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Abstract. Defant recently introduced toric promotion, an operator that acts on the labelings
of a graph G and serves as a cyclic analogue of Schützenberger’s promotion operator. Toric
promotion is defined as the composition of certain toggle operators, listed in a natural cyclic
order. We consider more general permutoric promotion operators, which are defined as
compositions of the same toggles, but in permuted orders. We settle a conjecture of Defant
by determining the orders of all permutoric promotion operators when G is a path graph.
In fact, we completely characterize the orbit structures of these operators, showing that they
satisfy the cyclic sieving phenomenon. The first half of our proof requires us to introduce
and analyze new broken promotion operators, which can be interpreted via globs of liquid
gliding on a path graph. For the latter half of our proof, we reformulate the dynamics of
permutoric promotion via stones sliding along a cycle graph and coins colliding with each
other on a path graph.
Keywords. Promotion, toric promotion, Coxeter element, cyclic sieving phenomenon
Mathematics Subject Classifications. 05E18

1. Introduction

In his study of the Robinson–Schensted–Knuth correspondence, Schützenberger [Sch63, Sch72,
Sch76] introduced a beautiful bijective operator called promotion, which acts on the set of linear
extensions of a finite poset. Haiman [Hai92] and Malvenuto–Reutenauer [MR94] found that
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promotion could be defined as a composition of local toggle operators (also called Bender–Knuth
involutions). There are now several articles connecting promotion to other areas [AKS14, EG87,
HR22, Hua20, PPR09, PS18, Rho10, Sta09, SW12] and generalizing promotion in different
directions [AKS14, BSV21, DK23, DPS17, DSV19, Sta09]. Promotion is now one of the most
extensively studied operators in the field of dynamical algebraic combinatorics.

Following the approach first considered by Malvenuto and Reutenauer [MR94], we define
promotion on labelings of graphs instead of linear extensions of posets. All graphs in this article
are assumed to be simple. Let G = (V,E) be a graph with n vertices. A labeling of G is a
bijection V → Z/nZ. We denote the set of labelings of G by ΛG. Given distinct a, b ∈ Z/nZ,
let (a b) be the transposition that swaps a and b. For i ∈ Z/nZ, the toggle operator τi : ΛG → ΛG

is defined by

τi(σ) =

{
(i i+ 1) ◦ σ if {σ−1(i), σ−1(i+ 1)} ̸∈ E;

σ if {σ−1(i), σ−1(i+ 1)} ∈ E.

In other words, τi swaps the labels i and i+1 if those labels are assigned to nonadjacent vertices
of G, and it does nothing otherwise. Define promotion to be the operator Pro: ΛG → ΛG

given by
Pro = τn−1 · · · τ2τ1.

Here and in the sequel, concatenation of operators represents composition.
A recent trend in algebraic combinatorics aims to find cyclic analogues of more traditional

“linear” objects (see [ARR20, DMR16] and the references therein). Defant recently defined a
cyclic analogue of promotion called toric promotion [Def23]; this is the operatorTPro: ΛG→ΛG

given by
TPro = τnτn−1 · · · τ2τ1 = τn Pro .

Defant proved the following theorem, which reveals that toric promotion has remarkably nice
dynamical properties when G is a forest.

Theorem 1.1 ([Def23]). Let G be a forest with n ⩾ 2 vertices, and let σ ∈ ΛG be a labeling.
The orbit of toric promotion containing σ has size

(n− 1)
t

gcd(t, n)
,

where t is the number of vertices in the connected component of G containing σ−1(1). In par-
ticular, if G is a tree, then every orbit of TPro: ΛG → ΛG has size n− 1.

Theorem 1.1 stands in stark contrast to the wild dynamics of promotion on most forests.
For example, even when G is a path graph with 7 vertices, the order of Pro: ΛG → ΛG

is 3224590642072800, whereas all orbits of TPro: ΛG → ΛG have size 6.
In [Def23], Defant (taking a suggestion from Tom Roby) proposed studying a generalization

of toric promotion in which the toggle operators τ1, . . . , τn can be composed in any order. In
what follows, we let [n] = {1, . . . , n}.
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Definition 1.2. Let G be a graph with n vertices, and let π : [n] → Z/nZ be a bijection. The
permutoric promotion operator TProπ : ΛG → ΛG is defined by

TProπ = τπ(n) · · · τπ(2)τπ(1).

One would ideally hope to have an extension of Theorem 1.1 to arbitrary permutoric
promotion operators. Unfortunately, trying to completely describe the orbit structure
of TProπ : ΛG → ΛG for arbitrary forests G and arbitrary permutations π seems to be very
difficult. However, it turns out that we can do this when G is a path.1 To state our main result,
we need a bit more terminology.

Let [k]q = 1−qk

1−q
= 1 + q + · · · + qk−1 and [k]q! = [k]q[k − 1]q · · · [1]q. The q-binomial

coefficient
[
k
r

]
q

is the polynomial
[k]q!

[r]q![k − r]q!
∈ C[q].

Let X be a finite set, and let f : X → X be an invertible map of order ω (i.e., ω is the
smallest positive integer such that fω(x) = x for all x ∈ X). Let F (q) ∈ C[q] be a polynomial
in the variable q. Following [RSW04], we say the triple (X, f, F (q)) exhibits the cyclic sieving
phenomenon if for every integer k, the number of elements of X fixed by fk is F (e2πik/ω).

Although we view the set Z/nZ as a “cyclic” object, it will often be convenient to
identify Z/nZ with the “linear” set [n] and consider the total ordering of its elements given
by 1 < 2 < · · · < n. If π : [n] → Z/nZ is a bijection, then a cyclic descent of π−1 is an ele-
ment i ∈ Z/nZ such that π−1(i) > π−1(i+ 1) (note that n is permitted to be a cyclic descent).

Let Pathn denote the path graph with n vertices. In [Def23, Conjecture 4.1], Defant con-
jectured (using different language) that for every bijection π : [n] → Z/nZ, the order of the
map TProπ : ΛPathn → ΛPathn is d(n−d), where d is the number of cyclic descents of π−1. Our
main theorem not only proves this conjecture, but also determines the entire orbit structure of
permutoric promotion in this case.

Theorem 1.3. Let π : [n] → Z/nZ be a bijection, and let d be the number of cyclic descents
of π−1. The order of the permutoric promotion operator TProπ : ΛPathn → ΛPathn is d(n− d).
Moreover, the triple(

ΛPathn ,TProπ, n(d− 1)!(n− d− 1)![n− d]qd

[
n− 1

d− 1

]
q

)
exhibits the cyclic sieving phenomenon.

Note that when d = 1, the sieving polynomial in Theorem 1.3 is n(n − 2)![n − 1]q, which
agrees with Theorem 1.1.

Suppose B is a proper subset of Z/nZ. In order to understand permutoric promotion
and prove Theorem 1.3, we define the broken promotion operator BroB : ΛG → ΛG as follows.
Let B1, . . . , Bk be the vertex sets of the connected components of the subgraph of Cyclen

1We will see later that the dynamics of permutoric promotion on the path graph can be explained using coins that
move around on the path and collide with each other. The path graph is especially nice because there are always at
most two possible directions for a coin to move. One could try to mimic our approach for other trees, but additional
complications would likely arise when considering vertices of degree greater than 2.
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induced by B. For 1 ⩽ i ⩽ k, let us write Bi = {a(i), a(i) + 1, . . . , b(i)}, and
let BroBi

= τb(i) · · · τa(i)+1τa(i). We then define BroB = BroB1 · · ·BroBk
(the order does not

matter since BroB1 , . . . ,BroBk
commute with each other).

Let cyc : ΛG → ΛG be the cyclic shift operator defined by (cyc(σ))(v) = σ(v) + 1. In
Section 3, we give a description of the operator cycBroB in terms of “gliding globs” of liquid.
Roughly speaking, some of the labels are immersed in globs of liquid, these globs (and their
labels) glide along paths inG in a jeu de taquin fashion, and then some of the labels are changed
appropriately. We also show that certain indicator functions are homomesic for cycBroB (see
Proposition 3.6). In Section 4, we specialize to the case when G = Pathn and establish use-
ful connections between broken promotion and permutoric promotion. The purpose of Sec-
tion 5 is to prove that all of the sizes of the orbits of TProπ are divisible by lcm(d, n − d)
(where G = Pathn and d is the number of cyclic descents of π−1). In Section 6, we use
this divisibility result to reformulate the analysis of permutoric promotion in terms of “slid-
ing stones” and “colliding coins.” Roughly speaking, we place some stones on the cycle graph
and allow them slide around as we apply toggle operators. At the same time, we place coins on
the path graph and allow them to move around and collide with one another. It turns out that
the dynamical properties of permutoric promotion are closely related to those of the stones dia-
grams and coins diagrams; this allows us to complete the proof of Theorem 1.3. Let Compd(n)
be the set of compositions of n into d parts, and define Rotn,d : Compd(n) → Compd(n)
by Rotn,d(a1, a2, . . . , ad) = (a2, . . . , ad, a1). We show how to associate an orbit of Rotn,d to
the dynamics of the coins diagrams by recording how far each coin must travel when passing
from one collision to the next. It will turn out that the form of the sieving polynomial in Theo-
rem 1.3 arises from the fact that the triple

(
Compd(n),Rotn,d,

[
n−1
d−1

]
q

)
exhibits the cyclic sieving

phenomenon. In Section 7, we apply Theorem 1.3 to derive the following theorems.
Theorem 1.4. Let d and n be integers such that 1 ⩽ d ⩽ n − 1. The order of the opera-
tor cycBro{1,...,d} : ΛPathn → ΛPathn is (n− d)n. Moreover, the triple(

ΛPathn , cycBro{1,...,d}, (d− 1)!(n− d− 1)![n]qn−d [n− d]qd

[
n− 1

d− 1

]
q

)
exhibits the cyclic sieving phenomenon.

For any real number x, let [[x]] denote the integer closest to x, with the convention
that [[x]] = x− 1/2 if x− 1/2 ∈ Z.
Theorem 1.5. Let d and n be positive integers such that 1 ⩽ d ⩽ ⌊n/2⌋. For i ∈ Z,
let si = [[in/d]], and let R = (Z/nZ) \ {s1 − 1, . . . , sd − 1}. The order of the opera-
tor cycBroR : ΛPathn → ΛPathn is dn. Moreover, the triple(

ΛPathn , cycBroR , (d− 1)!(n− d− 1)![n]qd [n− d]qd

[
n− 1

d− 1

]
q

)
exhibits the cyclic sieving phenomenon.

While noteworthy on its own, the homomesy result from Section 3 also ends up being useful
for proving Theorems 1.4 and 1.5.
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2. Basics

Let n be a positive integer. Given integers x ⩽ y, we let [x, y]n denote the tuple of elements
in Z/nZ obtained by reducing the entries in the tuple (x, x + 1, . . . , y) modulo n. For exam-
ple, [3, 7]3 is the tuple (0, 1, 2, 0, 1), where the elements are in Z/3Z. Slightly abusing nota-
tion, we will also sometimes view [x, y]n as a (multi)set. In this context, [3, 7]3 is the multi-
set {0, 0, 1, 1, 2}.

Given a finite set X and an invertible map f : X → X , we let Orbf denote the set of orbits
of f . We will need the following technical lemma concerning the cyclic sieving phenomenon.

Lemma 2.1. Let f : X → X and g : X̃ → X̃ be invertible maps, where X and X̃ are fi-
nite sets. Let {kmi

i : 1 ⩽ i ⩽ ℓ} be the multiset of orbit sizes of f , where we use super-
scripts to denote multiplicities. Let ω be the order of f , and let F (q) ∈ C[q] be such that the
triple (X, f, F (q)) exhibits the cyclic sieving phenomenon. If N ∈ Z>0 and α ∈ Q>0 are such
that {(Nki)αmi : 1 ⩽ i ⩽ ℓ} is the multiset of orbit sizes of g, then g has order Nω, and the
triple (X̃, g, α[N ]qωF (q)) exhibits the cyclic sieving phenomenon.

Proof. It is clear that g has order Nω. Fix an integer k. When we evaluate the polyno-
mial α[N ]qωF (q) at q = e2πik/(Nω), we obtain α[N ]e2πik/NF (e2πi(k/N)/ω); we want to show that
this is the number of elements of X̃ that are fixed by gk. If k is not divisible byN , then there are
no such elements because all orbits of g have sizes divisible by N ; in this case, we are done be-
cause the factor [N ]e2πik/N is 0. Now suppose k is divisible byN . Because (X, f, F (q)) exhibits
the cyclic sieving phenomenon, F (e2πi(k/N)/ω) is the number of elements of X fixed by fk/N .
Therefore, αNF (e2πi(k/N)/ω) is the number of elements of X̃ fixed by gk. This completes the
proof because α[N ]e2πik/NF (e2πi(k/N)/ω) = αNF (e2πi(k/N)/ω).

Remark 2.2. The previous lemma also admits another proof, as was kindly pointed out to us by
one of the referees. Fix a positive integer ω, and consider the cyclic group of order ω, which
we identify with the ω-th roots of unity, denoted µω. Let ρ be a permutation of some finite set,
with order dividing ω. The permutation action of µω according to which e2πi/ω acts by ρ has a
character, which we denote χρ : µω → C. If ρ is a single cycle of length a (which by hypothesis
divides ω), then one checks that χρ(q) = [a]qω/a . Further, the character of an action consisting
of several disjoint cycles is the product of the characters of each of the cycles. To suppose,
as in the statement of the lemma, that (X, f, F (q)) exhibits the cyclic sieving phenomenon, is
equivalent to saying that F (q) is congruent to the character χf (q) modulo qω−1. Using the fact
that [N ]qω [a]qω/a = [Na]qω/a , we deduce that α[N ]qωF (q) is congruent to χg(q) modulo qNω−1,
and thus that (X̃, g, α[N ]qωF (q)) exhibits the cyclic sieving phenomenon.

We write Pathn and Cyclen for the path with n vertices and the cycle with n vertices, respec-
tively. We embed these graphs in the plane, drawing Pathn horizontally. Identify the vertices
of Cyclen with Z/nZ in such a way that they appear in the cyclic order 1, 2, . . . , n when read
clockwise around the cycle. Let v1, . . . , vn be the vertices of Pathn, listed from left to right.
Just as the purpose of embedding Pathn in the plane is to be able to talk about left and right,
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the purpose of embedding Cyclen in the plane is to be able to talk about clockwise and counter-
clockwise. As in the introduction, let us fix a graph G and consider the toggle operators τi and
the permutoric promotion operators TProπ on ΛG.

If D is an acyclic directed graph with vertex set V , then we can define a partial order ⩽D
on V by declaring v ⩽D v′ whenever there is a directed path in D from v to v′; the resulting
poset (V ,⩽D) is called the transitive closure of D.

A linear extension of an n-element poset (P,⩽P ) is a word p1 · · · pn whose letters are the
elements of P (with each element appearing exactly once) such that i ⩽ j whenever pi ⩽P pj .
Given a bijection π : [n] → Z/nZ, we obtain an acyclic orientation απ of Cyclen by orienting
each edge {i, i + 1} from i to i + 1 if and only if π−1(i) < π−1(i + 1). If β is any acyclic
orientation ofCyclen, then the linear extensions of its transitive closure (Z/nZ,⩽β) are precisely
the words π(1) · · · π(n) such that π : [n] → Z/nZ is a bijection satisfying απ = β.

It is well known that any linear extension of a finite poset can be obtained from any other lin-
ear extension of the same poset by repeatedly swapping consecutive incomparable elements.
If i, j ∈ Z/nZ are incomparable in (Z/nZ,⩽β), then they are not adjacent in Cyclen, so
the toggle operators τi and τj commute. This implies that if π, π′ : [n] → Z/nZ are such
that απ = απ′ , then the expression for TProπ′ as a composition of toggle operators can be
obtained from the expression for TProπ by repeatedly swapping consecutive toggle operators
that commute with each other, so TProπ = TProπ′ . Therefore, given an acyclic orienta-
tion β of Cyclen, it makes sense to write TProβ for the permutoric promotion operator TProπ,
where π : [n] → Z/nZ is any bijection such that απ = β. (This argument showing why TProβ
is well defined is essentially the same as a standard argument showing that Coxeter elements of
a Coxeter group correspond bijectively to acyclic orientations of the Coxeter graph.)

A source (respectively, sink) of an acyclic orientation is a vertex of in-degree (respectively,
out-degree) 0. If u is a source (respectively, sink), then we can flip u into a sink (respectively,
source) by reversing the orientations of all edges incident to u. Two acyclic orientations are flip
equivalent if one can be obtained from the other by a sequence of flips.

Let us say two maps f, g : ΛG → ΛG are dynamically equivalent if there is a bijec-
tion ϕ : ΛG → ΛG such that f ◦ ϕ = ϕ ◦ g. Note that dynamically equivalent invertible maps
have the same orbit structure (that is, they have the same number of orbits of each size).

Lemma 2.3. If β and β′ are acyclic orientations of Cyclen that have the same number of edges
oriented counterclockwise, then TProβ and TProβ′ are dynamically equivalent.

Proof. It is known (see [DMR16]) that two acyclic orientations of Cyclen have the same number
of edges oriented counterclockwise if and only if they are flip equivalent. Therefore, we just need
to show that if β and β′ are flip equivalent, then TProβ and TProβ′ are dynamically equivalent.
It suffices to prove this in the case when β′ is obtained from β by flipping a source i into a sink.
In this case, one can check that TProβ ◦τi = τi ◦ TProβ′ .

Lemma 2.4. Let β and β′ be acyclic orientations of Cyclen. Let d and d′ be the number of
edges oriented counterclockwise in β and β′, respectively. If d = d′ or d = n− d′, then TProβ
and TProβ′ are dynamically equivalent.
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Proof. If d = d′, then we are done by Lemma 2.3. Now suppose d = n−d′. Defineϕ : ΛG → ΛG

by (ϕ(σ))(v) = n+ 1− σ(v). One can readily check that

ϕ ◦ τi = τn−i ◦ ϕ (2.1)

for all i ∈ Z/nZ. Let π : [n] → Z/nZ be a bijection such that απ = β, and define
π′ : [n] → Z/nZ by π′(i) = n − π(i). We have TProπ = TProβ . It follows from (2.1)
that ϕ ◦ TProπ = TProπ′ ◦ϕ. This shows that TProπ and TProπ′ are dynamically equivalent.
On the other hand, the number of edges oriented counterclockwise in απ′ is n− d, so it follows
from Lemma 2.3 that TProπ′ is dynamically equivalent to TProβ′ .

If π : [n] → Z/nZ is a bijection, then the number of cyclic descents of π−1 is the same as
the number of edges oriented counterclockwise in απ. This is why cyclic descents appear in
Theorem 1.3.

We end this section with a lemma that will allow us to rewrite operators formed as com-
positions of toggles. We will consider words over the alphabet {τ1, . . . , τn} both as words and
as permutations of ΛG. Given such a word X , let X⟨i⟩ denote the number of occurrences of τi
in X .

Lemma 2.5. Let β be an acyclic orientation of Cyclen. Let Y be a word over the alpha-
bet {τ1, . . . , τn} in which each letter appears exactly k times. Suppose that for every suffix X
of Y and every arrow a → b in β, we have X⟨a⟩ −X⟨b⟩ ∈ {0, 1}. When viewed as a bijection
from ΛG to itself, Y is equal to TProkβ .

Proof. For each i ∈ Z/nZ, consider k formal symbols τ (1)
i , . . . , τ

(k)
i . Let G be the group gen-

erated by the set A =
{
τ
(ℓ)
i : i ∈ Z/nZ, ℓ ∈ [k]

}
subject to the relations τ (ℓ)

i τ
(m)
j = τ

(m)
j τ

(ℓ)
i

whenever j ̸∈ {i − 1, i, i + 1}. Let D be the directed graph with vertex set A and with arrows
defined as follows: for each arrow a→ b in β, the graph D has arrows τ (ℓ)

b → τ
(ℓ)
a for all ℓ ∈ [k]

and τ
(m)
a → τ

(m+1)
b for all m ∈ [k − 1]. Let (A,⩽D) be the transitive closure of D.

Let us fix a bijection π : [n] → Z/nZ such that TProπ = TProβ . Let Y ′ be the
word (τπ(n) · · · τπ(1))k over the alphabet {τ1, . . . , τn}. Let Z (respectively, Z ′) be the word over
the alphabet A obtained from Y (respectively, Y ′) by replacing the ℓ-th occurrence of the let-
ter τi with τ

(ℓ)
i . The conditions on Y in the hypothesis of the lemma imply that Z is a linear

extension of (A,⩽D); the word Y ′ satisfies the same conditions, so Z ′ is also a linear extension
of (A,⩽D). This means that Z ′ can be obtained from Z be repeatedly swapping consecutive
incomparable elements; each such swap corresponds to one of relations defining G. Thus, Z
and Z ′ represent the same element of G. There is a natural homomorphism from G to the group
of permutations of ΛG that sends each generator τ (ℓ)

i to τi. This homomorphism sends Z and Z ′

to the permutations of ΛG represented by Y and Y ′, respectively. Hence, these permutations are
the same. This completes the proof because the permutation represented by Y ′ is TProkβ .
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3. Broken Promotion

In this section, we study the broken promotion operators defined in the introduction, describing
them in terms of “gliding globs” and relating them to permutoric promotion operators.

3.1. Jeu de Taquin

As before, let us fix ann-vertex graphG = (V,E). Our arguments in this section will require cer-
tain jeu de taquin operators defined as follows. For i1, i2 ∈ Z/nZ, define jdt(i1,i2) : ΛG → ΛG by

jdt(i1,i2)(σ) =

{
(i1 i2) ◦ σ if {σ−1(i1), σ

−1(i2)} ∈ E;

σ if {σ−1(i1), σ
−1(i2)} ̸∈ E.

Thus, jdt(i1,i2) has the effect of trying to “glide” the label i1 through the label i2; it succeeds in
doing so if and only if those labels are on adjacent vertices of G. More generally, if (i1, . . . , ir)
is a tuple of distinct vertices in V , then we define

jdt(i1,...,ir) = jdt(i1,ir) jdt(i1,ir−1) · · · jdt(i1,i2) .

This operator has the effect of trying to glide i1 through the labels i2, . . . , ir in that order.
We will primarily be interested in the case when (i1, . . . , ir) is such that ij = i1 + j − 1 for
all 1 ⩽ j ⩽ r. In this case, {i1, . . . , ir} is a cyclic interval [x, y]n, so we simply write jdt[x,y]n
instead of jdt(i1,...,ir).

Example 3.1. If n = 6 and σ is the labeling shown on the left in Figure 3.1, then the label-
ing jdt[5,9]6(σ) = jdt(5,6,1,2,3)(σ) is shown on the right in Figure 3.1.

Figure 3.1: On the left is a labeling of a 6-vertex graph, where the label of each vertex is
shown next to it in red. On the right is the labeling jdt[5,9]6(σ) = jdt(5,6,1,2,3)(σ). The label-
ing jdt[5,9]6(σ) was obtained from σ by gliding the label 5 through the labels 6, 1, 3.

3.2. Broken Promotion

Suppose B is a proper subset of Z/nZ. Recall the definitions of the broken promotion oper-
ator BroB : ΛG → ΛG and the cyclic shift operator cyc : ΛG → ΛG from Section 1. We can
explicitly describe the action of cycBroB on a labeling σ ∈ ΛG as follows. Let B1, . . . , Bk

be the vertex sets of the connected components of the subgraph of Cyclen induced by B. For
each 1 ⩽ i ⩽ k, let xi and yi be such that Bi = [xi, yi− 1]n, and imagine immersing the label xi
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in a glob of liquid. The first step is to apply the jeu de taquin operators jdt[xi,yi]n
, imagining that

the label xi carries its glob along with it as it glides. For the second step, increase by 1 the label
of each vertex in σ−1((Z/nZ) \

⋃k
ℓ=1[xℓ, yℓ]n). If xi − 1 ̸∈

⋃k
ℓ=1[xℓ, yℓ]n, this second step will

change the label xi − 1 into xi, so there will be two copies of the label xi: one in a glob and
the other not in a glob. The third and final step is to change each label xi that is in a glob to the
label yi + 1.

It might not be obvious at first that the procedure described in the preceding paragraph does
in fact compute cycBroB(σ); however, the verification of this fact is straightforward and can be
elucidated through examples.

Example 3.2. Suppose n = 9 and G = Path9. Let B = {1, 3, 4, 7, 9} ⊆ Z/9Z. The connected
components of the subgraph of Cycle9 induced by B have vertex sets

B1 = {3, 4} = [3, 4]9, B2 = {7} = [7, 7]9, B3 = {9, 1} = [9, 10]9.

Preserving the notation from above, we have x1 = 3, y1 = 5, x2 = 7, y2 = 8, x3 = 9,
y3 = 11. Recall that the vertices of Path9 are v1, . . . , v9; let σ ∈ ΛPath9 be the labeling that sends
these vertices to 7, 1, 4, 3, 5, 6, 9, 2, 8, respectively. Figure 3.2 illustrates the three-step procedure
for computing cycBroB(σ), showing that cycBroB(σ) sends v1, . . . , v9 to 9, 1, 6, 4, 5, 7, 2, 3, 8,
respectively.

Step 1−−−→

Step 2−−−→ Step 3−−−→

Figure 3.2: The three steps for applying cycBroB, where B = {1, 3, 4, 7, 9} ⊆ Z/9Z.

3.3. Broken Promotion for the Complement of an Independent Set

Suppose 1 ⩽ d ⩽ ⌊n/2⌋, and let · · · < s−1 < s0 < s1 < s2 < · · · be a bi-infinite
sequence of integers such that si+d = si + n and si+1 ⩾ si + 2 for all i ∈ Z.
Then S = {s1, . . . , sd} is an independent set of size d inCyclen. Let βS be the acylic orientation
of Cyclen in which the elements of S are sources and all edges not incident to elements of S are
oriented clockwise. The sinks of βS are the elements of S − 1 := {s1 − 1, . . . , sd − 1}. Let us
write R = (Z/nZ) \ (S − 1).

In Section 3.2, we gave a three-step description of the action of cycBroB on a labeling σ
whenB is an arbitrary proper subset of Z/nZ. This description simplifies whenB is R because
in this case, we have xi = si and yi = si+1 − 1, so

⋃k
ℓ=1[xℓ, yℓ]n is all of Z/nZ (so the second

step in the earlier description has no effect). Hence, we have the following simpler two-step
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procedure. Immerse each label si in a glob of liquid. The first step is to apply the jeu de taquin
operators jdt[si,si+1−1]n (for 1 ⩽ i ⩽ d), imagining that the label si carries its glob with it as
it glides. The second step is to cyclically rotate the labels in the globs, changing each label si
to si+1 (modulo n).

Example 3.3. Suppose n = 9 and d = 3. Let s1 = 3, s2 = 7, s3 = 9. Then S = {3, 7, 9},
S − 1 = {2, 6, 8}, and R = (Z/9Z) \ (S − 1) = {1, 3, 4, 5, 7, 9}. The first step in the
above two-step procedure for applying cycBroR is to immerse 3, 7, and 9 in globs of liquid and
apply jdt[3,6]9 , jdt[7,8]9 , and jdt[9,11]9 . The second step is to cyclically rotate the labels 3, 7, 9.
This is illustrated in Figure 3.3.

Step 1−−−→

Step 2−−−→

Figure 3.3: The two steps for applying cycBroR , where R = {1, 3, 4, 5, 7, 9} ⊆ Z/9Z.

Remark 3.4. Suppose G = Pathn. Neither of the two steps in the above procedure change the
relative order in which the labels in (Z/nZ)\S (i.e., the labels not in the globs) appear from left
to right along the path. For example, in Figure 3.3, the labels in (Z/nZ) \ S are 1, 2, 4, 5, 6, 8.
In every step of the procedure, these labels appear in the order 1, 4, 5, 6, 2, 8.

3.4. Permutoric Promotion and Broken Promotion

The following lemma shows that the operators cycBroR and TProβS
commute; it will later

allow us to use the description of cycBroR in terms of gliding globs given in Section 3.3 to gain
a better understanding of permutoric promotion.

Lemma 3.5. Let S be a d-element independent set in Cyclen, and let R = (Z/nZ) \ (S − 1).
Then

cycBroR TProβS
= TProβS

cycBroR .

Proof. Preserve the notation from Section 3.3. Let B = R\S . The vertex sets of the connected
components of the subgraph of Cyclen induced by R are

[s1, s2 − 2]n, [s2, s3 − 2]n, . . . , [sd, sd+1 − 2]n,
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so

BroR =
d∏

i=1

Bro[si,si+1−2]n

=
d∏

i=1

Bro[si+1,si+1−2]n τsi

=
d∏

i=1

Bro[si+1,si+1−2]n

d∏
i=1

τsi

= BroB BroS .

(We are using the fact that τi and τj commute whenever j ̸∈ {i ± 1}.) A similar computation
shows that

cycBroR cyc−1 =
d∏

i=1

Bro[si+1,si+1−1]n = BroS−1 BroB .

We also have cycBroS−1 cyc
−1 = BroS . Therefore,

cycBroR BroS−1 = (cycBroR cyc−1)(cycBroS−1 cyc
−1) cyc

= BroS−1(BroB BroS ) cyc

= BroS−1 BroR cyc .

This shows that
cycBroR BroS−1 BroR = BroS−1 BroR cycBroR .

The desired result now follows from the observation that TProβS
= BroS−1 BroR .

3.5. Homomesy

We end this section with a theorem about broken promotion that will be useful in Section 7
but that we also believe is interesting in its own right. This proposition concerns the notion of
homomesy, which Propp and Roby introduced in 2015 [PR15]; it is now one of the central focuses
in dynamical algebraic combinatorics. Suppose X is a finite set and f : X → X is an invertible
map. Let Orbf denote the set of orbits of f . A statistic on X is a function stat : X → R.
We say the statistic stat is homomesic for f with average a if 1

|O|
∑

x∈O stat(x) = a for every
orbit O ∈ Orbf .

Proposition 3.6. Suppose G is connected. Let v be a vertex of G, and let i ∈ Z/nZ. De-
fine 1v,i : ΛG → R by

1v,i(σ) =

{
1 if σ(v) = i;

0 if σ(v) ̸= i.

If B ⊆ Z/nZ and i− 1 ̸∈ B, then 1v,i is homomesic for the map cycBroB with average 1/n.
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Proof. By symmetry, it suffices to prove the result when i = 1. We identify Z/nZ with [n]
and consider the total ordering 1 < 2 < · · · < n. Given a labeling σ ∈ ΛG, we obtain an
acyclic orientation ησ by orienting each edge {x, y} from x to y if and only if σ(x) < σ(y).
Observe that ητj(σ) = ησ for every j ∈ [n − 1] and σ ∈ ΛG; since n = i − 1 ̸∈ B, this implies
that ηBroB(σ) = ησ for every σ ∈ ΛG. It is also straightforward to see that ηcyc(σ) is obtained
from ησ by flipping the vertex (cyc(σ))−1(1) from a sink to a source. Therefore, ηcyc(BroB(σ)) is
obtained from ησ by flipping (cyc(BroB(σ)))

−1(1) from a sink to a source.
Let O be an orbit of cycBroB, and fix µ0 ∈ O. Let µt = (cycBroB)

t(µ0) for all t ∈ Z.
Consider an edge {x0, y0} in G. Let · · · < k(0) < k(1) < k(2) < · · · be the integers such
that µ−1

k(j)(1) ∈ {x, y}. Without loss of generality, assume x0 → y0 is an arrow in ηµk(0)
. Ac-

cording to the previous paragraph, the orientations of {x0, y0} are different in ηµt−1 and ηµt if
and only if t ∈ {. . . , k(0), k(1), k(2), . . .}. Moreover, we have µk(j)(x0) = 1 if x0 → y0 is an
arrow in ηµk(j)

, whereas µk(j)(y0) = 1 if y0 → x0 is an arrow in ηµk(j)
. It follows that for t ∈ Z,

we have µt(x0) = 1 if and only if t = k(j) for some even j; similarly, µt(y0) = 1 if and only
if t = k(j) for some odd j. This shows that the number of labelings in O that send x0 to 1 is the
same as the number of labelings in O that send y0 to 1. Because the edge {x0, y0} was arbitrary
and G is connected, it follows that for any two vertices x and y of G, the number of labelings
in O that send x to 1 is the same as the number of labelings in O that send y to 1. This implies
the desired result.

Example 3.7. Suppose n = 5 and B = {1, 3, 4}. Figure 3.4 depicts an orbit of cycBroB for a
particular choice of a graphG. Select an arbitrary vertex v ofG. As predicted by Proposition 3.6,
exactly 1 of the 5 labelings in this orbit sends v to 1, and exactly 1 of the 5 labelings in the orbit
sends v to 3.

Figure 3.4: An orbit of cycBro{1,3,4} for a particular graph G. Note that each of the labels 1
and 3 appears on each vertex exactly once throughout the orbit.
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4. Broken Promotion on a Path

Throughout the rest of the article, we will specialize to the case when G = Pathn is the path
with n vertices.

Suppose 1 ⩽ d ⩽ ⌊n/2⌋. In Section 3, we considered an arbitrary bi-infinite sequence

· · · < s−1 < s0 < s1 < s2 < · · ·

satisfying si+d = si + n and si+1 ⩾ si + 2 for all i ∈ Z. In this section, we specialize our
attention to a particular sequence. We write [[x]] for the integer closest to a real number x,
with the convention that [[x]] = x − 1/2 if x − 1/2 ∈ Z. For i ∈ Z, let si = [[in/d]]. As in
Section 3, we let S be the independent set {s1, . . . , sd} ofCyclen and set R = (Z/nZ)\(S −1).
Let β = βS be the acyclic orientation of Cyclen whose sources are the elements of S and whose
sinks are the elements of S − 1. Then β has exactly d counterclockwise edges.

In what follows, we view tuples [x, y]n as multisets. When we consider the size of the in-
tersection of a multiset with a set, we count the elements according to their multiplicity in the
multiset. For example, in the next proposition, |[j− q, j− 1]n ∩ (S − 1)| should be interpreted
as the number of elements of [j− q, j− 1]n, counted with multiplicity, that are also elements of
the set S − 1.

Proposition 4.1. Suppose γ, q, r are nonnegative integers such that 0 ⩽ r ⩽ n − d − 1
and γn = q(n − d) + r (that is to say, q and r are respectively the quotient and remainder
when dividing γn by n − d). Let J = {j ∈ [n] : q − γ + 1 ⩽ |[j − q, j − 1]n ∩ (S − 1)|}.
Then |J | = r, and TProγβ = cyc−q BroJ(cycBroR)

q.

Proposition 4.1 will be crucial in the next section when we prove that the sizes of the orbits
of TProβ are all divisible by lcm(d, n−d). Before proving this proposition, we need a technical
lemma.

Lemma 4.2. Let γ, q, r, J be as in Proposition 4.1. We have J ∩ (S − 1) = ∅. Also, if i ∈ R
and i+ 1 ∈ J , then i ∈ J .

Proof. Consider some sj − 1 ∈ S − 1. Recall that sj = [[jn/d]]. It is straightforward to check
that

|[sj − 1− q, sj − 2]n ∩ (S − 1)| = |[sj − 1− q, sj − 1]n ∩ (S − 1)| − 1 ⩽
(q + 1)d

n
.

Because r ⩽ n− d− 1, we have

|[sj −1− q, sj −2]n∩ (S −1)| < (q + 1)d

n
+
n− d− r

n
= q− q(n− d) + r

n
+1 = q−γ+1,

so sj − 1 ̸∈ J . This proves that J ∩ (S − 1) = ∅.
Now suppose i ∈ R = (Z/nZ) \ (S − 1) and i+ 1 ∈ J . We have

|[i− q, i− 1]n ∩ (S − 1)| ⩾ |[(i+ 1)− q, (i+ 1)− 1]n ∩ (S − 1)| ⩾ q − γ + 1,

so i ∈ J .
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Proof of Proposition 4.1. As in Lemma 2.5, we consider words over the alphabet {τ1, . . . , τn}
both as words and as permutations of ΛPathn . Given such a word X , recall that we write X⟨i⟩
for the number of occurrences of τi in X .

Let i1, . . . , in−d be an ordering of the elements of R such thatBroR = τin−d
· · · τi1 . Consider

the word

W = τin−d−(q−1) · · · τi1−(q−1)τin−d−(q−2) · · · τi1−(q−2) · · · τin−d−1 · · · τi1−1τin−d
· · · τi1 .

For each i ∈ Z/nZ, we have W⟨i⟩ = q − |[i, i+ q − 1]n ∩ (S − 1)|. The size of

[i, i+ q − 1]n ∩ (S − 1) = [i, i+ q − 1]n ∩ {[[n/d]]− 1, [[2n/d]]− 1, . . . , [[dn/d]]− 1}

must be ⌊qd/n⌋ or ⌈qd/n⌉. Using the identity q(n−d) = γn−r, we find thatW⟨i⟩ ∈ {γ−1, γ}
for all i ∈ Z/nZ. The total number of toggle operators in W is q(n− d) = γn− r, so there are
exactly r elements i ∈ Z/nZ such that W⟨i⟩ = γ − 1. Furthermore, we have W⟨i⟩ = γ − 1 if
and only if i+ q ∈ J . This proves that |J | = r and that q− |[j − q, j − 1]n ∩ (S − 1)| = γ − 1
for every j ∈ J .

It follows from Lemma 4.2 that we can choose the ordering i1, . . . , in−d so
that BroJ = τir · · · τi1 . For each k ∈ Z, we have cyc−k BroR cyck = τin−d−k · · · τi1−k. Thus,
when we view W as a permutation of ΛPathn , it is equal to

(cyc−(q−1) BroR cycq−1) · · · (cyc−1 BroR cyc) BroR = cyc−q(cycBroR)
q.

When we view the word W ′ = τir−q · · · τi1−q as a permutation, it is equal to cyc−q BroJ cyc
q,

so W ′W = cyc−q BroJ(cycBroR)
q. Every toggle operator τi occurs exactly γ times in the

word W ′W . Our goal is to prove that the permutation W ′W of ΛPathn is equal to TProγβ . Set-
ting Y = W ′W in Lemma 2.5, we find that it suffices to show that if X is a suffix of W ′W
and a→ b is an arrow in β, then X⟨a⟩ −X⟨b⟩ ∈ {0, 1}.

Given A ⊆ Z/nZ and i ∈ Z/nZ, let

A(i) =

{
1 if i ∈ A;

0 if i ̸∈ A.

Let X be a suffix of W ′W , and write |X| = k(n − d) + m for some nonnegative integers k
and m with 0 ⩽ m ⩽ n− d− 1. Then

X = τim−k · · · τi1−kτin−d−(k−1) · · · τi1−(k−1) · · · τin−d−1 · · · τi1−1τin−d
· · · τi1 .

LetQ={i1, . . . , im} ⊆ R. Let a→b be an arrow in β; we want to show thatX⟨a⟩−X⟨b⟩∈{0, 1}.
To do this, let us first prove that

(S − 1)(ℓ) +Q(ℓ)−Q(ℓ+ 1) ∈ {0, 1} for all ℓ ∈ Z/nZ. (4.1)

Because (S − 1)∩Q = ∅, we must have (S − 1)(ℓ)+Q(ℓ)−Q(ℓ+1) ⩽ 1. Suppose by way
of contradiction that (S − 1)(ℓ) + Q(ℓ) − Q(ℓ + 1) < 0. Then (S − 1)(ℓ) = Q(ℓ) = 0
and Q(ℓ + 1) = 1. This implies that ℓ + 1 is not in the set S of sources of β, so there
is an arrow ℓ → ℓ + 1 in β. Hence, ℓ appears before ℓ + 1 in the ordering i1, . . . , in−d.
Since ℓ+ 1 ∈ Q = {i1, . . . , im}, this forces ℓ ∈ Q, which is a contradiction.

We can now prove that X⟨a⟩ −X⟨b⟩ ∈ {0, 1}; we consider two cases.
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Case 1. Suppose b = a+ 1. In this case, X⟨a⟩ = k− |[a, a+ k− 1]n ∩ (S − 1)|+Q(a+ k)
and X⟨b⟩ = k − |[a+ 1, a+ k]n ∩ (S − 1)|+Q(a+ k + 1), so

X⟨a⟩ −X⟨b⟩ = −(S − 1)(a) + (S − 1)(a+ k) +Q(a+ k)−Q(a+ k + 1).

Because a→ a+1 is an arrow in β, we know that (S − 1)(a) = 0. If we set ℓ = a+k in (4.1),
we find that X⟨a⟩ −X⟨b⟩ = (S − 1)(a+ k) +Q(a+ k)−Q(a+ k + 1) ∈ {0, 1}.

Case 2. Suppose b = a− 1. In this case, X⟨a⟩ = k− |[a, a+ k− 1]n ∩ (S − 1)|+Q(a+ k)
and X⟨b⟩ = k − |[a− 1, a+ k − 2]n ∩ (S − 1)|+Q(a+ k − 1), so

X⟨a⟩ −X⟨b⟩ = (S − 1)(a− 1)− (S − 1)(a+ k − 1) +Q(a+ k)−Q(a+ k − 1).

Because a→ a−1 is an arrow in β, it follows from the definition of β that (S −1)(a−1) = 1.
If we set ℓ = a+k−1 in (4.1), we find that (S −1)(a+k−1)+Q(a+k−1)−Q(a+k) ∈ {0, 1}.
Therefore, X⟨a⟩−X⟨b⟩ = 1− ((S − 1)(a+ k− 1)+Q(a+ k− 1)−Q(a+ k)) ∈ {0, 1}.

5. Divisibility of Permutoric Promotion Orbit Sizes

Our goal in this section is to prove the following proposition.

Proposition 5.1. If β is an acyclic orientation of Cyclen with d counterclockwise edges, then
every orbit of TProβ has size divisible by lcm(d, n− d).

Lemma 2.4 tells us that it suffices to prove Proposition 5.1 when 1 ⩽ d ⩽ ⌊n/2⌋. Further-
more, if d = 1, then TProβ is dynamically equivalent to the toric promotion operator TPro, so it
follows from Theorem 1.1 (specialized to the case whenG = Pathn) that all orbits ofTProβ have
size n− 1. Thus, we may assume in what follows that 2 ⩽ d ⩽ ⌊n/2⌋. By Lemma 2.4, we only
need to prove Proposition 5.1 for one specific choice of an acyclic orientation β with d counter-
clockwise edges. As in Section 4, let si = [[in/d]], and let S be the independent set {s1, . . . , sd}
of Cyclen. Let R = (Z/nZ) \ (S − 1). Let β = βS be the acyclic orientation of Cyclen whose
sources are the elements of S and whose sinks are the elements of S − 1. We will prove that
every orbit of TProβ has size divisible by lcm(d, n− d).

Fix a labeling λ ∈ ΛPathn . Let γ be the size of the orbit of TProβ containing λ. Using the
division algorithm, we can write γn = q(n − d) + r, where q and r are nonnegative integers
and 0 ⩽ r ⩽ n− d− 1. As in Proposition 4.1, let

J = {j ∈ [n] : q − γ + 1 ⩽ |[j − q, j − 1]n ∩ (S − 1)|}.

Since Proposition 4.1 allows us to rewrite TProγβ in terms of the operator cycBroR , we will
want to consider the orbit of λ under cycBroR . Thus, we let

M = {(cycBroR)
t(λ) : t ∈ Z}.

In Section 3.3, we described how to compute the action of cycBroR on a labeling via a two-step
procedure involving gliding globs. As mentioned in Remark 3.4, neither of the two steps in this
procedure change the relative order in which the labels in (Z/nZ) \ S appear along the path.
Thus, we have the following lemma.
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Lemma 5.2. For every µ ∈ M, the order in which the labels in (Z/nZ) \ S appear along the
path in µ is the same as the order in which they appear along the path in λ.

We are now in a position to prove that γ is divisible by n− d.

Lemma 5.3. If λ ∈ ΛPathn belongs to an orbit of TProβ of size γ, then γ is divisible by n− d.

Proof. Recall that we write γn = q(n − d) + r using the division algorithm. The map TProγβ
fixes λ. Lemma 3.5 tells us that TProβ commutes with cycBroR , so TProγβ acts as the identity
on M and thus trivially restricts to a bijection from M to itself. Since

TProγβ = cyc−q BroJ(cycBroR)
q

by Proposition 4.1, the map cyc−q BroJ also restricts to a bijection from M to itself.
Let u1, . . . , un−d be the elements of (Z/nZ)\S , listed in the order in which they appear from left
to right along the path in λ. It follows from Lemma 4.2 that there exist integers . . . , y0, y1, y2, . . .
satisfying yi+d = yi + n and si ⩽ yi ⩽ si+1 − 1 for all i such that J =

⋃d
i=1[si, yi − 1]n (view-

ing J as a subset of Z/nZ). For each 1 ⩽ i ⩽ d, we have that yi ̸∈ J and yi − 1 ∈ J , so it
follows from the definition of J that |[yi−q, yi−1]∩ (S −1)| < |[yi−1−q, yi−2]∩ (S −1)|.
We deduce that yi − 1− q ∈ S − 1 for all 1 ⩽ i ⩽ d. Therefore,

S = {y1 − q, . . . , yd − q}. (5.1)

Let

ζ =

{
0 if u1 ∈

⋃d
ℓ=1[sℓ, yℓ]n;

1 otherwise.

Note that, regardless of the value of ζ , the element u1 + ζ − 1 cannot be of the form yi for any
integer i. Therefore, it follows from (5.1) that

u1 + ζ − q − 1 ̸∈ S . (5.2)

As mentioned above, cyc−q BroJ restricts to a bijection from M to itself; thus, it follows from
Lemma 5.2 that the labels in (Z/nZ) \ S appear in the order u1, . . . , un−d from left to right
along the path in the labeling cyc−q BroJ(λ).

Consider applying cycBroJ to λ using the three-step gliding-globs procedure described in
Section 3. We immerse the labels s1, . . . , sd and then apply the jeu de taquin operators jdt[si,yi]n ,
imagining that the label si carries its glob along with it as it glides. After this initial step,
the label u1 will be on some vertex z; at this point in time, all of the vertices to the left of z
have globs of liquid on them, while z does not. We claim that λ(z) ∈

⋃d
ℓ=1[sℓ, yℓ]n if and only

if u1 ∈
⋃d

ℓ=1[sℓ, yℓ]n. This is obvious if λ(z) = u1. On the other hand, if λ(z) ̸= u1, then
it follows from the definition of the jeu de taquin operators that λ(z) and u1 must both be
in
⋃d

ℓ=1[sℓ, yℓ]n. This proves the claim, which is equivalent to the statement that ζ = 1 if and
only if z ∈ λ−1((Z/nZ) \

⋃d
ℓ=1[sℓ, yℓ]n). The second step in the gliding-globs procedure in-

creases by 1 the label of each vertex in λ−1((Z/nZ) \
⋃d

ℓ=1[sℓ, yℓ]n); therefore, the label of z
is u1 + ζ after the second step. Note that the second step does not move any of the globs of
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liquid. The third step of the procedure changes the label in each glob of liquid to a label of
the form yi + 1. It follows that in the labeling cycBroJ(λ), the labels of the vertices to the
left of z are all of the form yi + 1, and the label of z is u1 + ζ . This means that in the label-
ing cyc−q BroJ(λ) = cyc−q−1(cycBroJ(λ)), the labels of the vertices to the left of z are all of
the form yi − q (i.e., they are in S by (5.1)), and the label of z is u1 + ζ − q − 1. Combining
this with (5.2), we find that u1 + ζ − q − 1 is the label in (Z/nZ) \ S that appears farthest
to the left in the labeling cyc−q BroJ(λ). As mentioned above, cyc−q BroJ sends M to itself,
so it follows from Lemma 5.2 that the labels in (Z/nZ) \ S appear in the order u1, . . . , un−d

in cyc−q BroJ(λ). Consequently, u1+ζ−q−1 = u1. This proves that q is congruent to 0 or −1
modulo n.

We defined q and r so that γn = q(n − d) + r and 0 ⩽ r ⩽ n − d − 1. This im-
plies that r ̸≡ −d (mod n). Reading the first equation modulo n yields r ≡ qd (mod n),
so q ̸≡ −1 (mod n). Therefore, we must have q ≡ 0 (mod n) and r = 0. Writing q = mn, we
find that γ = m(n− d), which completes the proof.

Finally, we can complete the proof of the main result of this section.

Proof of Proposition 5.1. As discussed at the beginning of this section, it suffices to prove that
every orbit of TProβ is divisible by lcm(d, n − d), where β = βS is the acyclic orientation
of Cyclen coming from the independent set S defined above. As before, let λ ∈ ΛPathn , and
let γ be the size of the orbit of TProβ containing λ. Lemma 5.3 tells us that γ is divisible
by n − d, so we just need to show that γ is also divisible by d. Using the division algorithm,
we can write γn = q(n − d) + r. Since n − d divides γ, we find that r = 0 and that q is
divisible by n. Thus, it follows from Proposition 4.1 that the set J is empty and that we can
write TProγβ = cyc−q(cycBroR)

q = (cycBroR)
q.

Given a labeling σ ∈ ΛPathn , let ψ(σ) be the sequence obtained by reading the labels in S in
the order in which they appear from left to right along the path in σ. Recall from Section 3.3 the
two-step gliding-globs procedure for computing the action of cycBroR . In the first step of this
procedure, none of the globs of liquid can glide through each other. In the second step, we simply
cyclically permute the d labels in the globs of liquid. This shows thatψ(cycBroR(σ)) is obtained
from ψ(σ) by cyclically permuting the labels in S in the cyclic order s1, . . . , sd. It follows that
every orbit of cycBroR has size divisible by d. Since λ = TProγβ(λ) = (cycBroR)

q(λ), we find
that d divides q. The equation γn = q(n−d) then forces d(n−d) to divide γn. Since gcd(n, d)
divides n− d, this implies that d divides γ(n/ gcd(n, d)). But d and n/ gcd(n, d) are coprime,
so d divides γ.
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6. Orbit Structure of Permutoric Promotion

Throughout this section, we continue to fix G to be the path graph Pathn. Our primary goal is
to prove Theorem 1.3.

6.1. A Reformulation

One of the advantages of Lemma 2.4 is that it allows us to work with whichever acyclic orien-
tation β is most convenient for our purposes. In Section 5, we chose to work with the acyclic
orientation βS whose sources were the elements of an independent set S and whose sinks were
the elements of S − 1. However, in this section, we will fix β to be the acyclic orientation
of Cyclen whose unique source is d and whose unique sink is n.

The purpose of Section 5 was to prove Proposition 5.1, which tells us that the sizes of the
orbits of TProβ are all divisible by lcm(d, n−d). The reason this is necessary is that it allows us
to reduce the problem of determining the orbit sizes of TProβ to the problem of determining the
orbit sizes ofTProdβ . The following proposition allows us to rewriteTProdβ in a more convenient
form.

Proposition 6.1. We have

TProdβ =
1∏

i=n

(τiτi+1 · · · τi+d−1) = (τnτn+1 · · · τd+n−1) · · · (τ2τ3 · · · τd+1)(τ1τ2 · · · τd).

Proof. Think of (τnτn+1 · · · τd+n−1) · · · (τ2τ3 · · · τd+1)(τ1τ2 · · · τd) as a word Y over the alpha-
bet {τ1, . . . , τn}. Note that every letter in this alphabet appears exactly d times in Y . By
Lemma 2.5, we just need to show that if X is a suffix of Y and a → b is an arrow in β,
then X⟨a⟩ −X⟨b⟩ ∈ {0, 1}; this is straightforward to check directly.

Remark 6.2. By combining Proposition 6.1 with the identity cyc−1 τi+1 = τi cyc
−1 and the fact

that cycn is the identity map, one can readily check that TProdβ =
(
cyc−1 Bro−1

{1,...,d}

)n
.

Define a map Φn,d : ΛPathn → ΛPathn by

Φn,d=cycd
1∏

i=n−d

(τiτi+1 · · · τi+d−1) = cycd(τn−dτn−d+1 · · · τn−1) · · · (τ2τ3 · · · τd+1)(τ1τ2 · · · τd).

Using the identity cyc τi = τi+1 cyc together with Proposition 6.1, one can check that

Φ
n/ gcd(n,d)
n,d = TPro

lcm(d,n−d)
β . (6.1)

Lemma 6.3. Every orbit of Φn,d : ΛPathn → ΛPathn has size divisible by n/ gcd(n, d).

Proof. Let FS(Pathn,Cyclen) be the graph with vertex set ΛPathn in which two distinct label-
ings σ, σ′ are adjacent if and only if there exists i ∈ Z/nZ such that σ′ = τi(σ). In the
language of the article [DK21], this is the friends-and-strangers graph of Pathn and Cyclen,
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where Pathn is the complement of Pathn. For σ ∈ ΛPathn , let Hσ be the connected component
of FS(Pathn,Cyclen) containing σ. It follows from Theorem 4.1 and Proposition 4.4 in [DK21]
that there is a well-defined action of the group ⟨cyc⟩ ∼= Z/nZ on the set of connected compo-
nents of FS(Pathn,Cyclen) given by cyc ·Hσ = Hcyc(σ); moreover, these results from [DK21]
imply that all orbits of this action have size n. Note that HΦn,d(σ) = cycd ·Hσ. If Φk

n,d(σ) = σ,
then Hσ = HΦk

n,d(σ)
= cycdk ·Hσ, so k is divisible by n/ gcd(n, d).

Let Compd(n) denote the set of compositions of n with d parts (i.e., d-tuples of positive
integers that sum to n). There is a natural rotation operator Rotn,d : Compd(n) → Compd(n)
defined by Rotn,d(a1, a2, . . . , ad) = (a2, . . . , ad, a1). Our goal in the next subsection will be to
relate Φn,d and Rotn,d via the following proposition. Recall that we write Orbf for the set of
orbits of an invertible map f .
Proposition 6.4. There is a map Ω: OrbΦn,d

→ OrbRotn,d
such that |Ω(O)| = d

n
|O| for ev-

ery O ∈ OrbΦn,d
and |Ω−1(Ô)| = d!(n− d)! for every Ô ∈ OrbRotn,d

.
Before proceeding to the proof of Proposition 6.4, let us see why it implies Theorem 1.3.

Proof of Theorem 1.3 assuming Proposition 6.4. Let k1, . . . , kℓ be the different sizes of the or-
bits of Rotn,d, and let mi be the number of orbits of Rotn,d of size ki. Then {kmi

i : 1 ⩽ i ⩽ ℓ}
is the multiset of orbit sizes of Rotn,d, where we use superscripts to denote multiplicities. If we
assume Proposition 6.4, then we find that the multiset of orbit sizes of Φn,d is{(n

d
ki

)d!(n−d)!mi

: 1 ⩽ i ⩽ ℓ

}
.

It then follows from (6.1) and Lemma 6.3 that the multiset of orbit sizes of TProlcm(d,n−d)
β is{(

gcd(n, d)

n

n

d
ki

)(n/ gcd(n,d))d!(n−d)!mi

: 1 ⩽ i ⩽ ℓ

}
,

and we can then invoke Proposition 5.1 to see that the multiset of orbit sizes of TProβ is{(
lcm(d, n− d)

gcd(n, d)

n

n

d
ki

)(1/ lcm(d,n−d))(n/ gcd(n,d))d!(n−d)!mi

: 1 ⩽ i ⩽ ℓ

}
=
{
((n− d)ki)

n(d−1)!(n−d−1)!mi : 1 ⩽ i ⩽ ℓ
}
.

Since Rotn,d has order d, this implies that TProβ has order d(n−d). It is well known [RSW04]
that the triple (

Compd(n),Rotn,d,

[
n− 1

d− 1

]
q

)
exhibits the cyclic sieving phenomenon. Hence, Lemma 2.1 (with f = Rotn,d and g = TProβ)
implies that (

ΛPathn ,TProβ, n(d− 1)!(n− d− 1)![n− d]qd

[
n− 1

d− 1

]
q

)
exhibits the cyclic sieving phenomenon.
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6.2. Sliding Stones and Colliding Coins

Our aim is now to prove Proposition 6.4, which, as we have just seen, implies our main theorem
about the orbit structure of permutoric promotion. Code implementing several of the combinato-
rial constructions described in this section can be found at https://cocalc.com/hrthomas/
permutoric-promotion/implementation.

For each integer k, let θk = τq+d+1−r, where q and r are the unique integers satis-
fying k = qd+ r and 1 ⩽ r ⩽ d. Let

νℓ = θdℓθdℓ−1 · · · θd(ℓ−1)+2θd(ℓ−1)+1.

Observe that θk+dn = θk for all integers k. We have

Φn,d = cycd θd(n−d) · · · θ2θ1 = cycd νn−d · · · ν2ν1.

By combining the identity cyc τi = τi+1 cyc with the fact that cycn is the identity map, one can
easily verify that

Φm
n,d = θmd(n−d) · · · θ2θ1 = νm(n−d) · · · ν2ν1 (6.2)

whenever m is a positive multiple of n/ gcd(n, d).
Define a state to be a pair (σ, t) ∈ ΛPathn × Z; we call σ the labeling of the state and

say that the state is at time t. A timeline is a bi-infinite sequence T = (σt, t)t∈Z of states
such that σt = νt(σt−1) for all t ∈ Z. Note that every state belongs to a unique timeline.
For σ ∈ ΛPathn , let Tσ be the unique timeline containing the state (σ, 0).

Let v1, . . . , vn be the vertices of Pathn, listed from left to right. For each ℓ ∈ [n], let vℓ be
a formal symbol associated to vℓ; we will call vℓ a replica. Let s1, . . . , sd be stones of different
colors. We define the stones diagram of a state (σ, t) as follows. Start with a copy of Cyclen.
Place s1, . . . , sd on the vertices t+ d, . . . , t+ 1, respectively. Then place each replica vℓ on the
vertex σ(vℓ) of Cyclen; if this vertex already has a stone sitting on it, then we place the replica
on top of the stone.

Suppose we have a timeline T = (σt, t)t∈Z. We want to describe how the stones dia-
grams of the states evolve as we move through the timeline. We will imagine transforming
the stones diagram of (σt−1, t − 1) into that of (σt, t) via a sequence of d small steps. The i-th
small step moves si one space clockwise. The labeling (θd(t−1)+i · · · θd(t−1)+1)(σt−1) is obtained
from (θd(t−1)+i−1 · · · θd(t−1)+1)(σt−1) by applying the toggle operator θd(t−1)+i = τt+d−i. If this
operator has no effect (i.e., (θd(t−1)+i · · · θd(t−1)+1)(σt−1) = (θd(t−1)+i−1 · · · θd(t−1)+1)(σt−1)),
then we do not move any of the replicas v1, . . . ,vn during the i-th small step (in this case, the
stone si slides from underneath one replica to underneath a different replica). Otherwise, θd(t−1)+i

has the effect of swapping the labels t+d− i and t+d− i+1, so we swap the replicas that were
sitting on the vertices t+d− i and t+d− i+1 (in this case, the stone si carries the replica sitting
on it along with it as it slides). Figure 6.1 illustrates these small steps for a particular example
with n = 8, d = 3, and t = 1.

Now consider d coins of different colors such that the set of colors of the coins is the
same as the set of colors of the stones. We define the coins diagram of a state (σ, t) as follows.
Start with a copy of Pathn. For each i ∈ [d], there is a replica vℓ sitting on the stone si in

https://cocalc.com/hrthomas/permutoric-promotion/implementation
https://cocalc.com/hrthomas/permutoric-promotion/implementation
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Figure 6.1: The d = 3 small steps transforming the stones diagram of a state at time 0 into the
stones diagram of the next state at time 1.

the stones diagram of (σ, t); place the coin with the same color as the stone si on the
vertex vℓ (see Figures 6.2 and 6.3). Note that the set of vertices of Pathn occupied by coins
is {σ−1(t+ 1), . . . , σ−1(t+ d)}. (While states are uniquely determined by their stones dia-
grams, the coins diagrams will be crucial for analyzing the dynamics.)

Consider how the coins diagrams evolve as we move through a timeline T = (σt, t)t∈Z. Let
us transform the stones diagram of (σt−1, t−1) into that of (σt, t) via the d small steps described
above. Let vℓ be the replica sitting on si right before the i-th small step, and let vℓ′ be the replica
sitting on the vertex one step clockwise from si right before the i-th small step. When si moves
in the i-th small step, it will either carry its replica vℓ along with it or slide from underneath vℓ

to underneath vℓ′; the latter occurs if and only if ℓ′ = ℓ± 1. In the former case, no coins move
during the i-th small step; in the latter case, a coin moves from vℓ to the adjacent vertex vℓ′
(which did not have a coin on it right before this small step).

If we watch the coins diagrams evolve as we move through the timeline, then by the previous
paragraph, the coins will move around on Pathn, but they will never move through each other.
Therefore, it makes sense to name the coins c1, . . . , cd in the order they appear along the path
from left to right, and this naming only depends on the timeline (not the specific state in the
timeline). Define a traffic jam to be a maximal nonempty collection of coins that occupy a
contiguous block of vertices (so the vertices occupied by the coins in a particular traffic jam
induce a connected subgraph of Pathn). Note that a traffic jam could have just a single coin. We
say a traffic jam touches a wall if it contains a coin that occupies v1 or vn.
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At any time, a coin has an idea of the direction in which it expects to move next (our coins
are conscious now). Note that this is not necessarily the direction in which it will move next
because it may change its mind before it moves. The way that a coin c decides which direction
it expects to move is as follows. Suppose c currently occupies vertex vj , and suppose the coins
in the traffic jam containing c occupy the vertices vr, vr+1, . . . , vs. The coin c looks at the stones
diagram and reads ahead in the clockwise direction, starting from the stone of its color, and it
determines whether it first sees vr−1 or vs+1. If it first sees vr−1, it expects to move left; if it first
sees vs+1, it expects to move right. If r− 1 is not the index of a replica (because r = 1), the first
replica that c sees will be vs+1; similarly, if s + 1 is not the index of a replica (because s = n),
the first replica c sees will be vr−1.

Figure 6.2 shows several stones diagrams and coins diagrams. In each coins diagram, an
arrow has been placed over each coin to indicate which direction it expects to move.

Lemma 6.5. When a coin moves, it moves in the direction that it expects to move.

Proof. Suppose c occupies vj and is about to move left. The stone of the same color as c is under
the replica vj , and the next replica clockwise is vj−1, which has no stone under it. It follows
that c is the leftmost coin in a traffic jam. When c reads through the stones diagram looking for
one of two replicas, it first sees vj−1, so it indeed expects to move left. The analysis for coins
moving to the right is the same.

The following lemma tells us under what circumstances a coin can change its mind about
which way it is going to move.

Lemma 6.6. Let c be a coin, and let s be the stone with the same color as c. Consider a small
step, and let vj be the vertex occupied by c right before the small step. Let vr, vr+1, . . . , vs be
the vertices occupied by the coins in the traffic jam that contains c right before the small step.
During this small step, c changes its mind about which direction it expects to move if and only if
one of the following situations occurs:

• The stone s slides through vr−1 or vs+1 and carries vj along with it as it slides (so c does
not move in the coins diagram), and the traffic jam containing c does not touch a wall
(so 1 < r ⩽ s < n).

• The coin c moves, and the traffic jam that contains c after the small step touches a wall.

Proof. First of all, note that cwill not change its mind about which way it is going to move except
during a small step when s moves. Indeed, even though the traffic jam containing c may change
during other small steps, it is straightforward to check that these small steps will not change the
direction that c expects to move.

While c is in a traffic jam that touches a wall, there is only one way that it can expect to move:
away from that wall. Thus, it does not change its mind about which way it is moving before it
actually moves, but it does change its mind the moment it arrives in the traffic jam (i.e., when
the second bulleted item in the statement of the lemma is satisfied).

Now consider a small step during which c moves, and suppose the traffic jam that contains c
after the small step does not touch a wall. For simplicity, let us assume that c expects to move
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left before this small step. Then during the small step, c does in fact move left (by Lemma 6.5).
Let us say c moves from vj to vj−1. Then during this small step, s slides from underneath the
replica vj to underneath the replica vj−1. After the small step, the vertices occupied by the coins
in the traffic jam containing c are vr, vr+1, . . . , vj−1 for some r ∈ {2, . . . , j−1}, so c looks in the
stones diagram for either vr−1 or vj . It will certainly see vr−1 first since vj is one step behind s
(in the clockwise order) at this time. Thus, c still expects to move left after the small step.

Finally, consider the situation from the first bulleted item in the statement of the lemma. Let
us again assume for simplicity that c expects to move left before the small step. Then s slides
through vr−1. After the small step, when c reads through the stones diagram to determine which
direction it expects to move, it again searches for vr−1 and vs+1 (because no coins moved during
the small step). It will see vs+1 before vr−1 because vr−1 is now right behind s in the clockwise
order. So c expects to move right after the small step.

The importance of understanding the direction in which a coin expects to move is that it
will enable us to understand collisions. There are two-coins collisions, which involve two coins
that occupy adjacent vertices of Pathn; there are left-wall collisions, which can occur when c1
occupies v1; and there are right-wall collisions, which can occur when cd occupies vn. The
prototypical examples of collisions are when two non-adjacent coins move to become adjacent
or when a coin moves to become adjacent to a wall, but other examples are possible when traffic
jams of size greater than 1 are involved.

The precise definition of a two-coins collision that occurs in a traffic jam that does not touch
a wall is as follows. We say coins ci and ci+1 are butting heads if they occupy adjacent vertices
and ci expects to move right while ci+1 expects to move left. We say ci and ci+1 are involved in
a two-coins collision at a small step if they are not butting heads immediately before the small
step and they are butting heads immediately after the small step. This can happen either because
the two coins were not adjacent prior to the small step, but it can also happen because the two
coins were adjacent but one of them changed its mind about the direction it expected to move.

The definition has to be slightly modified in a traffic jam that touches a wall. Consider first
the case when a small step occurs during which a coin c moves so as to join a traffic jam that
touches the wall. At the same time, c changes its mind so that it now expects to move away from
the wall that the traffic jam touches. Nonetheless, if there is a coin c′ adjacent to c after the small
step, we still count this as a two-coins collision between c and c′. (We can imagine that there was
a brief instant of time right after c moved to join the traffic jam but right before it changed its
mind about which way it expected to move, thus resulting in c butting heads with c′ very briefly.)
Similarly, if c moved onto v1 (respectively, vn) during this small step (so it is in a traffic jam of
size 1 that touches a wall), then we count this as a left-wall (respectively, right-wall) collision.

We now discuss how to define a collision that occurs in the “interior” of a traffic jam of size
at least 2 that touches a wall. In such a traffic jam, all the coins always want to move away from
the wall, so by the above definition, there would be no collisions within the traffic jam. However,
this is not what we want. Instead, suppose we are considering a coin ci that occupies vj . Assume
the coins in the traffic jam containing ci occupy vertices v1, v2, . . . , vk, where j < k. Thus, we
are assuming the traffic jam touches the left wall, but the symmetrical considerations apply if
the traffic jam touches the right wall. The stone with the same color as ci carries the replica vj .
Suppose there is a small step during which the stone with the same color as ci slides throughvk+1,
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carrying vj along with it as it slides. Note that ci does not move during this small step. In this
case, we say ci collides with ci−1 (or is involved in a left-wall collision if i = 1). To explain
heuristically why this collision occurs, we can imagine that ci has a “flicker of confusion” when
it sees the stone with its same color slide through vk+1. When it sees this, ci “thinks” it should
change its mind and expect to move left. But then it realizes that it cannot expect to move left
because it is in a traffic jam that touches the left wall, so it quickly goes back to expecting to move
right. During this brief instant, the collision occurs because ci “thinks” it should be butting heads
with ci−1 (or with the left wall if i = 1).

We say a collision occurs at time t if it occurs during a small step between times t− 1 and t.

Example 6.7. Suppose n = 6 and d = 3. Figure 6.2 shows some stones diagrams and coins
diagrams evolving over time. At each stage, the arrow over a coin points in the direction that
the coin expects to move. Collisions are indicated in the coins diagrams by stars, and each star
is colored to indicate which stone moves in the small step during which the collision occurs.
Note that the right-wall collision at time 5 (marked with a gold star in the first small step after
time 4) occurs because c3 has a “flicker of confusion” when the gold stone s1 slides through v4

(carrying v6 along with it as it slides).

Example 6.8. Suppose n = 6 and d = 3. Figure 6.3 shows the stones diagrams and coins
diagrams of a particular timeline at times 0, 1, . . . , 17. For brevity, we have not shown the indi-
vidual small steps. All of the collisions the occur at time t (i.e., during the small steps between
time t− 1 and time t) are indicated in the coins diagram at time t. The color of the star can be
used to determine the small step during which the collision occurs. One can check that the states
in this timeline are periodic with period 18.

Let CollT be the set of all collisions that take place in the coins diagrams of the states of
the timeline T . We define a directed graph with vertex set CollT by drawing an arrow from a
collision κ to a collision κ′ whenever there is a coin involved in both κ and κ′ and the collision κ
occurs before κ′. Let (CollT ,⩽T ) be the transitive closure of this directed graph. Let HT be
the Hasse diagram of (CollT ,⩽T ). This Hasse diagram, which will be one of our primary tools,
has the shape of a bi-infinite chain link fence (see Figure 6.4). Suppose κ1 ⋖T κ2 is an edge
in HT . Then κ1 and κ2 are collisions that both use some coin c; we define the energy of this
edge, denoted E(κ1 ⋖T κ2), to be the number of different vertices that c occupies between these
two collisions, including the vertices occupied by c when the collisions occur. More generally,
if κ1 ⋖T κ2 ⋖T · · ·⋖T κr is a saturated chain in HT , then we write E(κ1 ⋖T κ2 ⋖T · · ·⋖T κr)
for the tuple (E(κ1 ⋖T κ2), . . . , E(κr−1 ⋖T κr)) of energies of the edges in the chain.

Example 6.9. If T is the timeline containing the states whose stones diagrams and coins dia-
grams are shown in Figure 6.3, then (a finite part of) HT is shown in Figure 6.4. Each collision
is represented by a color-coded star, and the blue number inside the star is the time when the
collision occurs. Each edge is labeled by its energy.

A diamond in HT consists of collisions κ1, κ2, κ3, κ4 together with four edges given by cover
relations κ1 ⋖T κ2, κ1 ⋖T κ3, κ2 ⋖T κ4, κ3 ⋖T κ4. A half-diamond in HT consists of colli-
sions κ′1, κ′2, κ′3, where κ′1 and κ′3 are either both left-wall collisions or both right-wall collisions,
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Figure 6.2: The evolution of stones diagrams and coins diagrams over time, with each individual
small step illustrated. At each moment, we have drawn an arrow over each coin to indicate which
direction it expects to move. Each collision is indicated by a star whose color is the same as that
of the stone that moved to cause the collision. Each labeling is depicted in red numbers below
the path.
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Figure 6.3: The stones diagrams and coins diagrams of the states in a timeline at
times 0, 1, . . . , 17. Here, n = 6 and d = 3. The collisions that occur during the small steps
between times t − 1 and t are represented by color-coded stars in the coins diagram at time t.
Each labeling is depicted by the red numbers below the path.
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Figure 6.4: A Hasse diagram HT . Each collision is represented by a star whose color is the same
as that of the stone that moved to cause the collision. Blue numbers indicate the times when the
collisions occur. Edges are labeled by their energies.

together with two edges given by cover relations κ′1 ⋖T κ
′
2 and κ′2 ⋖T κ

′
3. Our arguments in the

next subsection rest on the following three lemmas.

Lemma 6.10. In any half-diamond in the Hasse diagram HT , the two edges have the same
energy.

Proof. Fix a half-diamond in HT with edges given by the cover relations κ′1 ⋖T κ′2 ⋖T κ′3.
By symmetry, we may assume κ′1 and κ′3 are both left-wall collisions. Then κ′1 and κ′3 occur
when c1 occupies v1. Say κ′2 occurs when c1 occupies vm. Both edges of the half-diamond have
energy m.

Lemma 6.11. In any diamond in the Hasse diagram HT , opposite edges have the same energy.

Proof. Fix a diamond in HT with edges given by cover relations κ1⋖T κ2, κ1⋖T κ3, κ2⋖T κ4,
κ3 ⋖T κ4. Say the collision κ1 involves coins ci and ci+1 and takes place when ci occupies
vertex vm and ci+1 occupies vertex vm+1. Without loss of generality, suppose κ2 involves ci
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and κ3 involves ci+1. Then κ2 occurs when ci occupies some vertex vk with k ⩽ m, and κ3
occurs when ci+1 occupies some vertex vℓ with ℓ ⩾ m+1. The collision κ4 involves the coins ci
and ci+1. We claim that κ4 occurs when ci occupies vk+ℓ−m−1 and ci+1 occupies vk+ℓ−m; this
will imply that the edges κ1 ⋖T κ2 and κ3 ⋖T κ4 both have energy m − k + 1 and that the
edges κ1 ⋖T κ3 and κ2 ⋖T κ4 both have energy ℓ−m.

By symmetry, we may assume that m − k ⩽ ℓ − m − 1. Let x, y ∈ [d] be such that sx
and sy are the stones with the same colors as ci and ci+1, respectively. Consider starting at the
time when κ1 occurs and watching the stones diagrams and coins diagrams evolve as we move
forward in time. We will assume that k < m, that x > y, and that ci moves from vm to vm−1

before ci+1 moves from vm+1 to vm+2; the other cases are similar. Let t0 be the first time after the
collision κ1 when ci moves from vm to vm−1. The coin ci will move from vm to vm−1 and then
to vm−2 and so on until reaching vk; it will then turn around and move back across vk+1, . . . , vm
and then continue on toward vk+ℓ−m−1. For j ∈ {k, . . . , k + ℓ −m − 1}, let ζj be the amount
of time that ci spends on vj during this trip. The coin ci+1 stays on vm+1 for some time after t0;
it then moves to the right until reaching vℓ, where it turns around and heads back to vk+ℓ−m+1.
For j′ ∈ {m+1, . . . , ℓ}, let ξj′ be the amount of time after t0 that ci+1 spends on vj′ during this
trip.

By analyzing the stones diagrams, one can show that ζj=ξj′ =n−d for all j∈{k, . . . ,m−1}
and all j′ ∈ {k + ℓ−m+ 1, . . . , ℓ}. Similarly, ζj = ξj+1 for all j ∈ {m, . . . , k + ℓ−m− 1}.
LetN = (m−k)(n−d)+

∑k+ℓ−m−1
j=m ζj . At time t0+N , either the coin ci moves from vk+ℓ−m−1

to vk+ℓ−m, or the coin ci+1 moves from vk+ℓ−m+1 to vk+ℓ−m. It follows from the assumption
that x > y that, in fact, ci+1 moves from vk+ℓ−m+1 to vk+ℓ−m at time t0 + N . This proves the
claim.

Example 6.12. Suppose n = 6 and d = 3, and let T be the timeline from Examples 6.8 and 6.9.
Let κ1, κ3, κ4 be the collisions that occur at times 6, 10, 13, respectively, and let κ2 be the two-
coins collision at time 8. In the notation of the proof of Lemma 6.11, we have i = 2, m = 3,
k = 2, ℓ = 6, and t0 = 8. We have ζ2 = ξ6 = 3 = n − d, ζ3 = ξ4 = 1, and ζ4 = ξ5 = 1.
Thus, N = (m− k)(n− d) +

∑k+ℓ−m−1
j=m ζj = 5. As explained in the proof of Lemma 6.11, the

coin c3 moves from v6 to v5 at time t0 +N = 13.

Lemma 6.13. If the two edges of a half-diamond in the Hasse diagram HT have energy m,
then the amount of time between the collisions at the bottom and the top of the half-diamond
is m(n− d).

Proof. Without loss of generality, assume the bottom and top collisions in the half-diamond are
left-wall collisions.

If m > 1, the same style of argument as in the proof of Lemma 6.11 proves that the total
amount of time that c1 spends on each of the vertices v1, . . . , vm is exactly n− d, which proves
the claim.

If m = 1, a similar argument also applies. Let s be the stone with the same color as c1. A
left-wall collision can only occur during a small step in which s moves. Moreover, such a small
step results in a left-wall collision if and only if, right before the small step occurs, the replica
one space clockwise of s is vℓ, where ℓ is the smallest of all the indices of replicas that do not
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sit on stones at that time (equivalently, the traffic jam containing c1 has size ℓ− 1). The relative
cyclic order of the indices of the replicas that do not sit on stones remains constant over time, so
the time between these left-wall collisions is exactly n− d.

6.3. The Map Ω

Equipped with Lemmas 6.10, 6.11 and 6.13, we now turn to constructing and analyzing the
map Ω from Proposition 6.4.

For each collision κ ∈ CollT , let φ(κ) be the collision involving the same set of coins as κ
that occurs next after κ. In other words, if κ is the bottom element of a diamond (respectively,
half-diamond), then φ(κ) is the top element of that same diamond (respectively, half-diamond).
We extend this notation to saturated chains in HT (including edges) by letting

φ(κ1 ⋖T κ2 ⋖T · · ·⋖T κm) = φ(κ1)⋖T φ(κ2)⋖T · · ·⋖T φ(κm).

We define the period of HT to be the smallest positive integer p such that e and φp(e)
have the same energy for every edge e of HT . A transversal of HT is a saturated
chain T = (κ0 ⋖T κ1 ⋖T · · · ⋖T κd) such that κ0 is a left-wall collision, κd is a right-wall
collision, and κi involves the stones ci and ci+1 for every i ∈ [d− 1]. In other words, a transver-
sal is a saturated chain that moves from left to right acrossHT . We define the energy composition
of T to be the tuple E(T ) = (ε1, . . . , εd), where εi is the energy of the edge κi−1 ⋖T κi; note
that E(T ) ∈ Compd(n).

Lemma 6.14. Let T be a timeline, and let T be a transversal of HT . Then

E(φ(T )) = Rotn,d(E(T )).

Moreover, the period of HT is equal to the size of the orbit of Rotn,d containing E(T ).

Proof. The second statement follows from the first because, by Lemmas 6.10 and 6.11, the ener-
gies of all edges in HT are determined by the energy composition of a single transversal of HT .
The first statement is also immediate from Lemmas 6.10 and 6.11.

Example 6.15. Suppose n = 6 and d = 3. Let HT be the Hasse diagram from Figure 6.4,
and let T = (κ0 ⋖T κ1 ⋖T κ2 ⋖T κ3) be the transversal consisting of the collisions that
occur at times 2, 5, 6, 10. Then E(T ) = (2, 1, 3) ∈ Comp3(6). The period of HT is 3,
which is the size of the Rot6,3-orbit containing (2, 1, 3). The transversal φ(T ) consists of
both the collisions that occur at time 8 along with the collisions at times 13 and 16. We
have E(φ(T )) = (1, 3, 2) = Rot6,3(E(T )). Similarly, E(φ2(T )) = (3, 2, 1) = Rot26,3(E(T )).

Let Sr be the symmetric group consisting of all permutations of [r]. Suppose vi1 , . . . , vir
is a sequence of distinct vertices of Pathn. We define the standardization of this sequence to
be the unique permutation in Sr that has the same relative order as i1, . . . , ir when
written in one-line notation. For example, the standardization of v3, v5, v1, v6 is 2314.
Let T =(σt, t)t∈Z be a timeline. Recall that the stones s1, . . . , sd sit on the vertices t+d, . . . , t+1,
respectively, in the stones diagram of (σt, t). Let standt(T ) be the standardization of the



30 Colin Defant et al.

sequence σ−1
t (t+ d), . . . , σ−1

t (t+ 1). Alternatively, standt(T ) is the permutation ρ : [d] → [d]
such that the stone si and the coin cρ(i) have the same color for every i ∈ [d]. Let us also
define standt(T ) to be the standardization of σ−1

t (1), . . . , σ−1
t (t), σ−1

t (t + d + 1), . . . , σ−1
t (n)

(i.e., the standardization of the sequence obtained from σ−1
t (1), σ−1

t (2), . . . , σ−1
t (n) by delet-

ing σ−1
t (i) for all t+1 ⩽ i ⩽ t+ d). It follows from the analysis of how stones diagrams evolve

through a timeline that standt(T ) = standt+1(T ) and standt(T ) = standt+1(T ). In other
words, standt(T ) and stand(T ) only depend on the timeline T and not on the time t. Thus,
it makes sense to drop the subscripts and just write stand(T ) and stand(T ). Note that there
are d! possibilities for stand(T ) and (n− d)! possibilities for stand(T ); this will end up being
responsible for the appearance of d!(n− d)! in Proposition 6.4.

For k, t ∈ Z, let σ(k)
t = cyc−k(σt+k). It follows immediately from the definition of a

timeline that the sequence T (k) = (σ
(k)
t , t)t∈Z is also a timeline; that is, νt(σ(k)

t−1) = σ
(k)
t for

all t ∈ Z. Furthermore, the stones diagram of (σ(k)
t , t) is obtained from that of (σt+k, t + k)

by moving all stones and replicas k positions counterclockwise. It follows that the coins dia-
grams of (σ(k)

t , t) and (σt+k, t + k) are identical. Therefore, if κ is a collision in CollT (k) that
occurs at time t, then there is a collision ψk(κ) ∈ CollT that occurs at time t+ k. The resulting
map ψk : CollT (k) → CollT is an isomorphism from (CollT (k) ,⩽T (k)) to (CollT ,⩽T ); further-
more, under this isomorphism, corresponding edges of the Hasse diagrams HT (k) and HT have
the same energy.

Recall that we write Tσ for the unique timeline containing the state (σ, 0). It follows from
Lemma 6.14 that the energy compositions of the transversals of HTσ form a single orbit Ω̃(σ)
of Rotn,d. If Tσ = (σt, t)t∈Z (so σ0 = σ), then Φn,d(σ0) = σ

(n−d)
0 , so TΦn,d(σ0) = T (n−d)

σ . Using
the isomorphism ψn−d, we find that Ω̃(σ0) = Ω̃(Φn,d(σ0)). Thus, we obtain a map

Ω = Ωn,d : OrbΦn,d
→ OrbRotn,d

that sends the Φn,d-orbit containing a labeling µ to Ω̃(µ). We will prove that this map satisfies
the conditions in Proposition 6.4.

Lemma 6.16. For any labeling σ ∈ ΛPathn , we have

stand(Tσ) = stand(TΦn,d(σ)) and stand(Tσ) = stand(TΦn,d(σ)).

Hence, stand(Tσ) and stand(Tσ) only depend on the orbit of Φn,d containing σ.

Proof. Let Tσ = (σt, t)t∈Z (so σ0 = σ). Let µ = Φn,d(σ). The stones diagram of the
state (σ

(n−d)
0 , 0) = (µ, 0) is obtained from that of (σn−d, n − d) by moving all stones and

replicas n−d positions counterclockwise, so stand(Tσ) = stand(TΦn,d(σ)). Since (σn−d, n−d)
is in the timeline Tσ and (µ, 0) is in the timeline Tµ, the permutations stand(Tσ) and stand(Tµ)
are the standardizations of the sequences σ−1

n−d(1), σ
−1
n−d(2), . . . , σ

−1
n−d(n − d) and µ−1(d + 1),

µ−1(d+ 2), . . . , µ−1(n), respectively. But µ = cycd(σn−d), so these sequences are equal.

For ρ ∈ Sr, let rev(ρ) be the permutation whose one-line notation is obtained by reversing
that of ρ. Let δ : Z/nZ → Z/nZ be the automorphism of Cyclen defined by δ(i) = d + 1 − i.
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Given an orbit Ô ∈ OrbRotn,d
, let rev(Ô) ∈ OrbRotn,d

be the orbit obtained by reversing all the
compositions in Ô.

Lemma 6.17. For every σ ∈ ΛPathn , we have

stand(Tδ◦σ) = rev(stand(Tσ)) and stand(Tδ◦σ) = rev(stand(Tσ)).

Furthermore, Ω̃(δ ◦ σ) = rev(Ω̃(σ)).

Proof. The first statement is immediate from the definitions. To see why the second statement
is true, note that we can obtain the coins diagrams of the states in Tδ◦σ by “going backward in
time” through the coins diagrams of the states in Tσ and permuting the colors of the coins. To be
more precise, let us write Tσ = (σt, t)t∈Z and Tδ◦σ = (σ′

t, t)t∈Z (so σ0 = σ and σ′
0 = δ◦σ). Then

for every t ∈ Z, the coins diagram of (σ′
t, t) is obtained from that of (σ−t,−t) by permuting the

colors of the coins. Let T = (κ0 ⋖Tσ · · ·⋖Tσ κd) be a transversal of HTσ with energy composi-
tion E(T ) = (ε1, . . . , εd). Then Ω̃(σ) is the orbit of Rotn,d containing (ε1, . . . , εd). If κj occurs
at time tj and involves ci, then there is a collision κ′j in the timeline Tδ◦σ that occurs at time −tj
and involves ci (though ci may have a different color in the coins diagrams of this timeline). In
particular, κ′d is a right-wall collision, κ′0 is a left-wall collision, and κ′d ⋖Tδ◦σ · · · ⋖Tδ◦σ κ

′
0 is a

saturated chain in HTδ◦σ . We have E(κ′d ⋖Tδ◦σ · · · ⋖Tδ◦σ κ
′
0) = (εd, . . . , ε1). Starting with this

saturated chain, one can straightforwardly apply Lemmas 6.10 and 6.11 to find that there is a
transversal T ′ in HTδ◦σ with energy composition E(T ′) = (εd, . . . , ε1). Thus, Ω̃(δ ◦ σ) is the
orbit of Rotn,d containing (εd, . . . , ε1), which is rev(Ω̃(σ)).

Lemma 6.18. For every O ∈ OrbΦn,d
, we have |Ω(O)| = d

n
|O|.

Proof. Fix O ∈ OrbΦn,d
, and let T = (σt, t)t∈Z be a timeline such that σ0 ∈ O. Consider a

transversal T = (κ0 ⋖T κ1 ⋖T · · ·⋖T κd) of HT , and let E(T ) = (ε1, . . . , εd). Then E(T ) is
in the orbit Ω(O). Let us define εk for all k ∈ Z by declaring εi+d = εi. Let tj be the time when
the collision κj occurs.

Consider the stones diagrams. Between times t0 and t1, the stone with the same color as c1
slides along the cycle carrying v1 until sliding from underneath v1 to underneath v2, which it
carries until sliding underneath v3, and so on until it finally slides underneath vε1 . The positions
of v1, . . . ,vε1 throughout this interval of time are completely determined by the value of ε1, the
permutations stand(T ) and stand(T ), and the residue of t0 modulo n. It follows that t1 − t0
is determined by ε1, stand(T ), stand(T ), and the residue of t0 modulo n. Between times t1
and t2, the stone with the same color as c2 slides along the cycle carrying vε1+1 until sliding
from underneath vε1+1 to underneath vε1+2, which it carries until sliding underneath vε1+3, and
so on until it finally slides underneath vε1+ε2 . The positions of vε1+1, . . . ,vε1+ε2 throughout this
interval of time are determined by the pair (ε1, ε2), the permutations stand(T ) and stand(T ),
and the residue of t1 modulo n. Thus, t2 − t1 is determined by (ε1, ε2), stand(T ), stand(T ),
and the residue of t0 modulo n. In general, the values of t1− t0, . . . , td− td−1 are determined by
the energy composition (ε1, . . . , εd), the permutations stand(T ) and stand(T ), and the residue
of t0 modulo n.
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Let p be the period ofHT . By Lemma 6.14, p is equal to |Ω(O)|, the size of the orbit ofRotn,d
containing the composition E(T ) = (ε1, . . . , εd). Hence, ε1+· · ·+εp = p

d
(ε1+· · ·+εd) = pn/d.

Let t∗j be the time when the collision φp(κj) occurs. Using Lemmas 6.10 and 6.11, we find
that the edges in the half-diamond of HT between φi−1(κ0) and φi(κ0) both have energy εi.
Therefore, by Lemma 6.13, the time between the collisionsφi−1(κ0) andφi(κ0) is (n−d)εi. This
shows that φp(κ0) occurs at time t∗0 = t0+(n−d)(ε1+ · · ·+εp) = t0+pn(n−d)/d. Because p
is the size of an orbit of Rotn,d, it is divisible by d/ gcd(n, d); this implies that t∗0 ≡ t0 (mod n).
By the definition of p, the transversalφp(T ) has the same energy composition (ε1, . . . , εd) as T .
Since the permutations stand(T ) and stand(T ) only depend on T , it follows from the preceding
paragraph that t∗j − t∗j−1 = tj − tj−1 for all 1 ⩽ j ⩽ d; consequently, t∗j = tj + pn(n− d)/d for
all 0 ⩽ j ⩽ d. From this, we deduce that σt = σt+pn(n−d)/d for all t ∈ Z. In fact, pn/d is the
smallest positive integer ℓ such that σt = σt+ℓ(n−d) for all t ∈ Z (otherwise, we could reverse
this argument to find that the period of HT is smaller than p).

According to (6.2), we have Φ
pn/d
n,d = νpn(n−d)/d · · · ν2ν1, so Φ

pn/d
n,d (σ0) = σpn(n−d)/d = σ0.

Hence, |O| divides pn/d. On the other hand, since Lemma 6.3 tells us that |O| is divisible
by n/ gcd(n, d), we can use (6.2) to find that

σ0 = Φ
|O|
n,d(σ0) = (ν|O|(n−d) · · · ν2ν1)(σ0) = σ|O|(n−d).

Since |O|(n − d) is divisible by n (by Lemma 6.3), we have νt+|O|(n−d) = νt for all integers t.
Consequently, σt = σt+|O|(n−d) for all integers t. Appealing to the last sentence in the previous
paragraph, we deduce that |O| ⩾ pn/d = n

d
|Ω(O)|. As |O| divides pn/d, the proof is complete.

Recall that Lemma 6.16 tells us that stand(Tσ) and stand(Tσ) only depend on the orbit
of Φn,d containing σ. In order to complete the proof of Proposition 6.4, we just need to show
that |Ω−1(Ô)| = d!(n − d)! for every Ô ∈ OrbRotn,d

. We will do this by showing that for
each pair of permutations (ρ, ρ) ∈ Sd × Sn−d, there exists a unique orbit O ∈ Ω−1(Ô) such
that stand(Tσ) = ρ and stand(Tσ) = ρ for every σ ∈ O. We start by proving existence;
uniqueness will then follow from a simple counting argument. We implore the reader to consult
Example 6.20 while reading the proof of the next lemma.

Lemma 6.19. Suppose Ô∈OrbRotn,d
and (ρ, ρ)∈Sd×Sn−d. There exists an orbit O∈Ω−1(Ô)

such that stand(Tσ) = ρ and stand(Tσ) = ρ for every σ ∈ O.

Proof. If d = 1, then the result is obvious because Ô = Comp1(n) = {(n)}. Therefore, we may
assume d ⩾ 2 and proceed by induction on d. It follows from Lemma 6.17 that the following
two statements are equivalent:

1. There exists an orbit O ∈ Ω−1(Ô) such that stand(Tσ) = ρ and stand(Tσ) = ρ for
every σ ∈ O.

2. There exists an orbit O ∈ Ω−1(rev(Ô)) such that stand(Tσ) = rev(ρ) and stand(Tσ) =
rev(ρ) for every σ ∈ O.
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Therefore, we may assume2 without loss of generality that the number 1 appears to the left of
the number 2 in the one-line notation of ρ (otherwise, replace ρ, ρ, and Ô by rev(ρ), rev(ρ),
and rev(Ô), respectively).

Since d < n, every composition in Ô has a part that is strictly greater than 1. Thus, we may
choose a composition (ε1, . . . , εd) ∈ Ô such that ε2 ⩾ 2. We will also assume for simplicity
that ε1 ⩾ 2; the case when ε1 = 1 is similar. Let ρ′ be the permutation in Sd−1 obtained from ρ
by deleting the entry 1 and decreasing the remaining entries by 1. Let ρ′ be the permutation
in Sd−ε1+1 obtained from ρ by deleting the entries 1, . . . , ε1 − 1 and decreasing the remaining
entries by ε1 − 1. Let Ô′ be the orbit of Rotn−ε1,d−1 containing (ε2, . . . , εd). By induction,
there exists an orbit O′ ∈ Ω−1

n−ε1,d−1(Ô′) such that stand(Tσ′) = ρ′ and stand(Tσ′) = ρ′ for
every σ′ ∈ O′ (the timeline Tσ′ is defined with the parameters n − ε1 and d − 1 replacing n
and d).

Fix σ′
0 ∈ O′, and consider the timeline Tσ′

0
= (σ′

t, t)t∈Z (defined with the parameters n− ε1
and d − 1). Let us identify Pathn−ε1 with the subgraph of Pathn obtained by deleting the ver-
tices v1, . . . , vε1 . Thus, the leftmost vertex in Pathn−ε1 is vε1+1, and the replicas appearing in
the stones diagrams of states in Tσ′

0
are vε1+1, . . . ,vn. Let κ′1 ⋖Tσ′

0
· · ·⋖Tσ′

0
κ′d be a transversal

of HTσ′
0

with energy composition (ε2, . . . , εd). Let k + 1 be the first time after the collision κ′1
when the leftmost coin moves. Because ε2 ⩾ 2, the leftmost coin occupies vε1+1 in the coins
diagram of (σ′

k, k) and occupies vε1+2 in the coins diagram of (σ′
k+1, k+1). Let vη be the vertex

of Pathn−ε1 such that σ′
k(vη) = d + k ∈ Z/(n − ε1)Z. In the stones diagram of (σ′

k, k), the
replica vη sits one space clockwise from the consecutive block of stones.

We can construct the stones diagram of a state (µ,m) with µ ∈ ΛPathn from the stones di-
agram of (σ′

k, k) by inserting vertices to replace Cyclen−ε1 by Cyclen, adding one stone, and
adding the replicas v1, . . . ,vε1 . When we do this, we make sure to keep the stones on the con-
secutive block of verticesm+d, . . . ,m+1, and we make sure that the replicas that were sitting
on stones remain on stones. We place the replica vε1 on the newly inserted stone. We can
also ensure that stand(µ,m) = ρ and stand(µ,m) = ρ, and we can choose m so that vη is
on the vertex m + d + 1. (In fact, these conditions uniquely determine µ and uniquely deter-
mine m modulo n.) Let σ0 be the unique labeling in ΛPathn such that the timeline Tσ0 contains
the state (µ,m).

Consider watching the coins diagrams of the states in Tσ0 evolve over time. At time m,
the coins c1 and c2 occupy vε1 and vε1+1, respectively. At time m + 1, the coin c2 moves
to vε1+2, and c1 stays on vε1 (we are using the fact that 1 appears to the left of 2 in ρ). This
implies (since ε1 ⩾ 2) that the last collision involving c1 that occurred at or before time m
must have been a two-coins collision involving c1 and c2; let us call this collision κ1 and say
that it occurred at time m′. After time m + 1, c1 will move leftward until reaching v1, where
it will take part in a left-wall collision κ∗0. Meanwhile, c2 will travel rightward until reach-
ing vε1+ε2 , where it will collide with c3 in a two-coins collision κ2. Then c3 will move right-
ward until reaching vε1+ε2+ε3 , where it will collide with c4 in a two-coins collision κ3, and so
on. Eventually, cd moves rightward and takes part in a right-wall collision κd. The key ob-

2This assumption might seem innocuous, but it is actually imperative for our argument. Thus, Lemma 6.17
really is quite crucial.
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servation here is that throughout this process, in the stones diagrams, any stone carrying a
replica vℓ with ℓ ⩾ ε1 + 2 will just slide through any replica vℓ′ with ℓ′ ⩽ ε1. This means
that the replicas v1, . . . ,vε1 that we inserted when passing from Cyclen−ε1 to Cyclen will not
affect where the collisions κ2, κ3, . . . , κd occur. This is why κ2, . . . , κd occur at the same places
(though possibly at different times) as κ′2, . . . , κ′d, respectively. We find that E(κ1 ⋖Tσ0 κ

∗
0) = ε1

and E(κ1 ⋖Tσ0 κ2 ⋖Tσ0 · · · ⋖Tσ0 κd) = (ε2, . . . , εd). The edge κ1 ⋖Tσ0 κ
∗
0 is the top edge in a

half-diamond; let κ0 ⋖Tσ0 κ1 be the bottom edge of the same half-diamond. Then Lemma 6.10
tells us that E(κ0⋖Tσ0 κ1) = ε1, so the transversal κ0⋖Tσ0 κ1⋖Tσ0 · · ·⋖Tσ0 κd of HTσ0 has energy
composition (ε1, . . . , εd). Thus, Ω̃(σ0) is the orbit of Rotn,d containing (ε1, . . . , εd). If O is the
orbit of Φn,d containing σ0, then Ω(O) = Ô. Furthermore, stand(Tσ0) = ρ and stand(Tσ0) = ρ.
According to Lemma 6.16, we have stand(Tσ) = ρ and stand(Tσ) = ρ for all σ ∈ O.

Figure 6.5: The stones diagrams and coins diagrams of the states at times 0, 1, . . . , 7 in the
timeline Tσ′

0
from Example 6.20.

Example 6.20. Let us illustrate the proof of Lemma 6.19. Suppose n = 8, d = 3, ρ = 132,
and ρ = 52413. Let Ô be the orbit of Rot8,3 containing the composition (ε1, ε2, ε3) = (4, 3, 1).
Note that 1 appears before 2 in ρ and that ε2 ⩾ 2. We have ρ′ = 21 and ρ′ = 21.

We can choose σ′
0 to be the labeling such that the stones diagrams and coins diagrams of the

states of Tσ′
0

at times 0, 1, . . . , 7 are shown in Figure 6.5. One can check that the states in this
timeline are periodic with period 8. We can choose the transversal κ′1⋖Tσ′

0
κ′2⋖Tσ′

0
κ′3 so that κ′1

is the left-wall collision at time 0, κ′2 is the two-coins collision at time 3, and κ′3 is the right-wall
collision at time 5. We have k = 1 and η = 7.

Figure 6.6 illustrates how we construct the stones diagram of (µ,m) from that of (σ′
1, 1).

In this example, m = 2. Four vertices were inserted to transform Cycle4 into Cycle8, and the



combinatorial theory 4 (2) (2024), #17 35

vertices were then renamed. Since η = 7, we have placed v7 on the vertex m+ d+1 = 6. Note
that the standardization of v4,v6,v5 is 132 = ρ and that the standardization of v8,v2,v7,v1,v3

is 52413 = ρ.
Figure 6.7 shows the stones diagrams and coins diagrams of the states in Tσ0 at the

times 0, . . . , 11. (The labelings of the states in this timeline are actually periodic with period 40,
but we chose not to draw the diagrams of 40 states.) The collision κ1 involves c1 and c2 and occurs
at time 0. Then κ∗0 is the left-wall collision at time 9. The collision κ2 involves c2 and c3 and oc-
curs at time 6, while κ3 is the right-wall collision at time 11. Observe that E(κ1⋖Tσ0κ

∗
0) = 4 = ε1

and E(κ1 ⋖Tσ0 κ2 ⋖Tσ0 κ3) = (3, 1) = (ε2, ε3).

Figure 6.6: On the left is the stones diagram of (σ′
1, 1) from Example 6.20. On the right is the

stones diagram of (µ, 2), which is constructed from that of (σ′
1, 1) by inserting fours new vertices

(shaded), a new stone (gold), and the new replicas v1,v2,v3,v4.

Proof of Proposition 6.4. We know by Lemma 6.18 that |Ω(O)| = d
n
|O| for everyO ∈ OrbΦn,d

.
It follows from Lemma 6.19 that |Ω−1(Ô)| ⩾ d!(n− d)! for every Ô ∈ OrbRotn,d

. Therefore,

n! = |ΛPathn| =
∑

O∈OrbΦn,d

|O| =
∑

Ô∈OrbRotn,d

∑
O∈Ω−1(Ô)

|O| =
∑

Ô∈OrbRotn,d

|Ω−1(Ô)| · n
d
|Ô|

⩾ d!(n−d)!n
d

∑
Ô∈OrbRotn,d

|Ô| = n(d−1)!(n−d)!|Compd(n)| = n(d−1)!(n−d)!
(
n− 1

d− 1

)
= n!.

This inequality must actually be an equality, so we must have |Ω−1(Ô)| = d!(n − d)! for ev-
ery Ô ∈ OrbRotn,d

.

As discussed at the end of Section 6.1, Proposition 6.4 implies Theorem 1.3.
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Figure 6.7: The stones diagrams and coins diagrams of the states at times 0, 1, . . . , 11 in the
timeline Tσ0 from Example 6.20. Blue numbers indicate times. Collisions are represented by
color-coded stars.
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7. Orbit Structure of Broken Promotion

In this final section, we prove Theorems 1.4 and 1.5, which describe the orbit structure of cycBroB
for particular choices of the subset B ⊆ Z/nZ.

Proof of Theorem 1.4. Let β be the acyclic orientation of Cyclen whose unique source is d and
whose unique sink is n. To ease notation, let F (q) = n(d−1)!(n−d−1)![n−d]qd

[
n−1
d−1

]
q
. Theo-

rem 1.3 tells us that TProβ has order d(n− d) and that the triple (ΛPathn ,TProβ, F (q)) exhibits
the cyclic sieving phenomenon. Since the sizes of the orbits of TProβ are all divisible by d (by
Proposition 5.1), it follows that TProdβ has order n− d and that the triple (ΛPathn ,TPro

d
β, F (q))

also exhibits the cyclic sieving phenomenon. By Remark 6.2, we have

TProdβ =
(
cyc−1 Bro−1

{1,...,d}

)n
= (Bro{1,...,d} cyc)

−n = cyc−1(cycBro{1,...,d})
−n cyc,

so TProdβ and (cycBro{1,...,d})
n have the same orbit structure. Consequently, (cycBro{1,...,d})n

has order n− d, and the triple (ΛPathn , (cycBro{1,...,d})
n, F (q)) satisfies the cyclic sieving phe-

nomenon. It follows immediately from Proposition 3.6 that the orbit sizes of cycBro{1,...,d} are all
divisible by n. Therefore, cycBro{1,...,d} has order (n−d)n, and if {kmi

i : 1 ⩽ i ⩽ ℓ} is the mul-
tiset of orbit sizes of (cycBro{1,...,d})n, then {(nki)mi/n : 1 ⩽ i ⩽ ℓ} is the multiset of orbit sizes
of cycBro{1,...,d}. According to Lemma 2.1, the triple (ΛPathn , cycBro{1,...,d},

1
n
[n]qn−dF (q)) ex-

hibits the cyclic sieving phenomenon. This completes the proof.

Proof of Theorem 1.5. Let d, n, si, and R be as in the statement of the theorem. Let β be the
acyclic orientation of Cyclen whose sources are the elements of the set S = {s1, . . . , sd} and
whose sinks are the elements of S − 1. Let F (q) = n(d − 1)!(n − d − 1)![n − d]qd

[
n−1
d−1

]
q
.

Theorem 1.3 tells us that TProβ has order d(n−d) and that the triple (ΛPathn ,TProβ, F (q)) ex-
hibits the cyclic sieving phenomenon. Since the sizes of the orbits of TProβ are all
divisible by n − d (by Proposition 5.1), it follows that TPron−d

β has order d and that the
triple (ΛPathn ,TPro

n−d
β , F (q)) also exhibits the cyclic sieving phenomenon. If we set γ = n−d,

q = n, and r = 0 in Proposition 4.1, we find that TPron−d
β = (cycBroR)

n. It follows from
Proposition 3.6 that the sizes of the orbits of cycBroR are all divisible by n.
Therefore, cycBroR has order dn, and if {kmi

i : 1 ⩽ i ⩽ ℓ} is the multiset of orbit sizes
of (cycBroR)

n, then {(nki)mi/n : 1 ⩽ i ⩽ ℓ} is the multiset of orbit sizes of cycBroR . Ac-
cording to Lemma 2.1, the triple (ΛPathn , cycBroR ,

1
n
[n]qdF (q)) exhibits the cyclic sieving phe-

nomenon.

8. Future Directions

Theorem 1.1 determines the orbit structure of toric promotion whenG is a forest. It is still open
to understand the dynamics of toric promotion for other graphs, including cycle graphs.

Theorem 1.3 determines the orbit structure of any permutoric promotion operator whenG is
a path. It would be interesting to gain a better understanding of TProπ when G is another type
of tree, even in the special case when π−1 has 2 cyclic descents. A natural place to start could
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be the case when G is obtained from Pathn−1 by adding a new vertex that is adjacent to vn−2

(i.e., G is the Dynkin diagram of type Dn).
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