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ABSTRACT

We explore the 2013 Planck likelihood function with a high-precision multi-dimensional minimizer (Minuit). This allows a refinement of the
ΛCDM best-fit solution with respect to previously-released results, and the construction of frequentist confidence intervals using profile like-
lihoods. The agreement with the cosmological results from the Bayesian framework is excellent, demonstrating the robustness of the Planck
results to the statistical methodology. We investigate the inclusion of neutrino masses, where more significant differences may appear due to
the non-Gaussian nature of the posterior mass distribution. By applying the Feldman-Cousins prescription, we again obtain results very simi-
lar to those of the Bayesian methodology. However, the profile-likelihood analysis of the cosmic microwave background (CMB) combination
(Planck+WP+highL) reveals a minimum well within the unphysical negative-mass region. We show that inclusion of the Planck CMB-lensing
information regularizes this issue, and provide a robust frequentist upper limit

∑
mν ≤ 0.26 eV (95% confidence) from the CMB+lensing+BAO

data combination.

Key words. cosmic background radiation – cosmology: observations – cosmology: theory – cosmological parameters – methods: statistical

1. Introduction

This paper, one of a set associated with the 2013 release of data
from the Planck1 mission (Planck Collaboration I 2014), de-
scribes a frequentist estimation of cosmological parameters us-
ing profile likelihoods.

Parameter estimation in cosmology is predominantly per-
formed using Bayesian inference, particularly following the in-
troduction of Markov chain Monte Carlo (MCMC) techniques

∗ Corresponding author: S. Plaszczynski plaszczy@lal.in2p3.fr
1 Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states (in particular the lead
countries France and Italy), with contributions from NASA (USA) and
telescope reflectors provided by a collaboration between ESA and a sci-
entific consortium led and funded by Denmark.

(Christensen et al. 2001). Many scientists in the field use the
sophisticated CosmoMC2 software (Lewis & Bridle 2002) to
study cosmological parameters, and several experiments pro-
vide ready-to-use plugins for it. The Planck satellite mission
has recently released high-quality data on the cosmic microwave
background (CMB) temperature anisotropies3. The analysis of
the cosmological parameters (Planck Collaboration XVI 2014)
is based on Bayesian inference using a dedicated version of
CosmoMC.

In this methodology, the likelihood leads to the posterior dis-
tribution of the parameters once it has been multiplied by some
prior distribution that encompasses our knowledge before the
2 Available from http://cosmologist.info/cosmomc/readme_
planck.html
3 Available from http://www.sciops.esa.int/index.php?
project=planck&page=Planck_Legacy_Archive
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measurement is performed. For Planck, wide bounds on uniform
distributions have typically been used. However the choice of a
particular set of parameters for MCMC sampling, such as the ef-
ficient “physical basis” (Kosowsky et al. 2002) used in CosmoMC,
may also be viewed as an implicit prior choice.

Frequentist methods do not need priors, other than that some
limits on the explored domain are used in practice and can be
seen as the bounds of some “uniform priors”. The maximum
likelihood estimate (MLE) does not depend on the choice of the
set of parameters, since it possesses the property of invariance:
if θ̂ represents the MLE of the parameter θ, then the MLE of any
function τ(θ) is τ̂ = τ(θ̂). This means that one can compute the
MLE with any set of parameters. As we will see in Sect. 2.3,
this property is powerful and can be used to obtain asymmetric
confidence intervals.

The multi-dimensional solution is only one aspect of param-
eter estimation and we are also interested in statements on in-
dividual parameters. In the MCMC procedure, once the chains
have converged this is obtained through marginalization, which
is performed by a simple projection of the samples onto one
or sometimes two axes. This may however lead to so-called
“volume effects”, where the mean of the projected distribution
can become incompatible with the multi-dimensional MLE (e.g.,
Hamann et al. 2007). In the frequentist framework, one instead
builds profile likelihoods (Wilks 1938) for individual variables
and, by construction, the individual parameter estimates match
(up to numerical accuracy) the MLE values.

Such a method has already been used by Yèche et al. (2006)
with Wilkinson Microwave Anisotropy Probe (WMAP) data for
a nine-parameter fit. The high sensitivity of data from Planck
and from the ground-based South Pole Telescope (SPT) and
Atacama Cosmology Telescope (ACT) projects requires the si-
multaneous fit of a larger number of parameters, up to about 40,
with some nuisance ones being poorly constrained. We there-
fore need to precisely tune a high-quality minimizer, as will be
described in this paper.

MCMC sampling is sometimes used to perform a “poor-
man’s” determination of the maximum likelihood (e.g., Reid
et al. 2010): one bins a given parameter and reports the sam-
ple of maximum likelihood in other dimensions. As pointed
out in Hamann (2012), in many dimensions it is most likely
that the real maximum was never reached in any reasonably-
sized chain. The authors suggest changing the temperature of
the chain, but this still requires running lengthy evaluations of
the likelihood and is less straightforward than directly using a
multi-dimensional minimization algorithm.

In this article, we investigate whether the use of priors or
marginalization can affect the determination of the cosmolog-
ical parameters by comparing the published Bayesian results
to a frequentist method. For the base ΛCDM model, it hap-
pens that the cosmological parameter posteriors are essentially
Gaussian, so it is expected that frequentist and Bayesian meth-
ods will lead to similar results. In extensions to the standard
ΛCDM model this is however not true for some parameters (e.g.,
the sum of neutrino masses), and priors have been shown to
play some role in parameter determination (Hamann et al. 2007;
Gonzalez-Morales et al. 2011; Hamann 2012). Given the sensi-
tivity of the Planck data, statistical methodologies may matter,
and this issue is scrutinized in this work.

In order to build precise profile likelihoods in a high-
dimensional space (up to about 40 dimensions), we need a pow-
erful minimizer. We use the mature and widely-used Minuit
software (James & Roos 1975). We interfaced it to the modu-
lar class Boltzmann solver (Blas et al. 2011) which, from a

set of input cosmological parameters, computes the correspond-
ing temperature and polarization power spectra that are tested
against the Planck likelihood. This required that we tune the
class precision parameters to a level where the numerical noise
can be handled by our minimizer, as is described in Sect. 2.1.
In Sect. 2.2, we describe our Minuit minimization strategy, and
cover in Sect. 2.3 the basics of the frequentist methodology to
estimate unknown parameters based on the properties of profile
likelihoods. The data sets we use are then discussed in Sect. 3.
We give results for the ΛCDM parameters in Sect. 4.1 and finally
investigate, in Sect. 4.2, a case where the posterior distribution is
far from Gaussian, namely the neutrino mass case. Additionally,
the Appendix gathers some comments on the overall computa-
tion time of the method.

2. Method

2.1. The Boltzmann solver: class

To compute the relevant CMB power spectra from a cosmo-
logical model, we need a “Boltzmann solver” that numerically
evolves the coupled perturbation equations in an expanding uni-
verse. While camb is used in the CosmoMC sampler, we pre-
fer to use the class (v1.6) software (Blas et al. 2011). It of-
fers a rigorous way to control the accuracy of output quan-
tities through a comprehensive list of precision parameters
(Lesgourgues 2011a). While one can use some high-speed/low-
quality settings to perform MCMC sampling because the ran-
dom nature of the algorithm smooths out discontinuities, this is
no longer the case here when searching for an extremum, which
requires precise computation of numerical derivatives. Equally,
due to computation time, one cannot use precision settings that
are too extreme, so a trade-off with Minuit convergence has to
be found.

As we will see in Sect. 2.3, 68% confidence intervals are
obtained by cutting χ2 ≡ −2 lnL values at one. We therefore
need the numerical noise to be much less than unity.

Starting from the Planck likelihood code, described in
Sect. 3, we fix all parameters to their published best-fit values
(Planck Collaboration XVI 2014) and scan a given parameter θ.
We compute the χ2(θ) curves and subtract a smooth component
to estimate the amplitude of the numerical noise. According to
the precision settings, trade-off between the amplitude of this
noise and the computation time can then be found. An example
with two precision settings is shown in Fig. 1 for θ = ωb = Ωbh2

which is used as our benchmark.
We have determined a set of high-precision settings which

achieves sufficient smoothness of the Planck likelihood for the
fits to converge, with an increase of only about a factor two in
the code computation speed with respect to the default “fast”
settings. The values of the settings are reported in Table 1.

We also found that working with the Thomson scattering op-
tical depth τ is numerically less stable than using the reionization
redshift zre, which defines where the reionization fraction is half
of its maximum. We therefore use zre as a primary parameter.
The relation to τ, for a tanh-based ionization profile and a fixed
∆zre = 0.5 width, is given in Lewis (2008).

Since we will compare our results to the previously-
published ones, we need to ensure our class configuration re-
produces the camb-based results of Planck Collaboration XVI
(2014). For this purpose, we use the Planck ΛCDM best-fit
solution and compute its χ2 value and compare with the pub-
lished results in Table 2. The agreement is good. The slight dis-
crepancy is typical of the differences between class and camb

A54, page 2 of 10
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Fig. 1. Upper panel: the ωb parameter is scanned (keeping all other
parameters fixed to their best-fit values) and the Planck χ2 values are
shown on the vertical axis. Blue points are obtained with the class
default settings, and red ones with our high-precision ones. A smooth
parabola is fit and shown in black. Lower panel: residuals with respect
to the parabola. The rms of this noise is improved from 0.02 for the
default settings to 0.005 for the high-precision ones.

Table 1. Values of the non-default precision parameters for class used
for the Minuit minimization.

class parameter Value

tol_background_integration 10−3

tol_thermo_integration 10−3

tol_perturb_integration 10−6

reionization_optical_depth_tol 10−5

l_logstep 1.08

l_linstep 25

perturb_sampling_stepsize 0.04

delta_l_max 800

implementations (Lesgourgues 2011b), so we consider our setup
to be properly calibrated. From now on, we perform consistent
comparisons using only class.

2.2. Minimizing with Minuit

We chose to work with the powerful Minuit package (James &
Roos 1975), a well-known minimizer originally developed for
high-energy physics and used recently for the Higgs mass de-
termination with a simultaneous fit of 354 parameters (ATLAS
Collaboration 2013). While its roots trace back to the 1970s, it
has been continually improved and rewritten in C++ as Minuit2,
which is the version we use. Minuit is a toolbox including sev-
eral algorithms that can be deployed depending on the problem
under consideration. We refer the reader to the user guide4 for a
detailed description of the procedures we used.

For cosmological parameter estimation with the Planck data,
we executed the following strategy

1. Starting from the Planck Collaboration published values
and using the high-precision class settings described in
Sect. 2.1, we minimize the χ2 function using the MIGRAD

4 Available from http://seal.web.cern.ch/seal/
work-packages/mathlibs/minuit/index.html

Table 2. Comparison of the χ2 values of the Planck best-fit solution
from Planck Collaboration XVI (2014), based on camb, to our class-
based implementation, for the CMB and CMB+BAO data sets.

Data set camb class

CMB 10509.6 10509.9
CMB+BAO 10510.8 10511.0

algorithm, which is based on Fletcher’s switching algorithm
(Fletcher 1970). All parameters are bounded by large (or
physical) limits during this exploration.

2. Once a minimum is found, we release all cosmological pa-
rameter limits and again perform the MIGRAD minimization.
The limits on nuisance parameters are kept in order to avoid
exploring unphysical regions.

3. Finally, we use the HESSIAN procedure which refines the lo-
cal covariance matrix.

MIGRAD belongs to the category of variable metric methods (e.g.,
Davidon & Laboratory 1959) which build the “expected distance
to minimum” (EDM) that represents (twice) the vertical distance
to the χ2 minimum if the function is truly quadratic and the gra-
dient exactly known. It can serve as a figure of merit for the
convergence and will be used to reject poor fits.

The outcome of this procedure is the minimum χ2 solution
together with its Hessian matrix. This solution represents the
MLE, but, since the problem is highly non-linear (in particular in
H0), the Hessian is only a crude approximation to the parameter
uncertainties5. The complete treatment is through the construc-
tion of profile likelihoods.

2.3. Profile likelihoods

The MLE (or “best-fit” or χ2
min) is the global maximum likeli-

hood estimate given the entire set of parameters (cosmological
and nuisance). One can choose to isolate one parameter (here-
after called θ) and for fixed values of it look for the maximum
of the likelihood function in all other dimensions. One scans θ
within some range and, for each fixed value, runs a minimization
with respect to all the other parameters. The minimum χ2 value
is reported for this parameter θ, which allows one to build the
profile likelihood χ2(θ). The procedure ensures the minimum of
χ2(θ) appears at the same value as the MLE, avoiding the poten-
tial volume effects mentioned in the introduction.

A confidence region, which has the correct frequentist cov-
erage properties, can then be extracted from the likelihood ratio
statistic, or equivalently the ∆χ2(θ) = χ2(θ) − χ2

min distribution.
For a parabolic χ2(θ) shape (i.e. Gaussian estimator distribution),
a 1 − α level confidence interval is obtained by the set of values
∆χ2(θ) ≤ χ2

1(α), where χ2
1(α) denotes the 1 − α quantile of the

chi-square distribution with one degree of freedom, and is 1, 2.7,
and 3.84 for 1 − α = 68, 90 and 95% respectively (e.g., James
2007).

It is less well known that if the profile likelihood is non-
parabolic, one can still build an approximate confidence interval
using the same recipe, because the full likelihood ratio has the
invariance property mentioned in the introduction: one can esti-
mate any monotonic function of θ and make the same inference
not only on the MLE but on any likelihood ratio. For example,

5 As discussed in http://seal.cern.ch/documents/minuit/
mnerror.pdf
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one can build the ∆χ2(As) distribution from the ∆χ2(ln(1010As))
profile by simply switching the ln(1010As)→ As axis. Formally,
when the profile likelihood is non-parabolic, one can still imag-
ine a transformation that would make it quadratic in the new
variable. One would then apply the parabolic cuts described pre-
viously and, by the invariance property, the same inference on
the original variable would be obtained. Therefore we can find
an (asymmetric) confidence interval by cutting the non-parabolic
∆χ2 curve at the same χ2(α) values. This method, sometimes
called MINOS (the name of the routine that first implemented it
in Minuit), is long known in the statistics field (Wilks 1938). It
is exact up to order O(1/N) (James 2007), N being the number
of samples, and is in practice excellent unless N is very small.

Nevertheless, the profile-likelihood-based confidence inter-
vals must be revisited in the case where the estimate lies near a
physical boundary. This will be performed in Sect. 4.2 for the
neutrino mass case.

3. Data sets

As our purpose is to compare the frequentist methodology to the
Bayesian one, we focus on exactly the same data and parame-
ters as in Planck Collaboration XVI (2014) and refer the reader
to Planck Collaboration XV (2014) for their exact definitions.
Since the CMB, baryon acoustic oscillation (BAO), and CMB-
lensing data were found to be in excellent agreement, we will
consider the following likelihood combinations.

The CMB data set consists of the following likelihoods:

– the Planck 2013 data in both low and high ` ranges;
– the WMAP low-` polarization data (referred to as WP in the

Planck papers);
– the SPT (Reichardt et al. 2012)+ACT (Das et al. 2014)

high-` data, referred to as highL.

The combined likelihood, obtained by multiplying the three, in-
cludes 31 nuisance parameters, related to the characterization of
the unresolved foregrounds, the effective beam, and to the inter-
calibration of the Planck and highL power spectra.

The BAO data set consists of a Gaussian likelihood based
on the scale measurements from the 6dF (Beutler et al. 2011),
SDSS (Padmanabhan et al. 2012), and BOSS (Anderson et al.
2012) experiments, combined as in Planck Collaboration XVI
(2014).

For the neutrino mass case, we will also use the Planck lens-
ing likelihood (Planck Collaboration XVII 2014), based on the
measurement of the deflection power spectrum.

4. Results

4.1. The base ΛCDM model

We begin by revisiting the global best-fit solution (MLE) using
this new minimizer, over all 37 parameters, on the CMB and
CMB+BAO data sets. We use the Hubble constant (H0) instead
of the CMB acoustic scale (θMC), which is not available within
class, and zre instead of τ since it is more stable as discussed
in Sect. 2.1. The new minimum is given in Table 3 and com-
pared to the results previously released in Planck Collaboration
XVI (2014), which were obtained with another minimizer6. In
both cases we find a slightly lower χ2. On the cosmological side
we find very similar parameters, except for zre which is slightly

6 Named BOBYQUA and described in http://www.damtp.cam.ac.
uk/user/na/NA_papers/NA2009_06.pdf

shifted. On the nuisance parameters side, results are also similar,
but we are now sensitive to the SZ–CIB cross-correlation param-
eter ξtSZ−CIB while the Planck Collaboration minimum was not
shifted from its zero initial value. Additionally the estimated ki-
netic SZ amplitude AkSZ is more stable when including the BAO
data set.

We then build the profile likelihoods by scanning each cos-
mological parameter and computing the χ2 minimum in the re-
maining 36 dimensions at each point. Figure 2 shows the re-
constructed profiles. They are found to be mostly parabolic, but
we still fit them with a third-order polynomial in order to mea-
sure any deviation from a symmetric error, and threshold them
at unity in order to obtain the 68% frequentist confidence level
interval as explained in Sect. 2.3. Results are reported in Table 4
and compared there to the Planck Collaboration posterior distri-
butions. In most cases the values and errors we obtain are in good
agreement with the Bayesian posteriors, demonstrating that the
Planck Collaboration results, for the ΛCDM model, are not bi-
ased by a particular choice of parameters (implicit priors) or by
the marginalization process (volume effects).

By comparing the mean values of Table 4 to the best-fit ones
(Table 3) we observe that the minima coincide at the percent
level, as expected for this frequentist method.

Since we observe some difference in the reionization param-
eter zre, we also perform the profile-likelihood analysis with the
Planck data alone and obtain

zre = 13.3+2.8
−3.3 (Planck-only, profile likelihood), (1)

while the Planck Collaboration reports

zre = 11.4+4.0
−2.8 (Planck-only,MCMC posterior). (2)

The results, using exactly the same data, are different. We be-
lieve that these new results are robust since the profile-likelihood
method is particularly well suited for this case. Indeed zre is
fixed in each step so that the minimization does not suffer from
the classical (As, zre) degeneracy due to the normalization of
the temperature-only power spectrum. In contrast, the MCMC
method relies strongly on the priors used on both As and zre. We
find that it is the inclusion of the WMAP polarization data that
pulls down this value to zre = 11.0 ± 1.1, as reported in Table 4.

4.2. Mass of standard neutrinos

Since the cosmological parameter posterior distributions for the
ΛCDM model are mostly Gaussian (parabolic χ2), the Bayesian
and frequentist approaches lead to similar results. However, we
may expect greater differences when including neutrino masses
in the model, for which the marginalized posterior distribution is
peaked towards zero.

CMB measurements are sensitive to the sum of neutrino
mass eigenstates

∑
mν through several effects reviewed in detail

in Lesgourgues et al. (2013). For large values
∑

mν & 1.3 eV, the
neutrinos’ non-relativistic transition happens before decoupling
and the integrated Sachs–Wolfe effect reduces the amplitude of
the first acoustic peak. For lower mass values, neutrino free-
streaming erases small-scale matter fluctuations and accordingly
reduces the CMB lensing power. This in turn affects the lensed
C` spectrum, especially its high-` part, and explains the gain
when including SPT/ACT data. Furthermore, since according to
oscillation experiments at least two neutrinos are non-relativistic
today (Beringer et al. 2012), the matter–radiation equality scale
factor, which is strongly constrained by the Planck data, reads:
aeq

a0
=

ωr

ωm − ων
, (3)
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Table 3. Best-fit comparison.

CMB CMB+BAO

Parameter CosmoMC Minuit CosmoMC Minuit

H0 67.15 67.28 67.77 67.71

100Ωbh2 2.207 2.210 2.216 2.216

Ωch2 0.1203 0.1200 0.1189 0.1190
ns 0.9582 0.9576 0.9611 0.9600

ln(1010As) 3.096 3.087 3.097 3.090

zre 11.37 11.04 11.52 11.26

APS
100 209 207 204 205

APS
143 72.6 73.5 71.8 73.0

APS
217 59.5 61.1 59.4 60.7

ACIB
143 3.57 3.03 3.30 3.06

ACIB
217 53.9 51.2 53.0 51.2

AtSZ
143 5.17 4.00 4.86 4.01

rPS
143×217 0.825 0.815 0.824 0.814

rCIB
143×217 1. 1. 1. 1.

γCIB 0.674 0.647 0.667 0.647

c100 1. 1. 1. 1.
c217 0.997 0.997 0.997 0.997

ξtSZ−CIB 0.000 0.049 0.000 0.055

AkSZ 0.89 2.87 1.58 2.89
β1

1 0.56 0.41 0.46 0.38

APS,ACT
148 10.2 10.4 10.2 10.4

APS,ACT
218 75.2 76.5 75.6 76.6

APS,SPT
95 7.02 7.49 7.14 7.47

APS,SPT
150 9.66 9.90 9.76 9.92

APS,SPT
220 72.0 73.5 72.6 73.6

rPS
95×150 0.830 0.787 0.806 0.790

rPS
95×220 0.583 0.545 0.563 0.549

rPS
150×220 0.908 0.915 0.911 0.915

AACTs
dust 0.429 0.426 0.429 0.426

AACTe
dust 0.879 0.845 0.843 0.844

y148
ACTs 0.991 0.991 0.992 0.991

y217
ACTs 1. 1. 1. 1.

y148
ACTe 0.987 0.987 0.988 0.988

y217
ACTe 0.960 0.961 0.961 0.962

y95
SPT 0.985 0.983 0.985 0.983

y150
SPT 0.984 0.984 0.985 0.985

y220
SPT 1.02 1.02 1.02 1.02

χ2
min 10 509.9 10 508.9 10 511.0 10 510.3

Notes. Values of all parameters at the minimum of the χ2 function as determined by CosmoMC in Planck Collaboration XVI (2014) and by the
Minuit implementation described here, for the CMB and CMB+BAO data sets. The first six parameters define the ΛCDM cosmology. The last
line shows the χ2 value at the minimum.
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Fig. 2. Profile likelihoods (∆χ2) reconstructed for each ΛCDM cosmological parameter, from the CMB (blue) and CMB+BAO (red) data sets. Each
point is the result of a 36-parameter minimization. We reject the points that are outliers of the expected distance to minimum (EDM, Sect. 2.2)
distribution. Curves are fits to a third-order polynomial. 68% confidence intervals are obtained by thresholding these curves at unity, and their
projections onto the parameter axis are shown.

Table 4. Results of the profile-likelihood analysis (i.e., this work) for the cosmological parameters, using the CMB and CMB+BAO data sets.

CMB CMB+BAO

Parameter MCMC Profile-likelihood MCMC Profile-likelihood
H0 67.3 ± 1.2 67.2 ± 1.2 67.8 ± 0.8 67.7 ± 0.8
100ωb 2.207 ± 0.027 2.208 ± 0.027 2.214 ± 0.024 2.215 ± 0.024
ωc 0.1198 ± 0.0026 0.1201 ± 0.0026 0.1187 ± 0.0017 0.1190 ± 0.0017
ns 0.9585 ± 0.0070 0.9575 ± 0.0071 0.9608 ± 0.0054 0.9598 ± 0.0055
ln(1010As) 3.090 ± 0.025 3.087 ± 0.025 3.091 ± 0.025 3.088 ± 0.025
zre 11.2 ± 1.1 11.0 ± 1.1 11.2 ± 1.1 11.2 ± 1.1

Notes. They are compared to the Planck MCMC posterior results taken from Table 5 of Planck Collaboration XVI (2014).
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Fig. 3. Neutrino mass profile likelihood for
the CMB (red), CMB+lensing (blue), and
CMB+lensing+BAO (green) data sets. Each
point is the result of a 37-parameter fit which
can only be computed in the positive region.
The points are fit by a parabola and extrap-
olated into the negative region. For the CMB
only case, the parabolic fit agreement is poor
and is only shown for discussion. The coloured
green/blue lines are used to set 95% confidence
upper limits according to the Feldman-Cousins
prescription, as described in the text.

where ωr, ωm, and ων are the physical densities of radiation,
matter, and massive neutrinos respectively, i.e. ωr = Ωrh2,
ωm = Ωmh2, and ων = Ωνh2 ' 10−3∑mν/0.1 eV. The quantities
ων and ωm are clearly degenerate, and so any data set that helps
in reducing the CMB geometrical degeneracies by providing a
measurement at another scale indirectly benefits

∑
mν. Robust

observables, compatible with the Planck ΛCDM cosmology, are
the BAO scale measurement around z ' 0.5 and/or the CMB-
lensing trispectrum that probes matter structures around z ' 2.

An unexpected result found by Planck Collaboration XVI
(2014) is that the 95% confidence upper limit on

∑
mν ob-

tained from Planck data is worsened when including the lens-
ing trispectrum information (the 95% upper limit goes from 0.66
to 0.84). How can the addition of new information weaken the
limit? Is this an effect of the Bayesian methodology, which com-
putes credible intervals and where such effects may arise when
combining incompatible data? Naively, in a frequentist analysis
adding some information (in the Fisher sense, see James 2007)
can only lower the size of confidence interval, since the profile-
likelihood “error” (its curvature at the minimum) can only de-
crease and thresholding it at a constant value should only lead to
a smaller region.

We construct the profile likelihood for
∑

mν. It is shown
in Fig. 3 for the CMB, CMB+lensing and CMB+lensing+BAO
data sets. We observe an intriguing feature with the CMB data
set. Even though the parabolic fit of the profile likelihood is
poor, the minimum lies at about −2.5σ into the unphysical
negative region. When adding the lensing trispectrum informa-
tion, it shifts back to a value compatible with zero. We do not
yet have a proper understanding of why this is happening, but
note a possible connection to the AL issue discussed in Planck
Collaboration XVI (2014), where this phenomenological param-
eter is discrepant from unity by about 2σ using the CMB data
set, but lowered to 1σ when adding the lensing information.

We can then understand why our previous argument on re-
ducing the confidence interval by adding information is invalid
near a physical boundary, even in a frequentist sense. If we con-
sider a constant threshold of the profile likelihood (for instance
around 8 in Fig. 3) we may end up with an upper limit that is
smaller (even though the curvature is larger) when omitting the

Table 5. Estimates of the minima positions (m0) and curvature (σν)
from the parabolic fits of Fig. 3 for the data sets including lensing.

Data set Fitted range m0 σν

CMB+lensing [0, 0.8] 0.06 0.42

CMB+lensing+BAO [0, 0.3] −0.05 0.15

Notes. The range of points used corresponds roughly to 2σ.

lensing information, because of the shift of the minimum into
the unphysical region. This resembles the Bayesian result.

However the methodologies shows their differences in this
situation. In the Bayesian case, when combining somewhat in-
compatible data sets within a model the credible region enlarges
to account for it. In the frequentist case, thresholding the pro-
file likelihood is incorrect and we apply instead the Feldman
& Cousins (1998) prescription. Within this classical framework,
there is a decoupling of the confidence level of the goodness of
fit probability from the one used in building the confidence inter-
val. Unlike in the Bayesian case, one first tests the consistency of
the data with the model, and then constructs the confidence inter-
val (at some given level) only for the candidates that fulfil it. In
our case, a minimum at −2.5σ is very unlikely (below 1% prob-
ability) and we will therefore not consider it in the following.

We give in Table 5 the parameters of the parabolic fits
χ2(
∑

mν) = χ2
min +[(

∑
mν − m0)/σν]2. We only use points within

2σν from zero, since the function is not necessarily quadratic far
from its minimum. In the following we will vary this cut. We
report here the numbers that lead to the largest final limit.

The classical Neyman construction of a confidence interval
has some inherent degree of freedom in it (e.g., Beringer et al.
2012). The Feldman–Cousins prescription, that is most power-
full near a physical a boundary, is to introduce an ordering based
upon the likelihood ratios R:

R =
L(x|µ)
L(x|µbest)

, (4)
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Table 6. Upper limit (95% confidence) on the neutrino mass (in eV)
in the Planck Bayesian framework and in the frequentist one based on
Feldman–Cousins prescription.

Data set Bayesian posterior Profile likelihood

CMB+lensing 0.85 0.88

CMB+lensing+BAO 0.25 0.26

where x is the measured value of the sum of neutrino masses∑
mν, µ is the true value, and µbest is the best-fit value of

∑
mν,

given the data and the physically-allowed region for µ. Hence
we have µbest = x if x ≥ 0, but µbest = 0 if x < 0, and the ratio R
is given by (Feldman & Cousins 1998):

exp(−(x − µ)2/2) for x > 0, (5)
exp(xµ − µ2/2) for x ≤ 0. (6)

We then search for an interval [x1, x2] such that R(x1) = R(x2)
and∫ x2

x1

L(x|µ)dx = α, (7)

with α = 0.95 as the confidence level. These intervals are tabu-
lated in Feldman & Cousins (1998).

We obtain the confidence interval [µ1, µ2] for each x =
m0/σν extracted from the parabolic fit to the χ2 profile as given
in Table 5. The upper limits are then simply µ2 × σν.

We give our final results in Table 6 and compare them to the
Planck Bayesian ones of Planck Collaboration XVI (2014). The
agreement is impressive, despite the use of two very different
statistical techniques. Finally, we varied the range of points used
in the parabolic fit and the limits we obtain are always lower
than the one reported in Table 6, meaning that our results are
conservative.

5. Conclusion

The use of Bayesian methodology in cosmology is partly mo-
tivated by the fact that one observes a single realization of the
Universe, while, in particle physics, one accumulates a num-
ber of events which leads more naturally to using frequentist
methods. This argument is of a sociological rather than scien-
tific nature, and nothing prevents us from using one or the other
methodology in these fields.

We demonstrated that a purely frequentist method is
tractable with the recent Planck-led high-precision cosmology
data. It required lowering the numerical noise of the Boltzmann
solver code and we have provided a set of precision pa-
rameters for the class software that, in conjunction with a
proper Minuit minimization strategy, allowed us to perform the
roughly 40 parameter optimization efficiently. We re-determined
the maximum likelihood solution, obtaining essentially consis-
tent results but with a slightly better χ2 value.

We built profile likelihoods for each of the cosmological pa-
rameters of the ΛCDM model, using the CMB and CMB+BAO
data sets, and obtained results very similar to those from the
Bayesian methodology. This confirmed, in this model, that the
Planck results do not depend on the choice of base parameters
(implicit priors) and are free of volume effects in the likelihood
projection during the marginalization process.

When including the neutrino mass as a free parameter, the
profile likelihood helped us to understand why the computed up-
per limit increases when including the extra information from
CMB lensing. This is not due to the Bayesian methodology, but
is related to the physical boundary

∑
mν > 0. The profile likeli-

hood analysis showed that neutrino mass limits obtained without
using the lensing information were pulled down to unphysical
negative values. Including the extra CMB lensing information
allowed us to obtain consistent frequentist results.

Using the Feldman–Cousins prescription, we obtained a
95% confidence upper limit of

∑
mν ≤ 0.26 eV for the

CMB+lensing+BAO combination, again in excellent agreement
with the Bayesian result.
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Appendix A: Note on CPU time

It it sometimes stated that multi-dimensional minimization in
high-dimension space is inefficient (or intractable) while MCMC
methods scale linearly. Both statements need clarification.

Standard MCMC methods (e.g., Metropolis–Hastings or
Gibbs sampling as in CosmoMC) are extremely CPU-intensive.
They require the lengthy computation of a multi-variate pro-
posal before running a final Markov chain, which by essence
is sequential and therefore cannot scale on multiple processors.
In the Planck case about O(105) iterations (i.e., computations of
the likelihood) were needed for this final stage.

One Minuit minimization in our scheme is obtained in
about O(104) iterations. It, however, requires a higher precision
tuning of the Boltzmann solver, which enhances the computa-
tion time of each likelihood by about a factor two. In practice
the minimum, in the D = 40 case, is found in about 10 h, and is
limited by the Boltzmann computation speed. The profile likeli-
hood approach requires many minimizations but these are inde-
pendent of one another. The problem now scales with the number
of computers, so that the total wall-clock time is still of the same
order of magnitude on a reasonable computer cluster.
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