {S̄2(t)||c(k)||2 < 1/2}
B2(t) = {|t|Yk(t) ≤ 2ck}
B3(t) = {|t|S̄2(t) ≤ 2}

B(t) =
3⋂
i=1

Bi(t)
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so that P (B(t)) → 1 as t→ −∞. For i > k write Wi(t) for the size of the
cluster of X(t) containing Yi(t). The following inequalities hold on B(t), for
i > k.

E(Wi(t)− Yi(t)|Y(t)) ≤ 2
∑
j>k

Yj(t) · Yi(t)Yj(t)||c(k)||2

≤ 2Yi(t)S̄2(t)||c(k)||2 ,

the first inequality by Lemma 35 and definition of B1(t). Next, |t|Yi(t) ≤ 2ck
by definition of B2(t), and so by Markov’s inequality

P (|t|Wi(t) ≥ 2ck + ε|Y(t)) ≤ ε−1|t| · 2Yi(t)S̄2(t)||c(k)||2

≤ 4ε−1Yi(t)||c(k)||2 by definition of B3(t).

If |t|Mk(t) ≥ 2ck + ε then
∑
i>k |t|Yi(t)1(|t|Wi(t)≥2ck+ε) ≥ 2ck + ε ≥ ε and so

by Markov’s inequality

P (|t|Mk(t) ≥ 2ck + ε|Y(t)) ≤ ε−1
∑
i>k

|t|Yi(t) P (|t|Wi(t) ≥ 2ck + ε|Y(t))

≤ 4ε−2|t|S̄2(t)||c(k)||2

≤ 8ε−2||c(k)||2.

Letting t→ −∞ and then k →∞ establishes (107). 2

5.4 Proof of Theorem 6

Proposition 7 shows that the standard multiplicative coalescent X∗
d
=

µ(1, 0, 0) is the limit of (X(n)(t); t ≥ − 1
σ2(x(n))

= −n1/3) started with con-

figuration x(n) consisting of n clusters of mass n−2/3 each. Write x̃(n) =
x(n)

1 (cn−1/3, 0, 0, . . .). Since 1
σ2(x(n))

− 1
σ2(x̃(n))

∼ c2, Proposition 7 also

shows that µ(1,−c2, (c, 0, . . .)) is the limit of (X̃(n)(t); t ≥ −n1/3) started
with configuration x̃(n).

For n ≥ 1 and t > −n−1/3 let cn(t) = c
n1/3 (t + n−1/3). Arguing as in

Lemma 42, it is easy to obtain a version of X̃(n)(t), denoted by Y(n)(t), made
from COL(X(n)(t); (cn(t), 0, . . .)) by appending (non-randomly) a cluster of

mass c/n1/3 to the color-c component. Since cn(t) → c, X(n)(t)
d→ X∗(t)

and Y(n)(t)
d∼ COL(X(n)(t); (cn(t), 0, . . .)) as n→∞, Lemma 37 gives

µ(1,−c2, (c, 0, . . .))
d
= COL(X∗; (c, 0, . . .)) .
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Similarly, µ(1,−∑i c
2
i , c)

d
= COL(X∗; c) for any finite-length c. When

c ∈ l2↘, let ck = (c1, . . . , ck, 0, 0, . . .). Then for each k

µ(1,−
k∑
i=1

c2
i , c

k)
d
= COL(X∗; ck) . (108)

Another application of Lemma 37 ensures convergence of the right-hand-side
to COL(X∗; c) as k → ∞. The time-t marginals of µ(1,−∑k

i=1 c
2
i , c

k) and
µ(1,−∑∞i=1 c

2
i , c) are the distributions of the ordered excursion lengths of

B1,t−
∑k

i=1
c2i ,c

k

and B1,t−
∑∞

i=1
c2i ,c, and clearly

B1,t−
∑k

i=1
c2i ,c

k d→ B1,t−
∑∞

i=1
c2i ,c .

Using Propositions 14 and 17 as in section 2.6 we deduce that the left-
hand-side in (108) converges to µ(1,−∑i c

2
i , c). This gives assertion (a)

of Theorem 6. Similarly, for (b) we have B1,0,ck d→ B1,0,c, implying

µ(1, 0, ck)
d→ µ(1, 0, c). And for (c) we have Bκ,τ,c

d→ B0,τ,c, imply-

ing µ(κ, τ, c)
d→ µ(0, τ, c).

5.5 Proof of Lemma 1

Suppose l0 is a strict subset of l3↘\ l2↘ and take c ∈ (l3↘\ l2↘) \ l0. So for
some fixed t and δ > 0,

P (B0,t,c has infinitely many excursions of length > δ) > δ. (109)

Let (x(n), n ≥ 1) satisfy the hypotheses of Proposition 7 with limits κ = 0,
τ = 0 and the given c. Let X(n)(·) be the multiplicative coalescent started at
time 0 from configuration x(n). Let (Z(n)(s), s ≥ 0) be the reflected rescaled
breadth-first walk associated with X(n)( 1

σ2(x(n))
+t), so that as argued below

(61)

Z(n) d→ B0,t,c on D[0,∞). (110)

Define x̃(n) = x(n)
1 (σ2(x(n)), 0, 0, . . .). The sequence of configurations

(x̃(n), n ≥ 1) satisfies the hypotheses in Proposition 7 with limits κ̃ = 0,
τ̃ = −1, c̃ = c 1 (1, 0, 0, . . .). Let X̃(n)(·) be the multiplicative coale-
scent started at time 0 from configuration x̃(n). Let (Z̃(n)(s), s ≥ 0) be the
reflected rescaled breadth-first walk associated with X̃(n)( 1

σ2(x(n))
+ t), so

that as above
Z̃(n) d→ B0,t+1,c̃ on D[0,∞).
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We shall describe a coupling of X(n)( 1
σ2(x(n))

+ t) and X̃(n)( 1
σ2(x(n))

+ t),

and an induced coupling of Z(n) and Z̃(n), with the property that, with
probability bounded away from zero as n→∞,

the first excursion of Z̃(n) of length > δ has length > θ(n) and starts

no later than the start of the first excursion of Z(n) of length > δ (111)

where θ(n) → ∞. This implies that with non-zero probability the limit
B0,t+1,c̃ has an infinite excursion, contradicting Proposition 14(a), and the
contradiction establishes the lemma.

The coupling uses the coloring construction. Write cn = 1 + tσ2(x(n)).
First construct COL(X(n)( 1

σ2(x(n))
+ t); cn) and then to the colored compo-

nent append a cluster of mass σ2(x(n)), and write X̃(n)( 1
σ2(x(n))

+ t) for the

resulting random vector. This has the correct distribution, by the property
that coloring commutes with the evolution of the multiplicative coalescent.
Moreover we may regard X(n)( 1

σ2(x(n))
+ t) and X̃(n)( 1

σ2(x(n))
+ t) as com-

ponent sizes of graphs on vertex sets of masses x(n) ⊆ x̃(n), so that the
size-biased ordering of x̃(n) induces coupled versions of the walks Z(n) and
Z̃(n). Using (109, 110), with probability bounded away from zero as n→∞,

(a) at least θ(n) clusters corresponding to excursions of Z(n) of length
> δ are colored (for some θ(n)→∞)

(b) the cluster corresponding to the first excursion of Z(n) of length > δ

is colored.
But if the events (a) and (b) hold then (111) automatically holds.

6 Final remarks

Give the set of distributions of eternal multiplicative coalescents the topology
of weak convergence of processes on D((−∞,∞), l2↘). It is natural to believe

(but not obvious) that the subset of extreme distributions is closed. The
Theorem 3 characterization induces a topology on the parameter space I ∪
[0,∞). This is not quite the “natural” topology obtained by considering I
as a subset of R2 × l3↘, for the following reason. Given arbitrary cm ∈ l3↘
and κm > 0, we have

µ(κm, τm, cm)→ µ̂(0) if τm→ −∞ sufficiently fast

µ(κm, τm, cm) 6→ µ̂(0) if τm →∞ sufficiently fast
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where µ̂(0) is the distribution of the zero process. To specify the topology
on extreme distributions requires (at least) specifying which sequences τm
satisfy µ(κm, τm, cm)→ µ̂(0), and this is not obvious.
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