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Ecoinformatics Reveals Effects of Crop Rotational
Histories on Cotton Yield
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Abstract

Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions,
magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In
order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a
large ecoinformatics database consisting of records of commercial cotton crops grown in California’s San Joaquin Valley. We
identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or
decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year’s crop on June
densities of the pest Lygus hesperus and the effect of the prior year’s crop on cotton yield. This suggested that some crops
may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from
the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that
cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior
to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be
revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture
the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.
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Introduction

Maximizing agricultural crop yield is an important goal for

several reasons. First, a growing worldwide population will

generate increased demand for agricultural resources [1]. Since

expanding the land area devoted to agriculture is often unfeasible,

or would involve the destruction of sensitive landscapes such as

forests and wetlands, the only way to meet this demand will be to

increase the crop yield generated from existing farmland. Second,

there are substantial economic incentives for profit-seeking farmers

to maximize the yield of their crops, especially given the low profit

margins typical of commercial agriculture [2].

Farmers make a wide range of decisions regarding the

management of their crops, involving pest management, plant-

ing/harvest dates, fertilization, irrigation, and, as we focus on in

this study, crop rotation. These decisions are, along with external

factors that fall outside farmers’ control, such as weather, likely to

affect crop performance and yield substantially. A rigorous

quantitative understanding of the factors, including farmer

management decisions, that affect crop yield is an essential

prerequisite for developing management strategies that maximize

yield.

A critical factor known to affect crop yield in a given field is the

crop rotational history of that field [3]. There are several possible

mechanisms by which the crops previously grown in a field can

affect crop yield. First, different crops have different effects on the

nutrient composition of the soil, so the identities of crops

previously grown in a field can affect nutrient availability and

crop yield [3]. For example, nitrogen-limited crops can benefit

from rotation with nitrogen-fixing legumes [4], and phosphorus

nutrition in California cotton is shaped by whether or not the

previous crop received phosphorus fertilizer [5]. Second, certain

crops may increase the local abundance of particular insect pests

and pathogens [6–8]. Since different crops are often susceptible

and resistant to different pathogens and pests, the identities of the

crops recently grown in a field can affect yield. For example, if one

crop increases local abundances of an insect pest that also attacks a

second crop, planting the second crop immediately following the

first may lead to decreased yield resulting from attack from the

built up local pest population. In contrast, such a yield depression

could potentially be averted if the second crop were planted

following a crop that does not lead to local accumulation of the

pest. In monocultures of wheat, substantial yield declines have

been noted and attributed to the buildup of the soil-borne fungal

pathogen Gaeumannomyces graminis [9]. Third, many studies have

shown that a field’s crop rotational history can strongly affect weed

densities [10]. Numerous other mechanistic explanations for the

yield effects of crop rotation have also been suggested [3].

Crop rotation has been practiced for thousands of years;

evidence for its inception dates back to ancient Roman and Greek
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societies [11,12]. Experimental studies on the effects of crop

rotation first appeared in the early 20th century, revealing that

growing crops in rotation led to increased crop yields of up to

100% compared to continuous planting of a single crop [13,14].

Interest in the yield effects of crop rotation waned during the

middle of the 20th century, due to the increasing availability of

cheap fertilizers, insecticides, and herbicides [3,14]. However,

crop rotation continues to be a relevant and important practice;

low-input farming remains desirable due to the costs of fertilizers

and pesticides, and fertilizer and pesticide applications can often

not fully compensate for the benefits afforded by crop rotation [3].

In addition, the significant environmental and public health

concerns surrounding fertilizer and pesticide use [1,15] highlight

the desirability of methods of increasing crop yield through

alternative methods such as crop rotation.

The effects of rotational histories on yield are well understood

for some crops, such as corn, where rotation is recognized to be

crticial in avoiding the buildup of corn rootworms [16]. However,

for many crops, the direction, magnitude, and mechanism of the

effect of crop rotational histories on crop yield remain poorly

understood [3]. Cotton is one such crop. Experimental field

studies of the effect of crop rotation on cotton yield have

demonstrated increased cotton yield, compared to continuous

cultivation of cotton, when cotton is grown in rotation with

sorghum [17,18], corn [19], and wheat [20,21]. Despite these

useful results, only a small subset of possible rotations has been

studied, experiments have been restricted to plots significantly

smaller than typical commercial cotton fields, and mechanisms for

these effects remain poorly understood. To help address these

limitations, we seek to expand upon this work by exploring the

effects of crop rotational histories on yield in commercial cotton

fields in California, using an ‘‘ecoinformatics’’ approach [22]

capitalizing on existing observational data gathered by growers

and professional agricultural pest consultants.

In recent years, there has been a surge in research and interest

involving the rapidly emerging field of ‘‘big data.’’ The big data

movement has been fueled by several developments, including a

dramatic increase in the magnitude of data generation, an

improved ability to cheaply store, manipulate, and explore massive

datasets, and the development of new analytic methods [23]. Most

importantly, the movement has been driven by a growing

realization that existing data, and data generated as a byproduct

of our everyday lives, can be leveraged to explore key questions

about nature and human behavior, even if the data were not

collected for this purpose [24]. Ecoinformatics is a nascent field

focused on harnessing the power of big data to address questions in

environmental biology. Ecoinformatics approaches typically in-

volve the analysis of large datasets, the synthesis of diverse data

sources, and the analysis of pre-existing, observational datasets

[22]. In some commercial agricultural settings, farmers, along with

hired consultants, collect a great deal of regular data about their

fields that are used to guide real-time crop management decisions,

such as the timing of pesticide applications. By capitalizing on data

that are already generated as a byproduct of commercial

agriculture, ecoinformatics provides a low-cost means of obtaining

a large dataset that can be used to explore key questions in

agricultural biology, some of which might be too difficult or too

costly to explore experimentally. Furthermore, the large size of

datasets created for ecoinformatics can afford greater statistical

power than could possibly be generated through experimental

work.

Experimentally studying the yield effects of crop rotational

histories is challenging for several reasons. There are a plethora of

possible rotational histories, which means that a large number of

treatments would be required to explore the space of possible

rotational histories thoroughly. Furthermore, experimentally

studying effects of crop rotations requires experiments spanning

several growing seasons, which may be logistically challenging.

Finally, in order to maintain realism and applicability to

commercial fields, which are typically quite large, sizeable

experimental plots would be required, especially in light of

research suggesting that landscape composition as far as 20 km

from a focal field can affect the densities of agricultural pests in

that field [25]. While yield effects of non-mobile factors such as soil

characteristics may be readily detected through small plot

experimentation, the effects of highly mobile arthropods may

only be detected at much larger spatial scales.

An ecoinformatics approach offers attractive solutions to these

challenges. Since we analyze a large preexisting dataset that

includes over a thousand records, a diversity of the possible crop

rotational histories already exists in the dataset. In addition, our

dataset spans 11 years of data, so the data span the temporal scale

necessary to ask questions regarding effects of multi-year rotational

histories. And, since the data come from the exact setting where

we wish to apply our results, the data are realistic and capture the

appropriate spatial scale of commercial agriculture.

First, we sought to identify which crop rotational histories are

associated with increased and decreased cotton yield, and to

quantify these yield effects. We then explored possible explana-

tions for the yield effects identified in the previous step by

examining the associations between crop rotational histories and

pest abundance.

Materials and Methods

Dataset
The dataset was constructed by collecting existing crop records

from commercial cotton fields in California’s San Joaquin Valley.

The data were shared by both growers and pest control advisors

(PCAs), professional consultants hired to monitor field conditions

and provide crop management recommendations. The dataset

contains records of 1498 unique field-year instances from 566

unique fields, ranging from 1997 to 2008. Growers and PCAs

collect and maintain detailed records of the conditions in their

fields; numerous variables were recorded for each field-year

record, and the following were used in our analyses:

1. Cotton yield. Measured once for each field-year instance,

cotton lint yield was measured in bales/acre (converted to kg/

ha for our analyses) and recorded for 1240 of the 1498 total

records.

2. Crop rotational histories. The identity of the crop grown in the

same field in previous growing seasons was recorded. For some

fields, records extended back for 10 years. However, the vast

majority of fields did not have records extending this far into

the past. There were 15 unique crops that appeared in

rotational histories: alfalfa, barley, carrots, corn, cotton,

garbanzo beans, garlic, lettuce, melons, onions, potatoes,

safflower, sugarbeets, tomatoes, and wheat.

3. Surrounding crops. For 1026 of the 1498 crops, we had data on

the identity of the crop grown in each of the 8 fields

immediately adjoining the focal field (to the North, Northeast,

East, Southeast, South, Southwest, West, and Northwest).

4. Cotton variety. The database consisted of records of two

different cotton species: Gossypium barbadense L. (‘‘Pima cotton’’)

and Gossypium hirsutum L. (‘‘upland cotton’’).

5. Lygus hesperus densities. The plant bug L. hesperus is one of the

most damaging pests of cotton, and a frequent target of

Effect of Rotational Histories on Cotton Yield
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insecticide applications [26,27]. PCAs measured L. hesperus

densities approximately weekly, primarily during June and

July. The PCAs’ sampling procedure consisted of 50 swings of a

sweep net across the top of the plant canopy. Since not all

PCAs sampled on the same days or at exactly the same

intervals for all fields, we transformed successive samples into

mean L. hesperus density estimates by calculating the area under

the linear curve of L. hesperus density versus time and dividing

by the number of days in the sampling interval.

Modeling approach
We employed a hierarchical Bayesian modeling approach,

fitting linear mixed models to explore our questions about the

effects of crop rotational histories on cotton yield. Mixed models

combine the use of random effects and fixed effects, making them

ideally suited for analysis of data that are structured, or clustered,

in some known way, such that separate observations from within

clusters are expected to be similar to one another [28]. When we

model a source of clustering using a random effect, we assume that

each cluster-specific parameter was drawn from a common

distribution, and we estimate the parameters of this distribution

from the data. We use this common distribution as the prior when

calculating the posterior distribution of each cluster-specific

parameter. The parameters (often called hyperparameters) of the

distribution of cluster-specific parameters have posteriors that are

estimated from the data, typically after assuming uninformative

priors for the hyperparameters [28]. Using a common, empirical

prior for all cluster-specific parameters allows pooling of informa-

tion across clusters, so that data from all clusters can help inform

estimates of every other per-cluster parameter. Assuming all

clusters are the same introduces high bias and tends to underfit the

data, whereas estimating fixed effects for each cluster introduces

high variance and tends to overfit the data; however, using a

random effect provides an optimal compromise between intro-

ducing bias and introducing variance [28]. In this dataset, there

are several plausible sources of clustering.

1. First, we expect the data to be clustered by field, since there

likely exist field-specific factors that affect yield, such as soil

characteristics, local climate, and grower agronomic and pest

management practices. We controlled for variable yield

potential between fields by including field identity as a random

effect in our models. Random effects allow pooling of

information across clusters, so they are particularly useful

when there are few observations from some clusters - a

situation in which it is difficult to accurately estimate each per-

cluster parameter with only the data from that one cluster [28].

Since there are three or fewer records for 78% of the fields in

our database, we feel that including field as a random effect was

preferable to trying to estimate field-specific fixed effects with

very few observations per field.

Additionally, including field as a random effect provides a

straightforward way to make predictions for fields not represented

in our database. Since modeling field as a random effect involves

sample a field-specific parameter from this distribution if we wish

to make predictions about a previously unobserved field.

Uncertainty in this field-specific parameter can be propagated

by simulating many samples from this distribution, while

simultaneously accounting for uncertainty in the parameters of

this distribution. However, if we were to model field as a fixed

effect, we would not estimate a distribution of field-specific

parameters. We would only estimate parameters for the specific

fields in our database, leaving us with no obvious way to

make inferences about new fields.

2. Second, we expect that our data are clustered by year, since

there is substantial between-year variability in climate,

particularly in the winter and early spring. Climatic variables

can affect crop performance, planting date, and insect pest

populations, all of which can in turn affect cotton yield. To

control for and quantify variation in yield due to year-specific

factors, we included year as a random effect in our models. Our

reasons for including year as a random effect are the same as

those for field: there are few observations from some years, and

we may wish to make predictions for future years not covered

by the existing database.

All models were fit using a No-U-Turn Sampler variant of

Hamiltonian Markov Chain Monte Carlo [29] implemented in

Stan version 1.3.0, accessed through the rstan packing in R

[30,31]. We ran three chains from random initializations, each

with 10,000 samples, and discarded the first 5,000 samples from

each as burn-in. Inferences were based upon the remaining 15,000

samples. We checked convergence by making sure that R̂R, an

estimate of the potential scale reduction of the posterior if

sampling were to be infinitely continued, was near 1 [32].

Models
Model 1. To explore the yield effects of the crop grown in the

same field the previous year, we fit a linear mixed model with yield

as the response variable. The predictor variable of primary interest

was the identity of the crop grown in that field the previous year,

which was included as a fixed effect.

Given that we are working with an observational dataset, a

critical step in order to make meaningful inferences about the

variable of primary interest - the crop grown the year before - was

to control, to the extent possible, for potentially confounding

variables that could generate spurious correlations and taint the

validity of our inferences about crop rotation. To control for

variable yield potential between fields and years, field and year

were included in the model as random effects. The field terms

control for the possibility that some fields may have higher yield

potential due to their location, soil characteristics, or growing

practices; the year terms control for the substantial year-to-year

variation in cotton yield, which likely results from yearly weather

differences. A term indicating cotton species (Pima or upland) was

included in the model to account for yield differences between

cotton species. Cotton species was modeled as a fixed effect, since

there are only two possible categories - not enough to meaningfully

estimate a random effects distribution [28]. We also included 15

real-valued fixed effect predictor variables that indicate the

number of fields, out of the 8 surrounding fields, planted with

each of the 15 crops we analyzed. The goal was to control for

effects of the surrounding landscape, and thereby avoid spurious

correlations between rotational history (which may be correlated

with the crops surrounding the focal crop) and yield.

Our Bayesian modeling approach required the specification of

priors for all parameters whose posteriors were estimated using

MCMC. Noninformative priors (normal distributions with mean 0

and standard deviation of 100) were used for all fixed effects. The

random effects for both field and year were assumed to follow a

normal distribution with mean 0 (allowing means of these

distributions to be estimated from the data would lead to

nonidentifiability with the fixed effects for prior crop identity)

and variance hyperparameters estimated from the data. Since the

support of variance parameters is constrained to positive real

Effect of Rotational Histories on Cotton Yield

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e85710

 estimating a distribution of per-field parameters, we can simply



numbers, noninformative inverse gamma distributions with shape

and scale parameters set to 0.001 were used as the prior for the

variance parameter of the top-level stochastic node, and as the

priors for the variance hyperparameters of the field and year

random effects distributions.

Model 2. To help us understand whether any effects of the

crop grown in the field the previous year on cotton yield could be

due to effects on L. hesperus, we fit the same model as Model 1, but

with average June L. hesperus abundance as the response variable.

Model 3. Next, to formally assess whether there was an

association between the effects of crop rotation on yield and the

effects of crop rotation on L. hesperus abundance, we performed a

linear regression of the estimated effects on yield (measured as the

posterior means from Model 1) against the estimated effects on L.

hesperus abundance (measured as posterior means from Model 2).

Noninformative N (0,1002) priors were used for the mean and

intercept, and a noninformative inverse gamma distribution with

shape and scale parameters set to 0.001 was used as the prior for

the variance.

Model 4. A great deal of experimental evidence has

demonstrated that crop rotation leads to increased yield compared

to successive plantings of a single crop [3]; therefore, we explored

whether or not a yield loss was incurred by cotton crops grown in

fields where cotton was grown in previous years. For the 782 fields

that had complete crop rotational records for the previous 4 years,

we calculated the number of consecutive cotton plantings (from 1

to 4) in the 4 years preceding the focal cotton crop. We then fit a

model, with yield as the response variable, using the number of

consecutive prior cotton plantings as a predictor (again with the

same noninformative prior of N (0,1002)). Field, year, and cotton

type were included as they were in Models 1 and 2. Since the

number of prior consecutive cotton plantings could be correlated

with the number of cotton fields in the surrounding landscape

during the focal year, we avoided a possible spurious correlation

between consecutive cotton plantings and yield by also including a

fixed effect for the number of cotton fields in the 8 fields adjacent

to the focal field. We chose not to explore rotational histories of

specific crops (and instead just grouped all crops into ‘‘cotton’’ or

‘‘not cotton’’) for longer than one previous year, since the number

of possible rotational histories becomes very large and the number

of records for each possible history becomes too small to allow for

robust statistical analysis.

Model 5. To see if the number of consecutive years of cotton

cultivation preceding the focal year was associated with June L.

hesperus densities, we fit the same model as Model 4, but with June

L. hesperus as the response variable.

Results

Model 1
Using our samples from the joint posterior of Model 1, we

calculated, for each crop other than cotton, the posterior

distribution of the difference in mean cotton yield in fields where

that crop was grown the year before compared to mean yield in

fields where cotton was grown the year before. The posterior

means of these comparisons, as well as 95% highest posterior

density intervals (HPDIs), are displayed in Figure 1A. Highest

posterior density intervals are a Bayesian analogue of frequentist

confidence intervals; they denote the narrowest region of

parameter space containing 95% of the posterior probability

[28]. Three crops had 95% HPDIs that did not overlap 0. Garlic

(lower limit = 42.0 kg/ha, upper limit = 213.7 kg/ha), tomatoes

(57.9 kg/ha 178.1 kg/ha), and melons (92.9 kg/ha, 793.7 kg/ha)

had entirely positive 95% HPDIs, suggesting that previous

cultivation of these crops was associated with increased cotton

yield. While no crops had entirely negative 95% HPDIs, the

posterior probability of safflower and sugarbeets having negative

effects on yield was 96% and 95%, respectively, suggesting that

cultivation of these crops the previous year was associated with

decreased cotton yield. Yield was 153.0 kg/ha higher, with a 95%

HPDI of (115.0 kg/ha, 192.8 kg/ha), for upland cotton than for

Pima cotton.

Model 2
Using the joint posterior of Model 2, we calculated the posterior

distribution of the difference in mean June L. hesperus densities

between fields where cotton was the year grown before and where

other specific crops were grown the year before. The posterior

means of these comparisons, as well as 95% HPDIs, are displayed

in Figure 1B. Corn (0.10 insects/sweep, 1.41 insects/sweep),

onions (0.09 insects/sweep, 0.76 insects/sweep), and garlic (0.06

insects/sweep, 0.50 insects/sweep) all had 95% HPDIs that were

entirely positive, suggesting that previous cultivation of these crops

was associated with increased L. hesperus abundance. June L.

hesperus density was 0.35 insects/sweep lower, with a 95% HPDI

for this decrease of (0.26 insects/sweep, 0.44 insects/sweep), for

upland cotton than for Pima cotton.

Model 3
While there were exceptions, we noticed that there was a trend

for crops associated with increased pest abundances to also be

associated with decreased yield. To more rigorously quantify this

trend, for the 14 crops other than cotton, we regressed the

posterior mean of the yield difference from cotton against the

posterior mean of the L. hesperus difference from cotton. There was

a negative slope with posterior mean 20.49 and 95% HPDI of (2

1.16, 0.15) that marginally overlapped 0; the posterior probability

of there being a negative slope was 93.4%. This provided evidence

that crops associated with increased June L. hesperus densities were

also associated with negative effects on yield (Figure 2).

Model 4
Model 4 suggested that every additional consecutive year of

prior cotton cultivation in a field led to reduced cotton yield.

Figure 3A displays the posterior distribution of the change in yield

for each additional year that cotton was consecutively grown in the

field prior to the focal year; the posterior mean for this change in

yield was 240.9 kg/ha, with 95% HPDI (257.5,223.4 kg/ha).

This translates to a mean of the percentage change in yield of 2

2.4% per year and 95% HPDI of (21.4%,23.4%) per year. We

refit Model 4 without the term for consecutive cotton plantings;

boxplots of the residuals are plotted against consecutive cotton

plantings in Figure 3B, where a decreasing trend can be observed.

Yield was 169.2 kg/ha higher, with a 95% HPDI of (123.4 kg/ha,

211.5 kg/ha), for upland cotton than for Pima cotton.

Model 5
Model 5 revealed a positive association between the number of

preceding consecutive cotton plantings and June L. hesperus

densities; the posterior mean of the slope regressing June L.

hesperus on consecutive cotton plantings was 0.037 insects/sweep

with a 95% HPDI that slightly overlapped 0 of (20.007,0.079).

The posterior probability of there being a positive relationship

between consecutive cotton plantings and L. hesperus densities was

95.3%. June L. hesperus density was 0.32 insects/sweep lower, with

a 95% HPDI of (0.20 insects/sweep, 0.43 insects/sweep), for

upland cotton than for Pima cotton.

Effect of Rotational Histories on Cotton Yield
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Discussion

Capitalizing on a large existing set of crop records from

commercial cotton fields in California, we employed an ecoinfor-

matics approach to explore the effects of crop rotational histories

on cotton yield. Our hierarchical Bayesian analyses revealed

evidence that several crops, when grown in the same field the year

before the focal cotton planting, were associated with either

decreased or increased cotton yield (Figure 1A), and either

increased or decreased early season densities of the pest L. hesperus

(Figure 1B). Furthermore, crops associated with decreased yield

were generally also associated with increased L. hesperus densities,

while those associated with increased yield were also associated

with decreased L. hesperus densities (Figure 2).

These results suggest a possible mechanism for the observed

yield effects of these rotational histories. Since L. hesperus

preferentially attacks certain crops [33], a field cultivated with a

crop that is heavily attacked by L. hesperus may, if L. hesperus

disperse from the focal field, increase the abundance of L. hesperus

in nearby fields. These populations may subsequently attack the

crop planted in the focal field the following year, explaining the

increase in early-season L. hesperus densities that we detected

following certain crops. In turn, these increased L. hesperus

populations may exert strong herbivorous pressure on focal cotton

crops, possibly explaining the corresponding decrease in yield.

We believe that the effect of rotational history on early-season L.

hesperus likely operates at a landscape scale that is larger than the

within-field scale. If cotton was grown in a field the previous year,

then farmers in the San Joaquin Valley are required to maintain a

90-day plant-free period prior to 10 March of the following year

[27]. This prevents L. hesperus, which overwinter as adults on live

host plants, from overwintering in a focal field where cotton was

grown the year before. If a crop other than cotton was grown the

previous year, then it could be possible for L. hesperus to overwinter

in the focal field on residual plant or weed populations; however,

Figure 1. Means and 95% HPDIs of the differences in mean yield (A) and mean June L. hesperus density (B) between fields where a
certain crop was grown the previous year and where cotton was grown the previous year. 95% HPDIs that do not overlap 0 are marked
with a (�).
doi:10.1371/journal.pone.0085710.g001

Figure 2. For each of the 14 crops other than cotton, we
calculated the posterior mean of the mean difference in yield
when that crop was grown in the field the year before
compared to when cotton was grown in the field the year
before (y-axis; these estimates are also displayed in Figure 1A).
We also calculated the posterior mean of the difference in mean June L.
hesperus densities between fields where a specific crop was grown the
year before and where cotton was grown the year before (x-axis; these
estimates are also displayed in Figure 1B). These estimates are plotted
above (open circles). Then, we fit a linear model by regressing the mean
yield differences on the mean L. hesperus differences. The posterior
mean of the model fit (solid black) and 95% HPDI (dashed blue) are
overlaid.
doi:10.1371/journal.pone.0085710.g002
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since fields are completely plowed prior to planting cotton in the

spring, L. hesperus adults would still need to temporarily leave the

focal field. Therefore, we believe that the preferred host crops for

L. hesperus increase L. hesperus populations at a landscape scale.

Then, when cotton, another target of L. hesperus, is planted in the

same field the following year, the cotton field is attacked by this

regional population. If regional populations are already large due

to lingering effects from crops grown the previous year, L. hesperus

populations may move into cotton early in the growing season; this

could be particularly damaging given research suggesting that

cotton yield is particularly sensitive to L. hesperus densities early in

the growing season [34]. Using our data, we were not able to

determine at exactly what scale the effects of rotation on L. hesperus

likely operate. We do not believe a within-field scale is plausible,

but determining a more precise spatial scale for these effects could

be an interesting topic for future research.

Our findings match expectations of crop yield effects based on

previous research on L. hesperus host crop preferences, lending

support to our hypothesis that yield effects of crop rotational

histories are, at least partially, mediated by effects on L. hesperus.

Alfalfa and sugarbeets, both crops for which we found negative

effects on yield and positive effects on L. hesperus when grown in a

field the previous growing season, are all considered preferred

hosts for L. hesperus [27], and have been shown to also increase L.

hesperus populations in nearby cotton fields during an individual

growing season [33,35]. Presumably, this effect is due to these

crops supporting large L. hesperus populations. Large L. hesperus

populations are known to build up in alfalfa [36], and their

dispersal following alfalfa harvesting can threaten nearby cotton

crops [27,37]. L. hesperus is also known to emigrate to nearby

cotton fields when safflower begins to dry in mid-summer [38].

While the potential for nearby alfalfa [27,33] and safflower [33,35]

fields to increase L. hesperus populations in cotton fields in a given

year has been recognized, our results are the first indication that

these landscape effects may extend temporally, affecting L. hesperus

populations, and yield, in the next growing season. Tomatoes,

associated with increased yield and decreased pest abundance in

our data, have likewise been shown to decrease L. hesperus

abundances in nearby cotton fields within a given year [33].

While previous experimental work has examined the effects of

crop rotations on cotton yield [14,17,18,20,21], our work expands

on these studies in several ways. First, we explore a much wider

diversity of possible crop rotational histories, providing quantita-

tive estimates of the cotton yield effects of cultivating 14 different

crops the previous year. Second, since we analyze records from

commercial cotton fields, our data have the potential to capture

yield effects (such as those due to highly mobile arthropods) that

could only be detected at this realistic spatial scale. Third, since we

have collected data on pest abundances, not only yield, we have

also been able to use our data to generate and build evidence for a

hypothesized mechanistic explanation of the yield effects we

identify.

We also found that farmers incurred a decline in cotton yield of

about 2.4% for every additional year cotton was grown

consecutively in a field preceding the focal season (Figure 3). This

is consistent with previous research suggesting that continuous

cultivation of cotton in the same location can reduce yield

compared to interspersing cotton with other crops [14,17,18,

20,21]. We also found some evidence that the number of years

cotton was grown consecutively in a field was associated with

higher June L. hesperus densities: the posterior probability of there

being a positive association was about 95%. Identifying the actual

mechanism underlying this yield effect is beyond the scope of this

study, but would be an interesting avenue for future research. It is

Figure 3. The posterior distribution of the change in yield for every additional year that cotton was grown consecutively in a field
prior to the focal year (A). We refit the model without consecutive cotton plantings in the model and display boxplots of the residuals vs.
consecutive cotton plantings, where a decreasing trend can be observed (B).
doi:10.1371/journal.pone.0085710.g003
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possible that the yield decline is not caused by changes in L. hesperus

densities, and instead results from the buildup of soil pathogens,

especially in light of previous research showing that continuous

cotton cultivation increases the densities of fungal pathogens in the

soil [18].

When interpreting our results, it is important to remain

cognizant of the challenges of drawing causal inferences from

observational data. The key assumption required to make causal

inferences from regression coefficients is that all variables that

affect both the treatment assignment (crop rotation, in our

analyses) and the response variable (yield and L. hersperus density,

in our analyses) are included in the model; this ensures that the

probability of receiving each treatment becomes, conditional on

the predictor variables included in the model, conditionally

independent of the response variable [28]. In experimental

studies, the treatment assignment is typically controlled by the

experimenter, so one can be confident that the only difference

between treatment and control groups is in fact the treatment.

However, in observational studies, it is impossible to prove

definitively that there was no other factor that affected both the

treatment assignment and the response variable (thus spuriously

suggesting a treatment effect).

As such, we want to be very clear that our hypothesis that the

effects of rotation on yield are mediated by effects on L. hesperus

densities is exactly that - a hypothesis. While our data do support a

negative association between effects on L. hesperus and effects on

yield, we cannot prove with observational data that the varying

effects on yield are caused by the varying effects on L. hesperus. This

could be a fruitful topic for future experimental work.

Although causality is impossible to prove using observational

data, ecoinformatics paves the way for implementing data-driven

agricultural strategies and allows us to mine large datasets to

explore important questions that are difficult to address experi-

mentally. While by no means a replacement for experimentation,

ecoinformatics can be a cost-effective and realistic complementary

approach. In particular, our result identifying the effects of crop

rotation on L. hesperus density would have been extremely difficult

to reach experimentally. Since L. hesperus readily disperse across

spatial scales of more than 1000 meters [37], an experimental

study would have required massive plots comparable to the size of

commercial fields in order to adequately capture their spatial

dynamics.

Our results have numerous practical applications for commer-

cial cotton growers. Growers with knowledge of the crop rotations

associated with depressed cotton yield could make more informed

decisions, selecting the sequence of crop cultivations that lead to

maximized yield. When feasible, cotton plantings could be avoided

following crops that decrease cotton yield, and instead limited to

fields where crops that increase cotton yield were previously

planted. In some cases, market conditions may lead a grower to

plant cotton following a yield-depressing crop, even given the

knowledge of likely yield loss. In those situations, our results may

still be helpful, as an early warning sign of a potential pest problem

in a particular field could allow the grower and PCA to focus pest

detection efforts on that field and provide time to eliminate the

problem before severe yield loss was incurred.

Our results suggest that the yield effects of crop rotational

histories in cotton are relatively modest in magnitude: the posterior

means for effects of any specific crop were mostly under 15%.

However, given the tight profit margins of commercial agriculture,

a 15% change in yield could translate into a far greater percentage

change in profit, and could therefore be of substantial economic

significance to a grower. As we seek to feed a growing worldwide

population while doing minimal harm to the environment, crop

management practices that increase yield while reducing the need

for costly and damaging pesticides and fertilizers are of great value.

Crop rotation is one such method, and we are optimistic that

ecoinformatics approaches may be helpful in elucidating the

details of how to optimally implement crop rotation.
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