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Systems/Circuits

The Degree of Nesting between Spindles and Slow
Oscillations Modulates Neural Synchrony

Daniel B. Silversmith,1,2,3 Stefan M. Lemke,2,3,4 Daniel Egert,3 Joshua D. Berke,1,3,4 and Karunesh Ganguly1,2,3,4
1Graduate Program in Bioengineering, University of California, Berkeley 94720, & University of California, San Francisco, California 94115,
2Neurology & Rehabilitation Service, San Francisco Veterans Administration Medical Center, San Francisco, California 94121, 3Department of
Neurology, University of California, San Francisco, California 94143, and 4Neuroscience Graduate Program, University of California, San Francisco,
California 94115

Spindles and slow oscillations (SOs) both appear to play an important role in memory consolidation. Spindle and SO “nest-
ing,” or the temporal overlap between the two events, is believed to modulate consolidation. However, the neurophysiological
processes modified by nesting remain poorly understood. We thus recorded activity from the primary motor cortex of 4 male
sleeping rats to investigate how SO and spindles interact to modulate the correlation structure of neural firing. During spin-
dles, primary motor cortex neurons fired at a preferred phase, with neural pairs demonstrating greater neural synchrony, or
correlated firing, during spindle peaks. We found a direct relationship between the temporal proximity between SO and spin-
dles, and changes to the distribution of neural correlations; nesting was associated with narrowing of the distribution, with a
reduction in low- and high-correlation pairs. Such narrowing may be consistent with greater exploration of neural states.
Interestingly, after animals practiced a novel motor task, pairwise correlations increased during nested spindles, consistent
with targeted strengthening of functional interactions. These findings may be key mechanisms through which spindle nesting
supports memory consolidation.

Key words: correlation; sleep; spiking; spindle; slow waves; slow oscillations

Significance Statement

Our analysis revealed changes in cortical spiking structure that followed the waxing and waning of spindles; firing rates
increased, spikes were more phase-locked to spindle-band local field potential, and synchrony across units peaked during
spindles. Moreover, we showed that the degree of nesting between spindles and slow oscillations modified the correlation
structure across units by narrowing the distribution of pairwise correlations. Finally, we demonstrated that engaging in a
novel motor task increased pairwise correlations during nested spindles. These phenomena suggest key mechanisms through
which the interaction of spindles and slow oscillations may support sensorimotor learning. More broadly, this work helps link
large-scale measures of population activity to changes in spiking structure, a critical step in understanding neuroplasticity
across multiple scales.

Introduction
Sleep-dependent offline processing is required for the consolida-
tion of new memories and skills (Rasch and Born, 2013;
Miyamoto et al., 2016; Gulati et al., 2017; Latchoumane et al.,
2017; Kim et al., 2019). Thalamocortical spindles, 10–16Hz
bursts of activity that appear in EEG signals and local field poten-
tials (LFP) (Steriade et al., 1993b; Steriade, 2000; Rasch and Born,
2013), in particular, have been linked to offline processing across
a variety of paradigms ranging from declarative memory tasks
(Gais et al., 2002; Clemens et al., 2005, 2006; Eschenko et al.,
2006; Mölle et al., 2009; Logothetis et al., 2012) to motor learning
paradigms (Walker et al., 2002; Fogel and Smith, 2006; Nishida
and Walker, 2007; Barakat et al., 2011; Johnson et al., 2012;
Ramanathan et al., 2015). Moreover, slow oscillations (SOs;
,1Hz deflections in EEG or LFP) during NREM sleep appear to
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be essential for offline processing of awake experiences during
sleep (Steriade and Timofeev, 2003; Molle et al., 2004; Marshall
et al., 2006; Gulati et al., 2014, 2017; Ramanathan et al., 2015;
Miyamoto et al., 2016; Kim et al., 2019).

There is growing evidence that “nesting” of SO with spindles
may be particularly important for offline processing. For putative
hippocampus-dependent tasks, the coordination of thalamocort-
ical spindles, SO, and sharp-wave ripples appears to promote
consolidation through hierarchical nesting, in which higher-fre-
quency oscillations are embedded (“nested”) within lower-fre-
quency oscillations (Steriade et al., 1993a; Mölle et al., 2002,
2009; Ji andWilson, 2007; Cox et al., 2014; Niknazar et al., 2015).
Interestingly, a recent study selectively induced either nested or
un-nested sleep spindles within SO during a contextual fear con-
ditioning task and found concordant changes in behavior
(Latchoumane et al., 2017), indicating that nesting plays a causal
role in learning. In motor learning paradigms, both spindles and
SOs are correlated with the reactivation of awake experiences
and offline performance gains (Ramanathan et al., 2015; Kim et
al., 2019).

Despite the extensive work linking sleep spindles, SOs, and
the phenomenon of nesting to memory consolidation, rela-
tively little is understood about the relationship between these
oscillations and spiking activity. In general, the temporal pre-
cision of neural spiking is central in regulating changes in syn-
aptic efficacy (Hebb, 1949; Bi and Poo, 1998), and network
correlation structure is predictive of large-scale functional
reorganization (Merzenich et al., 1984; Recanzone et al., 1992;
Yazdan-Shahmorad et al., 2018). A few studies have found that
neurons in PFC are phase-locked to sleep spindles (Peyrache et
al., 2011; Gardner et al., 2013; Sela et al., 2016). However, despite
the importance of neural correlations for driving synaptic plastic-
ity, the effect of spindles on the correlation structure of neural fir-
ing remains largely unexplored.

To that end, we simultaneously recorded LFPs and spiking
activity from electrode arrays in the primary motor cortex (M1)
of sleeping rats. This allowed us to examine the precise relation-
ship between spike timing relative to ongoing spindles and SO.
By parsing spindles into their component cycles, we were able to
analyze the dynamics of spiking during the evolution of spindles.
This analysis revealed a waxing and waning of fine-scale struc-
ture, which featured increased spiking, increased phase-locking,
and increased pairwise correlations that reached a maximum at
the peak of spindles. This analysis also revealed that the interac-
tion of spindles and SO modulate spiking structure: the distribu-
tion of spindle-induced correlations narrowed when spindles
were in closer temporal proximity (i.e., nested) to an SO. Finally,
we found that, following engagement in a novel motor task, there
was an increase in pairwise correlations during nested spindles.
By understanding the connection between spindles, SO, and
spiking correlation structure, we gained insight into the neuro-
physiological basis of offline processing modulated by spindle-
SO interactions.

Materials and Methods
Electrophysiology
We recorded extracellular neural activity using tungsten microwire elec-
trode arrays (n= 2 rats, Tucker-Davis Technologies), tetrodes (n=1 rat,
NeuroNexus), and custom probes (n=1 rat) (Egert et al., 2018). We
implanted arrays targeted to layer 5 of (;1.5 mm) the caudal forelimb
area of the M1, centered at 3–4 mm lateral, 0.5 mm anterior to bregma.

We recorded spike and LFP activity using a 128- and 256-channel
Tucker-Davis Technologies RZ2 system. Spike data were sampled at

24,414Hz and high-pass filtered at 300Hz. Broadband LFP data were
sampled at 1018Hz, and bandpass filtered between 0.1 and 300Hz. We
used unity gain, high-impedance (;1 GV) headstages; for 3 animals, we
used Tucker-Davis Technologies analog headstages; and for 1 animal,
we used two 128-channel custom boards with two RHD 128-channel
chips (Intan Technologies, product #C3316). Microwire electrode array
recordings were sorted offline using PCA-based algorithms followed by
manual cluster-cutting using Tucker-Davis Technologies’ OpenSorter
software. Tetrodes were sorted using the UltraMegaSort toolbox (https://
physics.ucsd.edu/neurophysics/software.php), a set of MATLAB (The
MathWorks) based scripts for tetrode sorting described in detail previ-
ously (Gulati et al., 2014; Ramanathan et al., 2015). Sorting on the 256-
channel custom probes was done using MountainSort (Chung et al.,
2017). Briefly, MountainSort is spike-sorting software that uses an auto-
matic algorithm, which compares clusters of data using one-dimensional
projections. If data along these projections are statistically bimodal, then
the clusters are considered distinct. We used a consolidation factor of 0.9
and a noise overlap threshold of 0.03 to identify clusters as single units.
We performed a minimal amount of post hocmanual merging and rejec-
tion of clusters to correct for drift during long recordings.

We recorded 40, 35, 11, and 13 units from each probe (and rat),
respectively. For all first-order statistical analyses, we combined units to-
gether for a total 99 units. Pairwise analyses used all units within an ani-
mal. In total, 1508 pairs (780, 595, 55, and 78 pairs, respectively) were
analyzed.

Experimental design and statistical analyses
This study was performed in strict accordance with guidelines from the
USDA Animal Welfare Act and United States Public Health Science
Policy. The protocol was approved by the San Francisco Veterans
Administration Medical Center Institutional Animal Care and Use
Committee (Protocol #13-006). We used 4 adult Long–Evans male rats
(;12–16 weeks old). We collected new data from 1 animal for this study
and reanalyzed data from 3 animals in a previously published study
(Ramanathan et al., 2015). Animals were kept under controlled tempera-
ture and a 12 h light/dark cycle with lights on at 06:00 A.M. Probes were
implanted during a recovery surgery performed under isoflurane (1%-
3%) anesthesia. The postoperative recovery regimen included adminis-
tration of buprenorphine at 0.02mg/kg BW and meloxicam at 0.2mg/kg
BW. Dexamethasone at 0.5mg/kg BW and trimethoprim sulfadiazine at
15mg/kg BWwere also administered postoperatively for 5 d. All animals
were allowed to recover for 5 d before the start of experiments.

As in Ramanathan et al. (2015), we recorded neural activity and
monitored all rats in this study during sleep blocks before and after being
exposed to a novel motor task (Whishaw forelimb reach-to-grasp task)
(Whishaw et al., 2008). During this task, rats learned to reach, grasp, and
retrieve a sugar pellet (Ramanathan et al., 2015). In this study, sleep
blocks before and after motor practice were combined for analyses,
except where we have explicitly analyzed the effect of practice on a novel
motor task (see Fig. 6).

Data preprocessing and statistical analyses were performed in
MATLAB using a combination of built-in statistics functions, custom
scripts, and available third-party neural data analysis Toolboxes. Across
all analyses, disconnected/high-impedance LFP channels were removed
from the analysis. For each statistical comparison, we reported the statis-
tical test, effect sizes, and p values in the text; p values ,0.05 were con-
sidered significant. When using custom statistical methods (e.g.,
shuffling procedures), the detailed procedure is outlined in Materials
and Methods.

Sleep classification
Each LFP channel was segmented into nonoverlapping 6 s windows. In
each window, the power spectral density was computed and averaged
over the d /SO (0.1–4Hz) and g (30–60Hz) frequency bands (Kim et al.,
2019). Then a k-means classifier was used to cluster epochs into two
clusters, NREM sleep and REM/awake (see Fig. 1B). Only long (.30 s, 5
consecutive windows) epochs of sleep were analyzed. The identified
NREM sleep epochs were verified by post hoc visual inspection of the
LFP activity.

4674 • J. Neurosci., June 10, 2020 • 40(24):4673–4684 Silversmith et al. · Nesting Modulates Spike Correlations

https://physics.ucsd.edu/neurophysics/software.php
https://physics.ucsd.edu/neurophysics/software.php


Spindle detection
The spindle detection applied here is similar to the algorithm used previ-
ously (Sela et al., 2016; Kim et al., 2019). Channels without obvious arti-
facts were first z-scored and averaged to form a virtual LFP channel.
This signal was filtered in the spindle band (10-16Hz) using a zero-
phase shifted, third-order Butterworth filter. A smoothed envelope was
calculated by computing the magnitude of the Hilbert transform of this
signal and then convolving it with a Gaussian window (a = 2.5). Next,
we determined two thresholds for spindle detection (Ramanathan et al.,
2015; Kim et al., 2019) based on the mean and SD of the spindle band
envelope during NREM sleep (lower: 1.5 SD; upper: 2.5 SD). Epochs in
which the spindle envelope exceeded the upper threshold for at least one
sample and the spindle power exceeded the lower threshold for at least
500ms were considered spindles (see Fig. 1C). Finally, spindles that were
sufficiently close in time (,300ms) were combined. For each spindle
epoch, the peak of the spindle band LFP was identified. Spindles were
aligned to this peak for generating average spindle waveforms, spectro-
grams, and spike rasters (see Figs. 1, 2).

Control spindle epochs
There is a certain degree of spiking, phase-locking, and synchrony
between neurons that is expected, even if neurons are not modulated by

spindles. To account for such effects, we generated a control spindle dis-
tribution that had similar statistics to the true spindle epoch distribution.
Briefly, for each spindle epoch, a random offset, T, was computed 5-10 s
back from the true spindle peak, that is, T ; U (–10, –5). The nearest
peak in the spindle band LFP to that offset was taken as the peak of the
control spindle epoch (see Fig. 3A, examples). Each analysis was jointly
computed for the true spindle epochs (see Figs. 3, 4, blue) and the con-
trol spindle epochs (see Figs. 3, 4, black).

SO detection
The SO detection is similar to algorithms used previously (Sela et al.,
2016; Kim et al., 2019). To detect the ,1Hz SO, a virtual LFP channel
was constructed by averaging the LFP across all recording channels (see
Fig. 1C). Next, this virtual signal was filtered in a low-frequency band
(second-order, zero phase-shifted, high-pass Butterworth filter with a
cutoff at 0.1Hz followed by a fifth-order, zero phase-shifted, low-pass
Butterworth filter with a cutoff at 4Hz). Next, all positive-to-negative
zero crossings during NREM sleep were identified, along with the previ-
ous peaks, the following troughs, and the surrounding negative-to-posi-
tive zero crossings. Each identified epoch was considered an SO if the
peak was in the top 85% of peaks, the trough was in the top 40% of
troughs, and the time between the negative-to-positive zero crossings
was.300ms but did not exceed 1 s (see Fig. 1C, middle).

Figure 1. Recording setup and sleep oscillation detection. A, Sleeping rat along with anatomic location of multielectrode arrays and example LFP and spiking data from one recording chan-
nel. B, Example of sleep classification in both power spectral density (PSD; top) and temporal spaces. Each dot represents the PSD in the d (0.1-4 Hz) and g (30-60 Hz) frequency bands during
6 s windows. A k-means classifier was used to cluster epochs into two clusters: Awake/REM (blue) and NREM (orange). The average LFP trace is plotted across a 2 h sleep session (blue).
Identified sleep epochs are highlighted with orange boxes. C, Examples of detected sleep oscillations, highlighting the automatic methods used for detection. The broadband LFP (top) is
decomposed into a lower-frequency band (middle) and spindle band (bottom) components. SOs must have had sufficient positive and negative amplitudes (black lines; middle) and sufficiently
long durations (highlighted blue; middle). The spindle band envelope (purple line; bottom) must have exceeded an upper threshold (solid black line; bottom) for one sample and a lower
threshold (dashed black line; bottom) for at least 500 ms. Purple represents the detected spindle duration. D, Average spindle-triggered waveform (black line; right) and spectrogram (heat
map; right). Average spindle-triggered power spectrum (black line; left) and baseline power spectrum (dashed line; left). Solid and dashed boxes on the heat map represent the timing of the
spindle and baseline periods used to calculate the power spectra.
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Spectrogram generation
To generate spectrograms, we analyzed a window from�4 to 4 s around
each spindle peak. Then we used the MATLAB spectrogram function to
compute the spectrogram across the entire window (500ms Hamming
window, 350ms overlap) during each spindle. Next, we subdivided this
window into two 1 s epochs: (1) baseline: �2.5 to �1.5 s (see Fig. 1D,
dashed line); and (2) spindle: �0.5 to 0.5 s (see Fig. 1D, solid line).
During each spindle, we computed the power across frequency during
the baseline and spindle epochs. Average power across the baseline and
spindle epochs is plotted in Figure 1D (left). Then we calculated the %
Power Change from the baseline epoch for each frequency band as
follows:

% Power Change ¼ 100 p ðP� PbaseÞ=Pbase

The % Power Change is shown in Figure 1D (right). To avoid edge
effects, we limited this plot to�3 to 2 s around the spindle peak.

Spike phase extraction
Similar methods for spike phase extraction were used to assess the
spiking structure within a spindle cycle and across spindles. For both
analyses, we first computed the same virtual signal used in spindle
detection (see Fig. 1C) and then filtered the data in the spindle band
(10–16Hz; see Fig. 2C). Next, we applied the Hilbert transform and
took the angle at each sample to get a continuous representation of
the relative spindle phase (within cycles; see Fig. 2C, Phase Plot). To
assess the absolute phase across a spindle epoch, the relative phase

was unwrapped and centered such that the phase was 0 at the peak
of the spindle and 10p at the fifth cycle after the peak (see Figs. 3B,
4C). For each spindle epoch and each neuron, the nearest phase was
collected at each spike event.

Phase-locking value and preferred spindle phase
We calculated the phase-locking value to assess the degree of phase con-
sistency of spiking within spindle cycles. Briefly, for a given neuron,
across all spindle epochs, the phase of the spindle band LFP signal (see
Fig. 2C, Phase Plot) was collected for each detected action potential (see
Fig. 2C, Spikes) within a given cycle (e.g., [0, 2p]) yielding a distribution
of spike phases (see Fig. 2D). Each phase value in this distribution was
treated as a vector of magnitude 1 and angle equal to the phase as
follows:

Average Spike Phase Vector ¼ 1
n

Xn

i¼0
e;i

The average phase vector was computed according to the above
equation (see Fig. 2D, red arrow). From this vector, we attained the
phase-locking value (vector magnitude) and the preferred spindle phase
(vector angle). We calculated these measures for each neuron and each
spindle cycle.

Cross-correlation histogram (CCH) and pairwise synchrony
For each spindle epoch, we segmented the LFP into its individual cycles.
Next, we collected all spike times in each of these cycles. To compute the
CCH for a pair of neurons, we adapted previously reported methods

Figure 2. Spindle modulation of spiking. A, An example of the average waveform for a single unit recorded across many channels using a custom polytrode probe. Inset, Spike waveforms
(gray) on one channel of many spiking events along with the average waveform (red). This example unit is used for all panels in this figure. B, Spindle-triggered spiking for the example unit.
The average spindle waveform (blue) is plotted with the average normalized firing rate (orange). A raster of spike times is displayed below. C, Phase extraction methods. Spindle band (10-
16 Hz) LFP is plotted during a detected spindle (top) and is replotted immediately below (second from the top) with a finer time resolution. The Hilbert phase of the spindle activity is plotted
below (second from the bottom) and fluctuates between –p and p . The spiking activity is displayed on the bottom (bars) and as dots in the spindle band and phase subplots. The highlighted
portion of these plots extends from –2p to 2p and shows spikes that are used to compute the phase-locking value (C,D). D, The spike phase distribution for the example unit, plotted as a
circular histogram (blue). The average phase vector is overlaid in red and copied below for clarity. The magnitude and direction of this vector are defined as the phase-locking value and pre-
ferred spindle phase, which are collected for all units. E, Summary of the phase-locking value (bottom) and preferred spindle direction (top) for all units. Gray bars (bottom) represent the
phase-locking to the spindle band during control epochs. *Significant difference between the distributions.
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(Engelhard et al., 2013). Briefly, both spike trains were binned into 1ms
time bins, and one neuron was initially treated as the reference neuron.
For each spike from the reference neuron, we generated a count vector
of the other neuron’s spiking (t) relative to the reference spikes, where t
e (–50 ms, 50 ms). Each count vector was concatenated into a matrix.
Next, we swapped reference neurons and built a similar count vector
matrix but flipped each count vector (matrix row) to reflect the asymme-
try in firing between the neurons. The resulting matrix of 0’s and 1’s had
101 columns (1ms time bins from �50 to 50ms) and rows equal to the
total number of spikes from both neurons. A Gaussian kernel (5ms) was
used to smooth each row of this matrix, and then the average, smoothed
count vector was computed. This count vector, or CCH (see Fig. 2B, raw
CCH), represents the normalized frequency of cofiring between the two
neurons. The raw pairwise correlation was taken to be the peak of this
function.

Despite normalizing the CCH, an increase in pairwise correlations
can arise from multiple sources, including true increases in pairwise cor-
relations but also changes in excitability, firing rate, phase-locking to
external events, etc. Since changes in these first-order statistics might
influence second-order measures, such as correlations, we sought to find
a method to isolate second-order changes (Palm et al., 1988; Brody,

1999). To accomplish this, we first used a shuffling procedure to isolate
the effects of changes to first-order statistics on correlations, and then
we subtracted them off. As when we were computing the raw CCH, we
collected all spikes within each individual spindle cycle and selected one
neuron in each neuron-pair to be the reference neuron. However, we
then shuffled the second unit with respect to the spindle in which it fired.
In this approach, both units maintain all of their first-order relationships
with spindles and spindle cycles; for example, the number of spikes,
phase-locking values, and phase preferences of individual units do not
change after shuffling. However, the shuffling breaks the statistical rela-
tionship between the two neurons under examination. We repeated this
shuffling 25 times and then computed the same normalized, smoothed
count vector for the shuffled condition. This count vector represents the
expected normalized frequency of the cofiring given both neurons’ first-
order statistics. Finally, we subtract this expected count vector (shuffled)
from the unshuffled (raw) count vector, resulting in a corrected CCH
(see Fig. 4B). It is important to note that the first-order statistics change
as the spindle progresses (see Results; Fig. 3), but this shuffling is done
within each cycle and accounts for these changes across the spindle.
The correlation for each pair of neurons was then taken to be the peak of
the corrected CCH.

Figure 3. Spindle cycle analysis of phase-locking. A, Generation of the spike phase distribution across spindle cycles. Spike-triggered phases are extracted from single-unit spiking during spe-
cific spindle cycles. Phases are aggregated across actual spindle epochs (right) or control epochs (left). Blue represents analyses of actual spindles. Black represents analyses of control spindle.
B, Summary of all neurons’ spike phase distribution statistics across spindle cycles. The average spindle band waveform for each spindle cycle (top) is plotted along with the average spike rate
(second from top), preferred spindle direction (second from bottom), and phase-locking value (bottom). Blue lines indicate averages during actual spindle epochs. Black/gray lines indicate aver-
ages during control epochs. Error bars indicate SEM. C, Summary of spiking dynamics. Spike rates, preferred spindle directions, and phase-locking values are combined into three categories: (1)
CTRL, the two cycles at the center of the control epochs; (2) TAIL, the two cycles farthest from the spindle peaks; and (3) PEAK, the two cycles nearest the spindle peaks. Bar plots represent
the newly categorized data. *Significant differences between the categories. D, Relationship between phase-locking and spike count across neurons. Each neuron’s phase-locking value and spik-
ing rate in the PEAK are shown as a scatter plot (left) along with each neuron’s change in phase-locking value and spiking rate (PEAK – TAIL; scatter plot, right). Regression lines are superim-
posed on the scatter plots along with Pearson correlation coefficients and associated p values.
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Analysis of SO effects on spindle-induced correlations
Each spindle was binned according to its timing relative to SO. For each
spindle, the preceding SO was collected. If there were successive SOs,
only the final SO (i.e., the SO that was closest to the spindle) was col-
lected. The time delay between the down state (i.e., the peak of the
d -band LFP) and the spindle (peak spindle-band LFP) was binned in 1.5
s bins with a 1 s overlap between bins (see Fig. 5A,B). Since this distribu-
tion of time delays is skewed, there are more spindles in the bins closer
to SO than in subsequent bins. In order to accurately compare the distri-
bution of pairwise correlations across these bins, we used a subsampling
procedure in which we randomly sampled the nested and un-nested
spindles using the minimum number of spindles across all bins. We
repeated this sampling 100 times to generate a bootstrapped distribution
of pairwise correlations and then used the mean of this distribution for
each pair of neurons.

Two methods were used to analyze differences in the distributions of
pairwise correlations across bins. The first method was designed to ana-
lyze trends across bins. We computed the mean and SD of the pairwise
correlations for each spindle bin. Then we performed linear regression,
where the mean or SD was a function of the time bins (see Fig. 5C,
insets). The second method was designed to detect whether the distribu-
tions significantly changed. We focused on the differences between

distributions in the first bin (0, 1.5 s) and the last bin (4.5, 6 s). To detect
broad differences between the distributions, we used a Kolmogorov–
Smirnov (KS) test. If the KS test was significant, we followed up with a
Shift test (Rousselet et al., 2017) to assess how the distributions differed
(see Fig. 5D). Briefly, the sextiles of each distribution are computed using
the Harrell–Davis quantile estimator. Then differences in sextiles
between the two distributions are computed with a bootstrapped esti-
mate of CIs for each sextile difference. A multiple comparisons correc-
tion was then used to account for the five different estimators.

Analysis of novel motor engagement effects on spindle-induced
correlations
To measure changes in spindle and nested spindle rates, we performed a
slightly different procedure to detect spindles. Rather than creating an
averaged, virtual LFP channel, we identified spindles for each individual
electrode. We then followed the exact same procedure described in
Spindle detection. For each spindle, the preceding SO was collected; the
time delay between the previous down state (the peak d -band LFP) and
the spindle (peak spindle-band LFP) was computed, and spindles were
considered nested if this time delay was ,1.5 s (see Fig. 5B, dark blue).
By detecting spindles individually on each electrode, we were able to col-
lect and analyze more data for each animal; however, it should be noted

Figure 4. Spindle cycle analysis of synchrony. A, Generation of the CCH. For a pair of units, relative spike times are extracted during each spindle cycle. Spike times are then aggregated
across spindles relative to one another. Additionally, a shuffled CCH is constructed using a similar procedure. Relative spike times are extracted during specific spindle cycles, but one neuron’s
spikes are shuffled across spindle epochs. B, CCH correction. Within each spindle cycle, the shuffled CCH is subtracted from the raw CCH to generate a corrected CCH. The peak, and time of
peak (red arrows) are collected for each pair of neurons in each spindle cycle. C, Summary of all neurons’ corrected CCH statistics across spindle cycles. The average spindle band waveform for
each spindle cycle (top) is plotted along with the average corrected CCH peak (middle) and time of peak (bottom). Blue lines indicate averages during actual spindle epochs. Black/gray lines
indicate averages during control epochs. Error bars indicate SEM. D, The distribution of peak cofiring probability for controls (black) and spindles (purple) plotted as a CDF (top). Gray lines divide
the distributions into sextiles (top). The difference in sextile dividers is plotted with 95% CIs as error bars (bottom). E, The peak and time of peak are reproduced for the same categories as in
Figure 3D. *Significant difference between the distributions.
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that LFP channels are correlated within each rat. To determine whether
there was a change in the rate and proportion of nested spindles, we
used a full linear mixed-effects model as follows:

Nested Spindle Stat; 11 Sleep Block1 ð11 Sleep Block jRatÞ:

Briefly, this model computes the general effect of the SleepBlock (i.e.,
pretask vs post-task sleep) on changes to nested spindle rates or the pro-
portion of spindles that are nested while accounting for rat-dependent
effects, such as correlated LFP channels. The 1’s in the above equation
represent constant effects that are independent of the SleepBlock and the
rat-dependent (SleepBlock|Rat) terms.

To measure the impact of novel motor task engagement on spindle-
induced correlations, we analyzed the distributions of peak cofiring
probabilities during the middle of spindles (–2p , 2p ); we compared the
distribution computed from spindles during the sleep block before
motor engagement with the distribution computed from spindles during
the sleep block after motor engagement. To detect broad differences
between the distributions, we used a KS test. If the KS test was signifi-
cant, we followed up with a Shift test (Rousselet et al., 2017) to assess
how the distributions differed.

Results
Neural oscillation detection
We recorded extracellular LFP and spiking activity from M1 in 4
rats (for description of electrophysiology and recording probe
details, see Materials and Methods; Fig. 1A). We recorded activ-
ity during Sleep Blocks in which animals were given the opportu-
nity to sleep for ;2 h. On average, rats were in NREM sleep for
65.2min in total. During NREM sleep, we identified ongoing
spindles (;618 per rat) and SOs (;701.25 per rat) using stand-
ard algorithms for automatic detection (Sela et al., 2016). Briefly,
LFP channels were z-scored to standardize activity levels. The

averaged signal was filtered in the spindle band (10–16Hz) and a
lower-frequency band (0.1–4Hz). Periods in which spindle
power exceeded an upper threshold for at least one sample and a
lower threshold for at least 500ms were identified as spindles
(see Materials and Methods; Fig. 1C). Indeed, the average spec-
trogram of identified spindles (aligned to the spindle peak)
revealed a time-frequency specific bump in spindle power com-
pared with baseline epochs (Fig. 1D). Notably, this spectrogram
also showed a bump in low-frequency power, which preceded
spindles, in line with previous research on the close timing of
SOs and spindles (Steriade et al., 1993a; Mölle et al., 2002; Cox et
al., 2014). To detect SO, we identified all positive-to-negative
zero crossings in the lower-frequency band along with the previ-
ous peaks and following troughs. The positive-to-negative zero
crossings in which the time from the peak to the trough was at
least 300ms were considered SO. To minimize false detections,
we focused on high amplitude SO with large peaks and troughs
(see Materials and Methods; Fig. 1C).

Spindles modulate single-unit spiking
To observe spindle-neuron interactions, we aligned spike rasters
to the peak of identified spindles. We noted the average oscilla-
tory firing rate of the example unit in Figure 2A, B, which closely
matched (with a phase shift) the average spindle waveform. The
similarity of firing rate and LFP during spindles suggested that
spike timing is modulated during ongoing spindles. To quantify
spindle modulation of neural spiking, we extracted the spindle
phase at each recorded action potential (Fig. 2C). To compute
the spindle phase, we calculated the angle of the Hilbert-trans-
formed, spindle band LFP (Fig. 2C, Phase Plot). Then we col-
lected the phase triggered on each spike occurring within one
cycle of the spindle peak (Fig. 2C, highlighted blue portion). This

Figure 5. Effect of nesting. A, Timing of spindles relative to SOs. B, Example of binning spindles based on timing relative to SO in 1 animal. Bar graph represents the distribution of time
delays. Windows representing the spindle bin closest to (dark blue rectangle), and farthest from (light blue rectangle) SOs, are overlaid. Blue dotes represent intermediate window starts. The
color gets lighter as the window start gets farther from the SOs. C, The distribution of spindle-induced pairwise correlations for each bin. Colors match the window colors in B. The average pair-
wise correlation across bins is plotted with a linear fit (left inset), and the SD of pairwise correlations across bins in plotted with a linear fit (right inset). D, The distributions of spindle-induced
pairwise correlations are reproduced for the bins closest to SOs (0, 1.5) and farthest from SOs (4.5, 6) (top). Gray lines divide the distributions into sextiles (top). The difference in sextile dividers
is plotted with 95% CIs as error bars (bottom). *Significant difference between the distributions.
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yielded a spike phase distribution (Fig. 2D, top), which was used
to calculate the degree of phase-locking for each single unit.
Briefly, each spike-triggered phase was converted to a vector of
unit magnitude and in the direction of the triggered phase. Then
the average vector was computed and the magnitude of this vec-
tor was taken as the phase-locking value, whereas the direction
of this vector was taken as the preferred spindle phase (Fig. 2D,
bottom). Most units had a preferred spindle phase between p /2
and p ; that is, during the second half of the downward compo-
nent of the spindle cycle (Fig. 2D, top). We found that neurons
were significantly more phase-locked to spindles compared with
control epochs (KS= 0.566, p= 1.02e-14; Fig. 2D, bottom).

Spindles increase single-unit phase-locking
We next quantified changes in phase-locking dynamically across
spindles. We segmented spindles (Fig. 3A, right) and control
epochs (Fig. 3A, left) into their component cycles and separately
generated a spike phase distribution for each cycle. This process
is presented for an example unit in Figure 3A, in which spike
phase distributions were generated and displayed for two differ-
ent spindle cycles: one at the peak of spindles (–2p , 0; Fig. 3A)
and one at the tail of spindles (8p , 10p ; Fig. 3A). The average
preferred phase across neurons did not change during spindles,
but the average spike count and phase-locking increased near the
spindle peaks (Fig. 3B,C). We quantified these dynamics by
grouping cycles into three categories as follows: (1) CTRL, the
two cycles at the center of the control epochs; (2) TAIL, the two
cycles farthest from the spindle peaks; and (3) PEAK, the two
cycles nearest the spindle peaks (Fig. 3C). A repeated-measures
ANOVA confirmed that these categories were significantly dif-
ferent for spike counts (F(2,196) = 15.372, p=6.283e-07) and
phase-locking (F(2,196) = 164.21, p= 1.298e-42), and a circular
Watson-Williams test confirmed that the preferred phase was
not significantly different across these groups (F(2,196) = 0.399,
p=0.671). Post hoc, paired t tests confirmed that spike counts
were significantly increased near the peak of spindles (PEAK vs
TAIL, t(98) = 3.154, p= 2.136e-03); spike counts were also
increased at the spindle tails relative to during control epochs
(TAIL vs CTRL, t(98) = 4.169, p= 6.611e-05). Likewise, phase-
locking increased near spindle peaks (PEAK vs TAIL, t(98) =
13.990, p=4.299e-25) and was significantly larger than control
epochs, even 5 cycles away from the spindle peaks (TAIL vs
CTRL, t(98) = 3.520, p=6.574e-04).

We wondered whether the neurons that increased their firing
rates during spindles also increased their phase-locking. To
address this question, we ran a correlation analysis and found
that there was a significant correlation between the change
(PEAK – TAIL) in spike count and the change in phase-locking
value (Pearson’s r= 0.351, p=3.632e-04; Fig. 3D, right). This
implied that there was significant overlap in the populations of
neurons that modulated their firing rates and spike timing dur-
ing spindles. Importantly, there was no correlation between the
raw spike count and the raw phase-locking value of neurons
(Pearson’s r=0.0121, p=0.905; Fig. 3D, left), assuaging any
concerns that this finding is driven by higher estimation of
phase-locking value for higher firing neurons, which is known to
happen with small sample sizes (Vinck et al., 2010).

Spindles increase pairwise synchrony
To quantify pairwise synchrony changes as spindles evolved, we
followed a similar procedure of segmenting spindles into their
component cycles, then independently generated a CCH for ev-
ery pair of neurons in each spindle cycle (see Materials and

Methods; Fig. 4A, left). Each bin in the CCH represents the prob-
ability of the two neurons under examination cofiring with a spe-
cific time difference; the peak of the raw CCH (Fig. 4B, left) is a
normalized measure of the degree of cofiring for a pair of neu-
rons. Given the increase in phase-locking near the peak of spin-
dles, one would expect a corresponding increase in the raw
pairwise cofiring probability, which is what we observed (data
not shown). However, changes in firing rate or phase-locking of
the individual neurons can influence this measure, and we
wanted to know whether spindles modulate any additional corre-
lation structure across neurons beyond what is expected from
the first-order changes. We isolated changes in pairwise correla-
tions during spindles by using a shuffling procedure, which
maintained firing rates and phase-locking within spindle cycles
but broke correlation structure across neurons (see Materials
and Methods; Fig. 4A, right). This procedure yielded a shuffled
CCH (Fig. 4B, middle), which reflected the expected pairwise
correlations in a spindle cycle given the firing rates and spindle
phase relationships of the two neurons being examined. We then
subtracted the shuffled CCH from the raw CCH, to construct a
corrected CCH. The peak of this corrected CCH measured the
degree of cofiring that exclusively resulted from pairwise correla-
tions (Fig. 4B, right).

Interestingly, the corrected pairwise correlations revealed
similar dynamics during spindles. As before, we compared three
groups: (1) CTRL, the two cycles at the center of the control
epochs; (2) TAIL, the two cycles farthest from the spindle peaks;
and (3) PEAK, the two cycles nearest the spindle peaks (Fig. 4C,
E). We used a repeated-measures ANOVA to determine that
there were differences in the peak of the CCH (F(2,3014) = 49.118,
p= 1.020e-21) and the time of this peak (F(2,3014) = 52.137,
p= 5.617e-23) across the three categories. From the TAIL to the
PEAK of spindles, the cofiring probability increased (paired t
test, t(1507) = 7.574, p= 6.302e-14) and the absolute time of peak
cofiring decreased (paired t test, t(1507) = 7.086, p= 2.130e-12).
Likewise, both measures were significantly different from control
epochs (CTRL), even at the spindle TAILs (paired t tests, peak
cofiring: t(1507) = 2.144, p= 0.0320; time of peak cofiring: t(1507) =
2.783, p= 0.0055). Together, these dynamics reflected an increase
in pairwise synchrony during spindles that is greater than
expected from independent neuron changes.Notably, the increase
in neuron synchrony was not limited to only highly correlated
neuron pairs; rather, all pairwise correlations increase during
spindles (Fig. 4D).

SOs narrow the distribution of spindle-induced correlations
A large body of work has focused on the relationship between
spindles and SOs, suggesting that nested spindles, which occur
during the up state of SOs, are particularly important for learn-
ing and plasticity (Mölle et al., 2009; Niknazar et al., 2015;
Latchoumane et al., 2017). This work led us to hypothesize that
the spiking correlation structure might be different for nested
and un-nested spindles. To investigate the role of nesting, we
binned spindles (bin width: 1.5 s; step size: 500ms) based on
their timing relative to SO (Fig. 5A,B). The first bin (0-1.5 s)
included precisely nested spindles, with subsequent bins contain-
ing spindles with increasing temporal distance from an SO. Next,
we examined the distribution of pairwise correlations (peak
cofiring probabilities of the corrected CCH) during the spindle
peak (–2p , 2p ) in each time bin; these distributions are plotted
as cumulative density functions (CDFs) in Figure 5C.

Qualitatively, the distributions appear to “narrow” for spin-
dles closer to SO (Fig. 5C). To quantify trends in the
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distributions, we performed linear regression on the mean and
SD of the pairwise correlations across time bins: the average pair-
wise correlation did not change linearly across time bins (Fig.
5C, left inset; linear regression model, r2 = 0.35, p=0.070), but
the SD of the pairwise correlations decreased across time bins
(Fig. 5C, right inset; linear regression model, SD 1 0.00041 �
time from SO1 0.0065, r2 = 0.928, p = 7.52E-08).

Additionally, we used nonparametric statistics to detect dif-
ferences in the distributions of pairwise correlations between the
bin closest to an SO (dark blue, [0,1.5 s]) and the bin farthest
from SO (light blue [4.5,6 s]). The CDFs for these distributions
are reproduced in Figure 5D for clarity. A KS test revealed a sig-
nificant difference between these distributions (KS= 0.084,
p=3.98e-05). We then split the distributions of pairwise correla-
tions into sextiles (Fig. 5D, top, gray lines) and computed the dif-
ference in the sextile dividers (Fig. 5D, bottom). This revealed a
pattern in which the lowest pairwise correlations significantly
increased during spindles near SO, but the highest pairwise cor-
relations significantly decreased during spindles near SO.

Notably, nesting did not affect other spindle-induced changes;
we compared the distributions of spike counts, preferred phases,
and phase-locking values during the peak of spindles closest to
[0, 1.5 s] and farthest from [4.5, 6 s] SOs. KS tests did not identify
any significant differences between spindles near and far from SO
(KS=0.061, p=0.9916; KS=0.111, p=0.5493; KS=0.094, p=0.754,
respectively).

Novel motor task engagement increases nested spindle-
induced correlations
We next sought to explicitly test whether engaging in a novel
motor task might affect the correlation structure during spindles.
Given the large body of work linking spindle and SO interactions
to learning and plasticity (Mölle et al., 2009; Niknazar et al.,
2015; Latchoumane et al., 2017), we focused our analysis on
those spindles closest to SO (i.e., precisely nested spindles within
1.5 s of an SO). To measure the impact of novel motor practice
on nested spindle-induced correlations, we separately analyzed
sleep blocks before and after each rat performed a skilled fore-
limb reach-to-grasp task (see Materials and Methods).

We first used a linear mixed-effects model to determine
whether there was a significant change in the rates of nested
spindles (and proportion of nested spindles) after practicing a
novel motor task while controlling for individual animal differ-
ences (for details, see Materials and Methods). Notably, we
observed an increase in the nested spindle rate (t(566) = 2.90,
p= 3.38e-03) from Sleep1 to Sleep2 (Fig. 6B) and an increase in
the proportion of spindles that were nested (t(566) = 6.57,
p= 1.15e-10). We then examined the distribution of pairwise cor-
relations (i.e., peak cofiring probability of the corrected CCH)
during the spindle peak ð½�2p ;12p �Þ; these distributions were
plotted as CDFs in Figure 6C. A KS test revealed that there was a
significant difference between these distributions (KS= 0.052,
p= 0.031); we then segmented the distributions of pairwise corre-
lations into sextiles (Fig. 6C, top, gray lines) and computed dif-
ferences in the sextile dividers computed during Sleep1 and
Sleep2 (Fig. 6C, bottom). This revealed a rightward shift in the
distribution of pairwise correlations in Sleep2 relative to Sleep1.
However, this increase in pairwise correlations was not equal
across the distribution; it had a skewed effect where the increase
was limited to the middle of the distribution of pairwise correla-
tions. These analyses revealed both large-scale changes in the
structure of sleep oscillations and targeted changes in the correla-
tion structure of nested spindles after practicing a novel motor
task.

Discussion
In this study, we investigated the relationship between M1 neural
firing and LFP oscillations during sleep. We focused on the
structure of neural spiking during spindles, which are thought to
be important for consolidation and for promoting neural plastic-
ity after learning a new skill (Fogel and Smith, 2006; Nishida and
Walker, 2007; Barakat et al., 2011; Johnson et al., 2012;
Ramanathan et al., 2015; Kim et al., 2019). We found that neu-
rons in M1 fired at a preferred phase of the spindle; by segment-
ing spindles into their component cycles, we determined that
such phase-locking was more pronounced at spindle peaks.
Moreover, neural synchrony shared similar dynamics during

Figure 6. Effect of novel motor task engagement on nested spindles. A, Description of timeline. Each rat’s sleep was monitored before (Sleep1, green) and after (Sleep2, orange) engaging in
a novel motor task. B, Nested spindle rates for each rat plotted as a function of Sleep1 and Sleep2. Each dot indicates spindles detected on a different electrode. Dots above the diagonal indicate
an increase in the nested spindle rate. C, The distribution of nested spindle-induced pairwise correlations for Sleep1 and Sleep2 (top). Gray lines divide the distributions into sextiles (top). The
difference in sextile dividers is plotted with 95% CIs as error bars (bottom). *Significant difference between the distributions.
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spindles; the distribution of pairwise correlations reached its
maximum at the peak of a spindle event. Interestingly, this corre-
lation structure was modified by a spindle’s temporal proximity
to an SO. Spindles that were nested within SOs exhibited a nar-
rower distribution of correlations. In contrast, the distribution
of pairwise correlations was broader during spindles that were
temporally far from SOs. Notably, after animals engaged in a
novel motor task, pairwise correlations during nested spindles
increased, suggesting that changes in correlated firing during
nested spindles may play an important role in offline motor
learning.

Spindles and changes in neural synchrony
One of our key results was that there were changes in both the
phase-locking and the correlation structure of spiking during
spindle cycle dynamics. We found that spiking activity in M1
became significantly more structured with each spindle cycle,
leading to maximum changes at spindle peaks. Spike correlations
have long been thought to drive neuroplasticity (Hebb, 1949);
and more recently, spike timing-dependent plasticity models (Bi
and Poo, 1998, 2001; Shulz and Jacob, 2010; Feldman, 2012)
have been developed, which emphasize the role of precise spike
timing in neuroplasticity. Importantly, pairs of spikes occurring
within a spike timing-dependent plasticity learning window
(;50ms) lead to direct, predictable changes in synaptic efficacy,
but additional factors, such as firing rates and network activity,
also modify this learning window. In this study, we demon-
strated that spindles increased firing rates (Fig. 3B,C) and modu-
lated the precise (;5ms) timing of spiking activity relative to
ongoing spindles (Fig. 3B,C) and relative to other M1 neurons
(Figs. 4C-E, 7A). The reported changes in neural synchrony at
spindle peaks are also consistent with previous findings in which
reactivations of task-related neural activity patterns are time-
and phase-locked to spindles (Ramanathan et al., 2015; Kim et
al., 2019), and suggest that reactivation events likely occur near
spindle peaks. The increase across the distribution of pairwise
correlations suggests that spindles trigger a general increase in
local functional connectivity.

Sources of spindle-induced synchrony
Correlation measurements are notoriously sensitive to a variety
of factors, including firing rates, excitability, sample sizes, and
other first-order effects, such as spike timing relative to external
stimuli or internal LFP oscillations (Brody, 1999; Tchumat-
chenko et al., 2011; Engelhard et al., 2013; Barreiro and Ly,
2017). It can be difficult to fully disentangle second-order corre-
lations from the impact of first-order changes, but we took

several steps to do just that. First, we compared correlations for
the same neuron pairs across conditions (i.e., during control
epochs and across spindle cycles). Second, we used a shuffling
procedure that preserved first-order statistics, including spike
counts and phase-locking values of individual neurons while spe-
cifically breaking second-order correlations across neuron pairs.
This shuffling procedure allowed us to analyze the following: (1)
raw correlations, which are influenced by both first- and second-
order statistics; (2) shuffled correlations, which reflect the
expected correlations given the first-order statistics; and (3) cor-
rected correlations, which reflect the pure second-order statistics.

These three correlation measures give us insight into the
sources of spindle-induced correlations. The raw correlations
increased during spindles; importantly, these raw values reflected
the true activity correlations that neurons experience and likely
influence neuroplasticity. Predictably, the shuffled correlations
also increased during spindles. This suggested that first-order
changes, such as the increase in firing rates and phase-locking
(Fig. 3B,C), underlie some of the increases in correlations during
spindles. Importantly, the corrected correlations also increase
during spindles. This suggested that, in addition to the impact of
first-order changes, there were also second-order effects that
increase pairwise correlations. These likely reflect increases in
shared input to the M1 neurons during spindles (Destexhe et al.,
1997; Steriade, 2000; Tchumatchenko et al., 2011), but could also
reflect broad changes in brain state or synaptic efficacy during
spindles (Tchumatchenko et al., 2011).

Interaction between SOs, spindles, and behavior
SOs are one of the most prominent signals during sleep, and sev-
eral theories have been put forth about their functional roles
(Rasch and Born, 2013; Genzel et al., 2014). One framework that
connects learning, SOs, spindles, and their interaction is the
active system consolidation hypothesis. This theory posits that a
functional role for sleep oscillations is to coordinate and organize
spiking activity across different brain regions (for a comprehen-
sive review, see Rasch and Born, 2013). This has mostly been
studied in the declarative memory system, where cortical SOs
nest thalamocortical spindles, which nest hippocampal sharp-
wave ripples. Such hierarchical nesting is proposed to coordinate
activity across brain regions, thereby enabling the transfer of
stereotyped spiking patterns from short-term memory in the
hippocampus to long-term memory storage in the PFC (Rasch
and Born, 2013; Latchoumane et al., 2017). A possible parallel to
this memory transfer system has been found in the motor sys-
tem, where SOs and spindles have been shown to be time-locked
to reactivated activity patterns from recently learned motor tasks

Figure 7. Summary of spindle-induced correlations and interactions with SO and novel motor engagement. A, Idealized distributions of pairwise correlations during control epochs (black)
and spindle epochs (blue). Gray lines indicate sextile dividers. Blue arrows indicate a rightward shift in the distribution of correlations across all sextiles during spindles. B, Idealized distributions
of spindle-induced pairwise correlations near SO (dark blue) and far from SO (light blue). Gray lines indicate sextile dividers. Dark blue arrows indicate a tightening of the distribution of correla-
tions for spindles nearer to SO. C, Idealized distributions of spindle-induced pairwise correlations pre-engagement (green) and post-engagement (orange) in a novel motor task. Gray lines indi-
cate sextile dividers. Orange arrows indicate a rightward shift in the middle of the distribution of correlations.
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(Barakat et al., 2011; Ramanathan et al., 2015; Laventure et al.,
2016; Boutin et al., 2018; Kim et al., 2019).

We found that the temporal proximity of SO and spindles
modified the distribution of neural correlations (Fig. 5C,D).
When spindles were temporally distant from an SO, the distribu-
tion of pairwise correlations contained both larger and smaller
values. In contrast, when spindles were temporally close to an
SO, the distribution of pairwise correlations transiently nar-
rowed. Interestingly, there appeared to be a linear relationship
between the exact temporal proximity and the extent of distribu-
tion tightening. To understand the functional role of this nar-
rowing, it is helpful to focus on the tails of the correlation
distribution. Neurons that were rarely active together (the lowest
correlation pairs) began to cofire more often, whereas more ster-
eotyped neural activity (the highest correlation pairs) decreased.
The effect of narrowing the correlation distribution is consistent
with the exploration of neural activity patterns. This novel explo-
ration function is in line with research that demonstrates a link
between sleep and improvements in generalization and insight
(Fenn et al., 2003; Wagner et al., 2004; Ellenbogen et al., 2007;
Djonlagic et al., 2009). Mechanistically, SOs are known to reflect
a depolarizing current that causes a brief increase in neural firing
(Luczak et al., 2007). It is possible that this transient depolariza-
tion modifies the correlation structure by adding entropy to the
network, causing an increase in new cofiring patterns. In con-
trast, the spiking correlation structure during independent spin-
dles likely reflects the “baseline” cortical connectivity (Niethard
et al., 2018).

In this study, we were able to explicitly link changes in pair-
wise correlations during nested spindles to behavior (Fig. 6). We
found that there was a large increase in the rate and proportion
of nested spindles after novel motor engagement; this finding is
consistent with several studies that have observed an increase in
spindle rates after motor engagement and learning (Barakat et
al., 2011; Ramanathan et al., 2015; Laventure et al., 2016; Boutin
et al., 2018; Kim et al., 2019). Moreover, we found that there was
an increase in pairwise correlations during nested spindles after
novel motor task engagement. In addition to inducing novel cor-
relation patterns, nested spindles may support motor learning by
altering the precise correlation structure after motor engage-
ment, thereby altering functional connectivity in M1. These
results suggest a possible mechanism through which nested spin-
dles might aid consolidation after motor learning.

Interestingly, the active system consolidation framework pro-
poses that spindles nested within SOs are a distinct phenomenon
from nonoverlapping SO or spindles. Several studies have
accordingly categorized SO and spindles as either nested or un-
nested and observed significant differences between these groups
(Latchoumane et al., 2017; Niethard et al., 2018). In this study,
we compared spindles across a range of time delays after SO and,
using this approach, we observed a linear progression where the
distribution of pairwise correlations appears to become more
narrow as spindles occur closer to SO. This suggests that there
may not be a stark nonlinear difference between nested and un-
nested spindles.

In conclusion, our results demonstrate that the fine-scale
structure of neural activity in M1 is modulated by the interaction
of spindles and SOs, as well as by engagement in a novel motor
task. These findings help build a framework to study the relation-
ship between changes in precisely structured spiking activity and
the interaction of spindles and SOs; they also suggest candidate
offline processing mechanisms that may drive synaptic plasticity
following motor learning.
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