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ABSTRACT OF THE DISSERTATION

Towards More Generalizable Machine Learning: Improving Model Robustness Against

Clinical Event Sequence Shifts

by

Tianran Zhang

Doctor of Philosophy in Bioengineering

University of California, Los Angeles, 2022

Professor Alex Ahn-Tuan Bui, Co-Chair

Professor William Hsu, Co-Chair

Data-driven models for diagnostic and other clinical prediction tasks have been enabled by

the increasing availability of electronic health records (EHRs) and recent developments in

machine learning (ML). Notably, the clinical event sequences extracted from EHR data pro-

vide important insights into how a patient’s illness progresses. However, many of the models

developed thus far are trained and validated using data from the same distribution (e.g., a

single institutional dataset). When externally validated on distributions other than those

used for training, these models exhibit generalizability issues despite their reported improve-

ment. The variation in distributions between the training and deployment environment is

called dataset shift, which can be attributed to many factors during the data generation pro-

cess (e.g., patient demographics, site-specific healthcare delivery patterns, policy changes),

and data processing approaches (e.g., concurrent event ordering, feature mapping). This

problem and subsequent model generalization is exemplified by current approaches involving

EHR data and clinical event sequences.
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This dissertation seeks to assess and reduce the impact of dataset shift on the stability

of clinical event sequence models, addressing two facets of the problem. First, the research

explores a method to learn perturbation-invariant representations of event sequences involv-

ing concurrent events by modeling them as a sequence-of-sets, ameliorating the impact of

dataset shift caused by inconsistent ordering schemes imposed during pre-processing. With

a permutation-sampling-based framework, we enforce perturbation-invariance on a clinical

dataset using an additional L1 loss. The proposed framework is tested on a next-visit diag-

nostic prediction task and shows improved robustness over perturbations in concurrent event

ordering shifts. Second, this research develops a domain-invariant representation learning

framework using unsupervised adversarial domain adaptation techniques, reducing the im-

pact of dataset shift on a model’s target domain performance without requiring any target

labels. To improve transfer performance in the unlabelled target domain, the pre-trained

Transformer-based framework adversarially learns domain-invariant features that are also

beneficial to the discriminative task of next-visit diagnostic prediction. The proposed frame-

work is evaluated for both transfer directions on event sequence datasets from two different

healthcare systems and demonstrates superior zero-shot predictive performance on the target

data over the non-adversarial baselines.

This dissertation advances our understanding of how dataset shift affects the generaliza-

tion and stability of clinical event sequence diagnostic prediction models, and offers solutions

to reduce its impact in both single-source perturbation and cross-dataset unsupervised trans-

fer learning settings.
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CHAPTER 1

Introduction

1.1 Motivation

In recent years, the availability of electronic health records (EHRs) has enabled data-driven

machine learning (ML) models that are able to diagnose conditions like skin cancer [34] and to

make recommendations based on predicted risk for adverse events, like sepsis and in-hospital

mortality [38]. The reliability and robustness of these models is especially crucial given

their application in clinical practice. However, when tested and deployed in new environ-

ments different from the original development setting, they may perform drastically worse

than reported. As an example, Zech et al. [135] demonstrated that pneumonia-screening

CNNs trained on images from individual hospital systems failed to generalize consistently

to external sites, with 3 of 5 transfer settings showing significantly lower external validation

performance than that of the original hospital system. The generalizability issue is caused

by shifting conditions between training and testing, which can be attributed to many fac-

tors including differences in patient demographics, healthcare delivery patterns, equipment

choices, disease prevalence, and underlying data representations [108]. In practice, failing to

account for these differences have consequences beyond just suboptimal model performance:

a severely ill patient falsely triaged to the floor instead of the intensive care unit (ICU) could

be under-treated as a condition worsens, for example. To generalize, a model needs to fulfill

certain stability requirements to ensure that its performance is relatively robust against per-

turbations in data distribution. An ideal system will be able to encompass all the relevant

variations in demographics, care patterns, and disease states of target patients in real-world
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clinical settings.

Classical clinical models, such as the ones developed from clinical trials, have findings that

are dependent on strictly controlled environments. When trying to generalize the conclusions

to another population, additional procedures are required to either match the corresponding

population-level statistics or make statistical adjustments to match the attributes between

treatment groups [112]. Developing clinical predictive models (CPM) using EHR data makes

controlling population/environmental factors much more difficult, as the data are routinely

collected in healthcare practice rather than on an ad-hoc basis. CPM deployment must be

safeguarded by better understanding the impact of dataset shift, and finding ways to reduce

such impact in the dynamic and complex healthcare system.

These problems are explored throughout this dissertation to develop key ideas around

ML generalization in healthcare applications, particularly in relation to the temporal nature

of clinical data.

1.2 Contributions

This dissertation addresses the generalizability issue of clinical event sequence models by

fulfilling the following two aims:

• Aim 1: Improving the robustness of predictive modeling against perturbation by learning

a perturbation-invariant representation of clinical event sequences. This work is among

the first efforts modeling a clinical sequence with concurrent events as sequence-of-sets

(SOS) to offset the impact of inconsistent ordering from data management and prepro-

cesssing steps. A permutation sampling based framework, Diagnostic Prediction with

Sequence-of-sets (DPSS), is described to improve model robustness against varying or-

dering schemes. DPSS enforces permutation-invariant representation learning through a

jointly trained L1 loss and demonstrated improvement on the next-visit heart failure (HF)

diagnosis prediction task (on data with random ordering scheme) over baseline models
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with no permutation-sampling mechanism. When a concurrent event ordering scheme dif-

ferent from that of the training data (e.g., random ordering versus alphabetical ordering) is

applied as a test-time perturbation, DPSS shows reduced relative performance loss, sup-

porting the conclusion that permutation invariance contributes to the model robustness

against ordering scheme perturbation.

• Aim 2: To externally validate a predictive event sequence model and improve its robust-

ness against dataset shift by learning a domain-invariant representation of clinical event

sequences. While the inconsistent event ordering schemes in Aim 1 is viewed as a type of

perturbation that affects the distribution of data from a single source, Aim 2 further ex-

plores the idea of improving model generalizability under perturbation. The perturbation

is in the form of dataset shift in event sequences caused by cross-dataset distributional vari-

ation. Dataset shift is known for worsening testing/deployment-time performance when

extending a model trained on one source (i.e., domain) to another (i.e., target) where the

data distribution differs. An external validation is first performed using the state-of-the-art

baseline models, self-attentive gated recurrent unit (GRU) and pre-trained Transformer

model. Results show that the baseline models perform significantly worse on target data

than on source data for HF onset prediction. A novel solution, AdaDiag, is proposed

for unsupervised domain adaptation on event sequences, learning from unlabeled target

domain sequences under dataset shift. It adversarially learns a domain classifier with the

disease classifier through minimax loss optimization. A domain classifier determines a

given sequence’s domain (i.e., data source) identity and performs similar functions to a

discriminator in conventional generative adversarial networks (GANs). This mechanism

forces the feature extractor shared by both classifiers to learn a domain-invariant repre-

sentation, which aids the model in generalizing between domains when used for disease

classification. Compared with the non-adversarial baselines, AdaDiag method better uti-

lizes data from both the source and target domains, which leads to improved performance

without requiring labels from the target domain.
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Motivating scenario. As a testbed for developing Aims 1 and 2, this dissertation looks

at the clinical problem of predicting heart failure (HF). A person experiences heart failure

when their heart cannot supply enough blood and oxygen to support the rest of their body.

As one of the most frequent and serious conditions in the United States, heart failure is

associated with difficulty with daily living activities, high costs of care and increased risk of

hospitalization and mortality. Nearly 6.2 million Americans are affected by HF [121], costing

the country $30.7 billion a year [6]. It has an approximately 50% mortality rate within 5

years of diagnosis [96] and accounts for 13.4% of all deaths [121]. Though early diagnosis and

treatment can significantly improve the quality and length of life of patients with this disease,

it is hard to detect before officially diagnosed, making it difficult to intervene promptly [15].

The significance of this clinical problem and the underlying temporal nature of observations

provides a foundation for exploring and developing the methods in this dissertation.

1.3 Organization

The remaining chapters of this dissertation is organized as follows:

• Chapter 2 describes the technical background of major aspects of this dissertation: con-

temporary methods for modeling sequential data, types of dataset shift, and domain adap-

tation methods.

• Chapter 3 presents works on building a disease prediction framework that addresses the

inconsistency issue of concurrent event ordering, showing that enforcing permutation-

invariant representation improves model robustness against different ordering schemes.

• Chapter 4 discusses difficulties on transferring a predictive event sequence model across

institutions due to the effect of dataset shift. An unsupervised adversarial domain adap-

tation framework is proposed and demonstrated its utility in reducing dataset shifts and

improving the transferred HF onset prediction performance on the target dataset.

Finally, Chapter 5 summarizes the contributions and findings from this dissertation, and then

4



provides possible directions to extend these developments to serve the goal of improving the

robustness of clinical predictive models against dataset shift.
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CHAPTER 2

Background

This chapter provides an overview of current methods pertinent to the technical developments

in this dissertation. We first discuss the challenges of representation learning for EHR

data and current approaches to solving this problem in a broader context. Two specific

areas are then described, highlighting state-of-the-art methods and approaches: 1) predictive

models for sequential data, focusing on contemporary deep learning methods; and 2) domain

adaptation methods. Details of comparable clinical models are presented in subsequent

chapters.

2.1 Representation Learning for EHR Data

Data-driven approaches have the potential to explore and efficiently solve clinical problems

due to the increased availability of electronic health record (EHR) data and rapid develop-

ment of machine learning techniques. The handling of routinely collected data from various

sources, however, can be challenging when preparing the raw data into structured inputs

expected by the standard learning algorithms. With different pre-processing steps and en-

coding methods transforming sparse information into a more compact representation (e.g.,

embedding), there remains a risk of losing signals that would have been critical for clini-

cal decision-making. Thus, it becomes especially important to learn a representation that

preserves information that aligns well with medical knowledge needed for solving specific

clinical problems.
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A number of challenges have been identified in modeling temporal sequences in the EHR,

including representing temporality, sparsity, high-dimensionality, and data heterogeneity.

Here, this dissertation focuses on building a more robust representation for clinical event

sequences in the face of dataset shift, whether due to bias in data generation or in handling

and encoding processes. This chapter lays the foundation for later chapters by explaining

the technical background of contemporary modeling techniques relevant to the dissertation.

These techniques include temporal modeling techniques such as recurrent neural nets (RNNs)

and attention mechanism (involved in both studies in Chapters 3 and 4); and subsequently,

more advanced methods modeling sequential data such as Transformers, the basis of the

model we describe in Chapter 4. Also at the heart of our innovation in Chapter 4, we

introduce existing domain adaptation techniques to motivate its application.

2.2 Predictive Modeling of Sequential Data

2.2.1 Recurrent Neural Networks

Recurrent neural networks (RNN) take sequential data such as text, time series, and au-

dio/video sequences. They are capable of processing variable-length sequence inputs using

an internal memory unit structure. However, RNNs are not suitable for learning longer se-

quences as they may leave out important information from earlier time steps. During back-

propagation, it suffers from the vanishing gradient problem: values used to update model

weights shrink as optimization continues and do not significantly contribute to further learn-

ing. To control such gradient issues and address the limitations of short-term memory, RNN

variants such as the long-short-term memory (LSTM)/gated recurrent unit (GRU) cells have

been proposed. LSTMs and GRUs regulate the flow of information through internal mech-

anisms called gates, learning to selectively pass or forget information across time steps to

support predictions.
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LSTM. LSTM cells maintain an internal cell state and use three types of gates: input

gates (I), forget gates (F ), and output gates (O) to control information flowing across time

steps. As shown in Eq. 2.1, 2.2 and 2.3, for an LSTM cell at time step t, each of its three

gates takes the hidden state Ht−1 from the previous time step and the current input Xt and

passes them through a sigmoid function σ that “scales” the gate outputs between 0 and

1, providing the gates with the ability to remove or add information to the cell state. An

input gate controls the flow of new values into the memory (Eq. 2.1), a forget gate controls

how long a value remains in memory (Eq. 2.3), and an output gate controls how a value in

memory is used to compute the cell’s output hidden state (Eq. 2.2):

It = σ (Wi ·Xt + Ui ·Ht−1 + bi) (2.1)

Ot = σ (Wo ·Xt + Uo ·Ht−1 + bo) (2.2)

Ft = σ (Wf ·Xt + Uf ·Ht−1 + bf ) (2.3)

To compute the current cell state, Ct, a candidate value C̃t is first calculated (Eq. 2.4) with

the past hidden state Ht−1 and the current input It, using a tanh function to scale C̃t between

-1 and 1:

C̃t = tanh (Wc ·Xt + Uc · ht−1 + bc) (2.4)

The current cell state Ct is then updated using the previous cell state Ct−1 and the candidate

value C̃t weighted by the forget gate and input gate outputs Ft and It, respectively (Eq. 2.5):

Ct = Ft ⊙Ct−1 + It ⊙ C̃t (2.5)

Finally, the output hidden state ht is computed by the current cell state ct passed through

a tanh activation function, multiplied by the output gate output ot (Eq. 2.6):

Ht = Ot ⊙ tanh (Ct) (2.6)

8



Figure 2.1: Gate operations and data flow in an LSTM cell [136].

In equations above, W∗ and U∗ are learnable weight matrices and b∗ are the bias terms. The

gate operations and data flow of an LSTM cell are illustrated in Fig. 2.1.

GRU. As a simpler alternative to LSTMs, GRUs [14] are proven to be more computation-

ally efficient while achieving competitive performance for a variety of machine learning tasks.

Instead of a cell state, it simply uses the hidden state to transfer information. Unlike the

LSTM cell, a GRU cell has only two gates: the reset gate (R) and the update gate (Z). The

update gate Zt decides what information to add/throw away, while the reset gate Rt controls

how much information from the previous time step to remember. These act similar to the

input/forget gate in an LSTM cell as they also take the current input Xt and the previous

hidden state Ht−1 and pass through a fully-connected layer Sigmoid activation σ (Eq. 2.7,

Eq. 2.8). A key difference between GRUs and LSTMs is that a GRU computes its hidden

state, Ht, without maintaining a cell state. A candidate hidden state is first computed in

Eq. 2.9 following an RNN’s hidden state updating mechanism using tanh activation. Eq. 2.10

then incorporates the effect of the update gate Zt and decides when constructing the final

hidden state how much is directly taken from the previous hidden state Ht−1, and to what

extent it uses the newly computed candidate hidden state, H̃t:

Zt = σ (Wz ·Xt + Uz ·Ht−1 + bz) (2.7)
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Figure 2.2: Gate operations and data flow in a GRU cell [136].

Rt = σ (Wr ·Xt + Ur ·Ht−1 + br) (2.8)

H̃t = tanh (Wh ·Xt + Uh ·Ht−1 (Rt ⊙Ht−1) + bh) (2.9)

Ht = Zt ⊙Ht−1 + (1− Zt)⊙ H̃t (2.10)

The gate operations and data flow of a GRU cell are illustrated in Fig. 2.2.

Bi-directional RNNs. Bi-directional RNNs (bi-RNNs) were initially proposed in 1997

[102]. Later, bi-LSTMs [50] and bi-GRUs [137] were described with similar ideas. By adding

another backward hidden layer that updates in the opposite direction, bi-RNNs look not only

into historical sequence segments through left-to-right recurrent updates like RNNs do, they

are able to look ahead into future tokens. For a given input Xt, a backward hidden state
←−
Ht

and a forward hidden state
−→
Ht are populated by passing information in the backward and

forward direction, and are then concatenated to construct the hidden state Ht and fed into

the output layer. Bi-RNNs have the capability of learning more powerful encodings of input

sequences than regular RNNs, as the added “look ahead” function provides deeper context:

each hidden state at time step t is determined by both tokens before and after the current
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Figure 2.3: The Bahdanau architecture designed for NMT task: given an input sequence X1,

X2, ..., XT , the encoder (bi-RNN)-decoder (RNN) model tries to generate the target word

yt. Image is from [3].

step.

2.2.2 Attention Mechanisms

RNN-based methods have become widely adopted in recent years due to the remarkable

performance of LSTMs and GRUs in tasks such as translation, speech recognition, and

image captioning. A growing number of attempts have been made to enhance RNNs with

new mechanisms and functionalities. Several promising directions share the same underlying

idea of adding attention to RNNs, allowing them to focus on particular parts of their input

(e.g., neural Turing machines [42], adaptive computation time [41]) [81].

In the encoder-decoder architecture of a classic sequence-to-sequence model (e.g., for

neural machine translation, NMT), where the encoder/decoder both tend to be RNNs, the

encoder first converts the input sequence into a fixed-length “context” vector as an intermedi-

ate representation. This context vector is then passed to the decoder to generate the output

sequence. In spite of the fact that the tokens in the input sequence are not equally useful for
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decoding each target token, the same context vector is used for predicting all tokens in the

output sequence. This fixed context vector is unable to efficiently encode information from

the entire input sequence (i.e., the bottleneck problem [3]). To improve model performance

on NMT tasks, Bahdanau et al. [3] proposed a new mechanism called “attention.” As shown

in Fig. 2.3, the decoder RNNs process the input to pass information for each token it sees.

At each decoding time step i, instead of a fixed context vector, the decoder takes a context

vector ci that is the weighted sum of all encoder outputs:

ci =
Tx∑
j=1

αijhj (2.11)

where the attention weight αij describes how much attention the output word at position

i pays to the encoded representation of the input word at position j. This weighting is

determined by an alignment score between the last decoder hidden state si−1 and the encoder

hidden states hj, normalized by a softmax function:

αij = softmax(score(si−1,hj)) (2.12)

where score(si−1,hj) is the alignment score describing how well the jth input token and the

(i − 1)th output match. The alignment model is parameterized as a feed-forward neural

network, thus we have:

score(si,hj) = v⊤
a tanh (Wa [si;hj]) (2.13)

where Wa and va are trainable parameters. As a linear combination of the encoder hidden

states hj and decoder hidden state si−1 is used to determine the attention weights, the

Bahdanau attention is also known as the additive attention. Using Bahdanau attention,

the decoder learns where to focus, generating an attention distribution that shows to what

extent the model focuses on each segment of the input when generating each token in the

output sequence. As a result, the model is advantageous relative to classic encoder-decoder

architectures, especially when modeling longer sequences [3]. Given the success achieved by
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Table 2.1: A summary of alignment scores for common attention functions.

Attention Mechanism Alignment Scoring Function

Additive/Bahdanau [3] score(si,hj) = v⊤
a tanh

(
Wa

[
si;hj

])
Dot-Product [70] score(si,hj) = s⊤i hj

General [70] score(si,hj) = s⊤i Wahj

Scaled Dot-Product [117] score(si,hj) =
s⊤i hj√

d

attention mechanisms in machine translation, researchers have extended its application to

other fields using sequential data, such as image caption generation [130].

Building on top of the Bahdanau attention, instead of using the feed-forward neural

network, alternative alignment scoring functions can be used in place of Eq. 2.13 to construct

new forms of attention [70, 117]. Table 2.1 provides a summary of alignment scores for

commonly used attention mechanisms. Luong et al. proposed several alternative alignment

scoring functions [70], where the dot-product score employs a dot product of the current

decoder hidden state si and all the encoder hidden states hj, for j ∈ [1, T ]; the general scoring

is a parameterized version of the dot scoring with an intermediate matrix multiplication (Wa

contains trainable parameters) step. The Transformer paper [117] later proposed an adapted

version of the dot product scoring by adding a scaling factor 1√
d
, where d is the dimension

of the source hidden state. Adding this scaling step prevents the gradient of the softmax

function from becoming too small when the dot product grows too large as the hidden state

dimension increases (as small gradients can impede learning).

Self-attention. Self-attention is a mechanism for learning a context-aware representation

of a given sequence x1,x2,x3, ...,xT , by relating tokens at different positions in the sequence.

Each token xi is mapped to an embedding Ai that is a weighted sum of all tokens in the

sequence, as shown in Eq. 2.14:

Ai =
T∑

j=1

αijxj (2.14)
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Figure 2.4: The Transformer model architecture. Image from Vaswani et al. [117].

The attention weights αi,j are calculated by:

αi,j = softmax (score(xi,xj)) (2.15)

where the score describing the association between tokens at position i and position j can

be defined as any scoring function listed in Table 2.1. When dot-product scoring is used, the

score is calculated as the dot-product of xi and xj:

score(xi,xj) = x⊤
i xj (2.16)

2.2.3 Transformer Model

In comparison with earlier RNN-based models, the Transformer model relies entirely on a

self-attention mechanism to compute representations for both input and output sequences.

This approach boosts computational efficiency by allowing parallel computation.
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Model architecture. As illustrated in Figure 2.4, the Transformer model is composed

of an encoder (left) and a decoder (right). The encoder provides an attention-based repre-

sentation capable of locating a specific piece of information out of the context of the entire

sequence. It is comprised of a stack of several identical layers, each containing a multi-head

self-attention sub-layer and a position-wise, fully-connected feed-forward network. Each layer

also adopts residual connection and layer normalization. Likewise, the decoder consists of

a stack of several identical layers: each has two sub-layers of multi-head attention mecha-

nisms and one sub-layer of fully-connected feed-forward network. Residual connection and

layer normalization are also used in the decoder sub-layers. Both the source and the target

sequence are first passed through the embedding layer to be mapped to initial embeddings

of a predefined dimension. To preserve the position information, a sinusoid-wave-based po-

sitional encoding is applied and summed with the embedding output. A softmax and linear

layer are added to the final decoder output.

Query, key, and value. Taking an analogy of concepts from information retrieval systems,

the Transformer paper [117] formulates an attention function as mapping a query and a set

of key-value pairs to an output. To better facilitate language modeling, the self-attention

used in [117] is introduced with three trainable matrices, Wq, Wk and Wv, projecting an

input word xi to its query, key, and value, denoted by row vectors qi, ki and vi:

qi = Wqxi

ki = Wkxi

vi = Wvxi

(2.17)

query describes what the model wants to focus on (what the search query is asking for);

value refers to the features/representation that we are running the queries on (the search

results to be retrieved); and key stands for the values against which we bias the attention

values given a query (corresponds to column/field names in database). Note that each value

is therefore associated with a key.
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Scaled dot-product attention. The type of self-attention used in the Transformer model

adopts a scaled dot-product alignment function, which was briefly introduced in Table 2.1

from Section 2.2.2. Here, we formulate scaled dot-product attention using terms of query,

key, and value we just introduced. The output is calculated as a weighted sum of value.

For each value, a weight is given by a scaled dot-product alignment score assigned to the

query and the corresponding key. For each query, the model learns which key-value pair it

should pay attention to:

An = A (qn,K,V) =
T∑
i=1

softmax (score(qn, ki))vi (2.18)

score(qn, ki) =

(
qnk

T
i√
dk

)
(2.19)

where dk is the dimension of the key vectors. The scaling factor
√
dk prevents small gradient

values of the softmax function as the dot product value becomes too large, thus facilitating

a more efficient learning process.

The following equation shows how computation of attention weights for multiple queries

can be performed in parallel through matrix multiplications (Eq. 2.20):

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V (2.20)

where Q, K and V are the queries, keys, and values in the form of matrices.

Multi-head self-attention. Initially proposed in [117], the idea behind multi-head at-

tention is to run an attention mechanism (e.g., scaled dot-product self-attention) for several

times in parallel, which allows handling information from different representation sub-spaces

at the same time. Attention outputs from all heads are concatenated and converted into

expected dimensions through a linear transformation:

MultiHead(Q,K,V) = Concat (head1, . . . , headh)W
O

where headi = Attention
(
QWQ

i ,KWK
i ,VWV

i

) (2.21)

where WQ
i , W

K
i , W

V
i and WO are parameters to be learned.
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Figure 2.5: Scaled dot-product attention mechanism. Image from Vaswani et al. [117].

Figure 2.6: Illustration of the multi-head scaled dot-product attention mechanism. Image

source: Vaswani et al. [117].
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Positional encoding. As described thus far, a representation learned through multi-head

self-attention does not account for the order of the words in the input sequence. To address

this issue, the Transformer paper [117] uses positional encoding, adding a vector to the in-

put embeddings. These positional encoding vectors follow a specific pattern that reflects the

position of each word and distances between different words, providing meaningful distances

between the embedding vectors. Specifically, [117] adopts sine and cosine functions of differ-

ent frequencies for positional encoding, with each dimension of a positional encoding then

defined as a sinusoid:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

) (2.22)

where pos denotes the position of the input token; i represents the ith dimension of the

positional encoding; dmodel refers to the dimension of the positional encoding vector, which

is the same as the input embedding dimension.

2.2.4 BERT Model

The Transformer architecture’s superior computational efficiency over RNNs and the power

of learning contextualized representation has given rise to a series of Transformer-based lan-

guage models [30, 91]. Bidirectional Encoder Representations from Transformers (BERT)

is one of the most popular and widely adopted. Using the Transformer architecture as a

building block, BERT was proposed in 2018 as a multi-layer bidirectional Transformer en-

coder based on the original implementation in [117], with each encoder layer referred to as

a “Transformer block” [30]. Prior to BERT, OpenAI [91] proposed to build a Transformer-

based language model that solves downstream tasks through a two-step pre-training/fine-

tuning process. It uses a stacked Transformer decoder architecture, which is still a for-

ward/unidirectional language model. The BERT model, in contrast to the OpenAI model,

uses stacked Transformer encoders that can take the entire input sequence at one time.

In this way, BERT accounts for context on both sides of a word. Similar to [91], BERT
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Figure 2.7: Overall pre-training and fine-tuning procedures for BERT. Image source: Devlin

et al. [30]

also takes advantage of the two-step training approach that transfers knowledge from pre-

training corpora to the downstream fine-tuning language tasks. BERT uses two pre-training

tasks: 1) the masked language model task, which masks 15% of words and asks the model

to predict the missing word; and 2) the next sentence prediction task, which predicts the

likelihood of sentence B following sentence A, given the two sentences. By using parameters

initialized from the pre-trained Transformer encoder model, the BERT paper demonstrated

building task specific models formulated for a range of language tasks, including sentence

classification, question answering, and sentence tagging, etc.. As a powerful representation

learning method, the pre-trained BERT model from [30] is shared for public research use.

Having the pre-trained BERT weights makes it easier for researchers to make use of robust

context-aware representations and transfer them to other tasks without having to invest in

expensive pre-training.
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2.2.5 Adaptation to Modeling of Clinical Event Sequences

By making an analogy between words and events, these methods can be extended to model

temporal events, even though they were originally proposed and widely used in applications

involving images and text. In Chapters 3 and 4, we build clinical predictive models for

sequences of abnormal lab events based on techniques introduced above.

2.3 Domain Adaptation and Transfer Learning

In Section 2.3 we first discuss common types of data shifts, motivating a discussion of domain

adaptation methods, from shallow approaches to those which employ deep neural networks.

This topic is further discussed in Chapter 4 due to the adoption of adversarial domain

adaptation.

2.3.1 Dataset Shift

In machine learning, a dataset shift is the challenging situation where the shared distribution

of input and output varies between training and testing stages [89]. In this section, we

introduce three of the most common types of dataset shifts, with examples of these shifts in

the clinical context provided: 1) covariate shift; 2) prior shift; and 3) concept shift.

Covariate shift. Covariate shift refers to a special case of dataset shift in which only

the input distribution, X changes but the conditional distribution of output Y remains the

same: P src(Y |X) = P tgt(Y |X), P src(X) ̸= P tgt(X). Note that throughout this dissertation,

we use the superscripts src and tgt to indicate elements from source and target domain,

respectively. Covariate shift is one of the most studied forms of dataset shift. A frequent

cause of covariate shift is sample selection bias. For example, when a clinical dataset contains

an underrepresented racial group (relative to the unbiased population), or when a dataset
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used to assess disease treatment effect has a disease incidence rate different from the true,

population-level prevalence, sample selection bias is considered present [114]. Another cause

of covariate shift is data missingness, which is common in clinical practice when there is

a consistent cause behind the missingness pattern (i.e., missing-not-at-random, MNAR).

Examples are: missing certain measurements due to a sensor failure, a patient dropping out,

missing follow-up studies, or skipping responses in surveys. In Chapter 3, we introduce a

real-life covariate shift situation in the form of event set permutation, where clinical events

recorded with the same timestamp may present with varied ordering in an event sequence.

We demonstrate a method against such shift so as to improve model robustness across event

ordering schemes by introducing a L2 loss to enforce permutation invariance in event sequence

representation.

Prior shift. Opposite to covariate shift, the case of prior shift has different prior probabili-

ties of the class labels in the source and the target domains, while the conditional distribution

of the input remains the same: P src(X|Y ) = P tgt(X|Y ), P src(Y ) ̸= P tgt(Y ). This situation

can arise when diagnostic tools are developed and used in different populations (e.g., re-

gions/time periods) with different disease incidence rates, or when the population of interest

(i.e., target) cannot be represented by the statistics of the training cohort (i.e., source).

Concept shift. Concept shift refers to the scenario where the relationship between the

input and the output changes. The posterior distribution changes while the data distribution

remains stable: P src(Y |X) ̸= P tgt(Y |X), P src(X) = P tgt(X). This issue is related to dataset

drift, where classifiers are deployed in non-stationary environments [60, 125]. Concept shift

can happen when the diagnostic criteria of a certain disease shifts over time. For instance,

as one of the main causes of morbidity and mortality in critically ill patients, the definition

of sepsis has evolved from the initial 1991 consensus definition (Sepsis-1) of, “systemic in-

flammatory response syndrome (SIRS) with infection” [90], to the 2001 revision (Sepsis-2)

when sepsis and septic shock definitions were updated with the threshold for organ dam-
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age [63]. The most recent update in 2016 (Sepsis-3) deviated from the previous versions by

eliminating the criteria related to the SIRS symptoms. Sepsis-3 defines sepsis as, “a life-

threatening organ dysfunction caused by a dysregulated host response to infection,” where

organ dysfunction is defined as an acute increase in total Sequential Organ Failure Assess-

ment (SOFA) as a result of to the infection [105]. When an algorithm is applied over time

for sepsis prediction, as the diagnostic of sepsis is evolving, the relationship of the input and

the target (sepsis) is also changing, concept shift may occur. As another example, when a

disease predictive model with International Classification of Disease (ICD) code labels ap-

plied on electronic health record (EHR) data from different institutions, concept drift may

occur given variations in their local coding practices [82,124].

2.3.2 Domain Adaptation Methods

Given the potential issues related to dataset shift, here, we briefly introduce domain adap-

tation techniques that help close the gap of generalizing machine learning models from one

domain to another.

2.3.2.1 Shallow Domain Adaptation

Earlier domain adaptation efforts correcting the effect of dataset shift utilize hand-crafted

features and traditional machine learning algorithms. We first introduce two popular shallow

domain adaptation approaches:

1. Instance weighting. By re-weighting the source domain training samples to approximate

the target domain distribution, instance weighting (i.e., importance sampling) is a statis-

tical method for reducing sample selection bias in supervised machine learning models.

By re-weighting the training samples based on density ratio, the sample selection bias can

be mitigated. Essentially, the approach learns a higher weight for source instances that is

more pertinent to the target instances to minimize the gap between the re-weighted distri-
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bution of the source domain and that of the target domain. Instance weighting methods

consists of two steps: 1) weight estimation (WE), and 2) weighted classification (WC).

The WE step estimates the target-over-source density ratio, while the WC step trains

the model using the weighted samples from the source domain. Instance weighting has

been applied in natural language processing [53] and medical image analysis tasks [12].

However, despite working well with low capacity models (e.g., linear regression), instance

weighting may or may not have any impact on deep neural networks (DNN) models

depending on the model specifications (e.g., early stopping, batch normalization) [7].

2. Feature transformation. With the same principle of minimizing the distributional gap

between the source and target domain, feature transformation methods focus on learning

a new shared feature space where the model is less affected by the dataset shift than in the

original feature space. Figure 2.8 shows the effect of a low-rank based feature transforma-

tion method on synthetic feature distributions from three different domains [123]. Blue

squares indicate samples from the target domain, green circles and red triangles represent

instances from the two source domains, respectively. Before the feature transformation

(Figure 2.8(a)), the distributions of the three domains are distinctively separate from each

other. After feature transformation (Figure 2.8(b)), data points from the three domains

are well mixed together, showing the effectiveness of the proposed method of reducing

distributional variance between domains by converting data from different sources into a

shared latent space.

2.3.2.2 Deep Domain Adaptation

By using deep learning pipelines, deep domain adaptation is able to learn more powerful and

transferable representations than shallow feature learning methods. Earlier domain adapta-

tion research on supervised and semi-supervised methods requires a small amount of labeled

data from the target domain [27,28]. Over time, the use of deep neural networks to harness
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Figure 2.8: Results on synthetic data achieved by low-rank representation method in [123],

figure adapted from the original paper.

the vast amounts of unlabeled data resulted in unsupervised methods (e.g., [109, 110]), be-

coming a popular domain adaptation approach thanks to its wide applicability in label-scarce

domains. Here, we specifically introduce unsupervised domain adaptation (UDA) methods

through domain adversaries, which is the most commonly used UDA approach [37, 93]. We

cover major grounding techniques in this field as a prelude to the dissertation work in Chap-

ter 4.

Domain-Adverserial Neural Network The idea of learning domain-invariant represen-

tations as an adversarial game was proposed by Ganin et al. [37] in 2016. The Domain-

Adverserial Neural Network (DANN) [37] became a popular adaptive network that aims to

make the domains indistinguishable while correctly classifying the samples in each domain.

As with the feature-based shallow DA methods, they also aim to reduce the divergence

between data distributions in source and target domains. This goal is achieved by using

two losses: one for classifying the sample labels, and the other for classifying the sample’s

domain identity. During optimization, DANN minimizes the loss in label classification and

maximizes the loss in domain classification. DANN thus learns features that are discrimi-

native for the label classification task on the source domain while being domain-invariant.

Figure 2.9 demonstrates the architecture of the DANN framework. It consists of: 1) a feature
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Figure 2.9: Illustration of DANN architecture, figure adapted from the original paper [37].

extractor Gf (in green), 2) a label predictor Gy (in blue) and 3) a domain classifier Gd (in

red) that is connected to the feature extractor Gf through a gradient reversal layer. The

gradient reversal layer (GRL) takes the gradient and multiple it with a negative number

during back-propagation, to ensure that domain-invariant features are learnt.

The overall objective function is shown as below in Eq. 2.23. A negative sign is added

before the domain classification error term to make sure the its loss is maximized when the

overall loss function is minimized. A hyperparameter, λ, is introduced as a weighting factor

balancing the learning of the label classifier and the domain discriminator.

Ẽ (θf , θy, θd) =
1

n

n∑
i=1

Ly (Gy (Gf (xi; θf ) ; θy) , yi)

− λ

(
1

n

n∑
i=1

Ld (Gd (R (Gf (xi; θf )) ; θd) , di) +
1

n′

N∑
Ld (Gd (R (Gf (xi; θf )) ; θd) , di)

)
(2.23)

where θf , θy and θd are trainable parameters for the three model components Gf , Gy, and

Gd; R(x) is the pseudo-function representing the forward/backward-propagation behavior
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of GRL defined as:

R(x) = x

dR
dx

= −I
(2.24)

The main learning task loss is optimized over samples from the source domain while the

domain discriminator loss is optimized over all N samples available in source and target

domains. The first term in Eq. 2.23 is the main learning task prediction loss optimized over

samples from the source domain of n samples, yi denotes the true label for the i
th input, xi.

The second term weighted by −λ is the sum of two sub-terms, each denoting the domain

classification loss for the source domain of n samples and the target domain of n′ samples.

di denotes the true domain label for the ith input, xi.

DANN was validated on sentiment analysis datasets and achieved superior generalization

performance over non-adversarial approaches such as neural networks (NNs) and support

vector machines (SVMs).

Adversarial Discriminative Domain Adaptation Subsequent to the success of adver-

sarial methods like DANN in reducing differences between training and test distributions

and enhancing generalization performance, Adversarial Discriminative Domain Adaptation

(ADDA) was developed with a standard GAN loss with inverted labels. This loss function

is used to overcome the vanishing gradient issue when using a GRL layer to optimize for the

minimax objective in DANN. As shown in Figure 2.10, the ADDA paper first proposed a

generalized architecture of adversarial domain adaptation methods, which reduced the design

decisions to three parts: 1) specifying if the base model is generative or discriminative; 2)

determining if the source and target domain feature mapping weights tied or untied; and 3)

choosing the adversarial loss. ADDA was designed with a unique combination of choices for

these three aspects, making it a distinctly different method from other adversarial domain

adaptation methods.

Adopting a discriminative base model, ADDA chose to untie the feature mapping weights
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Figure 2.10: Illustration of generalized architecture for adversarial domain adaptation, figure

adapted from the ADDA [115] paper.

in source and target domain mapping functions to allow independent feature learning. In this

way, domain-specific features can be determined. Its adversarial loss is the inverted-label

GAN loss defined as follows, where the adversarial domain discriminator D is optimized

according to a standard supervised loss LadvD , and the feature mapping M (generator) is

trained with LadvM , the standard loss function with inverted labels:

LadvD (Xs,Xt,Ms,Mt) = −Exs∼Xs [logD (Ms (xs))]− Ext∼Xt [log (1−D (Mt (xt)))] (2.25)

LadvM (Xs,Xt, D) = −Ext∼Xt [logD (Mt (xt))] (2.26)

The subscripts s and t indicate if a variable is for the source or the target domain.

The learning objective of ADDA involves minimizing the classification loss for K label

categories, where C denotes the classifier:

min
Ms,C
Lcls (Xs, Ys) = −E(xs,ys)∼(Xs,Ys)

K∑
k=1

1[k=ys] logC (Ms (xs)) (2.27)

and the two adversarial losses LadvD and LadvM , which are optimized in an alternating fashion:
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Figure 2.11: Illustration of the ADDA approach proposed in [115], figure adapted from the

original paper.

min
D
LadvD (Xs,Xt,Ms,Mt) = −Exs∼Xs [logD (Ms (xs))]− Ext∼Xt [log (1−D (Mt (xt)))]

(2.28)

min
Ms,Mt

LadvM (Xs,Xt, D) = −Ext∼Xt [logD (Mt (xt))] (2.29)

ADDA’s training and testing paradigm is outlined in Figure 2.11. A discriminative base

model is first trained in the pre-training stage, then adversarial adaptation performs alter-

nating optimization on the feature mappings and the domain discriminator. Note that the

target feature mapping is initialized from the mappings in the pre-trained model, while the

source mapping is kept fixed. Finally, at inference stage, the trained model is tested on

target data to generate labels for the discriminative base task.

The utility of ADDA was verified by successfully performing two domain adaptation

tasks: 1) multi-class classification on digits image datasets, and 2) cross-modality adaptation

between RGB and depth image modalities.

We introduce ADDA as part of the background section in order to fit our Chapter 4 work

in the generic framework summarized in ADDA and more clearly show the similarities and

difference of our work and these foundational adversarial DA methods. Our work is similar
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to DANN in the sense that we also had the two-branch design with tied weights. As for how

adversarial training was implemented, DANN used gradient reversal for adversarial learning,

ADDA used the standard GAN loss, since we used a Wasserstein distance to construct the

adversarial loss, which is inspired by WGAN [2], our choice of adversarial loss is closer to

ADDA than DANN.
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CHAPTER 3

Diagnostic Prediction with Sequence-of-Sets

This chapter is adapted from the paper, “Diagnostic Prediction with Sequence-of-sets Rep-

resentation Learning for Clinical Events” published in the Artificial Intelligence in Medicine

(AIME) Conference in 2020 [138].

Electronic health records (EHRs) contain both ordered and unordered chronologies of

clinical events that occur during a patient encounter. However, during data preprocessing

steps, many predictive models impose a predefined order on unordered clinical events sets

(e.g., alphabetical, natural order from the chart, etc.), which is potentially incompatible

with the temporal nature of the sequence and predictive task. To address this issue, we

propose Diagnostic Prediction with Sequence-of-Sets (DPSS), which seeks to capture each

patient’s clinical event records as sequences of event sets. For each clinical event set, we

assume that the predictive model should be invariant to the order of concurrent events and

thus employ a novel permutation sampling mechanism. This chapter evaluates the use of

this permuted sampling method given different data-driven models for predicting a heart

failure (HF) diagnosis in subsequent patient visits. Experimental results using the MIMIC-

III dataset show that the permutation sampling mechanism offers improved discriminative

power based on the area under the receiver operating curve (AUROC) and precision-recall

curve (pr-AUC) metrics as HF diagnosis prediction becomes more robust to different data

ordering schemes.
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3.1 Introduction

Using the growing amounts of electronic health record (EHR) data, increasing attention has

been paid to using data-driven machine learning (ML) methods for a range of classification

and predictive tasks, including disease phenotyping and risk stratification [16,49].

Implicit to these ML-based approaches are a data representation that embodies the tem-

poral nature of such data. One challenge of modeling clinical event data is to learn the

representation that aligns with medical knowledge [19,21,71], where events (i.e., laboratory

results, medications, diagnoses, etc.) can be extracted from time-stamped EHRs and other

health-related information, such as claims data. However, many studies modeling such data

fail to fully capture the nature of clinical events. For instance, studies modeling claim code

sequences only consider temporality between visits, absent of within-visit dynamics [80] that

contain essential contextual information. While other approaches utilizing time-stamped

EHR events incorporate sequential order within-visit [35, 72], they model a patient’s medi-

cal history as a fully ordered event sequence despite the fact that the sequence may contain

unordered event sets when multiple events happen concurrently (i.e., sharing the same times-

tamp). An arbitrary ordering (e.g., random, alphabetical, etc.) is usually imposed on each

event set during data preprocessing to establish a “structured” input (e.g., matrices, vectors

or tensors) used in different ML models, including contemporary deep learning methods.

Consequently, models trained on the corresponding data can be sensitive to the input se-

quence order as they assume elements from each input sequence to be strictly ordered [120].

The partially-unordered nature of event sequences in the EHR calls for permutation-

invariant models: the prediction based on a patient’s medical history should not be affected

when the order of concurrent events is changed. In this study, we propose DPSS (Diagnostic

Prediction with Sequence-of-Sets), an end-to-end deep learning architecture that incorporates

set learning techniques [134] to model event sequences to support downstream diagnostic pre-

diction. DPSS first introduces a permutation sampling technique on each set of concurrent
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clinical events. A self-attentive gated recurrent unit (GRU) model is then deployed on top of

the permutation samples to characterize multiple sets of concurrent events in a patient visit

history and correspondingly estimates the risk of specific diseases. To characterize the con-

textual features of a clinical event, DPSS also pre-trains an embedding model on a collection

of unlabeled event sequences. The key contributions of DPSS are threefold: 1) an end-to-

end framework modeling clinical temporal event sequences as sequences of sets (SoS) for

next-visit disease code prediction, with the ability to capture the temporal patterns within

each clinical visit; 2) a permutation-invariant prediction mechanism made possible by intro-

ducing a permutation sampling technique on SoS; and 3) a demonstration of the utility of a

weighted loss function with additional regularization term enforcing permutation-invariant

representation of SoS, which further improves the model predictive performance when using

permuted sequences. In this way, DPSS is able to represent clinical event data as sequences

of sets that are more consistent with the nature of clinical documentation processes.

We evaluate our proposed framework on a binary prediction task for next-visit diagnos-

tic code prediction of heart failure (HF) using laboratory and diagnostic code data from

the MIMIC-III dataset [56]. Our experimental results show that approaching clinical event

sequence representation from a set learning perspective with permutation sampling more ac-

curately characterizes the underlying disease dynamics and achieves better disease predictive

performance. Techniques such as permutation sampling, sequence Laplacian regularization,

and self-attention promote permutation invariance and contribute to robustness against dif-

ferent ordering schemes for concurrent events.

3.2 Related Work

3.2.1 Deep learning on clinical event sequences

Deep learning models, particularly variants of recurrent neural networks (RNN), have achieved

some success in modeling sequential data for predictive tasks such as readmission and dis-
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ease risk [5, 19, 20, 35, 129]. Early efforts in clinical event sequence representation learning

focus on constructing low-dimensional representations of medical concepts through word em-

bedding algorithms proposed for natural language processing (NLP) [24, 129]. Key works

improved concept embedding by incorporating EHR structures [18, 19, 21, 23] and medical

ontologies [106] to capture the inherent relations of medical concepts. More recent meth-

ods seek to utilize temporal information, instead of using the indexed ordering, to better

characterize chronologies [8, 72, 85, 92]. Still, these aforementioned models mostly assume

a fixed temporal order among sequence elements as they serve as inputs, which can cause

discrepancies when modeling inputs containing unordered elements.

3.2.2 Deep set learning

Characterizing heterogeneous feature sets was investigated for applications in point cloud

analysis [73, 88, 134, 140] and graph mining [47, 77]. Essentially, a permutation-invariant

function is needed for set learning to overcome the limitations of sequence models that are

permutation-sensitive [78]. Some of these and other works [78, 88, 134] propose to compress

sets of any size into a feature vector using a permutation-invariant pooling operation (e.g.,

sum/mean/max pooling), although such operations are prone to losing information con-

tained in a feature set [140]. In contrast, permutation sampling-based methods [73,140] and

attention-based methods [62] aim to resolve this issue. For example, Meng et al. [73] specifi-

cally use permutation sampling in a hierarchical architecture and concatenation to integrate

set element embedding when modeling the structure as a set of sets.

Despite the partially-unordered nature of medical events, only a few studies [80] have

been conducted to model clinical event sequences as sequence of sets using a permutation-

invariant pooling method. There remains a lack of investigation in the use of permutation

sampling strategies on corresponding tasks with EHR-based data, which is the focus of this

chapter.
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3.3 Method

In this section, we first present the design of the proposed framework, DPSS, for next-

visit diagnostic code prediction. Fig. 3.1 illustrates the architecture of DPSS and its three

components: 1) a pre-trained lab event embedding layer; 2) an event sequence handler with

a permutation sampling mechanism for event sets; and 3) a self-attentive GRU predictor for

diagnostic code classification.

3.3.1 Preliminary

We use E to denote the vocabulary of lab events, and P to denote the set of patient visit

histories. A patient’s visit history in the EHR is defined as a concatenation of lab event sets

S = [st1⊕st2⊕ ...⊕stn ] ∈ P , where each set contains lab events with samples collected at the

same time tk, stk = {e1tk , e
2
tk
, ..., emtk ∈ E} . The goal of the diagnostic code prediction task is

to provide a regression model to estimate the risk of developing a disease for a patient given

the visit history S before the most recent visit. In this case, our goal is to predict codes

related to HF.

3.3.2 The DPSS Framework

Our DPSS framework sequentially incorporates three components to characterize and per-

form prediction on a given patient’s visit history. We first pre-train a lab event embedding

model on a large collection of unlabeled historical lab event sequences, which seeks to capture

the contextual similarity of lab events. Next, with this pre-trained embedding representing

the latent features of each lab event, the permutation sampling process then generates per-

mutations for each event set in the visit history. Lastly, a downstream predictor is trained on

the permutation-sampled data, learning to predict the risk for a specific disease while pre-

serving the permutation invariance of concurrent events. Details of each model component

is described as follows.
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Figure 3.1: Illustration of DPSS architecture

3.3.2.1 Pre-trained lab event embeddings

To encode the non-numerical representations of lab events into numerical representations,

we first conduct a pre-training process to obtain an embedding of Logical Observation Iden-

tifiers Names and Codes (LOINC) codes. We trained a skip-gram language model [75] on a

collection of unlabeled lab event sequences with the objective of representing the contextual

similarity of lab events in a continuous vector space (obtained by minimizing log likelihood

loss):

LSG = − 1

|P |
∑

seq(S)∈P

∑
−C<j<C

log p(ep+j|ep).

such that seq(S) is a temporally-ordered sequence of a visit history S, and where events

in each concurrent set are arbitrarily ordered. Specifically, we extract lab event sequences

(from MIMIC-III) as partially-unordered sequences to train the embedding model. ep is the

embedding vector of the t-th event et ∈ seq(S), ep+j is that of a neighboring event, and C is
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the size of half context.1

3.3.2.2 Permutation sampling

Rather than training a decision making model on fixed sequences, the learning objective of

DPSS is to make consistent decisions even if such events may be observed in different orders;

in our case, this may be dependent on any number of factors as to how an EHR records the

data. Inspired by the recent success of deep set learning on point clouds [73,78,88,134], we

introduce a permutation sampling strategy for patient visit histories. The principle of this

process is to generate event sequences from a given patient’s visit history such that events in

a concurrent event set will be randomly ordered in each training epoch, while the sequential

order across event sets remain unchanged. In detail, given a set of events s, we denote π(s)

as the set of its permutations. A permutation sample of a visit history S is a sequence

Sπ ∈ π(S) = {
⊕n

i=1 π(sti)} that is obtained by sequentially concatenating a permutation of

each concurrent event set in S. Specifically, π(S) denotes the universal set of permutation

samples for S. Based on this sampling strategy, the event sequence encoder introduced next

follows an end-to-end learning process for predicting the target diseases, while remaining

invariant to the order of concurrent events in a patient visit history.

3.3.2.3 Self-attentive GRU encoder

We use Sπ = [e1, e2, ..., el] to denote an input vector sequence corresponding to an embedded

lab event sequence after the permutation sampling process of the visit history, S. The

self-attentive gated recurrent unit (GRU) encoder couples two techniques to represent the

embedding representation of the permutation sampled visit history vSπ = A(Sπ).

The GRU is an alternative to a long-short-term memory network (LSTM) [13], which

1The context of a skip-gram refers to a subsequence of an ordered event sequence seq(S) such that the
subsequence is of 2C + 1 length.
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consecutively characterizes sequential information without using separated memory cells [31].

Each unit consists of two types of gates to track the state of the sequence, a reset gate rp and

an update gate zp. Given the embedding vector ep of an incoming event, the GRU updates

the hidden state h
(1)
p of the sequence as a linear combination of the previous state, h

(1)
p−1, and

the candidate state, h̃
(1)
p of a new event ep, calculated as follows:

h(1)
p = GRU(vp) = zp ⊙ h̃(1)

p + (1− zp)⊙ h
(1)
p−1

zp = σ
(
Mzvp +Nzh

(1)
p−1 + bz

)
h̃(1)
p = tanh

(
Msvp + rp ⊙ (Nsh

(1)
p−1) + bs

)
rp = σ

(
Mrvp +Nrh

(1)
p−1 + br

)
.

where ⊙ denotes the element-wise multiplication. The update gate zp balances the informa-

tion of the previous sequence and the new item, where M∗ and N∗ denote different weight

matrices, b∗ are bias vectors, and σ is the sigmoid function. The candidate state h̃
(1)
p is

calculated similarly to those in a traditional recurrent unit, and the reset gate rp controls

how much information of the past sequence contributes to h̃
(1)
p .

Atop the GRU hidden states, the self-attention mechanism seeks to learn attention

weights that highlight the clinical events that are important to the overall visit history.

This mechanism is added to GRU as below:

ui = tanh
(
Mah

(1)
i + ba

)
; ai =

exp
(
u⊤
i uSπ

)∑
xi∈Sπ

exp
(
u⊤
i uSπ

) ; A(Sπ) = vSπ =
l∑

i=1

aiui

where ui is the intermediary representation of GRU output h
(1)
i . uX = tanh(Mah

(1)
X +

ba) is the intermediary latent representation of the averaged GRU output h
(1)
X and can

be interpreted as a high-level representation of the entire input sequence. By measuring

the similarity of each ui with uX , the normalized attention weight ai for h
(1)
i is produced

through a softmax function. The final embedding representation vSπ of the visit history is

then obtained as the weighted sum of the intermediary representation for each event in the

sequence Sπ.
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3.3.2.4 Learning objective

Amulti-layer perceptron (MLP) with sigmoid activation is applied to the previous embedding

representation of the visit history, whose output ĉSπ is a scalar that indicates the risk of the

target disease. The learning objective is to optimize the loss function defined below.

L = − 1

|P |
∑
S∈P

1

|π(S)|
∑

Sπ∈π(S)

xS log σ(ĉSπ) + (1− xS) log (1− σ(ĉSπ)) + λ ∥vSπ − vS∥

where ∥vSπ − vS∥ represents the L1 loss, measuring the distance between the sequence rep-

resentation before and after permutation.

The main loss function uses binary cross-entropy, where xS ∈ {0, 1} is the training label

indicating if the disease code exists in the disease code list from the next patient visit stn+1 .

Optimizing for the main loss enforces predictions to be invariant to the input within-set order.

The last term of the loss function corresponds to a Laplacian regularization term, where λ

is a small positive coefficient. Notably, this regularization term teaches the self-attentive

GRU encoder to generate similar representations for different permutation samples of the

same visit history record, and helps differentiate such representations from those of unrelated

records in the embedding space. We show below that this regularization mechanism is able

to improve the prediction accuracy of the target disease in various experiments.

3.4 Experiments

We hereby evaluate DPSS on the next-visit HF diagnosis prediction task.

3.4.1 Dataset

We evaluated DPSS using data from MIMIC-III [56], a publicly available clinical dataset

associated with patients admitted to critical care units of Beth Israel Deaconess Medical

Center between 2001 and 2012. MIMIC-III contains records from different sources including
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demographics, lab results, medications, CPT (Current Procedural Terminology) procedures,

and ICD-9 (International Classification of Diseases) diagnostic codes. The within-visit tem-

poral information for diagnostic and procedure codes is not available in MIMIC-III as they

are only specific to a patient visit; and while medications are tagged with timestamps, they

are recorded with a duration (i.e., start and end times), which poses further challenges on

determining the relative ordering between medication and lab events. To simplify our task,

we choose to model only lab event sequences as they are less vague with respect to temporal

ordering when defined as sequence of sets. Specifically, the timestamp recorded for lab events

in MIMIC-III indicates sample acquisition time so a set of lab events with shared timestamps

inform patient status at a given time point.

To perform next-visit HF diagnosis prediction, we extracted 7,235 sequences of abnormal

lab events for adult (age ≥ 18) patients with at least two hospital admissions from the

MIMIC-III dataset by concatenating all abnormal lab events from each visit history. These

sequences, each representing a unique patient, are divided into training (75%, 5,426 patients),

validation (12.5%, 904 patients) and test (12.5%, 905 patients) datasets. Based on the

existence of the level 3 ICD-9 code representing HF, 428, in the diagnostic codes of the most

recent visit, we identified a total of 2,495 HF cases.We used LOINC codes as the lab event

ontology, with 187 unique codes present in our data. During data preprocessing, all eligible

event codes for a patient are extracted by patient ID and admission ID matching, sorted by

chart time. Concurrent events during the same patient admission are usually imposed with

an arbitrary order (e.g., random or alphabetically ordered event codes) when inputted as

part of the sequence.

3.4.2 Experimental Configuration

We set the pre-trained skip-gram embedding model on LOINC codes with a context size of

5 and dimensionality of 256. For all reported models, we use the Adam optimizer [59] with

a learning rate of 0.001. For each model variant or baseline, we select hyperparameters that
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lead to the lowest validation loss during training for testing, with the maximum number of

epochs set to 100. Training may also be terminated before 100 epochs based on early stopping

with a patience of 10 epochs on the validation area under the receiver operator characteristic

curve (AUROC) metric. The best combination of GRU layer dimension (candidate values

from {64, 128, 256, 512}) and sequence length (candidate values: {128, 256, 512}) is selected

based on the AUROC score on the validation set.

We compared the proposed method with the following baseline methods: 1) GRU, a

single-layer GRU, as defined in Section 3.3.2.3; 2) self-attentive GRU, a GRU model incor-

porating the self-attention mechanism; and 3) Pooling GRU, following previous work [80,134],

we apply a sum-pooling based or a max-pooling based set function on the set element embed-

ding to acquire a permutation invariant feature aggregation. To show the effects of different

model components of DPSS, we also evaluate different variants of DPSS, where we remove

the sequence Laplacian regularization or self-attention.

3.4.3 Results

Experiments for baseline models and DPSS are each evaluated on the same holdout test

set. We repeated the evaluations 10 times to calculate 95% confidence intervals (CIs) for test

AUROC and pr-AUC. Table. 3.1 summarizes test performance of the baselines and DPSS.

DPSS significantly outperforms the other models in terms of AUROC and pr-AUC met-

rics. By comparing all of our permutation sampling based model variants with the baseline,

we show that the effectiveness of addressing the partially-unordered nature through a permu-

tation sampling mechanism. Specifically, being able to model within-set element interactions,

DPSS is shown to be more suitable for modeling lab events as a sequence of sets compared

to other permutation-invariant aggregation methods like sum- and max-pooling, with im-

provements of 9.8% and 11.7% in AUROC, 16.5% and 18.7% in pr-AUC, respectively and

relatively. Comparing DPSS variants, we also see that sequentially adding the self-attention

mechanism and the sequence Laplacian for permutation-invariant regularization boosted the
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Table 3.1: Model comparison on next-visit HF risk prediction using MIMIC-III data

Method AUROC (95% CI) pr-AUC (95% CI)

GRU 0.7421(±0.00331) 0.6133(±0.00564)

Self-attentive GRU 0.7405(±0.0034) 0.6386(±0.0074)

Sum-pooling GRU 0.7070(±0.00101) 0.5839(±0.00173)

Max-pooling GRU 0.6954(±0.00116) 0.5730(±0.00361)

DPSS w/o self-attention&Sequence Laplacian 0.7741(±0.00277) 0.6659(±0.00615)

DPSS w/o Sequence Laplacian 0.7748(±0.00176) 0.6752(±0.00309)

DPSS 0.7766(±0.00185) 0.6801(±0.00453)

model’s discriminative power, with greater improvement observed in pr-AUC, which is a

metric that considers the model’s ability to cope with imbalanced data [21]. As for the

impact of the self-attention mechanism, when added to a basic GRU and DPSS without

self-attention and Laplacian loss, the pr-AUC of both models has increased by 4.1% and

1.4%, respectively, while the AUROC metric remained comparable.

We observe that in the raw data of MIMIC-III, concurrent events are ordered randomly

in the extracted event sequence. In other data processing scenarios, the event set elements

are ordered by the primary key (when applicable) or alphabetically ordered by code strings.

The imposed order could lead to bias toward certain data storage methods or a specific

coding scheme, which is ultimately irrelevant to the underlying disease. Such inconsistencies

may also impair a model’s generalizability when the ordering scheme adopted in training

differs from that used during inference. We hypothesized that our set learning framework

is able to alleviate the aforementioned bias, as the sequence representation is not restricted

to any event set ordering scheme. To test this hypothesis, as our previous experiments are

trained and tested on data with random within-set order, we further compared DPSS and

the best baseline model against a different event set ordering scheme using test sequences

with alphabetically-ordered event sets. These evaluation results are presented in Table. 3.2.
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Table 3.2: Comparison against the best baseline method on the test data with a different

ordering scheme (alphabetical) for concurrent events.

Method AUROC (95% CI) pr-AUC (95% CI)

Self-attentive GRU 0.7364(±0.00953) 0.6214(±0.00878)

DPSS 0.7755(±0.00305) 0.6721(±0.00379)

The best baseline model, self-attentive GRU, is trained on set sequences with an imposed

arbitrary random order. When tested on alphabetically-ordered set sequences, it suffers from

0.6% decrease in AUROC and 2.7% decrease in pr-AUC. In contrast, DPSS’s performance

experienced a smaller decline: 0.1% in AUROC and 1.2% in pr-AUC. The results suggest

that DPSS benefited from its permutation sampling mechanism and is more robust against

different set ordering schemes.

In summary, the experimental results show that DPSS achieved better performance

than the non-permutation sampling-based baseline models on the HF prediction task. The

proposed techniques are shown to better capture the clinical events in the visit history

according to their partially-unordered nature, hence better supports the downstream decision

making.

3.5 Conclusion

We introduce DPSS, a permutation-sampling-based RNN architecture that supports diag-

nostic prediction with sequence-of-set learning on clinical events. Our proposed method uses

a permutation-sampling technique, sequence Laplacian regularization, and self-attention to

learn a permutation invariant representation that allows for more accurate prediction for

a binary disease prediction task. We also demonstrated the robustness of DPSS against

arbitrary set orderings by comparing performance on a test set with an altered set order.

For future work, we plan to extend DPSS to jointly model lab event sequences with medica-

tion and demographic information. We also seek to better support multi-disease prediction
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by incorporating structured label representations [48] and leveraging pre-training [141] to

improve domain adaptation of DPSS.
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CHAPTER 4

AdaDiag: Adversarial Domain Adaptation of

Diagnostic Prediction Model with Event Sequences

Early detection of heart failure (HF) can provide patients with the opportunity for more

timely intervention and better disease management, as well as efficient use of healthcare

resources. Recent machine learning (ML) methods have shown promising performance on

diagnostic prediction using temporal sequences from electronic health records (EHRs). In

practice, however, these models may not generalize to other populations due to dataset shift.

Shifts in datasets can be attributed to a range of factors such as variations in demographics,

data management methods, and healthcare delivery patterns. In this work, we use unsu-

pervised adversarial domain adaptation methods to adaptively reduce the impact of dataset

shift on cross-institutional transfer performance. The proposed framework is validated on a

next-visit HF onset prediction task using a BERT-style Transformer-based language model

pre-trained with a masked language modeling (MLM) task. Our model empirically demon-

strates superior prediction performance relative to non-adversarial baselines in both transfer

directions on two different clinical event sequence data sources.

4.1 Introduction

Recent research has demonstrated the advantages of deep learning (DL) methods for diag-

nostic prediction using clinical temporal sequences [22,36,64].

Despite the reported improvements in predicting outcomes, these models’ actual clinical
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impact still lags behind their projected potential. A critical reason for this unfilled promise

is the inability to generalize findings beyond the development cohort/population [57, 95].

Due to data availability and sharing restrictions, most existing models are only internally

validated using same-source, in-distribution data similar to the development data (e.g., from

the same institution). Such models tend to fail, if not suffer from lower performance on

independent external test cases from other sources and in different distributions [55,99].

Existing work in transfer learning has thus explored ways to improve clinical model

generalizability by utilizing EHRs from multiple sources [33, 45, 111]. One transfer learning

method, domain adaptation (DA), leverages knowledge from a different but related domain to

train models for decision making in a new target domain, given the same task in each domain

both with varying distributions of data. This approach is particularly useful when the target

domain lacks labeled data. For example, Desautels et al. [29] decreased the amount of target

domain data needed to train a reliable mortality prediction model by training alongside an

abundant source domain. Similarly, in a study by Sun et al. [111], performance in the target

domain was improved by fine-tuning the source domain mortality prediction model on target

domain data. Typically, these DA approaches require target domain ground truth for model

fine-tuning, which are often scarce in clinical practice. Markedly, in cross-dataset transfer

learning, the representation taken directly from the source domain is not domain-adaptive

and may still fail to generalize to new data.

In contrast, more recent works on adversarial domain adaptation (ADA) adaptively learn

a domain-invariant representation without requiring labels from the target domain. ADA

combines adversarial training with discriminative feature learning to reduce the divergence

between the source and target domain distribution, thus improving generalization perfor-

mance [131]. Despite its successful use in myriad applications including bilingual sentiment

classification [11], skin disease image classification [43], biological sequence classification [65]

and clinical time series data classification [87, 113], ADA has not yet been investigated for

mitigating the domain shift problem in medical event sequence classification.
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To handle domain shift in event sequence classification, we proposeAdaDiag (Adversarial

Domain-Adaptive Diagnostic Prediction), an unsupervised adversarial domain adaptation

framework with a pre-trained language model (LM) for clinical event sequences, to reduce

the effects of domain shift when adapting a diagnostic prediction model from source to tar-

get domain. In this study, we specifically focus on alleviating domain shift across patient

cohorts, where “domains” stands for datasets extracted from different EHR systems. The

two datasets used as source and target domains are 1) the Medical Information Mart for In-

tensive Care IV (MIMIC-IV) dataset [39,54]; and 2) data extracted from the UCLA Health

Systems (hereafter referred to as UCLA data).

To demonstrate the utility of our proposed model, we adapt a heart failure (HF) onset

prediction model trained on one patient cohort to another. Heart failure is one of the

most frequent and serious conditions in the United States, contributing to one out of nine

deaths [121]. For a patient with a developing set of symptoms but as of yet undiagnosed HF,

it might take months or years before the next visit prior to HF is uncovered, during which

time the disease progresses unchecked. For institutions with limited data availability/quality

and/or model development resources – and hence, training a site-specific model is not a

viable option – the ability AdaDiag offers in improving testing performance for externally

trained models is especially meaningful. It can facilitate earlier detection and intervention by

providing accurate predictions of next-visit incidence even when no labeled data is available

from the target cohort.

AdaDiag’s contributions are twofold. First, we construct a pre-trained Transformer-

based LM [30,117], fine-tuned for next-visit HF prediction on lab event sequences from one

EHR dataset, and externally validate it on another dataset from a different institution. Our

results show that although pre-trained LMs perform well when fine-tuned for the target task

on the single data source, performance drops drastically when deployed to an institution with

a shifted data distribution. Second, to address the generalizability issue against dataset shifts

across institutions, we present an unsupervised domain adaptation framework for clinical
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event sequences that addresses the domain shift problem by learning a domain-invariant

representation through an adversarial domain classifier. This approach can adapt to the

unseen target domain data distribution without requiring any labels. Notably, when source

and target domains are switched, superior performance in adversarial-based methods persists,

showing robustness of our proposed framework across different source and domain data

quality settings.

4.2 Related Work

4.2.1 Clinical data representation

Medical events cover a wide array of clinical concepts, such as lab orders, medications,

procedures, diagnoses, and myriad other observations. The management and storage of

clinical event data pose standardization and harmonization challenges for transferring mod-

els between institutions. Events such as labs and medications are recorded under varying

established and/or internal coding systems from each institution. Although endeavors are

made to adapt events to a unified coding scheme (e.g., International Classification of Diseases

(ICD); Logical Observation Identifiers Names and Codes (LOINC)) and/or ontology, manual

mapping is often still needed in systems with local terminologies for data standardization.

Data structures adopted in different systems create additional barriers to data harmoniza-

tion. As an effort tackling this problem, researchers developed the Observational Medical

Outcomes Partnership (OMOP) Common Data Model (CDM) [122] across multiple obser-

vational databases within an organization to facilitate standardized analytics tools when

conducting observational research. The OMOP CDM streamlines data extraction process

across multiple observational data sources, where different logical organizations and physi-

cal formats coexist. It also harmonizes disparate coding systems to an established standard

vocabulary to prepare for the integrated analysis with all sources. Although these efforts im-

prove access to multi-source data, they do not resolve any underlying domain shift problem.
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As even with two event sequence datasets with the same format/coding system, site-specific

characteristics such as patient demographics, disease prevalence and treatment patterns (e.g.,

procedure/lab/medication ordering habit, site policy), which cannot be explicitly standard-

ized, still cause shifts in data distributions [108].

4.2.2 Diagnostic prediction over time

Modeling numerical clinical time series has been extensively investigated as a means to pre-

dict clinical outcomes [9, 58, 87, 133, 139]. There are fewer studies, however, that examine

clinical event sequence modeling, which is also a critical part of appreciating the diagnostic

prediction problem. A number of earlier works have explored methods to model medical

event sequences using word embedding based on the co-occurrence of event codes [18,36,66].

Farhan et al. [36] model clinical abnormal lab sequences to provide next-visit diagnostic

prediction using Word2Vec (i.e., skip-gram/CBOW) embeddings [74]. A different represen-

tation learned using another word embedding algorithm, GloVe [86], is demonstrated to be

effective on next-visit code/risk group prediction [18] and 30-day readmission prediction [66].

However, with each word (event) represented by a fixed vector, these static embedding ap-

proaches cannot take into account the varying meanings of a given medical event based on

the different patient histories it occurs in.

Pre-trained LMs for EHR data In light of the rapid development of pre-trained deep

LMs such as BERT [30] in natural language processing (NLP), recent research has tested

LMs for clinical event sequence representation learning by drawing an analogy between

word sequences (text) and event sequences [17, 64, 94, 103, 107]. Some works have applied

gated recurrent unit (GRU)-based LMs and achieved superior performance over more naive

baselines [17,107]. DoctorAI [17] explored representing disease/medication code sequences to

predict medical codes appearing in future patient encounters. [107] extends [17] by building

clinical event sequences that include labs and procedures, and by evaluating a range of
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shallow representation methods (e.g., Word2Vec) with logistic regression (LR) and gradient

boosted trees (GBTs) for predicting mortality, long admission and other clinical outcomes.

Following BERT’s success in natural language, more recent studies utilized Transformer-

based LMs trained on clinical event sequences to learn better representations that boost

downstream task performance [64, 94, 103]. G-BERT [103] combined the power of graphical

neural networks (GNN) and BERT by incorporating a medical ontology on top of a pre-

trained LM to represent diagnosis code sequences more accurately for predicting medications.

The BEHRT [64] and Med-BERT [94] studies pre-train a Transformer-based model from

scratch on disease code sequences combined with structural information specific to the EHRs,

achieving good fine-tuning performance on tasks such as prolonged length of stay (LOS) and

disease prediction. In contrast to shallow embedding methods and other DL (e.g., recurrent

neural network, RNN) methods, these Transformer-based models are able to distinguish and

extract different semantic meanings of words based on their context, which corresponds with

the different indications of a given medical event and observation of a disease trajectory.

Most of the aforementioned methods have largely relied on their capability of learning

better representations optimized solely on data from a single population and/or dataset.

Such models suffer from lack of robustness under domain shift. Moreover, when using a

source domain model on a target population encountered in clinical practice (e.g., testing),

target domain labels may not be available for retraining for any number of reasons. Our

study thus focuses on solving the challenging problem of unsupervised domain adaptation

(UDA) on clinical event sequence data.

Unsupervised domain adaptation in medicine Work has been done on unsupervised

domain adaptation for medical image analysis through cross-modality [10, 32, 128], cross-

vendor [132], and cross-site [127] adaptations. In other areas, UDA efforts have also been

made in clinical NLP for negation detection [76], adapting detection algorithms across four

corpora of clinical notes. In the context of EHR data modeling, where domains can be in-

49



terpreted as patient populations, UDA can be used to improve the performance of machine

learning on a target patient group by mitigating the domain shift between one and another,

yet related patient population [60,133,139]. Most existing work on clinical domain adaptation

using EHR data focus on modeling numerical time series, bridging the gap between patient

groups with different age distributions and/or other disparities [4, 69, 87, 133, 139]. Building

on earlier ADA works (e.g., domain adversarial neural network [37]) and advancements in

generative adversarial networks (GAN) [40], Luo et al. [69] designed a Wasserstein GAN

(WGAN [2]) -based framework to improve cross-dataset transfer performance for electroen-

cephalogram (EEG)-based emotion recognition. Purushotham et al. [87] take advantage of

adversarial training and variational recurrent neural network (VRNN) [25] to learn latent

temporal dependencies underlying EHR time series data adaptive across patient age groups.

Similarly, [139] seeks to adversarially learn a domain-invariant representation of clinical time

series for septic shock prediction with an LSTM-based framework, where domains are defined

as patient groups divided by demographic attributes such as race, age, and gender. With

a slightly different adversarial approach, [133] performed clinical time series augmentation

by adding adversarial samples for improving the logistic regression (LR) model’s generaliz-

ability across patient groups. Despite a similar focus on improving transportability across

populations, these recent UDA studies are fundamentally different from earlier works that

aim to extend the conclusions from randomized controlled trials (RCTs) [51], findings from

epidemiology studies and public health decisions [100] to a distinct population with un-

known outcomes. These studies [51, 100] use statistical methods to analyze and account for

population-level (demographic) changes. In contrast, using EHR-based clinical prediction

models with new datasets is more challenging as clinical environments are less controlled

than those of classical clinical studies [26]. In view of this, recent UDA methods aim at

designing an EHR data representation learning scheme that can not only adjust for differ-

ences in cohort demographics, but also distribution shifts inherent to the data generation

and collection process (e.g., different lab ordering patterns, policy shifts), which cannot be
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easily described and adjusted using classical statistical approaches.

4.3 Methods

We present AdaDiag, an adaptive deep learning framework designed to improve the un-

supervised transfer performance on disease prediction tasks using clinical event sequences,

moving from a labeled source domain to an unlabeled target domain. We first state the prob-

lem to be addressed and define the notations in Section 4.3.1, followed by an introduction

to the AdaDiag framework with its main components detailed in Section 4.3.2. Sections

4.3.3 and 4.3.4 describe the two-stage training process of AdaDiag: (1) Transformer-based

encoder pre-training, and (2) adversarial training.

4.3.1 Preliminary

Problem statement Predictive models derived from EHR data are often developed and

validated on the same population, and yet show a great decline when deployed/tested

on external data due to dataset shift [108]. For instance, when a model trained on a

national/multi-institutional dataset is used on data from a regional hospital, direct trans-

fer performance may be sub-optimal due to site-specific data generation/storage processes.

Here, we addresses the issue of transferring an event sequence diagnostic prediction model

from a source dataset, where it was developed and trained, to another, target dataset, where

it could be applied without requiring its disease labels, as an unsupervised domain adaptation

problem.

The diagnostic prediction task seeks to estimate the likelihood of patients’ disease onset

based on their visit histories. For instance, the next-visit HF diagnosis prediction task is

based on predicting the first appearance of HF-related ICD-9/10 codes during the most recent

visit, given the combined event history from all past visits of the patient. To differentiate

between elements from the two data domains, we use superscripts src and tgt to indicate
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Figure 4.1: Illustration of the proposed AdaDiag framework, consisting of three modules:

the joint feature extractor F that maps sequences from the source and target domain to a

shared feature space, the classifier P that predicts next-visit HF onset and the discriminator

Q for distinguishing source and target domain identity given the features from F .

domain membership. For example, Dsrc and Dtgt represent the source and target domain.

For a given patient i with a visit history Xi of n encounters Xi = [x1 ⊕ x2 ⊕ ... ⊕ xn],

each visit xj consists of a sequence of events xj = [e1 ⊕ e2 ⊕ ... ⊕ en] ∈ xj, with all events

ordered sequentially by time. The next-visit disease label for event sequence Xi is denoted

as yi ∈ {0, 1}, which is available during training when Xi ∈ Dsrc. All sequences from Dsrc

and Dtgt are assigned with domain labels y′i ∈ {0, 1}.

4.3.2 The AdaDiag Framework

As illustrated in Figure. 4.1, AdaDiag is a feed-forward network with two forward branches

following the design in [11]. The network consists of three parts: 1) a joint feature extractor

F that maps an input sequence Xi to a shared feature space F(Xi); 2) a diagnostic classifier
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P that predicts the label for Xi based on the feature representation F(Xi); and 3) a do-

main discriminator Q that also takes F(Xi) but predicts a label indicating domain identity

(source/target) of X.

For improved performance, we pre-train a Transformer encoder as the feature extractor

F to capture the contextualized information in the sequence. F feeds the sequence repre-

sentation to P , which is essentially a multi-layer perceptron (MLP) with a sigmoid output

for binary diagnostic prediction. While trained with a different optimizer from P ’s, the

domain discriminator Q is also an MLP, but ends with a linear layer to output a domain

label [11]. During training, the diagnostic predictor P can only see disease labels from the

source-domain dataset, whereas Q can observe (unlabeled) event sequences from both the

source and target domain datasets.

The feature extractor F tries to learn a domain-invariant representation that aids in the

prediction of the diagnostic predictor P as well as prevents the model from distinguishing

features between different domains. The feature learned by F can be considered domain-

invariant if a trained Q fails to distinguish between sequences from different domains. In this

regard, Q is the adversarial component of the AdaDiag, as its target (distinguishing do-

mains) goes against the overall goal of theAdaDiag framework on learning domain-invariant

features. A well-trained F should be able to learn features that benefit the diagnostic pre-

diction task, while keeping the domain identity as ambiguous as possible. Disease prediction

can be performed at inference time by running unlabeled target domain sequences through

the feature extractor F and the diagnostic classifier P . No disease labels from the target

domain are required throughout the model development process. At inference time, an input

sequence Xi is passed through sufficiently trained F and P to predict for the disease label

yi, while keeping the domain discriminator Q untouched.
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4.3.3 Pre-training Transformer Encoder

Following the recent success in Transformer-based pre-trained language models [30, 67, 91]

and their adaptations modeling EHR data [64, 94], we construct a BERT-like architecture

with six Transformer encoder layers, six attention heads, and an embedding dimension of

768 as the shared feature extractor F for a contextual representation that accounts for the

entire disease progression process. The MLM task is adopted as the pre-training task of the

Transformer-based encoder, which seeks to recover randomly masked clinical events in given

sequences. All unlabeled event sequences from both source and target domains are used

for this process. Unlike language models (e.g. BERT) that processes subword or byte-pair

sequences, our encoder treats individual LOINC codes as the minimal units, since a lab event

code cannot be further divided into semantically meaningful sub-units. Figure 4.2 illustrates

the BERT-like input representation of our pre-trained Transformer-based model. As defined

in the BERT paper [30], the input embeddings are the sum of the token embeddings, the

segmentation embeddings and the position embeddings. As we do not differentiate segments

within each input sequence, all segment embeddings are identical. Similar to [30], [CLS] is

a special symbol added in front of every input example, whose representation will be used

as the final sequence representation in fine-tuning tasks; [SEP] is a special separator token,

indicating the end of the input sequence.

The MLM pre-training in our study follows a setting similar to the original BERT paper

[30]. First, 15% of tokens in the sequences are randomly selected, and these chosen tokens

will: 1) be replaced with the [MASK] token 80% of the time, 2) be replaced by another

random tokens 10% of the time, and 3) stay unchanged the remaining 10% of the time.

This mixed masking strategy was chosen to soften the discrepancy between pre-training and

fine-tuning, as the [MASK] symbol will not appear during the fine-tuning stage [30]. For

an input that contains one or more masked tokens, the model will generate the most likely

substitution for each. We sampled 25% of all sequences for MLM evaluation, and trained

the model for 100 epochs using the remaining sequences for predicting the masked token
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Figure 4.2: BERT-style input representation of the pre-trained Transformer-based model. As

defined in the BERT paper [30], the input embeddings are the sum of the token embeddings,

the segmentation embeddings and the position embeddings.

with cross-entropy loss. The best model was selected based on the lowest validation loss. In

this process, the model captures the bidirectional context of each event in the sequence and

accordingly learns a contextualized event representation.

4.3.4 Adversarial Training

AdaDiag aims at learning features from event sequences that are simultaneously beneficial

to disease risk discrimination and cross-domain generalization. This goal can be achieved

by adversarially optimizing on two discriminative tasks: disease prediction and domain dis-

crimination. Like two-player game training from GANs, the adversarial training scheme of

AdaDiag is formed as a minimax problem. Specifically, we need to find a set of parame-

ters that minimize the disease prediction loss and at the same time maximize the domain

discriminator loss.

As a result, adversarial training reduces the disparity between the marginal distributions

of the source and target features, P src
F and P tgt

F , over the shared feature space F(x):

P src
F ≜ P (F(x) | x ∈ Dsrc)

P tgt
F ≜ P (F(x) | x ∈ Dtgt)

To learn domain-invariant features, AdaDiag trains F to make distributions of P src
F and
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P tgt
F to be as close as possible to improve cross-domain generalization. Intuitively, if a well-

trained Q cannot determine the domain membership of the extracted features by F between

the source and target domains, the features are domain-invariant.

In earlier works on adversarial domain adaptation (e.g., DANN [37], ADDA [115]), fea-

tures are learned to confuse a classifier through different adversarial losses. Some [115] use

the traditional GAN loss that can be deemed as minimizing the Jensen-Shannon (J-S) diver-

gence between the source and target feature distributions, P src
F and P tgt

F . When the learned

features fail to mix distributions from both domains, gradient vanishing can occur if tradi-

tional probability-based loss measures such as cross-entropy or J-S divergence are used [104].

This situation might be better served by instead minimizing the Wasserstein distance [97],

which appears to maintain gradient stability even when two distributions are far apart [2].

Specifically, we minimize the Wasserstein distance W between P src
F and P tgt

F over other alter-

natives [104] due to its stability on parameter selection as argued in [2,11], which is defined

as follows:

W
(
P src
F , P tgt

F
)
= inf

γ∼Π(P src
F ,P tgt

F )
E

(xsrc,xtgt)∼γ

[∥∥xsrc − xtgt
∥∥] (4.1)

where Π
(
P src
F , P tgt

F
)
denotes all possible joint distributions of source and target distributions,

P src
F and P tgt

F . As Eq. (4.1)’s minimum is computationally intractable, its Kantorovich-

Rubinstein duality form is usually used in practice [119]:

W
(
P src
F , P tgt

F
)
= sup

∥g∥L≤1

E
f(x)∼P src

F

[g (f (x))]− E
f(x′)∼P tgt

F

[g (f (x′))] (4.2)

The supremum is over functions g where g is 1-Lipschitz continuous. For simplicity, we

denote this as ∥g∥L ≤ 1. Note that the function g is 1-Lipschitz continuous if and only if

|g(x)− g(y)| ≤ |x− y|, for all x and y. In our case, Q serves as the function g in Eq. (4.2).

Following [11], to make Q a 1-Lipschitz continuous function, all parameters in Q are clipped

to a fixed range, [−c, c], at the end of each Q optimization step. The minimax optimization

process of adversarial training involves two learning objectives: the domain discriminator

objective Jq, and the disease classification objective Jp. The model is trained for these two
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objectives in an alternating fashion.

First, the discriminator Q is trained by maximizing the discriminator loss with F and P

parameters fixed. The domain discriminator objective Jq is an approximation of the Wasser-

stein distance between the data distributions of the two domains. At the Q optimization

step, it seeks to maximize Jq by updating its parameters in θq:

Jq (θq) = W
(
P src
F , P tgt

F
)
= max

θq

[
E

F(x)∼P src
F

[Q(F(x))]− E
F(x′)∼P tgt

F

[Q (F (x′))]

]
(4.3)

Next, the disease classifier is optimized by minimizing the disease classification loss with the

discriminator Q fixed. The disease classification objective Jp, parameterized by θp, aims to

minimize the binary cross-entropy loss Lp(ŷ, y):

Jp (θp) = min
θp

E
(x,y)

[Lp(P(F(x)), y)] (4.4)

Lp(ŷ, y) is defined as the negative log-likelihood of correctly predicting the binary disease

label:

Lp(ŷ, y) = −
1

n

n∑
i=1

yi · log ŷi + (1− yi) · log (1− ŷi)

where ŷi is the next-visit disease onset prediction for the i-th patient in the P output, yi is

the corresponding disease label, and output size is the number of predicted values/patients

in the P output.

Lastly, serving for both discriminative tasks, the joint feature extractor F seeks to min-

imize the disease classification loss Jp as well as the Wasserstein distance Jq:

Jf = min
θf

[Jp (θf ) + λJq (θf )] (4.5)

where λ is a hyperparameter that balances the losses of P and Q.
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4.4 Experiments

Here, we describe the datasets as well as their pre-processing procedures (Section 4.4.1),

introduce implementation details of AdaDiag (Section 4.4.2), define baseline models and

AdaDiag variants (Section 4.4.3), and present domain adaptation results on the next-visit

HF onset prediction task (Section 4.4.4).

4.4.1 Experimental Setup

Abnormal lab sequences from two data sources, UCLA and MIMIC-IV, are used to predict

next-visit HF onset. Compared to disease codes, which are usually unordered within visits,

time-stamped lab events capture more fine-grained temporal dynamics within and between

visits. The distribution of lab sequences across institutions could differ for a number of

reasons, including demographics, mismatched ordering patterns, and policy changes – all of

which contribute to domain shift that may limit cross-data model generalization. In this

section, experiments are setup to address this challenging case. We briefly introduce the two

EHR datasets and describe methods used to extract abnormal lab events with corresponding

disease labels. In addition, differences in the two datasets are discussed, which indicate

possible domain shifts as a result of disparities in the data generation and curation processes.

UCLA dataset We selected adult (≥ 18 years old at initial admission time) patients who

had at least one intensive care unit (ICU) stay at the UCLA Health System between 2013-

03-01 and 2021-03-01, extracting all abnormal lab events from all in-patient visits within

this time window along with their associated disease codes.

MIMIC-IV dataset MIMIC-IV data (version 1.0) [54] includes de-identified records from

Beth Israel Deaconess Medical Center (BIDMC) for over 60,000 patients admitted to an ICU

or the emergency department between 2008 and 2019.
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Similar pre-processing steps are performed on lab events and diagnosis codes extracted

from the two initial cohorts. To maximize clinical utility of our developed models, we focus

on predicting unseen HF occurrences. Specifically, we excluded all encounters after the

initial HF onset (if any), and use only encounters before (not including) the onset encounter

as the sequence used for disease prediction. Patients with only one encounter remaining are

removed as next-visit diagnosis prediction requires at least two visits. For a given patient i,

abnormal lab events from all in-patient visits before the most recent visit (post-filtering) xn

are ordered by time and concatenated as the prediction input Xi = [x1⊕x2⊕ ...⊕xn−1], with

its HF label defined as yi, a binary indicator for having at least one HF diagnose (i.e., 3-digit

ICD-9 code of 428 or ICD-10 code of I50 ) associated with {xj}, j ∈ {1, 2, 3, ..., n− 1}.

To facilitate a successful transfer, standardization of lab codes is needed so that the

sequences from two local systems speak the same “language”. We convert the local lab

codes to a unified vocabulary, LOINC. UCLA Health has mappings from its local codes to

LOINC for almost all available labs. In contrast, MIMIC-IV has no LOINC mappings for

lab items in its microbiology events table, so we extracted raw lab sequences only from the

labevents table using the dictionary file provided to map from local labs to LOINC codes.

After removing all labs that are not mapped to LOINC codes, 96.7% 1 of the labevents

occurrences in the extracted MIMIC-IV sequences remain. The pre-processed UCLA data

has sequences for 18,736 patients with 1,218 unique LOINC codes, while the MIMIC-IV

LOINC sequences have 27,782 patients with 272 unique codes. There are 139 shared LOINC

codes in both vocabularies. The difference in vocabulary coverage is a result of multiple

reasons from data generation (e.g., lab availability, ordering patterns, policy changes) to

curation processes (e.g., incomplete mapping process), and is one cause of domain shift.

There are other differences in the two datasets that may indicate potential shifts in data

distribution. As shown in Table 4.1, MIMIC-IV patients have on average fewer visits, shorter

1In MIMIC-IV (v1.0), less than 17% (269/1630) of codes in the d labitems mapping file are mapped to
LOINC, covering 90.3% of all occurrences. We combined the local to LOINC lab mappings provided in
MIMIC-III (v1.4) to map a larger percentage of labs to LOINC.
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Table 4.1: Data summary of extracted cohorts from UCLA and MIMIC-IV dataset

UCLA MIMIC-IV

Number of patients 18,736 27,782

Number of visits 283,502 145,961

Avg. number of visits per patient 15.1 5.3

Number of unique lab codes 1,218 272

Avg. sequence length per patient 419.5 234.8

Female ratio 43.7% 51.4%

HF incidence rate 16.4% 27.7%

sequence lengths, a higher proportion of females, and a higher HF onset rate compared to

the UCLA patients.

We conduct domain adaptation experiments in two directions: from UCLA to MIMIC-

IV, and from MIMIC-IV to UCLA, both assuming no labels available in the target domain.

The two datasets can each serve as Dsrc or Dtgt. 80% of the sequences from Dsrc are

randomly selected and used for training, while the rest are used for model selection based on

the validation area under the receiver operator characteristic (AUROC) curve metric. We

maintain the same splits when UCLA and MIMIC-IV each serves as Dsrc for comparability.

The best model is reported with AUROC and precision-recall area under the curve (pr-AUC)

on all Dtgt sequences. We note here that this is deemed as zero-shot HF prediction, as no

Dtgt labels are involved during the model development phase.

4.4.2 Implementation Details

We first pre-train AdaDiag with the MLM objective to learn the network parameters in

the joint feature encoder F that can predict the masked lab event tokens, on all unlabeled

sequences from Dsrc and Dtgt. Similar to the setup reported in Med-BERT [94], the Trans-

former architecture in the pre-trained model has six layers and six attention heads. Different

from Med-BERT, we choose to use a hidden size of 768 (same for all Transformer-based
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encoders in this chapter). The pre-trained model is then fine-tuned on the HF onset predic-

tion and domain discrimination tasks with an adversarial objective. F and P are optimized

jointly using AdamW [68] with a learning rate of 1E-5 and a weight decay of 0.01. A linear

learning rate scheduler is used in all experiments. To balance the learning speed of the

two alternatingly optimized adversarial objectives, Q is trained using a separate AdamW

optimizer with a learning rate of 5E-4 and a weight decay of 0.01. To ensure that the dis-

criminator Q satisfies the 1-Lipchitz constraint of the Wasserstein objective [2], the weights

of Q are clipped within [-0.01,0.01] at the end of each training step of Q, following the values

used in [11]; the adversarial objective weight parameter λ from Eq. 4.5 is adjusted to 0.2

for all adversarial experiments. A fixed sequence length is chosen to be 1024 with sequences

truncated/padded from the left, considering the fact that recent event history is more rel-

evant to the upcoming disease onset. We train AdaDiag variants and the baselines and

select the best model based on the validation AUROC metric from Dsrc. When transferring

from UCLA data to MIMIC-IV data, the selected AdaDiag architecture has six layers in

the shared feature extractor F (taken from the pre-trained Transformer model), zero lay-

ers in the disease classifier P (P is simply an output layer in this case) and two layers in

the domain discriminator Q. When the transfer is conducted reversely (from MIMIC-IV to

UCLA), the best architecture has zero layers in the domain discriminator, with other settings

remaining the same. The domain adaptation performance of AdaDiag is reported through

AUROC and pr-AUC metrics on the entire Dtgt dataset. AdaDiag was implemented using

Huggingface [126] based on PyTorch [84].

4.4.3 Baseline models

GRU/bi-GRU encoder with skip-gram embedding A pre-trained Transformer en-

coder is used in AdaDiag. While in non-Transformer-based clinical event sequence mod-

els [15, 17, 72, 79], the immediate sequence representation is provided using shallow word

embedding methods (e.g., skip-gram/CBOW models in Word2Vec), before being fed into
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encoders like long short-term memory (LSTM) networks/GRUs or convolutional neural net-

works (CNN) to learn a final representation. More advanced models apply bidirectional

RNNs (i.e., bi-LSTM or bi-GRU) to better capture the temporal dependencies of clinical

visits and improve model interpretability. We implemented the first two baseline models as

a one-layer GRU encoder and a one-layer bi-GRU encoder. Their initial sequence encoding

is provided by a skip-gram algorithm pre-trained on all sequences from Dsrc and Dtgt, with

a window size of 20 and a embedding dimension of 768, which is the same as the dimension

of the pre-trained Transformer encoder. The encoded features are directly passed to a linear

output layer with Sigmoid activation to provide HF prediction, for which an Adam optimizer

with a learning rate of 1E-3 is used.

Pre-trained Transformer Recent studies have shown the effectiveness of pre-trained

Transformer-based encoders on learning better event sequence representation compared to

RNN-based methods, achieving improved performance when fine-tuned on downstream tasks

[64,94]. An intuitive baseline is applying the non-adversarial version of AdaDiag with pre-

trained Transformer encoder fine-tuned on Dsrc directly to Dtgt. For fair comparison, the

pre-trained encoder prior to fine-tuning is the same as the one used in AdaDiag, which is

pre-trained with the parameters of six layers, six attention heads, and a hidden dimension

of 768.

Untrained Transformer model To understand the added value of pre-training to model

generalizability, we compare the performance of the fine-tuned Transformer against the fine-

tuned Transformer with no pre-training, where the latter is defined with the same archi-

tecture as the former but has randomly initialized layers. All the above baseline models

discussed thus far are non-adversarial. We also report the results of the adversarial version

of the fine-tuned, untrained Transformer model to demonstrate how adversarial training can

be beneficial in another model setting, and to further illustrate the utility of pre-training in

adversarially trained models.
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Table 4.2: MIMIC-IV to UCLA domain adaptation performance comparison. Metrics are

reported with 95% CI calculated through bootstrapping.

Method

MIMIC-IV(Dsrc) UCLA(Dtgt)

AUROC pr-AUC AUROC pr-AUC

Baselines

GRU+Skip-gram 0.7671± .0143 0.5987± .0256 0.4628± .0114 0.1642± .0083

Bi-GRU+Skip-gram 0.7918± .0139 0.6318± .0258 0.6623± .0096 0.2425± .0112

Transformer 0.7997± .0133 0.6525± .0243 0.6222± .0114 0.2459± .0121

Pre-trained Transformer 0.8000± .0134 0.6443± .0246 0.6816± .0104 0.2828± .0133

Adversarial
Transformer 0.7977± .0132 0.6468± .0244 0.6456± .0111 0.2659± .0129

Pre-trained Transformer 0.7985± .0131 0.6374± .0251 0.7089± .0099 0.2944± .0133

4.4.4 Results

MIMIC-IV to UCLA transfer We first implement AdaDiag and baseline models for

adapting from MIMIC-IV to UCLA data, given the fact that the former has a larger popula-

tion and is publicly available. This is a more realistic scenario considering the data sharing

restrictions of institution-specific datasets, as training AdaDiag requires data access from

the source domain. In this setting, we emulate the situation where a local hospital system

(UCLA) deploys models developed on public data from external institutions (BIDMC) to

inform decisions. As shown in Table 4.2, all baseline models performed well on MIMIC-IV

validation data. However, when tested on the UCLA sequences, they experienced drastic

drops in both metrics. Over all other baselines, the Transformer baseline model performed

best on MIMIC-IV and UCLA datasets, while the GRU model with skip-gram embedding

performed the worst. Using metrics reported in Table 4.2, we created a graph visualizing

relative performance loss for all models in Figure 4.3. In comparison to their non-adversarial

counterparts, the two adversarial models had less performance loss from the cross-data trans-

fer. AdaDiag achieved superior predictive performance (highlighted in grey) on UCLA data

in comparison to all non-adversarial baselines and its adversarial variant (i.e., AdaDiag

without pre-training). Specifically, compared with the best baseline model, non-adversarial
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Figure 4.3: Illustration of relative performance losses in all baseline and adversarial models,

when adapting from MIMIC-IV to UCLA data, calculated as (source metric-target met-

ric)/source metric × 100%

pre-trained Transformer, AdaDiag’s adversarial training boosted AUROC and pr-AUC on

the UCLA data by 4.0% 2 and 4.1%. When no pre-training was performed, adversarial

training boosted Transformer model’s performance by 3.8% in AUROC and 8.1% in pr-

AUC. These observations brought us to the conclusion that adversarial training benefits the

Transformer-based models’ generalization performance, while not greatly sabotaging their

performance on the source domain. The untrained Transformer encoder baseline (fine-tuned

on MIMIC-IV data) did not outperform pre-trained Skip-gram embedding with bi-GRU en-

coder when tested on MIMIC-IV data. Adding pre-training to it significantly improved its

AUROC by 9.5% and pr-AUC by 15.0%, achieving superior performance relative to the bi-

GRU with Skip-gram embedding baseline. In addition, pre-training was able to improve the

AUROC and pr-AUC on target domain by 8.9% and 10.7% when added to the adversarial

variant of the untrained Transformer baseline. These improvements show the importance of

pre-training on increasing model’s generalization performance on new datasets.

2This percentage was calculated for relative improvement, same as below.
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Table 4.3: UCLA to MIMIC-IV domain adaptation performance comparison. Metrics are

reported with 95% CI calculated through bootstrapping.

Method

UCLA(Dsrc) MIMIC-IV(Dtgt)

AUROC pr-AUC AUROC pr-AUC

Baselines

GRU+Skip-gram 0.7640± .0206 0.3971± .0370 0.5120± .0076 0.3075± .0088

Bi-GRU+Skip-gram 0.8058± .0188 0.5064± .0424 0.6540± .0071 0.4032± .0106

Transformer 0.8004± .0197 0.5123± .0402 0.6309± .0073 0.3851± .0105

Pre-trained Transformer 0.8167± .0182 0.5375± .0200 0.6727± .0072 0.4422± .0114

Adversarial
Transformer 0.8018± .0193 0.5126± .0418 0.6583± .0070 0.4110± .0108

Pre-trained Transformer 0.8113± .0188 0.5336± .0399 0.6959± .0069 0.4610± .0115

UCLA to MIMIC-IV Transfer Given that labels from both datasets are readily avail-

able, we can verify if conclusions from MIMIC-IV to UCLA transfer still hold true with a

different setup: transferring from a source data (UCLA) with smaller dataset but larger event

vocabulary than the target data (MIMIC-IV). Models trained on UCLA data were tested

on MIMIC-IV (Table 4.3), showing steep declines in AUROCs and pr-AUCs. AdaDiag

had the least performance loss while the GRU+Skip-gram embedding model exhibited the

most (Figure 4.4). When comparing the two adversarial models with their non-adversarial

counterparts, we found that they experienced smaller relative performance loss. Thus, the

same conclusion from our previous experiments (i.e., MIMIC-IV to UCLA transfer) persists:

adversarial training helps model generalize when transferring across datasets. Table 4.3 also

shows that with 3.4% gain in AUROC and 4.3% gain in pr-AUC, AdaDiag (highlighted in

grey) outperformed the best non-adversarial baseline on MIMIC-IV data, while maintaining

a comparable source domain validation performance on UCLA data. Both adversarial mod-

els outperformed their non-adversarial baselines, indicating that their zero-shot adaptation

was enhanced by adversarial training without significant negative impact on their source do-

main performances. In this transfer setting, pre-training also played a major role, as was the

case in UCLA to MIMIC-IV. In baseline models, the untrained Transformer performed worse
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Figure 4.4: Illustration of relative performance losses in all baseline and adversarial models,

when adapting from UCLA to MIMIC-IV data. Relative performance loss is calculated as

(source metric-target metric)/source metric × 100%

than the bi-GRU model with skip-gram embedding; pre-training boosted its performance by

6.6% in AUROC and 14.8% in pr-AUC. In adversarial models, pre-training improved the

model performance on MIMIC-IV by 5.7% in AUROC and 12.2% in pr-AUC.

In both adaptation settings, the GRU encoder with skip-gram embedding was signifi-

cantly less effective on learning features generalizable across datasets than other bi-GRU

and Transformer-based methods, which is consistent with results reported in previous stud-

ies [94] and is possibly due to its left-to-right recurrent learning scheme and inability of

learning bidirectional/contextual representations.

t-SNE visualization of feature distributions To compare and contrast the impact of

adversarial training, we use t-SNE [116] for dimensionality reduction and visualize the feature

distributions generated by Transformer encoders from different models/training stages in

2D. Figure 4.5 shows distributions of representations of pre-trained Transformer models

before (Figure 4.5a) and after fine-tuning (Figures 4.5b and 4.5d); and adversarially trained
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pre-trained Transformer models (i.e., AdaDiag) (Figures 4.5c and 4.5e) in both transfer

directions. In Figure 4.5a, sequence representations from the two domains are far away

from each other, showing through MLM pre-training alone is not sufficient to bridge the

gap between UCLA and MIMIC-IV data. Train-on-source-only models are built on top of

the pre-trained Transformer model and fine-tuned on the disease classification task. Their

encoders’ new mappings (Figures 4.5b and 4.5d) brought features from the two domains

slightly closer, while remaining fairly separate from each other.
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(a) Transformer model pre-trained on unlabeled MIMIC-IV and UCLA sequences.

(b) Pre-trained Transformer model fine-tuned on

MIMIC-IV data.

(c) Adversarial pre-trained Transformer model for

MIMIC-IV to UCLA adaptation.

(d) Pre-trained Transformer model fine-tuned on

UCLA data.

(e) Adversarial pre-trained Transformer model for

UCLA to MIMIC-IV adaptation.

Figure 4.5: t-SNE visualizations of activations at the end of the Transformer feature en-

coders from different models/training stages. Neither pretraining nor fine-tuning were able

to bridge the domain gap, whereas adversarial training mixed the distributions between the

two datasets effectively.
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Visualization of self-attention in Transformer encoders The self-attention mecha-

nism of the Transformer layers is able to capture complex relationships between lab events,

adding interpretability to our model. Figure 4.6 shows an analysis of self-attention in Ada-

Diag (MIMIC-IV to UCLA)’s Transformer encoder. Based on the approach presented

by [118], we analyze attention-based patterns for two patients, referred to as A (Figure 4.6a)

and B (Figure 4.6b), from the UCLA cohort. For each patient, the abnormal lab events are

presented as two identical columns, with events ordered chronologically from top to bottom.

By passing the sequences through the six Transformer encoder layers, each with six attention

heads, a ‘headview’ for each head from each layer is generated depicting attention weights of

all events in the sequence, given an event of interest. An abnormal lab (in gray, on the right)

is linked with all lab events in the same sequence, with the shades of the color block/edges

reflecting the attention weights/degrees of association. For patient A, whose history consists

of a short sequence of events from the same encounter, a strong association is found between

the B-type natriuretic peptide (BNP) test (elevated value observed in heart failure) and the

alanine aminotransferase (ALT) test (used to check for liver damage). The ALT test is also

weakly associated with aspartate aminotransferase (AST) (another test for tissue damage in

organs like liver/heart) and other red blood cell related tests such as erythrocyte distribution

width (EDW) and erythrocyte count. In patient B’s history, which spanned across multiple

visits, the AST test is closely related to several blood tests that are relevant to red blood

cells and their ability to transmit oxygen in blood: hemoglobin/hematocrit concentration,

mean corpuscular hemoglobin concentration (MCHC), and erythrocyte count. This example

especially shows AdaDiag’s ability of extracting long term dependencies in a multi-visit

sequence. The associations between ALT and BNP (patient A) could help uncover new

patterns when evaluating liver damage as early signs of heart failure due to the complex

cardiohepatic interactions [46]. The relationships between ALT or AST and erythrocyte

related tests (patient A/B) might indicate the underlying linkage between conditions such

as anemia and organ (e.g., liver/heart) tissue damage. Identifying such self-attention pat-
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terns has enabled more profound understanding of AdaDiag’s functionality and extended

its potential into discovering new knowledge that has clinical relevance.
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(a) Abnormal lab event sequence for patient A. A strong association between abnormalities in

alanine aminotransferase (ALT) and niatriuretic peptide B (BNP) is found.

(b) Abnormal lab event sequence for patient B. Abnormal values in hemoglobin or erythrocyte

concentration in blood are strongly associated with elevated values in aspartate aminotransferase

(AST).

Figure 4.6: Analysis of self-attention in AdaDiag’s Transformer encoder layer for MIMIC-

IV to UCLA adaptation. Colors of the edges corresponds to individual attention heads from

the first Transformer layer (e.g, orange: the second head; brown: the sixth head), and shades

of the edges/highlighted region indicate attention weights.
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4.5 Conclusion

Improved generalizability of clinical predictive models is essential to achieving widespread

clinical application under the constraint of low training resources. In this work, we address

the dataset shift issue that has prevented successful cross-dataset applications by enforcing

domain-invariant representations through unsupervised adversarial training. We introduce

a novel Transformer-based adversarial domain adaptation framework that transfers an event

sequence diagnostic prediction model from a source domain, where it was developed and

trained, to another target domain where it could be applied without requiring the disease

labels. Its utility was demonstrated on next-visit HF onset prediction in two transfer settings,

using two large clinical event datasets: from MIMIC-IV to UCLA, and UCLA to MIMIC-IV.

While the RNN or Transformer-based non-adversarial baselines suffered greatly when tested

on unseen sequences from the target data, adversarial training was found to be effective

in improving the Transformer-based model’s performance on unseen targets, maintaining

similar accuracy on the source data. We also highlighted the importance of pre-training

in the ablation studies with an untrained Transformer model, showing that pre-training in

conjunction with adversarial training led to an increased generalization power for AdaDiag.

A t-SNE plot illustrating the effect of adversarial training on feature distributions is presented

for mixing two distributions with originally large differences from two domains. With the help

of the Transformer encoder, the interpretability of the self-attention patterns learned within

AdaDiag was visualized using the Bertviz [118] tool, which showed clinically meaningful

associations between abnormal lab events from a given patient’s history. This also allows

AdaDiag to explore formerly unknown patterns for medical knowledge discovery.

AdaDiag’s application goes beyond HF prediction; other clinical prediction tasks, such

as length of stay (LOS) and mortality prediction, also require cross-population generaliz-

ability, and are part of our research plans for the future. Future directions we would like

to explore include: 1) extending AdaDiag to other types of clinical events such as medica-
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tion and diagnostic codes; 2) applying AdaDiag to correct temporal dataset shift; and 3)

training AdaDiag without access to source domain data.
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CHAPTER 5

Conclusion

This chapter summarizes the results and contributions from this dissertation. Based on the

findings presented, we suggest research directions to further improve model generalizability

under data perturbation and distribution shifts using electronic health record (EHR) data.

5.1 Summary of Research

Although there remain many challenges to using large-scale observational datasets from the

EHR, careful modeling and application of such data can be used for clinical prediction tasks

– particularly over time, as data changes. In this dissertation, we provide the following

research developments around two aspects of predictive modeling of clinical event sequences

under dataset shift:

1. A new permutation-sampling-based method to mitigate the impact of incon-

sistent concurrent event ordering in predictive event sequence modeling. A

permutation-invariant prediction mechanism is made possible by introducing a permuta-

tion sampling technique on event sequences modeled as sequence-of-sets. We provide a

demonstration of the utility of the weighted loss function with additional regularization

term enforcing permutation-invariant representation of the input sequence, which further

improves the model predictive performance when using permuted sequences.

2. An adaptive deep learning framework to improve the unsupervised transfer

performance on disease prediction tasks using clinical event sequences, mov-
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ing from a labeled source domain to an unlabeled target domain. While the

validation results of the existing predictive models for event sequence (e.g., the state-

of-the-art pre-trained Transformer model) have shown poor generalizability across data

sources, their performance in target domain was significantly enhanced by adversarial

training without compromising source validation accuracy.

Chapters 2 and 3 presented key issues related to the modeling of clinical sequential data with

algorithms that overcome these challenges. Demonstrations of this research were conducted

using public datasets (e.g., MIMIC) and specific institutional datasets (e.g., from UCLA

Health System) to illustrate the problems and advances over conventional deep learning

methods.

5.2 Future Directions

We identify limitations of works in this dissertation and subsequently suggest several di-

rections for extending the work presented in this dissertation to fit in a broader context of

improving model generalizability under dataset shift.

Representing temporal intervals. Efforts in this dissertation directly utilized the in-

dexed sequence order to reflect the temporal order of the clinical events. Additional infor-

mation can be added to more accurately capture the complex temporal dynamics within a

patient’s visit history. For example, event intervals could be explicitly modeled using time

tokens as special vocabularies motivated by the varying indications of time intervals in dif-

ferent disease trajectories (e.g., acute vs. chronic, short vs. long time spans). With this

setup, both between- and within-visit time intervals can be represented in a manner akin to

existing clinical events. A new line of research can be conducted to investigate how model-

ing time intervals would impact predictions for diseases at different levels of acuteness and

immediacy.
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Simulation studies with single-source dataset shift. Other than concurrent event

ordering shift we demonstrated forDPSS in Chapter 3, additional studies could be conducted

simulating cases when a range of single-source dataset shift (e.g., age distribution, event code

frequencies) is present, investigating their individual impact on the model performance. In

this way, we will be able to subsequently evaluate and dissect AdaDiag’s applicability

to other complex data shift scenarios with a different composite sources of dataset shifts.

Furthermore, even though our experiments demonstrated that our framework reduced the

discrepancies in model performance between source and target data, the differences are still

considerable. This calls for further simulation studies to identify potential improvements

needed in our proposed methods, and further close the performance gap.

Event code description embedding. Transferring event sequence models from one sys-

tem to another can be challenging due to their mismatched vocabularies. For example, in

some instances, lab events from one institution may not be available in another, or equiv-

alent lab tests may be coded differently due to factors such as test availability, mapping

procedures, repetitive code concepts (e.g., not deprecated in time within the coding system),

and code versions not being promptly updated. Contextual embeddings from encoders like

Transformers may be able to infer the semantic meaning of unseen words/linking events with

relevant concepts through pre-training tasks and sequence context. We can also address this

issue more directly by injecting domain knowledge into the learning process. By creating

embeddings of the textual event code descriptions, key event concepts can be encoded in a

way that preserves semantic relationships. One intuitive way of creating such embeddings

is through language models pre-trained on large-scale, domain specific text corpus, such as

BioBERT [61] or BioClinicalBERT [1]. Due to the fact that descriptions from coding on-

tology systems (e.g., LOINC) are inherently different from natural language in pre-training

data, such as Wikipedia or biomedical journal articles, a more specifically pre-trained model

may be required in order to accurately represent the language style in ontology concept
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descriptions.

Dataset shift detection. Taking a step back from searching for solutions to dataset

shift, investigating methods for detecting dataset shifts is also a critical aspect of proactively

safeguarding model generalizability and deployment-time stability. Depending on the appli-

cation, it may provide insights during the data curation phase in preparation for building

a more reliable model. Recent dataset shift detection methods proposed for medical data

include the anomaly-detection-based MedShift framework [44], and Park et al. [83], which

translates a distance-metric-based out-of-distribution score to an interpretable confidence

score that helps guide user decisions in healthcare ML systems. These shift detection meth-

ods are designed to identify out-of-distribution samples given any two sample datasets that

are retrospectively collected from different sources/simulated with distinct properties in a

controlled environment. One real-world use case of these techniques that can be further

explored is to detect temporal shifts within the same data source. When new conditions ap-

pear (e.g., COVID-19) and treatment protocols evolve to accommodate the updated medical

understanding of diseases, the data generated may shift over time. This scenario requires an

additional system to give dynamic assessment and alerts about whether the recommendations

from a pre-existing model can be applied to the newly generated samples [52].

Modeling with temporal dataset shift. Dataset shifts other than highlighted in this

dissertation may exist in real-life clinical scenarios. As just discussed, dataset shift can occur

in the form of temporal shift due to data collected changing over time. Temporal shifts can

be present as trends and as abrupt or seasonal changes (e.g., evolving clinical policies [101],

upgrades in clinical measuring devices, seasonal epidemics, etc.) [98]. If confirmed exist

(i.e., through dataset shift detection), methods can be developed to correct temporal shifts

dynamically, with the idea that it is more optimal to proactively update a model when new

data is available rather than switching versions only when evidences of model performance

deterioration emerge [52]. The modeling techniques discussed in this dissertation could
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be applied to the construction of such systems, given their ability to adapt to new data

distributions.
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[27] Daumé, Hal Daumé Iii, Abhishek Kumar, and Avishek Saha. Frustratingly easy semi-
supervised domain adaptation. 2010.
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