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Abstract. An algorithm is presented to construct compact supercells for first-

principles computer simulations of crystalline materials. Rather than constructing

standard n × n × n supercells by replicating the conventional unit cell, we employ

the full flexibility that we gain by using an arbitrary combination of the primitive

cell vectors in order to construct a series of cubic and nearly cubic supercells. In cases

where different polymorphs of a material needed to be compared, we are able construct

supercells with same size. Our approach also allows us to study the finite size effects

efficiently in systems like superionic water where they would otherwise difficult to

obtain because a standard n×n×n-fold replication of the unit cells leads to supercells

that are disportionately expensive to be used for first-principles simulations. We apply

our method to simple, body-centered, and face-centered cubic as well as hexagonal close

packed cells. We present simulation results for diamond, SiO2 in the pyrite structure,

and superionic water with an face-centered cubic oxygen sub-lattice. The effects of the

finite simulation cell size and Brillouin zone sampling on the computed pressure and

internal energy are analyzed.

PACS numbers: 71.15.-m, 63.20.dk, 64.10.+h, 71.15.Pd
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1. Introduction

First-principles computer simulations contribute to our understanding of a wide range

of phenomena in physics [1], chemistry [2], geophysics [3, 4, 5], and to some extend also

in molecular biology [6]. While ground-state calculations of crystalline materials can

often be performed in primitive crystallographic cells with a small number of atoms,

simulations at finite temperature require cells with a much larger number of atoms. To

simulate liquids, one typically chooses cubic cells [7] and increases the number of atoms

until the artificial correlation, that is introduced by the periodic boundary conditions,

has a negligible impact on the computed properties [8]. Simulations of crystalline

materials often require the consideration of a comparable number of atoms. Therefore,

one constructs supercells by replicating the primitive cell in all spatial directions. Such

supercells allow one to perform density functional molecular dynamics simulations

(DFT-MD) to determine the thermodynamic properties of solids [9, 10, 11] at elevated

temperatures where the quasi-harmonic approximation is no longer applicable. Quasi-

harmonic calculations typically use primitive cells and perturbation theory [12] but,

occationally, supercells are still in use [13]. Supercells are also employed to study

the effects of disorder in different types of alloys and solid solutions [14, 15, 16, 17].

Computational studies of defects in solids also require supercells to reduce the interaction

between defect images [18, 19, 20, 21, 22, 23, 24, 25, 26]. For simulations of materials

with incommensurate crystal structures, one also constructs periodic supercells that

approximate incommensurate spacial periodicities as close as possible [27, 28]. The

determination of the magnetic state of a structure with multiple transition metal atoms

may also require supercells [29, 30, 31]. The computation of x-ray absorption near edge

structures (XANES) is performed in supercells [32]. Direct melting simulations and the

two-phase methods [33, 34] also rely on supercells. Variable cell dynamics simulations [3]

as well as the study of amorphization [35] and other structural changes in solids [36]

employ supercells as well. Quantum Monte Carlo (QMC) calculations employ supercells

to better capture the interaction effect between all electrons [37, 4, 38]. Since QMC

calculations are significantly more expensive than density functional simulations, one is

even more constrained when choosing the supercell.

Despite all these applications, no general algorithm exists to construct appropriate

supercells molecular dynamics or Monte Carlo simulation where one want to minimize

the unwanted interaction between period images. For cubic cells, one typically replicates

the unit cell, n × n × n. This may, however, lead rather rapidly to cells that are

prohibitively expensive. In the case of superionic water in a face-centered cubic (fcc)

structure, the cubic unit cell has four water molecules. Thus, in Ref. [39], most

simulations were performed in a 2×2×2 with supercell with 32 molecules and only one,

rather demanding finite-size test with 108 molecules was conducted. In an earlier study

of body-centered cubic (bcc) superionic water [40], results for 2 × 2 × 2 and 3 × 3 × 3

supercells with 56 and 128 molecules, respectively, were reported. No other cells were

considerd while, as we demonstrate in the article, a number of intermediate nearly cubic
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cells could have been chosen to facilitate a more efficient finite-size analysis.

Supercells of different shapes have constructed to study solid solutions where, e.g.,

atoms of type A or B can occupy the sites on an fcc or bcc lattice [41]. Algorithms have

been advanced to generate all possible configurations for a given supercell size [42] and

efficient methods exit to remove symmetry-equivanent configurations [43]. The goal of

our algorithm is different, however. We do not deal with atomic disorder and rather

than generating all possible supercells, we want to predict the best possible supercell

for given size that minimize finite-size effects in many-body simulations.

The question of choosing the appropriate supercell becomes even more difficult

when one deals with non-cubic primitive cells. For orthorhombic structures, one may

construct n1×n2×n3 supercells that are nearly cubic while preserving the orthorhombic

character. For arbitary triclinic cells, it is less obvious how to proceed. For water ice

at megabar pressures [44], a monoclinic structure with P21 symmetry, an orthorhombic

structure with Pcca, and a hexagonal structure with P3121 symmetry have recently been

predicted to form at zero temperature [45]. To determine whether these groundstate

structures lead to superionic systems that are thermodynamically more stable than the

recently predicted fcc structure, one needs to construct supercells, heat the structure

up in with DFT-MD simulations and compare their Gibbs free energies that may be

obtained via thermodynamic integration (TDI) [39]. For the monoclinic, orthorhombic,

hexagonal structures, one would want to construct supercells that are again nearly cubic.

Ideally one would choose a cell of comparable size as in the bcc and fcc calculations but

there is no straightforward method available to construct such cells.

The question how to construct supercells of comparable size for different structures

will always be relevant when a material has different polymorphs that need to

be compared. Silica, SiO2 is a archetypal example with more than ten crystal

structures [4, 5]. Its pyrite-type polymorph has a cubic unit cell with 12 atoms. We will

demonstrate that other reasonable supercell choices exist than just a simple n× n× n
replication.

Recently, significant progress has been made in predicting groundstate crystal

structures with evolutionary algorithms [46], random search techniques [47, 45], and

others methods [48], and number of theoretical predictions have later been confirmed

experimentally [49]. Crystal structure prediction at higher temperature outside of the

quasi-harmonic regime is more difficult and requires the comparison of the Gibbs free

energy of thousands of structures. Supercells need to be constructed in order to facilitate

DFT-MD simulations and TDI calculations [50, 51, 52, 53, 54]. Rather than relying

on human intervention, we would want to use a computer algorithm that constructs

reasonable supercells automatically for any cell shape, which is the goal of this article.

2. Methods

Rather than constructing standard n× n× n supercells by replicating the conventional

unit cell, we employ the full flexibility that we gain by using an arbitrary combination
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of the primitive cell vectors, ~a, ~b, and ~c. We construct vectors of the supercell from a

linear combination of the primitive cell vectors [55],

~aSS = ia~a+ ja~b+ ka~c ,

~bSS = ib~a+ jb~b+ kb~c , (1)

~cSS = ic~a+ jc~b+ kc~c .

For each supercell vector, the coefficients i, j, and k are arbitrary integers that we

restrict to take values from −n to n. We typically set n between 5 and 10. ja, ka, and

kb can be set zero for bcc and fcc lattices [43]. In general, however, the construction of

a supercell turns into a 9-dimensional optimization problem but symmetry arguments

can be used to reduce the search space significantly,

[
~aSS,~bSS,~cSS

]
(VSS) =

n
max
ia=1

n
max
ja=−n

n
max
ka = −n
|~aSS| > 0

ia
max
ib=−ia

n
max
jb=−n

n
max
kb = −n∣∣~bSS∣∣ > 0

[ . . .

. . .
|ib|

max
ic=−|ib|

|jb|
max
jc=−|jb|

n
max
kc = −n

(~aSS ×~bSS) · ~cSS = VSS

O(~aSS,~bSS,~cSS) ] . (2)

The volume of the supercell can only be a multiple of primitive cell volume, VSS = mVP.

For a given volume ratio, m, one needs to decide what optimization criteria, O, to

employ. There are two obvious choices.

(a) First one can maximize the distance to the nearest periodic image, dmin. In the

limit of large m, this will not lead to formation of cubic cells. Rather hexagonal cells

with |~aSS| = |~bSS| = |~cSS|, α = β = 90◦, and γ = 120◦ will be favored ‡ . While this may

be a valid criteria for some problems, for fcc systems, it means that the conventional

cubic supercells would not be reproduced.

(b) Alternatively one can design compact cells by minimizing the radius of a sphere

that is needed to enclose the supercell. For a given cell, this radius is given by the

maximum distance that any cell corner is separated from the cell center,

Rmax = max
i = {−1,+1}
j = {−1,+1}
k = {−1,+1}

1

2

∣∣∣i~aSS + j~bSS + k~cSS
∣∣∣ . (3)

This criteria allows us to pick cubic and nearly cubic cells. For the remainder of this

article, we employ the following optimization strategy. We use (b) as our primary

criteria. If the Rmax values of two cells are identical, we select the cell with the larger

minimum image distance, dmin. In rare cases where both of those values are identical

also, we prefer the cell where the angles deviate the least from 90◦ and where the cell

vectors deviate the least from each other in length.

The minimum image distance is defined as,

dmin =
∞

lim
n=1

n
min

(i, j, k) = −n
i2 + j2 + k2 > 0

∣∣∣i~aSS + j~bSS + k~cSS
∣∣∣ , (4)

‡ We derived this result using a simulated annealing technique that optimized minimum image distance

by varying all cell parameters at constant volume.
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Table 1. Supercells of the fcc structure with 3 atoms per primitive cell, which is

needed to calculation of dense, superionic water. N specifies the number of atoms per

cell. VSS/VP is the volume ratio of the supercell and the primitive cell. Rmax and

dmin are the cell radii and minimum image distances according to Eqs. 3 and 4. The

supercells are defined in terms of the integers i, j, and k (Eq. 2), lattice parameters and

angles. All dimensional parameters have been normalized with respect to the lattice

parameter a. Cubic cells with VSS/VP = 4n3 are marked by a †.
N VSS/VP Rmax/a dmin/a ia ja ka ib jb kb ic jc kc |aSS|/a |bSS|/a |cSS|/a α(◦) β(◦) γ(◦)

3 1 0.7906 0.7071 1 0 0 1 -1 0 0 0 -1 0.7071 0.7071 0.7071 90.0 120.0 60.0

12 4† 0.8660 1.0000 1 1 -1 1 -1 1 1 -1 -1 1.0000 1.0000 1.0000 90.0 90.0 90.0
21 7 1.1180 1.2247 1 1 0 -1 2 -1 -1 0 2 1.2247 1.2247 1.2247 99.6 80.4 80.4
39 13 1.5000 1.5811 2 1 -1 2 -1 -2 -1 1 -2 1.5811 1.5811 1.5811 72.5 107.5 72.5
69 23 1.7678 1.7321 3 -1 0 -1 3 -1 -1 0 3 1.8708 1.7321 1.8708 90.0 85.9 108.0
78 26 1.7321 1.8708 2 1 0 -2 3 -1 -2 0 3 1.8708 1.8708 1.8708 85.9 94.1 94.1

96 32† 1.7321 2.0000 2 2 -2 2 -2 2 2 -2 -2 2.0000 2.0000 2.0000 90.0 90.0 90.0
114 38 1.8708 2.1213 2 2 -1 -2 3 -2 -2 1 3 2.1213 2.1213 2.1213 93.2 86.8 86.8
150 50 2.1213 2.3452 2 1 1 -2 4 -1 -2 -1 4 2.3452 2.3452 2.3452 97.8 82.2 82.2
210 70 2.4238 2.5495 3 2 -2 -2 4 -3 -2 2 3 2.5495 2.7386 2.5495 90.0 87.8 79.7
276 92 2.5495 2.7386 4 1 -2 -3 4 2 -1 3 -4 2.7386 3.0822 2.7386 88.3 88.1 95.1
288 96 2.5000 2.8284 4 -4 0 -3 -3 3 0 0 -4 2.8284 3.0000 2.8284 90.0 90.0 90.0
300 100 2.6926 2.9155 4 1 -1 -2 5 -1 -1 -1 5 2.9155 2.9155 3.0000 93.3 86.7 79.8

324 108† 2.5981 3.0000 3 3 -3 3 -3 3 3 -3 -3 3.0000 3.0000 3.0000 90.0 90.0 90.0

Table 2. Supercells of the simple cubic pyrite structure with N = 12 atoms per

primitive cell. All parameters are given in the format of Tab. 1. Cubic cells with

VSS/VP = n3 are marked by a †.
N VSS/VP Rmax/a dmin/a ia ja ka ib jb kb ic jc kc |aSS|/a |bSS|/a |cSS|/a α(◦) β(◦) γ(◦)

12 1† 0.8660 1.0000 1 0 0 0 1 0 0 0 -1 1.0000 1.0000 1.0000 90.0 90.0 90.0
36 3 1.5000 1.4142 1 0 1 1 1 0 1 -1 -1 1.4142 1.4142 1.7321 90.0 90.0 60.0
84 7 2.0616 1.7321 2 0 1 1 2 0 1 -1 -1 2.2361 2.2361 1.7321 105.0 75.0 66.4

96 8† 1.7321 2.0000 2 0 0 0 2 0 0 0 -2 2.0000 2.0000 2.0000 90.0 90.0 90.0
156 13 2.2913 2.2361 2 1 1 1 -2 -1 0 -1 2 2.4495 2.4495 2.2361 90.0 79.5 99.6
168 14 2.2361 2.4495 2 1 1 1 -2 -1 -1 -1 2 2.4495 2.4495 2.4495 99.6 99.6 99.6
288 24 2.5000 2.8284 3 0 0 0 2 2 0 2 -2 3.0000 2.8284 2.8284 90.0 90.0 90.0

324 27† 2.5981 3.0000 3 0 0 0 3 0 0 0 -3 3.0000 3.0000 3.0000 90.0 90.0 90.0
396 33 2.8723 3.1623 3 1 0 1 -3 -1 0 -1 3 3.1623 3.3166 3.1623 90.0 95.7 90.0
456 38 3.2016 3.3166 3 1 1 2 -3 0 -1 -1 3 3.3166 3.6056 3.3166 85.2 95.2 75.5
624 52 3.2404 3.6056 4 0 0 0 3 2 0 2 -3 4.0000 3.6056 3.6056 90.0 90.0 90.0
672 56 3.5000 3.7417 3 2 1 2 -3 -2 -1 2 -3 3.7417 4.1231 3.7417 97.4 98.2 97.4

768 64† 3.4641 4.0000 4 0 0 0 4 0 0 0 -4 4.0000 4.0000 4.0000 90.0 90.0 90.0
876 73 3.9051 4.1231 4 1 1 1 -4 -1 0 -1 4 4.2426 4.2426 4.1231 90.0 80.1 93.2
912 76 3.7417 4.2426 4 1 1 1 -4 -1 -1 -1 4 4.2426 4.2426 4.2426 93.2 93.2 93.2
1116 93 4.0620 4.3589 3 3 1 3 -3 -2 -1 2 -4 4.3589 4.6904 4.5826 92.7 92.9 95.6
1200 100 4.0311 4.4721 5 0 0 0 4 2 0 2 -4 5.0000 4.4721 4.4721 90.0 90.0 90.0

but one needs a more efficient method for its determination that is applicable to arbitrary

cell shapes. We use the following approach where the lattice vectors are re-assigned

to point to closer images. We start with the assigment, ~a′SS = ~aSS, ~b′SS = ~bSS, and

~c′SS = ~cSS and order the vectors by magnitude such that, |~a′SS| ≤ |~b′SS| ≤ |~c′SS|. Then we

successively derive new vectors that point to closer and closer images using the following

re-assignments,

~b′SS → ~b′SS − round [~b′SS · ~a′SS /~a′2SS ]~a′SS , (5)

~c′SS → ~c′SS − round [~c′SS · ~a′SS /~a′2SS ]~a′SS , (6)

~c′SS → ~c′SS − round [~c′SS ·~b′SS /~b′2SS ]~b′SS . (7)

We keep re-assigning and re-ordering these vectors until no more changes occur. Then

we can derive dmin by setting n = 1 in Eq. (4).



Supercell Design for First-Principles Simulations of Solids 6

Table 3. Supercells of the bcc lattice with one atom per primitive cell. All parameters

are given in the format of Tab. 1. Cubic cells with VSS/VP = 2n3 are marked by a †.
N VSS/VP Rmax/a dmin/a ia ja ka ib jb kb ic jc kc |aSS|/a |bSS|/a |cSS|/a α(◦) β(◦) γ(◦)

1 1 0.8292 0.8660 1 0 0 1 -1 -1 0 -1 0 0.8660 0.8660 0.8660 70.5 109.5 70.5

2 2† 0.8660 1.0000 1 0 -1 1 -1 0 0 -1 -1 1.0000 1.0000 1.0000 90.0 90.0 90.0
6 6 1.4790 1.4142 2 -1 -2 -1 2 1 -1 0 -1 1.6583 1.4142 1.4142 90.0 90.0 115.2
9 9 1.4790 1.6583 2 0 -1 1 -2 -2 -1 1 -1 1.6583 1.6583 1.6583 84.8 95.2 84.8

16 16† 1.7321 2.0000 2 0 -2 2 -2 0 0 -2 -2 2.0000 2.0000 2.0000 90.0 90.0 90.0
21 21 2.0616 2.1794 3 -1 -2 -1 3 1 -1 0 -2 2.2361 2.1794 2.1794 87.0 95.9 95.9
25 25 2.2776 2.2361 3 -1 -3 -2 3 1 -1 -1 -2 2.5981 2.2361 2.2361 90.0 85.1 105.0
28 28 2.2361 2.4495 3 0 -1 2 -3 -3 -1 1 -2 2.4495 2.4495 2.4495 80.4 99.6 80.4
35 35 2.2776 2.5981 3 0 -2 -2 3 0 0 -2 -3 2.5981 2.5981 2.5981 87.9 92.1 87.9
48 48 2.5000 2.8284 3 0 -3 2 -4 -2 -2 0 -2 3.0000 2.8284 2.8284 90.0 90.0 90.0
53 53 2.8614 2.9580 3 1 -1 3 -3 -4 -2 3 -1 2.9580 3.0000 3.1623 96.1 83.9 73.6

54 54† 2.5981 3.0000 3 0 -3 3 -3 0 0 -3 -3 3.0000 3.0000 3.0000 90.0 90.0 90.0
65 65 3.0311 3.2787 4 0 -1 3 -4 -4 -1 1 -3 3.2787 3.2787 3.2787 77.9 102.1 77.9
84 84 3.1125 3.3166 4 0 -2 2 -4 -4 -2 3 -2 3.3166 3.3166 3.8406 92.2 87.8 84.8
91 91 3.1125 3.5707 4 0 -3 -3 4 0 0 -3 -4 3.5707 3.5707 3.5707 88.9 91.1 88.9
103 103 3.3448 3.6056 5 -1 -2 -2 5 3 0 -1 4 3.7417 3.6056 3.8406 92.1 94.0 94.3
107 107 3.4187 3.7417 5 -1 -2 2 -5 -4 -1 2 -3 3.7417 3.8406 3.7417 90.0 94.1 86.0
112 112 3.4187 3.8406 5 -1 -1 -1 5 1 -1 1 5 3.8406 3.8406 3.8406 94.9 85.1 85.1

128 128† 3.4641 4.0000 4 0 -4 4 -4 0 0 -4 -4 4.0000 4.0000 4.0000 90.0 90.0 90.0

Table 4. Supercells of hexagonal close packed lattice with the ideal ratio, c/a =
√

8/3.

All parameters are given in the format of Tab. 1.

N VSS/VP Rmax/a dmin/a ia ja ka ib jb kb ic jc kc |aSS|/a |bSS|/a |cSS|/a α(◦) β(◦) γ(◦)

2 1 0.6680 0.5612 1 0 0 1 1 0 0 0 1 0.5612 0.5612 0.9165 90.0 90.0 60.0
6 3 0.9585 0.9165 2 1 0 1 -1 0 0 0 -1 0.9721 0.9721 0.9165 90.0 90.0 60.0
12 6 1.0747 0.9721 2 2 1 1 1 -1 -1 1 0 1.4491 1.0747 0.9721 90.0 90.0 97.7
16 8 1.1225 1.1225 2 0 0 1 2 1 1 2 -1 1.1225 1.3360 1.3360 86.6 90.0 90.0
22 11 1.3651 1.3360 3 1 0 1 2 1 0 -2 1 1.4849 1.3360 1.4491 93.1 81.6 76.2
28 14 1.4760 1.4491 2 -1 1 -2 -2 1 0 -2 -1 1.7449 1.4491 1.4491 95.7 80.4 78.0
32 16 1.4491 1.4849 3 1 0 -1 -3 0 0 0 -2 1.4849 1.4849 1.8330 90.0 90.0 98.2
42 21 1.5540 1.7449 3 1 1 2 3 -1 -1 2 1 1.7449 1.7449 1.7449 85.1 94.9 85.1
54 27 1.7449 1.9170 3 0 1 3 3 -1 0 -3 -1 1.9170 1.9170 1.9170 99.0 81.0 81.0
74 37 1.8963 2.0235 4 1 0 -1 -4 -1 -1 -2 2 2.0235 2.2214 2.0748 87.4 96.5 88.0
78 39 1.9776 2.0748 4 2 1 1 -3 -1 -1 -2 2 2.1494 2.2214 2.0748 93.3 80.5 88.7
84 42 2.0171 2.1494 3 -1 1 -3 -4 1 0 -2 -2 2.2214 2.2214 2.1494 91.3 91.3 82.1
106 53 2.1676 2.2214 4 0 1 3 4 -1 0 -3 -2 2.4248 2.2214 2.4889 97.1 88.0 85.5
124 62 2.2969 2.3590 5 2 0 -1 -4 2 -1 -3 -2 2.4463 2.7303 2.3590 93.3 97.8 95.4
130 65 2.3422 2.4248 4 0 1 3 4 -2 0 -3 -2 2.4248 2.7303 2.4889 81.6 88.0 93.6
138 69 2.2969 2.4463 5 1 0 -2 -5 0 0 0 -3 2.5719 2.4463 2.7495 90.0 90.0 94.3
152 76 2.3976 2.6124 4 2 2 3 4 -2 -2 3 1 2.6720 2.7303 2.6124 89.6 91.7 94.1
160 80 2.3976 2.6720 5 0 0 2 4 2 2 4 -2 2.8062 2.6720 2.6720 86.6 90.0 90.0
176 88 2.4410 2.7303 5 0 1 3 4 -2 -1 -4 -2 2.9520 2.7303 2.7303 90.8 90.7 90.7
180 90 2.4463 2.7495 6 3 0 0 -5 0 0 0 -3 2.9162 2.8062 2.7495 90.0 90.0 90.0
200 100 2.5668 2.8062 5 0 0 3 6 1 1 2 -3 2.8062 3.0569 2.9162 88.0 90.0 90.0

3. Discussion of Cell Design

In Fig. 1, we plotted Rmax and dmin for the supercells that we constructed by starting

from the primitive cell of fcc lattice. For every cell size VSS/VP, we identified the most

compact cell according to the optimization criteria that we derived in the previous

section. The goal was to construct cells with an Rmax that is as close as possible to

the ideal value of cube, V
1/3
SS

√
3/2. For cubic cells with VSS/VP = 4n3, this value is

recovered. For all other cells, Rmax is found to reasonably close to the ideal value. The

deviations are typically no larger than 0.25 a, where a is the size of the cubic.

The lower panel Fig. 1 shows the minimum image distances for every cell. For

a given cell size, this value should be as large as possible in order to minimize the

correlation effects between particles during molecular dynamics simulations. One notices

that for some cells, the dmin falls above the curve for a cubic cell given by dcubicmin = V
1/3
SS .

This is because hexagonal cells, rather than cubic ones, have the largest minimum image
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Figure 1. (Color online) Radius, Rmax, (Eq. 3) and minimum image distance, dmin,

(Eq. 4) of supercells that were constructed from the primitive cell of fcc lattice with

lattice parameter a. The solid, blue lines correspond to cells with smallest Rmax for a

given cell volume. The open circles correspond to a subset of selected, compact cells

that have a larger minimum image distance than all smaller cells. The squares denote

cubic supercells with VSS = 4n3VP where n is an integer. The dash-dotted line shows

Rmax and dmin for a cubic cell of arbitrary, non-integer values of n.

distances for given volume.

Furthermore one notices that dmin does not monotonously increase with volume.

One would have expected that a larger cell size automatically leads to an increase in the

minimum image distance. But the cells differ in shape and in many cases, the minimum

image distance of a larger cell is smaller or equal to that of a well-selected smaller one.

So it is not obvious why one should invest the computer time into simulating with an

larger cell if it does not also lead to an increase in the minimum image distance over all

possible smaller cells. For this reason, we constructed a subset of cells where an increase

in size also led to a new record in the minimum image distance compared to all smaller

cells. We marked the cells in this subset in Fig. 1 and reported their parameters in

Tab. 1. The ideal cubic cells are included in the subset. From now on we refer to this

subset as set of compact cells. All DFT-MD simulations, to be discussed in the next
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section, were performed only for such compact supercells. Tables 2, 3, and 4 list the

parameters for the compact supercells for simple cubic, bcc, and hexagonal close packed

lattices, respectively.

The angles and supercell vector lengths in Tab. 1 show that it becomes easier to

construct nearly cubic supercells with increasing cell size. For large supercells there

are simply more possibilities to combine the primitive cells to construct supercells with

specific size. In the limit of infinite supercells size, one expects the deviations from a

cubic shape to disappear completely. Already for VSS/VP ≥ 13, one finds that all cell

angles deviate from 90◦ by 10.5◦ or less. All vector lengths deviate by less then 8.5%

from the corresponding value of a cubic cell.

4. Accomodation of Two Crystal Structures

Our optimization scheme in Eq. 2 is general and can be combined with other design

criteria, O(~aSS,~bSS,~cSS), for specific applications. We will give one more example in this

section where we design supercells that can accomodate two different crystal structures.

We will construct supercells that are commensurate with, e.g., an fcc and an hcp lattice,

which becomes of interest for crystallization calculations when one wants to eliminate,

or at least minimize, the bias from a particular supercell choice. This is of interest for

the simulation of materials that show an hcp-fcc transition in their pressure-temperature

phase diagrams, such as gold [56], iron at 30 GPa and elevated temperatures [57] as well

as at 700 GPa and low temperature [58], iron-nickel alloys at conditions of the Earth’s

core [59] and many others.

The task of finding a supercell that accomodates two crystal structures shares some

similarities with constructing approximate, commensurate cells for incommensurate

structures [27, 28] but there is one main difference. In our case there is no need for

both structures to be aligned in the supercell. In fact, when we minimize the mismatch

between hcp and fcc supercell vectors, we allow for an arbitrary rotation by the Euler

angles, φ,θ, and ψ. We introduce the rotation matrix, Rφ,θ,ψ, and define the mismatch

parameter,

δfcc−hcp = min
φ,θ,ψ

[
(~afccSS −Rφ,θ,ψ ~a

hcp
SS )2 + (~bfccSS −Rφ,θ,ψ

~bhcpSS )2 + (~c fccSS −Rφ,θ,ψ ~c
hcp
SS )2

]1/2
, (8)

that measures the deviation between the both sets of lattice vectors. We minimize δ by

first determining the 100 most compact hcp supercells for a given size. For each hcp

supercell, a pick a random rotation matrix, and identify the closest set of fcc lattice

vectors. We use the BGFS algorithm [60] to optimize the Euler angles in order to

converge to the closest local minimum of δ. This procedure is repeated many time in

an attempt to find the global minimum of δ.

Figure 2 and Table 5 report the best supercells that we constructed. We able to

obtain two compact supercells with respectively 156 and 480 atoms that accomodate and

hcp and fcc lattices prefectly. Many other supercells with a small mismatch parameter

of δ < 0.07 ahcp have been identified as well.
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We also constructed supercells that can accomodated a bcc as well as an fcc crystal

structure, which would be of interest for the simulation of sodium [61], lithium [62],

xenon [63], and Yukawa systems [64]. One could expect that accomodating an bcc and

an fcc structures in one supercell to be straightforward because both are cubic structures.

However, one would want to keep the particle density the same, which implies there bcc

and fcc lattice parameters differ by a factor of 21/3. Since this is an irrational ratio,

we cannot expect to find a supercell that accomodates both crystals perfectly. Still our

best cells in Tab. 5 with N = 160 and 847 atoms have a small mismatch, δ, of only

0.0455 and 0.0270 abcc, which means the lattice vectors differ by less than 0.8% and

0.2% respectively. The impact of this deviation may be reduced further by setting the

lattice vectors in the simulation to the average of the bcc and fcc supercell vectors so

that both structures are affected equally by the contraints of the supercell.
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Figure 2. (Color online) Mismatch parameter, δ, (Eq. 8) between bcc and hcp

lattices (upper panel) and fcc and hcp lattices (lower panel) for supercells with

different numbers of particles. δ is plotted in units of lattice parameter abcc and

ahcp, respectively. The arrows in the lower panel mark cells with 156 and 480 atoms,

respectively, that can perfectly accomodate an hcp and an fcc lattice.
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Table 5. Supercells that can accomodate hcp and fcc crystals as well as bcc and fcc

crystals. N specifies the number atoms per cell. The mismatch parameter, δ, and the

supercell vectors are given in units of lattice parameter abcc and ahcp, respectively.

N δ/a ia ja ka ib jb kb ic jc kc |aSS|/a |bSS|/a |cSS|/a α(◦) β(◦) γ(◦)

hcp: 156 0 5 7 0 -3 1 0 0 0 3 6.245 3.606 4.899 90.0 90.0 90.0

fcc: 5 -7 2 -3 -1 4 2 2 2 6.245 3.606 4.899 90.0 90.0 90.0

hcp: 480 0 6 6 3 -4 4 0 -4 -4 3 7.746 6.928 6.325 90.0 90.0 90.0

fcc: -6 8 -4 0 -4 -4 6 2 -6 7.746 6.928 6.325 90.0 90.0 90.0

bcc: 160 0.0455 5 0 5 4 4 0 0 4 4 5.000 4.000 4.000 90.0 90.0 90.0

fcc: 4 4 -4 2 -2 -4 -4 4 -2 5.040 3.984 3.984 90.0 90.0 90.0

bcc: 847 0.0270 7 -4 2 -6 -8 -7 4 3 -7 7.921 6.225 8.602 88.9 88.3 87.4

fcc: -7 -3 10 -6 2 -3 4 -11 0 7.918 6.236 8.592 88.7 88.3 87.2
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Figure 3. (Color online) Pressure and internal energy of diamond derived from DFT-

MD simulations at 5000 K and 5.02 g cm−3 using compact supercells with differerent

numbers of atoms, N and k-point grids for the Brillioun zone sampling. Error bars are

shown unless they are smaller than the size of the symbols. For zone-average Balderesci

k-point curve, we used squares to mark cases where the constructed, compact cells

coincided with the standard, cubic supercells with N = 8n3.
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Figure 4. (Color online) Pressure and internal energy of fcc superionic ice from DFT-

MD simulations at 4000 K and 6.00 g cm−3 using compact supercells with differerent

numbers of atoms, N , and k-point grids for the Brillioun zone sampling.

5. Results from Ab Initio Simulations

In this section, we compare the internal energy and pressure that we obtained with DFT-

MD simulations in compact supercells of various sizes. To cover a range of applications,

we selected three representative systems with very different character. First we presents

results of diamond, a hard, monatomic, covalently bonded solid. As an example for an

ionic material, we discuss simulations of SiO2 silica in the cubic pyrite structure. Finally

we compare results for superionic water where the oxygen atoms are arranged on a fcc

lattice. Superionic behavior [65] may occur in materials like α-AgI that are composed

of ions with very different radii. The large ions, in this case I−, remain locked in place

and vibrate around lattice site like atoms in a solid while the smaller ions, Ag+, move

throughout the lattice like a fluid. This behavior has been predicted theoretically to

occur in water at megabar pressures [66]. Recent simulations predicted a phase change

to an fcc oxygen sub-lattice [39]. Other superionic compounds with H2O2 and H9O4

stoichiometries has also be studied [67].

All DFT-MD simulations were performed with the VASP code [68]. We used
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Figure 5. (Color online) Pressure and internal energy of silica, SiO2, in the cubic

pyrite structure from DFT-MD simulations at 5000 K and 7.56 g cm−3 using compact

supercells with differerent numbers of atoms, N , and k-point grids.

pseudopotentials of the projector-augmented wave type [69], the exchange-correlation

functional of Perdew, Burke and Ernzerhof [70], and a cutoff energy of 900 eV for the

plane wave expansion of the wavefunctions. The Brillioun zone was sampled with the

zone-average Balderesci point [71] as well as with 2×2×2 and 4×4×4 Monkhorst-Pack

k-point grids [72]. The occupation of electronic states are taken to be a Fermi-Dirac

distribution set at the temperature of the ions [73]. The simulation time ranged between

2.0 and 10.0 ps. An MD time step of 0.20, 0.75, and 0.80 fs was used for ice, diamond,

and SiO2, respectively.

Finite size effects in DFT-MD simulations with periodic boundary conditions do

not only arise from a finite number of ions and but also from an incomplete sampling of

the Brillioun zone. One cannot completely separate one effect from the other because

of k-point folding. When a supercell is constructed using a fixed set of k-points, this

already implies a more accurate Brillioun zone sampling compared to the primitive cell.

This is the reason why one typically uses a very small number of k-points in DFT-

MD simulations and rather invests the available CPU time into simulating more atoms.

Earlier simulations of dense carbon used the Γ point but more recent work employed
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the Balderesci point [11]. Figure 3 shows pressure and internal energy derived from

simulations of various cell sizes. A typical supercell with 64=8×23 atoms [11] yielded a

pressure of 344 GPa. Relying on cubic supercells alone, would make it very challenging

to determine the magnitude of the remaining finite size error (−1.4% in pressure) and

correct for it efficiently. One could compare with the results from simulations in a

tiny cell with 8 atoms, the only available cubic cell that is smaller, and then linear

extrapolation as function of 1/N . One would not know, however, how reliable such

an extrapolation would be unless one obtains results the next larger cubic cell with

216=8×33 atoms. As Fig. 3 shows, we were able to perform such large simulations and

confirm that the extrapolations for the pressure and energy are reasonably accurate

but this test required a disportionate amount of computer time. For more complex

minerals that have unit cells with more atoms, such large supercell calculation may not

be feasible.

Fig. 3 also shows simulation results based on our compact supercells that we

constructed by starting from a 2 atom primitive cell of the fcc lattice. The supercell

parameters are given in Tab. 1. Both pressures and internal energies from simulations

with 76, 100, 140, and 184 atoms are in very good agreement with 216 atom results.

This highlights the quality of the compact supercells that we constructed. Simulations

with smaller cells are significantly faster. This also makes easier to determine how long

one needs to run simulation to reach a certain accuracy.

The results from simulations with the Balderesci point in Fig. 3 show an overall

trend for pressure and energy to decrease with system size. This is partially due to

insufficient sampling of the Brillioun zone. Results from simulation of with 2×2×2 and

4× 4× 4 k-point grids converge much faster with system size and pressure and energy

tend to increase with system size.

We select superionic water as the next test case for the application of our compact

supercells. In each case, we started from a perfect fcc oxygen sub-lattice and then

gradually increased the temperature in the DFT-MD simulations until the system

reached a temperature of 4000 K where the system is superionic. In Fig. 4, we show

results for seven cell sizes in addition to the two cubic supercells with 32=4×23 and

108=4×33 H2O molecules used in Ref. [39]. 2 × 2 × 2 k-point grids was employed in

most calculations but two tests with 4× 4× 4 points were performed.

A linear trend in the energy per atoms, N , appears as a function of 1/N . Our

compact cells follow this trend in the same way as the two cubic cells. One finds the

energy value of 0.1625 eV/atom from simulations of 32 molecules is not yet converged

but that an extrapolated value of 0.173 eV/atom is more realistic. The pressure

appears to converge to a value of approximately 964.3 GPa. Simulations with a cubic

supercell containing 32 molecules appear to yield a pressure that is slightly too low. The

simulations with 4 × 4 × 4 k-points are broadly consistent with the 2 × 2 × 2 results,

only for simulations with 13 molecules there is a deviation in the pressure.

In Tab. 3, we list 6 intermediate cell sizes that could have been used to study finite

size effects in simulations of bcc solids in addition to the cubic cells with 54=2×33 and
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128=2×43 molecules used in Ref. [40].

Finally, we come to the discussion of the finite size effects in DFT-MD simulations

of silicate in the pyrite structure. Since the primitive cubic cell already has 4 SiO2

molecules, a finite size extrapolations on cubic cells alone would be very challenging.

Using the supercell in Tab. 2, we performed simulations with up to 288 atoms. Results

in Fig. 5 show that finitize size error in cubic simulations 96 atoms with the Balderesci

point is already very small. The pressure appears to be overestimated by only 0.4 GPa.

The correction to the internal energy is also very small, only on the order of 4 meV per

atom.

6. Conclusions

We designed and tested a general algorithm for constructing compact supercells for

first-principles simulations of solids. Results for common structures such as sc, bcc, fcc,

and hcp lattices were reported. Since we started from the primitive cell, we were able to

construct compact supercells of intermediate sizes that cannot be obtained with simple

replication of the conventional unit cell. This allowed us to perform a more detailed

a finite size analysis of the DFT-MD simulations of diamond, SiO2, and superionic

water. We demonstrate that the compact supercells can be used the estimate finite size

effects and in most cases, to extrapolate to thermodynamic limit with good precision.

We anticipate this will make predictions from computer simulations more reliable for

applications where very large simulation with 1000 atoms or more are still prohibitively

expensive. In additition to the presented computation of thermodynamic properties,

our algorithm can be used to construct supercells to study systems with defects, solid

solutions, magnetic and superionic systems. While we tested our approach only in DFT-

MD simulations, future applications will include quantum Monte Carlo calculations

where it is even more difficult to study large systems routinely.
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