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Abstract

Objectives—Soluble CD14 (sCD14) is a monocyte activation marker associated with increased

mortality in HIV. We assessed 48-week changes in sCD14 and other inflammatory biomarkers in

virologically suppressed, HIV-infected women switching to raltegravir (RAL) from PI or NNRTI.

Methods—HIV-infected women with central adiposity and HIV-1 RNA <50 copies/mL

continued their thymidine-sparing NRTI backbone and were randomized to switch to open-label

RAL at week 0 (immediate) or 24 (delayed). In an exploratory analysis, inflammatory biomarkers

were measured on stored fasting plasma.
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Results—Thirty-seven evaluable subjects were 78% non-White and had median age 43 years,

BMI 32 kg/m2 and CD4+ T cell count 558 cells/µL. At baseline, biomarker values were similar

between groups. After 24 weeks, median sCD14 significantly declined in subjects switching to

RAL (−21% (p<0.001) vs. PI/NNRTI −5% (p=0.49), between group p<0.01). After 48 weeks,

immediate switch subjects maintained this decline and delayed switch subjects experienced a

similar decline following switch to RAL (−10%, within-group p<0.01). Immediate switch subjects

also experienced an initial increase in TNF-α that was neither maintained after 48 weeks nor seen

in delayed switch subjects. After adjustment for multiple testing, only declines in sCD14 remained

significant.

Conclusions—In this randomized trial of women with central adiposity, switch to RAL from PI

or NNRTI was associated with a statistically significant decline in sCD14. Further studies are

needed to determine whether integrase inhibitors have improved monocyte activation profiles

compared to PIs and/or NNRTIs, and whether measured differences between antiretroviral agents

translate to demonstrable clinical benefit.

Keywords

raltegravir; sCD14; monocyte activation; inflammation; women

INTRODUCTION

HIV infection is characterized by a state of inflammation and immune activation that may

not normalize with suppressive antiretroviral therapy (ART),(1–5) and may contribute to the

development of end-organ disease in HIV-infected persons. Recently, circulating markers of

inflammation [including interleukin-6 (IL-6), high-sensitivity C-reactive protein (hs-CRP)

and soluble CD14 (sCD14)] have been shown to predict all-cause mortality in HIV

infection,(6–8) enhancing interest in biomarkers as predictors of morbidity and mortality in

this patient population.

CD14 is a monocyte/macrophage surface marker that recognizes pathogen-associated

molecular patterns and is a co-receptor for lipopolysaccharide.(9) CD14 may be membrane

bound or exist as sCD14 when shed or secreted from activated monocytes/macrophages or

secreted by hepatic Kupffer cells.(10, 11) sCD14 is elevated in the setting of HIV infection

and does not normalize with ART initiation.(12–14) Similarly, significant declines in sCD14

have not previously been documented in virologically-suppressed patients switching or

intensifying ART. The associations between higher sCD14 levels, increased all-cause

mortality(7, 15, 16) and progression of HIV disease(15, 17) emphasize the need to both

understand the mechanism of sCD14 elevation in HIV infection and determine whether

interventions to normalize sCD14 levels/monocyte activation improve clinical outcomes.

Persistent immune activation in HIV-infected persons on ART may be the result of one or

more stimuli such as concomitant infections and/or co-morbidities, enterocyte damage

leading to microbial translocation, or medication-specific toxicities. Determining how

sCD14 changes with other markers of monocyte activation, microbial translocation and

inflammation [including soluble CD163 (sCD163), intestinal-type fatty acid binding protein
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(I-FABP), tumor necrosis factor-α (TNF-α) and soluble TNF receptor II (sTNF-RII)] could

help define the mechanism driving changes in sCD14 following ART initiation or switch.

This analysis describes changes in biomarkers of inflammation, immune activation and

microbial translocation in a 48-week trial of virologically-suppressed, HIV-infected women

with central adiposity on protease inhibitor (PI)- or non-nucleoside reverse transcriptase

inhibitor (NNRTI)-based ART who continued their thymidine-sparing nucleoside reverse

transcriptase inhibitor (NRTI) backbone and were randomized to switch to raltegravir (RAL)

immediately or after 24 weeks.

METHODS

Study design

Complete methods for the parent study have previously been published.(18) Briefly, HIV-

infected women with central adiposity (defined as waist circumference >94 cm or waist-to-

hip ratio >0.88) and HIV-1 RNA <50 copies/mL on a regimen of tenofovir or abacavir and

emtricitabine or lamivudine plus a PI or NNRTI were randomized 1:1 to substitute PI or

NNRTI for RAL 400 mg po bid at week 0 (immediate switch) or week 24 (delayed switch).

Subjects randomized to delayed switch provided an internal control group of subjects on

continued PI/NNRTI therapy for the first 24 weeks. During weeks 24–48, all subjects

received RAL. The study was not blinded, as randomization required switching to RAL vs.

continued standard of care.

Subjects were recruited from five centers in North America between September 2008 and

July 2010. Inclusion criteria included: Age ≥18 years, documented HIV-1 infection, central

adiposity, continuous virologic suppression since ART initiation and current HIV-1 RNA

<50 copies/mL, current ART with a compatible NRTI backbone plus a PI or NNRTI (as

above), no change in ART for ≥12 weeks prior to screening and ability and willingness to

provide informed consent.

The parent study hypothesized that, in women experiencing central fat gain on PI/NNRTI,

switch to a more metabolically neutral agent (RAL) might prevent ongoing fat gain or allow

partial reversal of lipohypertrophy. As such, the study was powered to observe a ≥10%

difference in computed tomography-quantified visceral fat between RAL- and PI/NNRTI-

treated subjects over 24 weeks. While anticipated reductions in total and LDL cholesterol

were observed in RAL-treated subjects, only a 5.4% between group difference in visceral fat

was observed (RAL −3.6% visceral fat, PI/NNRTI +1.9%).(18)

A protocol-defined, exploratory analysis of changes in inflammatory biomarkers was

performed on stored plasma samples. The institutional review boards/ethics committees of

the participating institutions approved all study documents and procedures, and all subjects

provided written informed consent prior to initiation of study procedures.

Assessments

Biomarker Assessments—Complete parent study assessments have previously been

published.(18) For this analysis, blood for plasma isolation was obtained in EDTA tubes at
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weeks 0, 24 and 48 and centrifuged for 15 minutes at 2000 rpm's and 20–22 °C within 30

minutes of collection. Samples were stored at the sites in 1cc aliquots at −80 °C until the end

of the study, when they were sent to the University of California, Los Angeles for sorting

and cataloging prior to shipment to the Laboratory for Clinical Biochemistry Research at the

University of Vermont, where all assays were performed under the supervision of Dr.

Russell Tracy.

sCD14, sCD163, IL-6, sTNF-RII and soluble vascular cell adhesion molecule-1 (sVCAM-1)

were measured via R&D Systems Human Quantikine® ELISA, TNF-α via Millipore Human

Adipokine Panel B multiplex assay, I-FABP via R&D Systems Human FABP-2 DuoSet®

ELISA, d-dimer via StagoSTA®-Liatest® assay, C-telopeptide (CTP) via

Immunodiagnostic Systems (IDS) UniQ™ ICTP ELISA and pro-collagen type 1 N-terminal

pro-peptide (P1NP) via IDS UniQ™P1NP radioimmunoassay. All assays had coefficients of

variation of ten percent or less.

Statistical Analyses

Baseline characteristics were compared between treatment groups using the Mann-Whitney

U test for continuous variables and the Fisher’s exact test for categorical variables. Median

values and interquartile ranges (IQR) are reported for continuous variables, and percentages

for categorical data.

Median, between group, 24-week change scores for all biomarkers were compared using the

Wilcoxon sign-rank test. Additionally, 48-week change scores were calculated for the

immediate switch group, and a pooled analysis of biomarker changes in the 24 weeks

following switch to RAL was performed for all subjects. Spearman or Kendall tau rank

correlation coefficients were calculated to assess relationships between 1) changes in

biomarkers and 2) changes in biomarkers and clinical parameters. All analyses were as-

treated, excluding subjects who did not remain on the study regimen and/or did not have an

observed primary end point. A supplemental intent-to-treat analysis and analyses of log-

transformed mean values were also performed and produced similar results (data not

shown).

Sample size was determined by the parent study (n=37). All biomarker analyses were

exploratory. However, 37 subjects provided 80% power to see a minimum between-group

effect size of: sCD14 453.0 ng/mL, sCD163 372.0 ng/mL, I-FABP 1501.0 pg/mL, IL-6 13.0

pg/mL, d dimer 0.4 µg/mL, TNF-α 2.1 pg/mL, sTNF-RII 842.0 pg/mL, sVCAM-1 536.0

ng/mL, CTP 2.3 µg/L, and P1NP 43.0 µg/L. All statistical tests were two-sided with a

nominal alpha level of 0.05. Analyses were exploratory and were performed with and

without adjustment for multiple testing. Data analysis and management was performed using

SAS 9.2 or 9.3 (SAS Institute, Inc., Cary, NC).

RESULTS

Patient population

Sixty-one subjects screened and 39 enrolled. Eighteen subjects were randomized to

immediate switch, and 21 to delayed switch. Thirty-seven subjects completed the week 24
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primary endpoint, and 36 completed the week 48 endpoint. No study withdrawals were

RAL-related. Complete demographic and baseline clinical characteristics of the 37

participants included in the as-treated analysis are provided in Table 1. At baseline,

randomization groups were well balanced, although the delayed switch group had a higher

rate of current tobacco use (24% vs. 58%). The median age was 43 years, BMI 32 kg/m2,

and 75% of subjects self-identified as Black or Hispanic. Sixty-two percent of subjects were

on a PI at entry (vs. 38% NNRTI), and the most commonly reported NRTIs were tenofovir

(78%) and emtricitabine (68%).

Baseline Biomarker Characteristics

At baseline, no significant differences in median sCD14, sCD163, I-FABP, IL-6, d-dimer,

TNF-α, sTNF-RII, sVCAM-1, CTP or P1NP were observed between subjects randomized to

the immediate vs. delayed switch arms (Table 2).

Changes in Biomarkers Between Weeks 0 and 24

Changes in biomarkers for both randomization groups are presented in Table 3. After 24

weeks, a significant median decline in sCD14 was observed in RAL-treated subjects (−461.9

ng/mL, −21%, IQR (−704.0, −253.7), p<0.001) compared to subjects remaining on PI or

NNRTI (−102.6 ng/mL, −5%, IQR (−277.4, 107.6), p=0.28; between group p<0.01). This

decline in sCD14 occurred regardless of whether subjects switched off PI or NNRTI, and

was accompanied by an increase in TNF-α (RAL: 0.3 pg/mL, 7%, IQR (−0.2, 0.6), p=0.05;

PI/NNRTI: −0.1 pg/mL, −2%, IQR (−0.9, 0.3), p=0.28; between group p=0.05). Subjects

experiencing sCD14 declines below the median drove the increase in TNF-α among RAL-

treated subjects. An insignificant increase in sTNF-RII (16.5 pg/mL, 0.6%, IQR (−76.4,

236.1), p=0.55) that was statistically different than the change seen in PI-/NNRTI-treated

subjects (−195.7 pg/mL, −6%, IQR (−333.6, −47.9), within group p<0.001, between group

p<0.01) was also observed. sTNF-RII did not change significantly in any sCD14 subgroup.

Changes in sCD14, TNF-α, and sTNF-RII are illustrated in Figure 1. No statistically

significant within or between group changes in other biomarkers were observed between

weeks 0 and 24.

Changes in Biomarkers Between Weeks 24 and 48

Changes in biomarkers for both randomization groups are presented in Table 3. After 48

weeks, subjects randomized to immediate switch maintained a reduction in sCD14 (total 48-

week change −494.1 ng/mL, −23%, IQR (−764.8, −269.4), p<0.0001). Subjects randomized

to delayed switch saw a significant decline in sCD14 following switch to RAL at week 24

(−217.6 ng/mL, −10%, IQR (−498.8, 14.35), p<0.01; Figure 2). Following switch to RAL,

both groups achieved similar sCD14 declines (week 48 between group p value=0.48).

In the delayed switch group only, switch to RAL was also associated with an increase in

sCD163 (70.6 ng/mL, 12%, IQR (−7.0, 165.7), p=0.05). No other statistically significant

changes in biomarkers were observed in either randomization group after 48 weeks. Of note,

upon switch to RAL, no significant increase in TNF-α or sTNF-RII was observed in subjects

in the delayed switch arm. Additionally, at week 48, the small increases in TNF-α and
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sTNF-RII initially observed in immediate switch subjects no longer retained statistical

significance.

Pooled Changes in Biomarkers for All Subjects Following Switch to RAL

When 24-week post-switch data from all subjects (weeks 0–24 for immediate switch, weeks

24–48 for delayed switch) was pooled to improve power, the median sCD14 decline

remained significant (−308.9 ng/mL, −14%, IQR (−704.0, −97.0), p<0.0001). Pooled

analysis also detected significant increases in sCD163 (previously observed in both groups

but only significant in the delayed switch group; median 49.8 ng/mL, 8%, IQR (−26.7,

125.4), p=0.05) and TNF-α (previously observed in both groups but only significant in the

immediate switch group; median 0.3 pg/mL, 6%, IQR (−0.15, 0.79), p=0.01). No other

statistically significant changes in biomarkers were observed in the pooled analysis,

including sTNF-RII.

Adjustment for Multiple Testing

After adjustment for multiple testing, significance for biomarker change scores was defined

as p<0.001. While the decline in sCD14 in individual study arms approached but did not

reach statistical significance (immediate switch weeks 0–24, p=0.003; delayed switch weeks

24–48, p=0.006), declines in sCD14 were significant for the 48-week change in the

immediate switch group and in the pooled 24-week analysis (both p<0.0001).

Correlations Between Changes in Biomarkers and Clinical Parameters

At baseline, sCD14 correlated with sCD163 (r=0.40, p=0.01) and I-FABP (r=0.34, p=0.04),

and sCD163 correlated strongly with sVCAM-1 (r=0.82, p<0.0001), TNF-α (r=0.68,

p<0.0001), sTNF-RII (r=0.74, p<0.0001), and low-density lipoprotein cholesterol (LDL; r=

−0.41, p=0.01). I-FABP correlated positively with sTNF-RII (r=0.38, p=0.02), visceral fat

volume (r=0.50, p<0.01) and high-density lipoprotein cholesterol (HDL; r=0.43, <0.01), and

negatively with current CD4+ T cell count (r=−0.36, p=0.03).

In the immediate switch group, 24-week changes in sCD14 correlated only with changes in

hs-CRP (although no significant change in hs-CRP was observed (data previously

published(18); r=0.55, p=0.03). Correlations between changes in sCD163 and visceral fat

(r=0.56, p=0.05), I-FABP and d-dimer (r=−0.56, p=0.02) and TNF-α and CD4+ T cell count

(r=−0.53, p=0.03) were also present. In the delayed switch group, significant correlations

were observed between 24-week changes in sCD14 and d-dimer (r=0.48, p=0.03); TNF-α

and sTNF-RII (r=0.59, p<0.01), CD4+ T cell count (r=−0.44, p=0.05), and sVCAM-1

(r=0.47, p=0.04); and sTNF-RII and sVCAM-1 (r=0.59, p<0.01).

In analysis of pooled 24-week changes following switch to RAL, changes in CTP correlated

with changes in sCD163 (r=0.51, p=0.001) and waist circumference (r=−0.44, p=0.01), and

changes in I-FABP correlated with changes in BMI (r=−0.35, p=0.04).
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DISCUSSION

In this randomized trial of HIV-infected women with central adiposity, switch to RAL was

associated with statistically significant within and between group declines in sCD14

compared to subjects remaining on PI or NNRTI. While RAL was associated with greater

declines in sCD14 than NNRTI-based regimens in a small study of treatment-naïve subjects,

(19) to our knowledge a decline in sCD14 in virologically-suppressed patients switching

ART has not previously been described. This finding may have important clinical

implications, as sCD14 has been associated with all-cause mortality in HIV infection.(7, 15,

16)

In the SMART study, a gradient effect of sCD14 quartile on mortality was observed, with an

OR for mortality of 2.3 per increase in sCD14 IQR.(7) Setting the SMART overall mortality

rate (1.55%) as the median mortality rate and using the per sCD14 IQR increase in OR for

mortality (2.3) as a basis to calculate the OR for a one quartile change, it can be

hypothesized that a one quartile increase in sCD14 might translate to a 52% increase in

mortality among SMART subjects. The limitations of extrapolating this data to different

patient populations are significant, and include the fact that an intervention to lower sCD14

may not have the same mortality benefit as initiating ART with a lower baseline sCD14

level; however, baseline sCD14 values in our study were similar to those in SMART, and, if

the SMART data can be generalized to other patient populations, it is possible that the 21%

decline in sCD14 we observed over 24 weeks in women switching to RAL might translate to

an estimated 44% reduction in mortality. Or, for a similar mean follow-up time (16 months),

approximately 200 subjects would need to switch to RAL to save one life.

Additionally, higher circulating levels of sCD14 and other markers of monocyte activation

and/or microbial translocation have been associated with end-organ diseases including

cardiovascular disease (sCD14,(20–22) sCD163(23) and lipopolysaccharide (LPS)(21, 24)),

neurocognitive decline (sCD14,(25) sCD163(26) and LPS(27)), and non-alcoholic

steatohepatitis,(11) suggesting that, if a true benefit of RAL on sCD14 exists, its long-term

use could be associated with a smaller burden of comorbid disease than other antiretroviral

agents.

Although the mechanism of sCD14 decline in subjects switching to RAL is unknown, one

possibility is that increased RAL penetration into the gut (vs. PI/NNRTI) promotes local

control of viral replication and inflammation and decreased microbial translocation. In a

small study of HIV-uninfected men, Patterson et al reported rapid penetration of RAL into

gastrointestinal tissue, with levels throughout the colon 160–650 fold greater than plasma

levels. Additionally, RAL achieved higher levels in gastrointestinal tissue than other

antiretroviral agents.(28)

A similar potential mechanism is reduced viremia and/or viral replication in areas other than

the gut. However, prior RAL switch and intensification studies have not consistently

demonstrated improved residual viremia or low-level viral replication (defined as decreased

HIV-1 viral load via ultra-sensitive assay or increased 2-long-term repeat (2-LTR) circles)

with RAL initiation.(29–34) Additionally, studies demonstrating increased 2-LTR circles
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with RAL intensification saw effects predominately in PI-treated subjects.(29, 30) While

measurement of 2-LTR circles and HIV-1 viral load via ultra-sensitive assay were beyond

the scope of this study, sCD14 decline following switch to RAL was not restricted to PI-

treated subjects. RAL intensification has also demonstrated inconsistent improvements in T

cell activation,(29, 30, 35, 36) and improved D dimer (29) and lipopolysaccharide(33) but

not sCD14 levels.(33, 35, 36)

Finally, the observed decline in sCD14 might be attributable to RAL’s known, beneficial

effects on lipid levels.(18, 37) For example, reduction in circulating lipid levels could lead to

reduced hepatic inflammation and steatosis (leading to decreased sCD14 secretion from the

liver), as has been observed with statin use.(38) Although we did not detect correlations

between changes in monocyte activation markers and lipids or directly measure oxidized

lipid levels in our study, oxidized LDL stimulates CD14 expression on circulating

monocytes,(39) and oxidized HDL activates monocytes in vitro.(40) Thus, is reasonable to

hypothesize that oxidized lipids may be a mediator of monocyte activation in HIV-infected

patients.

It is important to note that, although we did not observe statistically significant changes in I-

FABP or sCD163 following switch to RAL (vs. continued PI/NNRTI), we were not powered

for these endpoints, and decreased microbial translocation and/or monocyte activation could

contribute to the observed decline in sCD14 levels. Additionally, although I-FABP is a

known marker of enterocyte damage,(41) its utility as a marker of microbial translocation in

virologically-suppressed, HIV-infected patients has recently been challenged.(42). Similarly,

the lack of statistically significant changes in markers of vascular function (sVCAM-1) and

bone metabolism (CTP and P1NP) was likely heavily influenced by both our lack of power

to observe these exploratory endpoints and the large observed physiologic variability. As

such, these results should be interpreted as neutral rather than the lack of an effect of RAL

on vascular function and/or bone turnover.

Although physiologic variability was large, a significant 24-week increase in TNF-α was

observed in the immediate switch group. sTNF-RII also increased in the immediate switch

group (although not significantly). Both increases were statistically different from the stable

TNF-α and decreased sTNF-RII values observed in subjects remaining on PI or NNRTI;

however, after 48 weeks the increase in TNF-α was no longer significant in the immediate

switch group, and no significant changes in TNF-α or sTNF-RII were observed in delayed

switch subjects following switch to RAL. The increase in sTNF-RII also was not significant

in the pooled analysis. Additionally, the observed changes in TNF-α and sTNF-RII were

small in magnitude compared to sCD14 (7% TNF-α, 0.6% sTNF-RII, −21% sCD14), are of

unknown clinical significance and did not vary significantly by entry regimen. This latter

finding is in contrast to the SPIRAL study, in which subjects switching from PI to RAL

experienced significant declines in TNF-α.(43) Most importantly, only changes in sCD14

retained significance after adjustment for multiple testing. Further studies are needed to

assess whether these findings can be replicated in larger cohorts, and to determine the

mechanism of sCD14 decline in patients switching to RAL.
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Finally, the study of sex differences in markers of immune activation is critically important,

and documenting changes in biomarkers in HIV-infected women who are virologically

suppressed is needed. For example, recent studies demonstrating associations between HIV

infection and increased sCD14 and sCD163 were not designed to assess sex differences.(44–

46) Complicating this is the observation that healthy HIV-infected women may have lower

sCD14 and higher sCD163 levels than age-matched men.(45) The contribution of age to

HIV infection and sex is also important: although sCD163 levels increase with age, Martin

and colleagues recently reported sCD163 levels in HIV-infected women (87% on ART) that

were similar to HIV-uninfected women 14.5 years older,(44) a finding previously described

in HIV-infected men.(47) Thus, understanding the contribution of sex to immune activation

is necessary in order to optimize care for women living with HIV.

Limitations

This study has several limitations. First, the sample size is small, biomarker measurements

were exploratory in nature and physiologic variability was high. While the likelihood of

types I and II error exist in this exploratory analysis, the magnitude of sCD14 improvement,

its reproducibility across treatment arms and its significance after adjustment for multiple

testing lead us to believe that the observed improvement in sCD14 represents a true finding.

The fact that observed correlations between biomarkers (for example, positive correlations

between baseline sCD14, sCD163 and I-FABP, and the negative correlation between change

in sTNF-RII and CD4 count) were in keeping with physiologic expectations supports this

conclusion.

Next, the high prevalence of generalized obesity in this cohort (median BMI 32 kg/m2)

likely confounds any effect of RAL on biomarkers of inflammation. For example, sCD163

may be elevated in obese subjects,(48) and Koethe et al described the loss of incremental

BMI effect on sCD14 in obese HIV-infected subjects.(49) Finally, we are unable to

determine the mechanism of sCD14 decline in women switching to RAL, including whether

the decrease arises from switch to RAL or switch away from PI or NNRTI. Thus, a larger

study designed to provide mechanistic insight and powered to detect clinically significant

effect sizes for changes in biomarkers is needed.

Conclusions

In this randomized trial of virologically-suppressed, HIV-infected women with central

adiposity, switch to RAL from PI or NNRTI was associated with a statistically significant

decline in sCD14. This is the first study to demonstrate significant changes in sCD14

following ART switch in subjects well controlled on ART, and may have important

implications for mortality and/or the development of comorbidities in treated HIV-infected

patients. Further studies are needed to assess whether this finding can be replicated in larger

cohorts and to determine the mechanism of this decline.
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Figure 1. 48-Week Changes in sCD14, TNF-α and sTNR-RII
sCD14=soluble CD14; TNF-α=tumor necrosis factor-α; sTNF-RII=soluble tumor necrosis

factor receptor II; RAL=raltegravir
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Figure 2. Individual Level Changes in sCD14 Over 48 Weeks
sCD14=soluble CD14
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Table 1

Baseline Demographic and Clinical Characteristicsa

Immediate Delayed Overall

Ethnicity n=17 n=20 n=37

  African American 53% 65% 59%

  Hispanic 23% 10% 16%

  White 18% 25% 22%

  Asian 6% 0% 3%

Age (years) 41 (39, 47) 46 (36, 51) 43 (37, 49)

BMI (kg/m2) 34.7 (28.8, 37.6) 30.4 (27.7, 35.4) 32.0 (28.0, 36.5)

Tobacco use (current)b 24% 60% 43%

CD4 count (cells/µL) 563 (447, 747) 554 (354, 770) 558 (422, 747)

Time on ART (years) 5.1 (3.1, 7.1) 2.7 (1.6, 6.3) 3.7 (2.4, 7.1)

PI n=11 (65%) n=12 (60%) n=23 (62%)

  Atazanavir/ritonavir 35% 30% 32%

  Atazanavir 6% 15% 11%

  Fosamprenavir/ritonavir 0% 5% 3%

  Fosamprenavir 0% 5% 3%

  Lopinavir/ritonavir 18% 5% 11%

  Nelfinavir 6% 0% 3%

NNRTI n=6 (35%) n=8 (40%) n=14 (38%)

  Efavirenz 18% 30% 24%

  Etravirine 6% 0% 3%

  Nevirapine 12% 10% 11%

NRTI n=17 (100%) n=20 (100%) n=37 (100%)

  Abacavir 18% 25% 22%

  Lamivudine 29% 35% 32%

  Emtricitabine 71% 65% 68%

  Tenofovir 82% 75% 78%

Waist circumference (cm) 106.0 (102.0, 121.0) 102.4 (99.2, 113.0) 105.5 (99.5, 118.0)

Hip circumference (cm) 117.5 (102.1, 127.0) 106.5 (102.2, 124.4) 115.5 (102.1, 127.0)

Waist:hip ratio 0.96 (0.90, 0.99) 0.97 (0.93, 1.02) 0.96 (0.92, 1.00)

Glucose (mg/dL) 84.0 (78.0, 93.0) 88.5 (80.0, 97.5) 87.0 (78.0, 94.0)

Total cholesterol (mg/dL) 179.0 (162.0, 206.0) 199.0 (164.5, 221.5) 188.0 (162.0, 214.0)

Triglycerides (mg/dL) 116.0 (85.0, 144.0) 129.0 (101.0, 176.0) 118.0 (92.0, 152.0)

LDL (mg/dL) 113.0 (103.0, 123.0) 116 (89.0, 138.1) 115.8 (93.0, 128.0)

HDL (mg/dL) 47.6 (40.2, 57.0) 49.1 (39.0, 55.0) 49.0 (40.0, 57.0)

hs-CRP (mg/dL) 2.7 (0.6, 6.0) 4.7 (0.8, 7.5) 3.2 (0.6, 6.5)

Diabetesc 0% 0% 0%

Hyperlipidemiac 18% 25% 22%

a
Percent or median with interquartile range. Mann-Whitney U or Fisher's exact tests used to test statistical significance for continuous and

categorical variables, respectively.
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b
p=0.05. Otherwise, no statistically significant association between-arm differences.

c
Defined as self-reported diagnosis or on-therapy at baseline.

BMI, body mass index; ART, antiretroviral therapy; PI, protease inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI,
nucleoside reverse transcriptase inhibitor; LDL, low-density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol.
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Table 2

Median (IQR) Baseline Biomarker Distributions

Immediate Delayed Overall

Between
Group
p value

N 17 20 37

sCD14 (ng/mL) 2175.7 (1940.1, 2403.9) 2170.9 (1958.7, 2444.8) 2175.7 (1948.1, 2432.6) 0.62

sCD163 (ng/mL) 629.0 (405.1, 723.4) 606.1 (514.7, 753.0) 613.2 (480.3, 749.6) 0.49

I-FABP (pg/mL) 1840.0 (1224.0, 2163.9) 1755.7 (1288.7, 2245.7) 1793.7 (1224.0, 2195.1) 0.87

IL-6 (pg/mL) 3.8 (2.3, 6.1) 3.8 (3.1, 6.9) 3.8 (2.6, 6.6) 0.81

D dimer (µg/mL) 0.3 (0.1, 0.3) 0.2 (0.1, 0.4) 0.3 (0.1, 0.4) 0.68

TNF-α (pg/mL) 4.3 (3.6, 5.5) 5.2 (4.1, 7.4) 4.7 (3.7, 6.2) 0.12

sTNF-RII (pg/mL) 2862.2 (2543.0, 3669.7) 3149.4 (2739.5, 3432.7) 3067.6 (2690.3, 3542.0) 0.34

sVCAM-1 (ng/mL) 870.2 (644.8, 938.6) 859.4 (751.8, 962.9) 870.2 (686.9, 938.6) 0.57

CTP (µg/L) 3.2 (3.1, 3.4) 3.7 (2.8, 4.9) 3.2 (2.9, 3.8) 0.20

P1NP (µg/L) 48.6 (37.4, 72.0) 55.6 (42.5, 83.6) 53.1 (39.5, 75.8) 0.28

Median baseline values shown with interquartile range (IQR). Wilcoxon rank sum test used for determination of statistical significance. Two-sided
α=0.05. sCD14=soluble CD14; sCD163=soluble CD163; I-FABP=intestinal-type fatty acid binding protein; IL-6=interleukin-6; TNF-α=tumor
necrosis factor-α; sTNF-RII=soluble tumor necrosis factor receptor II; sVCAM-1=soluble vascular cell adhesion molecule-1; CTP=C-telopeptide;
P1NP=pro-collagen type 1 N-terminal pro-peptide.
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