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Abstract

Computational and Machine Learning Methods for Understanding Gene Regulation and
Variant Effects

by

Gonzalo Benegas

Doctor of Philosophy in Computational Biology

University of California, Berkeley

Professor Yun S. Song, Chair

The field of genomics has been advancing at a fast pace ever since the development of
high-throughput sequencing technologies. While we have access to more data than ever
before, the number of open questions has only increased. In this dissertation, I present novel
machine learning techniques to draw insights from genomic data. First, I tackle the analysis
of alternative splicing — a crucial but overlooked step in gene regulation — from short-read
single-cell RNA-seq data. To account for the large scale and sparsity of such data, I develop
scQuint, a suite of efficient probabilistic methods for dimensionality reduction and differential
splicing. Next, I approach the problem of genome-wide variant effect prediction with a new
direction: DNA language models. We first propose GPN, trained on unaligned genomes, and
apply it to study genetic variants in Arabidopsis thaliana. GPN shows an improved power for
highlighting variants under negative selection as well as those affecting traits. Furthermore, I
show that GPN learns important genomic features such as gene annotations and transcription
factor binding site motifs, without any supervision. We then present GPN-MSA, a DNA
language model trained on whole-genome alignments of vertebrates, and showcase its excellent
performance predicting deleteriousness across the entire human genome. These contributions
not only pave the way for enhanced genomic understanding but also propose a methodological
shift in genome analysis.
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Chapter 1

Introduction

1.1 Background

The field of genomics has seen remarkable advancements in recent decades. This progress has
been fueled by rapid technological developments and a growing understanding of the complex
interplay between genetic sequences and their functional outputs. At the heart of this field
lies the endeavor to decode the wealth of information encoded within our DNA, which serves
as the blueprint for building and operating biological organisms.

One of the most significant applications of genomics is personalized medicine. The ability
to tailor medical treatment based on an individual’s genetic makeup is a big promise in
healthcare. By understanding the genetic basis of diseases, treatments can be more effectively
targeted, leading to better patient outcomes and fewer side effects [47].

In agriculture, genomics is playing a pivotal role in the development of more resilient and
productive crops. Through genetic engineering and breeding programs informed by genomic
insights, crops can be made more resistant to pests, diseases, and environmental stresses.
This progress is crucial for ensuring food security in the face of a growing global population
and changing climate conditions [165].

Additionally, genomics has applications in other fields such as forensic science [53] and
ancestry inference [104], providing powerful tools for identifying individuals and tracing
genetic lineages. This has profound implications for law enforcement, historical research, and
understanding human migration patterns.

However, the field of genomics is not without its challenges. One such challenge is
understanding the complex mechanisms of gene regulation. While transcriptional regulation
has been a major focus, especially with the advent of technologies like single-cell RNA
sequencing (scRNA-seq), it represents just one layer in the multifaceted process of gene
expression. Alternative splicing, a process by which a single gene can produce multiple
transcript isoforms, is a key component of this regulatory complexity in higher eukaryotes.
Despite its importance, alternative splicing is often underrepresented in genomic studies,
largely due to technical challenges in accurately quantifying these events with current
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sequencing technologies.
Another major challenge in genomics is identifying the functional impacts of genetic

variants. While genome-wide association studies (GWAS) have been successful in associating
genetic variants with particular traits or diseases, pinpointing the causal variants and
understanding their mechanisms of action remains difficult. The sheer number of variants
and the complexity of their interactions within the genome make it a daunting task. This
challenge is compounded by the high cost and labor intensity of experimental validation
methods.

Thus, the field of genomics stands at a crossroads, where the need for advanced com-
putational methods to analyze and interpret genomic data has never been greater. These
methods hold the key to unlocking the full potential of genomic information, enabling us to
understand and harness the complexities of life at its most fundamental level.

1.2 Outline

In this dissertation, I present computational methods to improve our understanding of two
areas of genomics: gene regulation and the effect of genetic variants. The specific tasks and
computational tools developed in each chapter are summarized as follows:

• Chapter 2: alternative splicing analysis with variational auto-encoders and generalized
linear models.

• Chapter 3: variant effect prediction with alignment-free DNA language models.

• Chapter 4: variant effect prediction with alignment-based DNA language models.

I will now introduce the content of each chapter in more detail.
In Chapter 2, I undertake the analysis of alternative splicing across numerous diverse

murine cell types from two large-scale single-cell datasets—the Tabula Muris [117] and BRAIN
Initiative Cell Census Network [162]—while accounting for understudied technical artifacts
and unannotated events. I find strong and general cell-type-specific alternative splicing,
complementary to total gene expression but of similar discriminatory value, and identify a
large volume of novel splicing events. I specifically highlight splicing variation across different
cell types in primary motor cortex neurons, bone marrow B cells, and various epithelial cells,
and I show that the implicated transcripts include many genes which do not display total
expression differences. To elucidate the regulation of alternative splicing, I build a custom
predictive model based on splicing factor activity, recovering several known interactions while
generating new hypotheses, including potential regulatory roles for novel alternative splicing
events in critical genes like Khdrbs3 and Rbfox1. I make the results available using public
interactive browsers to spur further exploration by the community.

Inspired by recent progress in natural language processing, unsupervised pre-training on
large protein sequence databases has proven successful in extracting complex information
related to proteins [116]. These models showcase their ability to learn variant effects in
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coding regions using an unsupervised approach [97]. Expanding on this idea, in Chapter 3 I
introduce the Genomic Pre-trained Network (GPN), a model designed to learn genome-
wide variant effects through unsupervised pre-training on genomic DNA sequences. The
model also successfully learns gene structure and DNA motifs without any supervision. To
demonstrate its utility, I train GPN on unaligned reference genomes of Arabidopsis thaliana
and seven related species within the Brassicales order, and evaluate its ability to predict the
functional impact of genetic variants in Arabidopsis thaliana by utilizing allele frequencies
from the 1001 Genomes Project [1] and a comprehensive database of GWAS [137]. Notably,
GPN outperforms predictors based on popular conservation scores such as phyloP [110] and
phastCons [122].

Whereas protein language models have demonstrated remarkable efficacy in predicting the
effects of missense variants, DNA counterparts have not yet achieved a similar competitive
edge for genome-wide variant effect predictions, especially in complex genomes such as that
of humans. To address this challenge, in Chapter 4 I introduce GPN-MSA, a novel framework
for DNA language models that leverages whole-genome sequence alignments across multiple
species and takes only a few hours to train. Across several benchmarks on clinical databases
(ClinVar [74], COSMIC [132], and OMIM [123]) and population genomic data (gnomAD
[28]), our model for the human genome achieves outstanding performance on deleteriousness
prediction for both coding and non-coding variants, surpassing widely-used models such as
CADD [115], ESM-1b [116], SpliceAI [61] and Enformer [7].
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Chapter 2

Robust and annotation-free analysis of
alternative splicing across diverse cell
types in mice

This is joint work with Jonathan Fischer and Yun S. Song, published in eLife [11]. I would like
to thank Angela Oliveira Pisco, Spyros Darmanis, and Kif Liakath-Ali for helpful discussions.
I also thank the Chan Zuckerberg Biohub for hosting our cell×gene sessions and Aaron
McGeever for assistance.

2.1 Introduction

The past decade’s advances in single-cell genomics have enabled the data-driven character-
ization of a wide variety of distinct cell populations. Despite affecting more than 90% of
human pre-mRNAs [149], isoform-level variation in gene expression has often been ignored
because of quantification difficulties when using data from popular short-read sequencing
technologies such as 10x Genomics Chromium and Smart-seq2 [109]. Long-read single-cell
technologies, which greatly simplify isoform quantification, are improving [26, 50, 145, 76,
64], but remain more costly and lower-throughput than their short-read counterparts. For
these reasons and others, short-read datasets predominate and we must work with short
reads to make use of the rich compendium of available data. In response, researchers have
developed several computational methods to investigate splicing variation despite the sizable
technical challenges inherent to this regime. A selection of these challenges and methods are
summarized in Appendix A.

To complement single-cell gene expression atlases, we analyze alternative splicing in
large single-cell RNA-seq (scRNA-seq) datasets from the Tabula Muris consortium [117] and
BRAIN Initiative Cell Census Network (BICCN) [162]. These data span a broad range of
mouse tissues and cell types, and remain largely unexplored at the level of transcript variation.
During our initial analyses, we encountered pervasive coverage biases, a heretofore largely
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unappreciated mode of technical variation which greatly confounds biological variation across
cell types. Unsatisfied with the performance of current methods when confronted by these
biases, we implemented our own quantification, visualization, and testing pipeline, named
scQuint (single-cell quantification of introns), which allowed us to continue our analyses in a
robust, annotation-free, and computationally tractable manner. Parts of the scQuint pipeline
are based on adaptations of the bulk RNA-seq alternative splicing analysis method LeafCutter
[81] to handle the unique challenges of scRNA-seq data. As we demonstrate in subsequent
sections, our modifications in the quantification, statistical modeling, and optimization
procedures lead to improved robustness, scalability, and calibration when working with data
from single cells (Figure A.4, also see Methods).

Applying scQuint to these data sets, we find a strong signal of cell-type-specific alternative
splicing and demonstrate that cell type can be accurately predicted given only splicing
proportions. Moreover, our annotation-free approach enables us to detect a large quantity of
cell-type-specific novel splicing events. In certain cell types, particularly the neuron subclasses,
as many as 30% of differential splicing events that we detect are novel. In general, across
the many considered cell types and tissues in both datasets, we find only a narrow overlap
between the top differentially expressed and the top differentially spliced genes within a given
cell type, illustrating the complementarity of splicing to expression. Our examination of
neurons in the primary motor cortex suggests that splicing distinguishes neuron classes and
subclasses as readily as does expression. We showcase alternative splicing patterns specific to
the GABAergic (inhibitory) and Glutamatergic (excitatory) neuron classes as well as the
subclasses therein. The implicated transcripts include key synaptic molecules and genes
which do not display expression differences across subclasses. In developing marrow B cells,
we find alternative splicing and novel transcription start sites (TSS) in critical transcription
factors such as Smarca4 and Foxp1, while further investigation reveals dissimilar trajectories
for expression and alternative splicing in numerous genes across B cell developmental stages.
These findings buttress our belief in the complementary nature of these processes and provide
clues to the regulatory architecture controlling the early B cell life cycle. To facilitate easy
exploration of these datasets and our results, we make available several interactive browsers
as a resource for the genomics community.

Finally, to advance our understanding of alternative splicing regulation, we build a
statistical machine learning model to predict splicing events by leveraging both the expression
levels and splicing patterns of splicing factors across cell types. This model recovers several
known regulatory interactions such as the repression of splice site 4 exons in neurexins
by Khdrbs3, while generating new hypotheses for experimental follow-up. For example, in
addition to the regulatory effect of the whole-gene Khdrbs3 expression, the model predicts
a regulatory role for a novel alternative TSS in this gene. In aggregate, our results imply
that alternative splicing serves as a complementary rather than redundant component of
transcriptional regulation and supports the mining of large-scale single-cell transcriptomic
data via careful modeling to generate hypothetical regulatory roles for splicing events.
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2.2 Results

Methods overview

Robust, annotation-free quantification based on alternative introns. Most methods
rely on the assumption that coverage depth across a transcript is essentially uniform (e.g.,
Akr1r1, Figure A.1a). We instead found that Smart-seq2 data [109] frequently contain sizable
fractions of genes with coverage that decays with increasing distance from the 3’ ends of
transcripts. For example, in mammary gland basal cells from the Tabula Muris data set
[117], Ctnbb1 shows a gradual drop in coverage (Figure A.1b) while Pdpn displays an abrupt
reduction halfway through the 3’ UTR (Figure A.1c). That the magnitude of these effects
varies across technical replicates (plates) suggests they could be artifacts, possibly related
to degradation or interrupted reverse transcription. Similar coverage bias artifacts are also
apparent in the BICCN primary motor cortex data [162] (Figure A.2).

Such coverage biases affect gene expression quantification, and in some cases these batch
effects are sufficient to comprise a significant proportion of the observed variation in expression
levels. For the Tabula Muris mammary gland data set, a low-dimensional embedding of cells
based on gene expression reveals that some cell type clusters exhibit internal stratification by
plate (Figure 2.1a). A subsequent test of differential gene expression between plate B002438
and all other plates returns 2,870 significant hits after correction for multiple hypothesis
testing, and all manually inspected differentially expressed genes exhibit these types of
coverage biases. Perhaps unsurprisingly, quantification at the transcript level is apt to be
even more sensitive to these artifacts than gene-level quantification, especially if it is based
on coverage differences across the whole length of the transcript. The UMAP embeddings
of isoform proportions (kallisto by Bray et al. [22]), exon proportions (DEXSeq by Anders,
Reyes, and Huber [3]), 100 bp bin coverage proportions (ODEGR-NMF by Matsumoto et al.
[92]) or junction usage proportions across the whole gene (DESJ by Liu et al. [86]) depict a
plate clustering pattern which scrambles the anticipated cell type clusters (Figure 2.1b-e).

With these considerations in mind, we sought to quantify transcript variation in a fashion
that would be more robust to coverage differences along the transcript. Although some
bulk RNA-seq methods such as RSEM [80] can model positional bias, they do so globally
rather than in the gene-specific manner we encounter. One potential approach is alternative
intron quantification as performed by bulk RNA-seq methods MAJIQ [142], JUM [150], and
LeafCutter [81]. Promisingly, quantification via LeafCutter (Figure 2.1f) yields an embedding
that displays less clustering by plate than the other approaches we tried. We therefore based
scQuint’s quantification approach on LeafCutter’s, with the key difference of restricting
to alternative introns which share a common 3’ acceptor site (Figure 2.2). This results in
alternative splicing events that are equidistant from the 3’ end of transcripts and which
are less affected by the coverage biases we observed in scRNA-seq data. The embedding of
cells based on our quantification approach (Figure 2.1g) shows less clustering by plate than
LeafCutter and other methods.

Another advantage of alternative intron quantification is the ability to easily discover
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 2.1: Clustering patterns by cell type and plate in the mammary gland from a
three month-old female mouse in Tabula Muris.
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Figure 2.1 (continued): Cell embeddings based on different features were obtained by running PCA
(gene expression) or VAE (the rest) followed by UMAP and subsequently colored by cell type (left
column) and the plate in which they were processed (right column). (a) Gene expression, quantified
using featureCounts (log-transformed normalized counts). (b) Isoform proportions. Isoform
expression was estimated with kallisto and divided by the total expression of the corresponding gene
to obtain isoform proportions. (c) Coverage proportions of 100 base-pair bins along the gene, as
proposed by ODEGR-NMF. (d) Exon proportions, as proposed by DEXSeq. (e) Intron proportions
across the whole gene, as proposed by DESJ. (f) Alternative intron proportions quantified by
LeafCutter. (g) Alternative intron proportions (for introns sharing a 3’ acceptor site) as quantified
by scQuint.

novel alternative splicing events. Whereas short reads generally cannot be associated with
specific transcript isoforms, nor even exons if they partially overlap, split reads uniquely
associate with a particular intron. Consequently, intron-based quantification does not depend
on annotated transcriptome references and permits the discovery of novel alternative splicing
events. This is important since, as detailed later, we estimate up to 30% of cell-type-specific
differential splicing events are novel. Other annotation-free methods have been applied to
single-cell short-read full-length data, but they do not provide a statistical test for differential
splicing between two groups of cells (Table A.1).

We do not recommend using scQuint to analyze alternative splicing in 10X Genomics
Chromium data given its strong 3’ transcript bias and evidence suggesting that these data
can detect about half the number of junctions detected by Smart-seq2 [151]. This imposes a
fundamental limit on the number of transcripts that can be distinguished, and we expect
alternative intron quantification to be sub-optimal in this setting. Nonetheless, several
approaches for differential transcript usage in 10X data have been developed: Sierra [106],
SpliZ [103], and a kallisto-based approach which could be adapted for this task [102].

Dimensionality reduction with Variational Autoencoder. To perform dimensionality
reduction using splicing profiles, we developed a novel Variational Autoencoder (VAE) [71]
with a Dirichlet-Multinomial noise model, a natural distribution for sparse, overdispersed
count data (Figure 2.2b, Materials and Methods). For example, the often encountered “binary”
splicing [24] can be modeled by fitting a concentration parameter close to zero. VAEs are
flexible and scalable generative models which have been successfully applied to analyze gene
expression [87] but have not yet been employed to investigate alternative splicing. To verify
that we prevent leakage of gene expression information into our splicing profiles, we applied
our VAE to embed a shuffled data set obtained by resampling alternative intron counts with
a fixed proportion in all cells. This shuffled data set contained expression variability between
cells but no splicing differences, and, as hoped, the resulting splicing latent space did not
distinguish among cell types, indicating that it captures differences in splicing proportions
rather than changes in absolute gene expression (Figure A.3). We compared the latent space
obtained with the VAE to the one obtained using Principal Component Analysis (PCA), a
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Figure 2.2: Overview of scQuint. (a) Intron usage is quantified from split reads in each cell, with
introns sharing 3’ splice sites forming alternative intron groups. (b) Genome-wide intron usage is
mapped into a low dimensional latent space using a Dirichlet-Multinomial VAE. Visualization of
the latent space is done via UMAP. (c) A Dirichlet-Multinomial GLM tests for differential splicing
across conditions such as predefined cell types or clusters identified from the splicing latent space.

standard dimensionality reduction technique used in the LeafCutter and BRIE2 software
packages. The VAE better distinguishes cell types than PCA (Figure 2.3), especially in the
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(a) BICCN primary motor cortex

(b) Tabula Muris mammary gland

(c) Tabula Muris diaphragm

Figure 2.3: Comparison of splicing latent spaces obtained with PCA and VAE. Cells from
(a) the cortex, (b) mammary gland and (c) diaphragm are projected into a latent space using PCA
or VAE and visualized using UMAP. Cell type labels are obtained from the original data sources
and are based on clustering in the expression latent space. The VAE is able to better distinguish
cell types in the splicing latent space than PCA.

mammary gland and diaphragm.

Differential splicing hypothesis testing with Generalized Linear Model. To test
for differential splicing across cell types or conditions, we adopt a Dirichlet-Multinomial
Generalized Linear Model (GLM) coupled with a likelihood-ratio test (Figure 2.2c, Materials
and Methods). We do so by adapting one of LeafCutter’s proposed models for bulk RNA-seq
to the scRNA-seq setting and apply it to our Smart-seq2 intron quantification. Namely,
due to the sparse nature of scRNA-seq splicing data, we implement a more parsimonious
statistical model featuring gene-level rather than intron-level parameters. Furthermore, we
adjust the model-fitting algorithm at the initialization and optimization stages (see Materials
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and Methods). After our modifications, we obtain well-calibrated p-values whereas those
from LeafCutter’s original differential splicing model are anti-conservative (Figure A.4) and
perhaps prone to extra false positives if applied directly to scRNA-seq data. We also find
improvements in computational cost, both in runtime and memory usage (Figure A.4).

As described in Materials and Methods, we generated synthetic data in order to benchmark
scQuint against three other methods that also offer two-sample tests for differential transcript
usage proportions: BRIE2 and DTUrtle, both designed for scRNA-seq, and LeafCutter,
designed for bulk RNA-seq (Figure 2.4). While the choice of an appropriate simulation
model for scRNA-seq data is very much an open area of debate, particularly at the transcript
level, we attempted to recreate a challenging setting for inference by assuming low coverage
(1-2X) and high overdispersion (variance-to-mean ratio of 8). We performed three in silico
experiments to assess performance under the differing conditions of even transcript coverage,
unannotated events, and coverage decay across the transcript. In the case of even coverage,
scQuint, LeafCutter, and BRIE2 perform similarly and do a good job of correctly identifying
events, while DTUrtle is slightly behind. scQuint does only slightly worse with low cell counts
and low coverage, which is probably a trade-off for the robustness that comes from only using
reads from junctions sharing 3’ acceptor sites. Next, we recreated the unannotated setting by
masking the reference given to methods. Only scQuint and LeafCutter are able to perform
differential transcript usage testing in this setting, and, as expected, they performed nearly
identically to the annotated setting with even coverage. Lastly, we created a setting where
transcript coverage decays with distance from the 3’ in one of the two groups, mirroring a
pattern we often saw in the real data analyzed for this paper. Here, scQuint outperforms
the other tested methods by a wide margin with performance improving at higher coverages,
unlike other methods. These results validate that scQuint is robust to both incomplete
annotations and coverage decay while only paying a modest penalty relative to other methods
under ideal conditions (even coverage and annotated events).

Augmenting cell atlases with splicing information

We applied scQuint to two of the largest available Smart-seq2 data sets. The first compre-
hensively surveys the mouse primary motor cortex (BICCN Cortex ) [162] while the second
contains over 100 cell types distributed across 20 mouse organs (Tabula Muris) [117] (Ta-
ble 2.1). We detect more alternative introns in BICCN Cortex neurons than in the entire
broad range of cell types present in Tabula Muris (which includes neurons but in much smaller
number). This observation comports with previous findings that the mammalian brain has
exceptionally high levels of alternative splicing [163]. Booeshaghi et al. [16] analyzed BICCN
Cortex at the transcript level, but focused on changes in absolute transcript expression
rather than proportions. While the authors indirectly find some differences in transcript
proportions by inspecting genes with no differential expression, this is not a systematic
analysis of differential transcript usage. Meanwhile, only microglial cells in Tabula Muris
[101] have been analyzed at the transcript level. (Tabula Muris also contains 10x Chromium
data analyzed at the transcript level [106]).
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Figure 2.4: Evaluation of differential splicing test on simulated data. ROC AUC for detecting
differential transcript usage between two groups, based on the p-value produced by different methods.
Unannotated : the transcript reference given to methods is masked. Coverage decay : coverage decay
with distance to the 3’ end of the transcript is induced in one of the two groups.

Table 2.1: Overview of analyzed data sets. Number of cells, tissues, cell types, individuals,
detected genes, and detected alternative introns (including the percentage of introns that are not
present in the Ensembl reference) for both data sources.

Data set Cells Tissues Cell types Individuals Genes Alt. introns Unannotated

BICCN Cortex 6220 1 11 45 26488 39357 29%
Tabula Muris 44518 23 117 8 27348 29965 25%

As a community resource, we provide complementary ways to interactively explore splicing
patterns present in these data sets (Figure 2.5), available at https://github.com/songlab
-cal/scquint-analysis/ with an accompanying tutorial video. The UCSC Genome Browser
[69] permits exploration of alternative splicing events within genomic contexts such as amino
acid sequence, conservation score, or protein binding sites, while allowing users to select
different length scales for examination. We additionally leverage the cell×gene browser [96]
(designed for gene expression analysis) to visualize alternative intron PSI (percent spliced-in,

https://github.com/songlab-cal/scquint-analysis/
https://github.com/songlab-cal/scquint-analysis/
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defined as the proportion of reads supporting an intron relative to the total in the intron
group) via cell embeddings. Further, one can generate histograms to compare across different
groups defined by cell type, gender, or even manually selected groups of cells. These tools
remain under active development by the community, and we hope that both the genome- and
cell-centric views will soon be integrated into one browser.

Cell-type-specific splicing signal is strong and complementary to
gene expression

Primary motor cortex. We first explored the splicing latent space of BICCN Cortex cells
by comparing it to the usual expression latent space (Figure 2.6a). Cells in the splicing latent
space strongly cluster by cell type (annotated by Yao et al. [162] based on gene expression). A
similar analysis was recently performed [36] on a different cortex subregion in which most, but
not all, neuron subclasses could be distinguished based on splicing profiles (e.g., L6 CT and
L6b could not be separated). However, the authors only considered annotated skipped exons,
a subset of the events we quantify, and used a different dimensionality reduction technique.

Figure 2.6b (top left) highlights some differentially spliced genes between Glutamatergic
and GABAergic neurons, including the glutamate metabotropic receptor Grm5 as well as
Shisa9/Ckamp44, which associates with AMPA ionotropic glutamate receptors [146]. The
expression pattern of these genes, meanwhile, does not readily distinguish the neuron classes
(Figure 2.6b, top right). In Pgm2, a gene of the glycolysis pathway thought to be regulated
in the developing cortex by mTOR [119], we discover a novel exon preferentially included in
Glutamatergic neurons (Figure 2.6c, Figure A.6).

Our differential splicing test reveals thousands of cell-type-specific splicing events (further
discussed below in subsection Comparison of selected tissues), highlighting marker
introns that distinguish neuron subclasses, while the expression of their respective genes does
not; e.g., compare bottom left and bottom right panels of Figure 2.6b. Genes that better
distinguish cell types at the expression level can be seen in Figure A.5. As another example
of the many novel events we discover, we showcase a novel alternative transcription start
site in Rbfox1, a splicing factor known to regulate cell-type-specific alternative splicing in
the brain [148] (Figure 2.6d, Figure A.7). This novel TSS (exon chr16:5763871-5763913,
intron Rbfox1 26172 ), which lies in a highly-conserved region, is (partially) used by only
L6b neurons. We are also able to detect well-known cell-type-specific alternatively spliced
genes such as Nrxn1, which encodes a key pre-synaptic molecule (Figure 2.6e, Figure A.8)
[41]. In this case, we observe an exon (known as splice site 2) exclusively skipped in Vip and
Lamp5 neurons.

General patterns in Tabula Muris. We next turned our attention to Tabula Muris, which
comprises a wide variety of organs and cell types from across the entire body. As before, we
initially compared the expression and splicing latent spaces using UMAP (Figure 2.7a). This
revealed broadly consistent clusters between projections, but a visible shift in the global layout
of these clusters. In particular, whereas cell types were better separated in the expression
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projection, cell classes (e.g., endothelial, epithelial, immune) formed more coherent clusters
in the splicing projection.

To supplement our qualitative comparison of UMAP projections with a more rigorous
approach, we built dendrograms and a tanglegram using the respective distances between
cells in each of the expression and splicing latent spaces (Figure 2.7b). Despite minor
shifts, the dendrograms resemble one another, and most subtree structure is preserved.
The low value of their entanglement, a quantitative measure of the discrepancy between
hierarchical clusterings, at only 6% indicates a high degree of similarity. (For comparison, the
entanglement value between the dendrogram for all expressed genes and that for transcript
factors is 11% [117].) As in the UMAP visualization, immune cells group together more
closely in the splicing dendrogram. However, unlike the UMAP projection, we observe that
several types of pancreatic cells cluster together with neurons, a cell type long believed to
share an evolutionary origin [75]. Notably, the left dendrogram in Figure 2.7b shows that
hepatocytes are clear outliers in the expression latent space. We suspect this may be due to
technical differences from using 96-well plates rather than the 384-well plates used for other
cell types.

B cell development in the marrow. We then focused on developing B cells from the bone
marrow in Tabula Muris. In the splicing latent space, we found that immature B cells are
harder to distinguish from the other B cell subpopulations (Figure 2.8a), reflecting less refined
splicing programs or limitations in transcript capture efficiency. Immature B cells have also
fewer differential splicing events when compared to the other stages of B cell development
(Figure 2.8b). The top differential splicing events we identified throughout development
displayed splicing trajectories mostly independent from the trajectories of gene expression
(Figure 2.8c). We highlight alternative TSSs (one of them novel) in two transcription factors
essential for B cell development: Smarca4, encoding BRG1 [18] (Figure 2.8d, Figure A.9);
and Foxp1 [57] (Figure 2.8e, Figure A.10). While Foxp1 expression peaks in pre-B cells
and does not follow a monotonic trend over developmental stages, the alternative TSS is
progressively included throughout B cell development. Combining gene-level expression with
TSS usage, which can influence translation rate, provides a more nuanced characterization of
the expression patterns of these important transcription factors. Some other differentially
spliced genes with well-known roles in B cell development are Syk [31], Dock10 [43], Selplg/Psgl-
1 [141], and Rps6ka1 [125].

Epithelial and endothelial cell types across organs. Having compared different cell
types within organs, we analyzed putatively similar cell types which are present in multiple
organs to investigate splicing variation associated with tissue environment and function. We
find many alternative introns with strong PSI differences across epithelial cell types, including
several which are novel (Figure 2.9a). Conversely, apart from those in the brain, endothelial
cell types fail to display such striking differences (Figure 2.9b). These patterns are consistent
with the UMAP projection and dendrogram, both of which suggested less heterogeneity
among endothelial than epithelial cells (Figure 2.7).

Our analysis revealed a novel alternative TSS in Itpr1 (Figure 2.9c, Figure A.12), an
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intracellular calcium channel in the endoplasmic reticulum, which regulates secretory activity
in epithelial cells of the gastrointestinal tract [79]. This novel TSS yields a shorter protein
isoform (full view in Figure A.11) which preserves the transmembrane domain, though it
is unclear whether this isoform is functional. Notably, it is the predominant isoform in
large intestine secretory cells, and these cells express Itpr1 at the highest level among all
epithelial cell types in the dataset. All nine novel alternative splicing events in Figure 2.9a
are alternative TSSs, with four affecting the 5’ UTR and five affecting the coding sequence.

Figure 2.9d (PSI distribution in Figure A.13) illustrates a complex alternative splicing
event in Khk involving the well-studied exons 3a and 3c [55]. Khk catalyzes the conversion
of fructose into fructose-1-phosphate, and the two protein isoforms corresponding to either
exon 3a or 3c inclusion differ in their thermostability and substrate affinity [6]. While the
literature describes these exons as mutually exclusive, the transcriptome reference includes
transcripts where neither or both may be included. Although we did not find cell types
with high inclusion rates for both exons, we did see multiple cell types where both exons are
predominantly excluded, e.g., epithelial cells from the large intestine. Other differentially
spliced genes are involved in cellular junctions, which are particularly important in epithelial
tissue. These include Gsn, Eps8, Tln2, Fermt3, and Mapre2.

Comparison of selected tissues. Because of the breadth of the Tabula Muris data set,
we can look for general trends across a diverse array of tissues and cell types. Table 2.2
summarizes differential expression and splicing for some of the cell types and tissues with the
largest sample sizes. First, we note the intersection between the top 100 most differentially
expressed and top 100 most differentially spliced genes (ranked by p-value) is consistently low.
This means that most differentially spliced genes, which might be of critical importance in a
biological system, will go unnoticed if a study only considers differential expression. Second,
L5 IT neurons have a larger fraction of genes with differential splicing relative to the number
of differentially expressed genes.

We found many more cell-type-specific differential splicing events in the cortex than
in the marrow, as expected [163], as well as a higher proportion of events involving novel
junctions, which can reach 30% (Figure 2.10a). Differences in proportion of novel junctions
should be interpreted with care, however, since they can be affected by sequencing depth
and number of cells, both of which vary between the two tissues. Very similar patterns are
seen when grouping differential splicing events that occur in the same gene (Figure 2.10b).
Most differential splicing events that we detected with alternative introns fall in the coding
portion of the gene, with high proportions in the 5’ UTR (Figure 2.10c). This is a property
of our quantification approach and does not reflect the total number of alternative splicing
events in different gene regions; still, the relative proportion can be compared across tissues.
We find an increased proportion of differentially spliced non-coding RNA in the cortex, the
majority of which are previously unannotated events. To systematically evaluate how well
cell types can be distinguished in the expression and splicing latent spaces, we calculated
the ROC AUC score for the one-versus-all classification task for each cell type in each tissue
using a binary logistic regression model (Figure 2.10d). Since cell type labels were defined
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Table 2.2: Summary of differential expression and splicing for select cell types with the
largest sample sizes. The overlap between the top 100 differentially expressed genes and the top
100 differentially spliced genes is low, indicating that splicing provides complementary information.
In addition, L5 IT neurons have a higher ratio of differentially spliced genes to differentially expressed
genes than the other cell types. Diff. spl. genes: number of differentially spliced genes between
the cell type and other cell types in the same tissue. Diff. exp. genes: number of differentially
expressed genes between the cell type and other cell types in the same tissue. See Materials and
Methods for details on the tests for differential splicing and expression.

Tissue Total
#

cells

#
cell

types

Cell type #
cells

Diff.
spl.

genes

Diff.
exp.

genes

Ra-
tio

Top-
100

overlap

Brain Non-Myeloid 3049 6 Oligodendrocyte 1390 880 8835 0.10 4
Cortex 6220 10 L5 IT 1571 1447 6402 0.23 2
Heart 4144 6 Endothelial cell of

coronary artery
1126 465 7108 0.07 5

Large Intestine 3729 5 Enterocyte of
epithelium

1112 586 10786 0.05 2

Marrow 4783 10 Hematopoietic
stem cell

1363 692 9909 0.07 2

using gene expression values, near-perfect classification is to be expected using the expression
latent space. Classification based only on the splicing latent space is very good in general,
suggesting that cell-type-specific differential splicing is rather pervasive. A few cell types
were more challenging to classify correctly using splicing patterns alone. One such example is
immature B cells, a reflection of the lower degree of separation observed in the embedding of
Figure 2.8a.

Finding splicing factors associated with specific alternative splicing
events

Several splicing factors have been identified as regulators of specific alternative splicing events,
but most regulatory interactions remain unknown (see Vuong, Black, and Zheng [147] for a
review focused on the brain). To complement expensive and laborious knockout experiments,
we sought to generate regulatory hypotheses by analyzing the correlation between splicing
outcomes and splicing factor variation across cell types. Focusing on a subset of highly
expressed genes in BICCN primary motor cortex neurons, we fit a sparse linear model
regressing PSI of skipped exons on both expression and splicing patterns of splicing factors
(Figure 2.11a and Figure A.14). Our model recovers several known regulatory interactions
such as Khdrbs3/Slm2/T-Star’s repression of splice site 4 (SS4) in neurexins, modulating their
binding with post-synaptic partners [140]. Additionally, the proportion of a novel alternative
TSS (though annotated in the human reference) in Khdrbs3 (Figure 2.11b, Figure A.15) is
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negatively associated with SS4 in Nrxn1 and Nrxn3. This novel isoform lacks the first 30
amino acids of the Qua1 homodimerization domain and could affect dimerization, which
modulates RNA affinity [37]. The model also recovers the known regulation of a skipped
exon in Camta1, a transcription factor required for long-term memory [9], by Rbfox1 [108].
The skipping of exon 5 (E5) of Grin1, which controls long-term synaptic potentiation and
learning [120], is known to be regulated by Mbnl2 and Rbfox1 [147]. The model associates
Grin1 E5 PSI with the expression of Rbfox1 but not Mbnl2 ; however, it does suggest
an association with the PSI of two skipped exons in Mbnl2 (Figure 2.11c, Figure A.16,
Figure A.17) and further implicates the inclusion level of the novel alternative TSS in Rbfox1
reported above (Rbfox1 26172, chr16:5763912-6173605, Figure 2.6d). These results help
clarify the disparate impacts of expression and alternative splicing in splicing factors, and
encourage the use of regression models to suggest candidate regulators of cell-type-specific
alternative splicing. Such computationally generated hypotheses are particularly valuable
for splicing events in splicing factors because of the heightened difficulty to experimentally
perturb specific exons rather than whole genes.

2.3 Discussion

In this study, we introduce scQuint, a toolkit for the quantification, visualization, and
statistical inference of alternative splicing in full-length scRNA-seq data without the need
for annotations. This allows us to successfully extend the analysis of two single-cell atlases
to the level of alternative splicing, overcoming the usual technical challenges as well as
coverage artifacts and incomplete annotations. Our results, which we make available for
public exploration via interactive browsers, indicate the presence of strong cell-type-specific
alternative splicing and previously unannotated splicing events across a broad array of
cell types. In most cases, splicing variation is able to differentiate cell types just as well
as expression levels. We also note a striking lack of overlap between the most strongly
differentially expressed and spliced genes (Table 2.2), suggesting that expression and splicing
are complementary rather than integrated processes. Moreover, this complementarity may
also manifest temporally, as we show in developing B cells in the marrow. Another outstanding
question is the functional significance of isoforms, and we find that most differential splice
sites appear in the coding sequence with a sizeable minority also mapping to 5’ UTRs. The
apparent predilection for events to occur in these regions rather than 3’ UTRs poses questions
about the role of splicing in protein synthesis from translational regulation to the formation
of polypeptide chains. Answering these questions requires a more precise understanding
of how variation in UTRs and coding sequences affects final protein output as well as the
biophysical characteristics of protein isoforms and their roles in different biological systems.
These factors, combined with the large fraction of unannotated events in several cell types,
should encourage tissue specialists to more deeply consider the contribution of transcript
variation to cell identity and cell and tissue homeostasis.

Despite the clear association between splicing and cell identity, our analyses are yet to pro-
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duce instances in which clustering in the splicing latent space reveals new cell subpopulations
not visible in the expression latent space. This, of course, does not preclude the possibility
in other settings where alternative splicing is known to be important, such as in specific
developmental transitions or disease conditions. Nevertheless, our current experience leads
us to believe that gene expression and splicing proportions provide two different projections
of the same underlying cell state. Incidentally, RNA Velocity [73] estimates can be distorted
by alternative splicing, and Bergen et al. [14] discuss incorporating isoform proportions into
the model as a future direction.

To support our understanding of cell-type-specific splicing, we implemented a regularized
generalized linear regression model which exploits the natural variation of splicing factors in
different cell types. We recovered a number of previously identified (via knockout experiments)
regulatory interactions and propose novel regulatory interactions involving genes known to
play important regulatory roles. A key component of our analysis is the decision to include
both the expression and alternative splicing patterns of splicing factors as features in the
model. Consequently, we infer that several alternative splicing events in splicing factors
themselves (some previously unannotated) contribute to their regulatory activity. Our model
thus provides several opportunities for follow-up and does so with an increased granularity
that distinguishes between effects due to expression and splicing differences. To facilitate
further exploration of these data, we have uploaded our results to cell and genome browsers
(linked at https://github.com/songlab-cal/scquint-analysis/).

Our experience analyzing these large data sets, initially with prior methods and then
scQuint, has led to a series of general observations regarding the analysis of splicing in
scRNA-seq data. As most analyses use full-length short-read protocols because of the cost
of long-read data and the necessary focus on the 3’ end of transcripts in most UMI-based
techniques, we restrict our attention to the full-length short-read setting and its incumbent
challenges. For example, low transcript capture efficiency introduces additional technical
noise into isoform quantification [5, 156, 24], and incomplete transcriptome annotations result
in discarded reads and reduced sensitivity to cross-cell differences [156]. Nonetheless, we
considered several methods (summarized in Table A.1) to analyze transcript variation in
short-read, full-length scRNA-seq. We found each of the classes of current methods to be
problematic in the context of our data sets for varying reasons. Methods which depend
on transcript annotations [22, 111, 59, 58, 159, 155, 86, 60, 134] cannot easily identify
unannotated alternative splicing events. In large collections of previously unsurveyed cell
types, these may comprise a sizable fraction of events. Indeed, we found up to 30% of
differential splicing events were unannotated in certain cell types. Annotation-free approaches
are also available, but they either do not provide a formal statistical test for differential
transcript usage across conditions [124, 84, 101, 154], or only do so in a specialized manner
[92], reducing their potential impacts. Finally, methods’ different approaches to quantification
are affected by coverage biases to varying degrees. Some methods may thus lead to erroneous
inference of cell clusters due to technical rather than biological variation. Until the prevalence
and severity of coverage biases are better understood, we advocate quantifying transcript
variation in a robust manner.

https://github.com/songlab-cal/scquint-analysis/
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Recent and future experimental advances will catalyze the study of isoform variation in
single cells. For instance, Smart-seq3 [54] allows sequencing of short reads from the entire
length of a gene together with unique molecular identifiers, improving mRNA capture and
allowing for the filtering of PCR duplicates; however, experiments show that less than 40% of
reads can be unambiguously assigned to a single (annotated) isoform. Ultimately, long-read
scRNA-seq will provide the definitive picture of isoform variation between cells. Until then,
there is much biology to be studied using short-read protocols, and variation at the transcript
level should not be disregarded.

2.4 Materials and Methods

Data sets. Tabula Muris data [117] have accession code GSE109774. Cells were filtered to
those from three month-old mice present in this collection: https://czb-tabula-muris-s
enis.s3-us-west-2.amazonaws.com/Data-objects/tabula-muris-senis-facs-proce

ssed-official-annotations.h5ad (filtering details in [131]). BICCN Cortex data [162]
were downloaded from https://assets.nemoarchive.org/dat-ch1nqb7 and filtered as in
[16].

Simulation. A preliminary set of exon skipping events was obtained by running briekit-event
from the BRIE2 software package. For each event, one pair of transcripts was selected if
they only differed on the skipped exon, resulting in 561 pairs, each from a different gene.
Reads were simulated using Polyester [39], which allows to control overdispersion and induce
different kinds of biases. For roughly half of the genes, differential transcript usage (DTU)
was induced by overexpressing one transcript 1.5 fold in one of the two conditions. The
number of reads was generated using a highly-overdispersed negative binomial distribution,
with variance equal to eight times the mean. To simulate coverage decay in one of the
conditions, the option bias=”cdnaf” was added. To ensure coverage decays as a function of
absolute distance to the 3’ end of the transcript, reads were generated no farther away from
the 3’ than the minimum of the lengths of the two alternative transcripts. The Area Under
the Receiver Operating Characteristic Curve (ROC AUC) for classifying genes into DTU vs.
non-DTU was computed using the p-values from each method, excluding genes that were not
tested by a given method (e.g., because of a minimum reads threshold).

Quantification. The bioinformatic pipeline was implemented using Snakemake [72]. Raw
reads were trimmed from Smart-seq2 adapters using Cutadapt [90] before mapping to
the GRCm38/mm10 genome reference (https://hgdownload.soe.ucsc.edu/golden
Path/mm10/chromosomes/) and the transcriptome reference from Ensembl release 101
(ftp://ftp.ensembl.org/pub/release-101/gtf/mus_musculus/Mus_musculus.GRC
m38.101.gtf.gz). Alignment was done using STAR [34] two-pass mode allowing novel
junctions as long as they were supported by reads with at least 20 base pair overhang (30
if they are non-canonical) in at least 30 cells. Also, multimapping and duplicate reads
were discarded using the flag --bamRemoveDuplicatesType UniqueIdentical (while this can

https://czb-tabula-muris-senis.s3-us-west-2.amazonaws.com/Data-objects/tabula-muris-senis-facs-processed-official-annotations.h5ad
https://czb-tabula-muris-senis.s3-us-west-2.amazonaws.com/Data-objects/tabula-muris-senis-facs-processed-official-annotations.h5ad
https://czb-tabula-muris-senis.s3-us-west-2.amazonaws.com/Data-objects/tabula-muris-senis-facs-processed-official-annotations.h5ad
https://assets.nemoarchive.org/dat-ch1nqb7
https://hgdownload.soe.ucsc.edu/goldenPath/mm10/chromosomes/
https://hgdownload.soe.ucsc.edu/goldenPath/mm10/chromosomes/
ftp://ftp.ensembl.org/pub/release-101/gtf/mus_musculus/Mus_musculus.GRCm38.101.gtf.gz
ftp://ftp.ensembl.org/pub/release-101/gtf/mus_musculus/Mus_musculus.GRCm38.101.gtf.gz
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remove duplicates from the second PCR step of Smart-seq, it will not remove duplicates
from the first PCR step). Soft-clipped reads were removed as well. Additionally, reads were
discarded if they belonged to the ENCODE region blacklist [2] (downloaded from https:

//github.com/Boyle-Lab/Blacklist/raw/master/lists/mm10-blacklist.v2.bed.gz).
Gene expression was quantified using featureCounts [82], and total-count normalized

such that each cell had 10,000 reads (as in the Scanpy [157] tutorial). Intron usage was
quantified using split reads with an overhang of at least 6 base pairs. Introns were discarded
if observed in fewer than 30 cells in BICCN Cortex or 100 cells in Tabula Muris. Introns
were grouped into alternative intron groups based on shared 3’ splice acceptor sites. Introns
not belonging to any alternative intron group were discarded. Additionally, we decided to
subset our analysis to introns with at least one of their donor or acceptor sites annotated, so
we could assign a gene to them and facilitate interpretation for our specific analyses.

Dimensionality reduction. To run PCA, we worked with alternative intron proportions
(PSI, Percent Spliced In) rather than their absolute counts, as the latter would be confounded
by gene expression differences. We first introduce some notation:

• c: cell identifier

• g: intron group identifier

• y⃗
(c)
g : vector of counts of introns in intron group g and cell c

• normalize(x⃗) = x⃗
sum(x⃗)

: function to divide each entry of a vector by the total sum.

Then, PSI can be defined as:

−−→
PSI(c)g = normalize

(
y⃗(c)g

)
However, given the sparsity of single-cell data, a very high proportion of alternative intron

groups will have no reads in a given cell, leaving PSI undefined. More generally, an intron
group may contain few reads, resulting in defined but noisy PSI estimates. To navigate this
issue, we introduce a form of empirical shrinkage towards a central value. We first define the
“global PSI” by aggregating reads from all cells and normalizing. Then, we add this global
PSI as a pseudocount vector to each cell before re-normalizing to obtain each cell’s shrunken
PSI profile (these are non-uniform pseudocounts adding up to one).

−−→
PSI(global)g = normalize

(∑
c

y⃗(c)g

)
−−−−−−−−−−−−−→
SMOOTHED PSI(c)g = normalize

(
y⃗(c)g +

−−→
PSI(global)g

)
We then run standard PCA on the cell-by-intron-smoothed PSI matrix.

The VAE was implemented using PyTorch [105] and scvi-tools [45]. The following is the
generative model, repeated for each cell (we drop the superscript indexing the cell in z⃗, p⃗, y⃗
and n⃗):

https://github.com/Boyle-Lab/Blacklist/raw/master/lists/mm10-blacklist.v2.bed.gz
https://github.com/Boyle-Lab/Blacklist/raw/master/lists/mm10-blacklist.v2.bed.gz
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Table 2.3: VAE hyperparameters.

Data set Decoder Layers σ Latent dimension

BICCN Cortex Linear 1 26.8 18
Tabula Muris Non-linear 2 - 34

1. Sample the latent cell state z⃗ ∼ Normal(0, I)

2. For each intron group g:

a) Obtain the underlying intron proportions:
p⃗g = softmax(fg(z⃗))

b) Sample the intron counts conditioning on the total observed ng:
y⃗g|ng ∼ DirichletMultinomial (ng, αg · p⃗g)

Here fg, known as the decoder, can be any differentiable function, including linear mappings
and neural networks. αg is a scalar controlling the amount of dispersion. We optimize a
variational posterior on cell latent variables q(z|y) (Gaussian with diagonal covariance, given
by an encoder neural network) as well as point estimates of global parameters fg, αg. The
encoder takes as input the smoothed PSI values, as in PCA, but the likelihood is based on
the raw intron counts. The objective to maximize is the evidence lower bound (ELBO),
consisting of a reconstruction term and a regularization term:

ELBO(y) = Ez∼q(z|y)[log p(y|z)]−KL(q(z|y)∥p(z)),

where KL(·∥·) denotes the Kullback–Leibler divergence. Optimization is performed using
Adam [70], a stochastic gradient descent method. To avoid overfitting in cases of relatively
few cells with respect to the number of features, we considered a linear decoder [129], as well
as a Normal(0, σ) prior on the entries of the decoder matrix. Hyperparameters were tuned
using reconstruction error on held-out data and are described in Table 2.3.

Differential splicing test. Our differential splicing test across conditions (such as cell
types) is based on a modified version of the Dirichlet-Multinomial Generalized Linear Model
proposed in LeafCutter [81] for bulk RNA-seq. For each intron group g with L alternative
introns:

• y⃗g is a vector of counts for each of the L introns;

• The independent variable, x, equals 0 in one condition and 1 in the other;

• a⃗g, b⃗g ∈ RL−1 are the intercept and coefficients of the linear model;

• αg ∈ R is a dispersion parameter shared across conditions; and
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• the function softmax : (z1, . . . , zL−1) 7→
(

ez1

1+
∑L−1

i=1 ezi
, . . . , ezL−1

1+
∑L−1

i=1 ezi
, 1

1+
∑L−1

i=1 ezi

)
maps

from RL−1 to the (L− 1)-dimensional probability simplex.

The Dirichlet-Multinomial Generalized Linear Model then proceeds as follows:

1. Obtain the underlying intron proportions:
p⃗g = softmax(⃗ag + b⃗gx)

2. Sample the intron counts conditioned on the total observed, ng:
y⃗g|ng ∼ DirichletMultinomial (ng, αgp⃗g)

We implemented this model in PyTorch and optimized it using L-BFGS [85].
To test for differential splicing across the two conditions, we compare the following two

hypotheses:

Null hypothesis H0: b⃗g = 0⃗

Alternative hypothesis H1: b⃗g ̸= 0⃗

We use the likelihood-ratio test, the test statistic for which is asymptotically distributed as a
χ2 random variable with L− 1 degrees of freedom under H0. Finally, we correct p-values for
multiple testing using the Benjamini-Hochberg FDR procedure [13].

The differences with LeafCutter are the following:

• LeafCutter groups introns that share a 5’ donor or 3’ acceptor site while scQuint groups
introns that share a 3’ acceptor site.

• LeafCutter has a vector of concentration parameters, one for each intron, while scQuint
uses a single concentration parameter per intron group.

• The LeafCutter and scQuint optimization procedures were implemented separately and
differ in initialization strategies as well as L-BFGS hyperparameters.

Latent space analysis. The expression latent space was obtained by running PCA with
40 components on log-transformed and normalized gene expression values. The splicing
latent space was obtained by running the VAE on the alternative intron count matrix (or
equivalent features, e.g., Kallisto transcript counts, DEXSeq exon counts). Both latent
spaces were visualized using UMAP [93]. In the comparison of Figure 2.1, we used our own
implementation of the quantifications proposed by ODEGR-NMF, DEXSeq, and DESJ for
ease of application to large single-cell datasets.

Dendrograms were constructed using hierarchical clustering (R function hclust) based
on euclidean distance between the median latent space embedding of cells of each type.
Tanglegram and entanglement were calculated using the dendextend R package, with the
step2side method, as also described in Schaum et al. [117].
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Reported scores for cell type classification within a tissue were obtained by running a
binary logistic regression classifier over different splits of cells into train and test sets. To
assess generalization across individuals, we ensured the same individual was not present in
both train and test sets.

Cell-type-specific differential splicing. For differential splicing testing between a given
cell type and the rest of the tissue, we only considered introns expressed in at least 50 cells
and intron groups with at least 50 cells from both of the conditions. We called an intron
group “differentially spliced” if it was both statistically significant using a 5% FDR and if
it contained an intron with a PSI change greater than 0.05. We considered a differentially
spliced intron group as unannotated if it contained an unannotated intron with a PSI change
greater than 0.05. Differential expression was performed using the Mann-Whitney test. A
gene was considered differentially expressed if it was statistically significant using a 5% FDR
and if the fold change was at least 1.5.

For selection of marker genes or introns, we proceeded in a semi-automated fashion. For
each cell type, we first filtered to keep only significant genes or introns and then ranked them
by effect size. We picked a certain number of genes or introns from the top of this list for
each cell type, while ensuring there were no repetitions.

Splicing factor regression analysis. We obtained 75 mouse splicing factors using the
Gene Ontology term “alternative mRNA splicing, via spliceosome” (http://amigo.gene
ontology.org/amigo/term/GO:0000380). A skipped exon annotation, processed by BRIE
[59], was downloaded from https://sourceforge.net/projects/brie-rna/files/ann

otation/mouse/gencode.vM12/SE.most.gff3/download. Instead of using single cells as
replicates, we partitioned the BICCN primary motor cortex dataset into roughly 200 clusters
of 30 cells each that were pooled to create pseudobulks, aiming to reduce variance in the
expression and splicing of splicing factors used as covariates in the model. We filtered target
exon skipping events to those defined in at least 95% of the replicates, and those having a PSI
standard deviation of at least 0.2. We used log-transformed normalized expression and PSI of
alternative splicing events as input features. We chose to keep the PSI of only one intron per
intron group to avoid the presence of highly correlated features and improve clarity, even if
some information from non-binary events is lost. Input features were filtered to those having
standard deviation of at least 0.05, and then standardized. A lasso Dirichlet-Multinomial
GLM was fit to the data (in this instance, the model reduces to a Beta-Binomial because
skipped exons are binary events), with the sparsity penalty selected via cross-validation. As
a first approach, we fit a regular lasso linear regression model on PSI instead of raw counts,
resulting in roughly similar patterns in the coefficients. Figure 2.11c shows the coefficients
of the lasso Dirichlet-Multinomial model for the top 30 targets with the highest variance
explained by the regular lasso model, all above 68%.

Code and data availability. scQuint implementation in Python is available at https:
//github.com/songlab-cal/scquint. Differential splicing results and access to cell and
genome browsers, together with code to reproduce results, are available at https://gith
ub.com/songlab-cal/scquint-analysis. Processed alternative intron count matrices are

http://amigo.geneontology.org/amigo/term/GO:0000380
http://amigo.geneontology.org/amigo/term/GO:0000380
https://sourceforge.net/projects/brie-rna/files/annotation/mouse/gencode.vM12/SE.most.gff3/download
https://sourceforge.net/projects/brie-rna/files/annotation/mouse/gencode.vM12/SE.most.gff3/download
https://github.com/songlab-cal/scquint
https://github.com/songlab-cal/scquint
https://github.com/songlab-cal/scquint-analysis
https://github.com/songlab-cal/scquint-analysis
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provided in the AnnData format (anndata.readthedocs.io) for easy manipulation with
Scanpy [157], Seurat [126], and other tools.

anndata.readthedocs.io
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 a.  Genome-centric view

b.  Cell-centric view
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Figure 2.5: Interactive visualizations of splicing patterns.
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Figure 2.5 (continued): As an example, a skipped exon in Myl6. (a) The UCSC Genome browser
visualization of this locus. Bottom: annotated isoforms of Myl6, including a skipped exon. Center:
aggregate read coverage in three cell types with varying inclusion levels of the skipped exon. Top:
three alternative introns that share a 3’ acceptor site. The identified intron’s proportion corresponds
to the skipped exon’s inclusion level. (b) cell×gene browser visualization of the marked intron’s
proportions (Myl6 chr10:128491034-128491720). Center: intron proportion for each cell in the
UMAP expression embedding. Sides: intron proportion histogram for (left) different cell types and
(right) all cells.
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Figure 2.6: Splicing patterns in BICCN Cortex.
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Figure 2.6 (continued): (a) Expression and splicing latent spaces, visualized using UMAP. The
expression (splicing) latent space is defined by running PCA (VAE) on the gene expression (alternative
intron proportion, PSI) matrix. Cell types separate well in both latent spaces. (b) PSI of selected
introns (left) and expression (log-transformed normalized counts) of their respective genes (right)
averaged across cell types. Top: introns distinguishing Glutamatergic and GABAergic neuron
classes. Bottom: introns distinguishing neuron subclasses. (c-e) Sashimi plots [44] of specific
alternative splicing events, displaying overall read coverage with arcs indicating usage of different
introns (certain introns are shrunk for better visualization). (c) Novel skipped exon in Pgm2. (d)
Novel alternative transcription start site (TSS) in Rbfox1. (e) Annotated skipped exon (SE) in
Nrxn1.
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Figure 2.7: Global analysis of Tabula Muris.
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Figure 2.7 (continued): (a) UMAP visualization of the expression (left) and splicing (right) latent
spaces. Each dot is a cell, colored by organ, and overlays indicate the primary cell type comprising
that cluster. (b) Tanglegram comparing dendrograms of major cell types based on distances in
the expression (left) and splicing (right) latent spaces, highlighting functional classes with specific
colors.
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Figure 2.8: Splicing in developing marrow B cells from Tabula Muris.
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Figure 2.8 (continued): B cell developmental stages include pro-B, pre-B, immature B, and naive B.
(a) Expression versus splicing latent space, as defined previously. In the splicing latent space, some
cells types (pro-B) are better distinguished than others (immature B). (b) Number of differential
splicing events when comparing a B cell stage vs. the rest. (c) PSI of some introns that are
differentially spliced throughout development, together with expression of the respective genes
(log-transformed normalized counts). Expression and splicing can have very different trajectories.
(d) Sashimi plot of novel alternative transcription start site (TSS) in Smarca4. The novel TSS
has maximum usage in pre-B cells, and then decays, while the expression peaks at pro-B cells. (e)
Sashimi plot of an annotated alternative TSS in Foxp1. The proximal TSS in increasingly used as
development progresses, while the expression peaks at pre-B cells.
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Figure 2.9: Alternative splicing patterns across epithelial and endothelial cell types.
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Figure 2.9 (continued): (a-b) PSI of selected introns (left) and expression (log-transformed nor-
malized counts) of the corresponding genes (right) averaged across cell types. Novel intron groups
are marked with (*). (a) Introns distinguishing epithelial cell types. (b) Introns distinguishing
endothelial cell types. (c) Sashimi plot of an alternative TSS in Itpr1. (d) Sashimi plot of a complex
alternative splicing event in Khk.
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Figure 2.10: Patterns across tissues.
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Figure 2.10 (continued): (a) Number of differential splicing events detected in each cell type. Cortex
cell types have more differential splicing events and larger proportions of novel events (those involving
an intron absent from the reference). (b) Number of genes with a detected differential splicing
event, for different cell types. (c) Number of differential splicing events in different gene regions
aggregated over cell types (duplicate events removed). Cortex cell types have higher proportions
of events in coding regions and non-coding RNAs. Note: y-axes are not on the same scale. (d)
ROC AUC score for classification of each cell type versus the rest based on either the expression
or splicing latent space, using logistic regression, training and testing in non-overlapping sets of
individuals. The score for splicing-based classification is near-perfect in most cell types with some
exceptions such as immature B cells in the marrow.
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Figure 2.11: Associations between splicing factors and alternative splicing.
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Figure 2.11 (continued): (a) Regression analysis of exon skipping based on expression and splicing
of splicing factors, using the BICCN mouse primary motor cortex dataset. Left panel: mean PSI of
skipped exons across cell types. Bottom panel: mean z-scores of selected splicing factor features
across cell types, including whole-gene expression (gene name) and PSI of alternative introns (gene
name and numerical identifier). Center panel: regression coefficients (log-odds) of each splicing
factor feature used to predict skipped exon PSI in our sparse Dirichlet-Multinomial linear model.
(b) Novel alternative TSS in Khdrbs3. (c) Annotated skipped exons in Mbnl2.
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Chapter 3

DNA language models are powerful
predictors of genome-wide variant
effects

This is joint work with Sanjit Singh Batra and Yun S. Song, published in PNAS [10]. I
would like to thank Carlos Albors, Jesús Mart́ınez-Gómez, Eyes Robson, Nilah Ioannidis and
Allison Gaudinier for helpful discussions.

3.1 Introduction

The emergence of genome-wide association studies (GWAS) has significantly enhanced our
ability to examine the genetic basis of complex traits and diseases in both humans and plants.
In humans, GWAS have played a crucial role in identifying genetic variants associated with
a range of traits, including schizophrenia and obesity [144]. Similarly, in plants, GWAS
have shed light on the genetic factors influencing traits such as drought tolerance, disease
resistance, and yield [136]. A central challenge in GWAS is pinpointing causal variants for
a trait, as linkage disequilibrium (LD) can lead to spurious associations [20]. This process,
known as fine-mapping, serves as a foundation for constructing accurate, portable polygenic
risk scores and understanding the underlying biological mechanisms. Although experimental
validation of causal variants is the gold standard, it is not scalable. Instead, a scalable
fine-mapping strategy involves utilizing computational variant effect predictors [153], which
vary from conservation scores to deep learning models trained on functional genomics data.
Accurate variant effect prediction is also vital for diagnosing rare diseases and interpreting
rare variants that lie beyond the scope of traditional GWAS [91].

Recently, state-of-the-art performance in predicting the effects of missense (coding)
variants has been achieved by training unsupervised models on extensive protein sequence
databases [97] or their corresponding multiple sequence alignments [40]. These large language
models can predict missense variant effects in an unsupervised manner, without the need
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for additional training on labeled data. This progress has been driven by advancements
in natural language processing, where significant strides have been made by pre-training
language models on vast text corpora. Pre-trained models such as BERT can be fine-tuned
for downstream tasks such as sentiment analysis [33]. More recently, language models like
GPT-4 have demonstrated impressive leaps in test performance across various disciplines,
from law to computer science [23].

A widely-used approach to interpreting non-coding variant effects involves training a
supervised model to predict functional genomics data — such as chromatin accessibility,
transcription factor binding, or gene expression — and then evaluating variants based on
how they disrupt these predictions. This approach was first introduced by DeepSEA [169],
which utilized 919 functional genomics tracks, and has since been refined by Enformer [7]
with 6,956 tracks and Sei [27] with 21,907 tracks. However, this approach’s success depends
on the availability of high-quality functional genomics data from a diverse array of cell types,
which can be prohibitively expensive to generate for most species. Certain models focus on
specific classes of non-coding variants. For instance, classifiers trained solely on sequence
data can predict the impact of intron variants on splicing patterns [61, 29]. To evaluate
the effects of regulatory variants, Lee et al. [77] developed a support vector machine that
distinguishes putative regulatory sequences from random genomic sequences. More recently,
a deep learning model capable of predicting Hi-C signal from sequence data demonstrated its
potential to predict the impact of regulatory variants on DNA folding within the nucleus
[42]. Additionally, a deep learning model [166] was successfully trained to predict DNA
methylation levels of CpG sites from sequence data, enabling the prediction of non-coding
variant effects on DNA methylation.

However, variant type-specific models may not be well-suited for detecting trait-associated
rare variants, fine-mapping, or calculating polygenic scores, as these tasks are facilitated by
the comparison of genome-wide variants all together. For instance, a model that is exclusively
designed for either missense or regulatory variants would not be able to prioritize between
a de novo missense variant and a de novo promoter variant observed in an individual with
a rare disease. An important class of genome-wide scores are conservation scores such as
phyloP [110] and phastCons [122], which are computed from genome-wide alignment of
multiple species. Since these do not require functional genomics data, they have been widely
applied to many systems, including non-model organisms [135]. In humans, CADD is another
important genome-wide variant effect predictor that combines conservation and functional
genomics annotations, and is trained to distinguish between an inferred set of putative benign
and putative pathogenic variants [115, 112].

In this paper, we introduce the Genomic Pre-trained Network (GPN), a multi-species
DNA language model trained using self-supervision. While existing DNA language models
[164, 63, 98, 161, 56, 52, 8] have not yet demonstrated the ability to make accurate variant
effect predictions based on self-supervision alone, GPN presents a unified approach capable of
accurate unsupervised prediction of genome-wide variant effects. We demonstrate its utility
by achieving state-of-the-art performance in Arabidopsis thaliana, a model organism for plant
biology closely related to many agriculturally important species, as well as a source of insight
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Figure 3.1: Overview of GPN (Genomic Pre-trained Network). The input is a 512 bp DNA
sequence where certain positions have been masked, and the goal is to predict the nucleotides at
the masked positions. During training, 15% of the positions are masked. During variant effect
prediction, only the variant position is masked. The sequence is processed through a convolutional
neural network resulting in a high-dimensional contextual embedding of each position. Then, a final
layer outputs four nucleotide probabilities at each masked position. The model is trained on the
reference sequence with the cross-entropy loss. The GPN variant effect prediction score is defined
as the log-likelihood ratio between the alternate and reference allele. L: window length in base pairs.
D: embedding dimension. REF: reference allele. ALT: alternate allele.
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into human diseases [65]. Moreover, GPN outperforms genome-wide conservation scores
such as phyloP and PhastCons, which rely on whole-genome alignments of 18 closely related
species [135]. GPN’s internal representation of DNA sequences can distinguish genomic
regions like introns, untranslated regions, and coding sequences. Additionally, the confidence
of GPN’s predictions can help reveal regulatory grammar, such as transcription factor binding
motifs. Our results lay the foundation for developing state-of-the-art genome-wide variant
effect predictors for any species using genomic sequence alone, which can be readily integrated
into GWAS fine-mapping and polygenic risk scores.

3.2 Results

Training a multi-species DNA language model. We used unaligned reference genomes
from Arabidopsis thaliana and seven related species within the Brassicales order to pre-
train a language model based on a convolutional neural network (Table B.1). This model
was designed to predict masked nucleotides conditioned on their local genomic context
(Figure 3.1, Materials and Methods). During the training process, we encountered challenges
with repetitive elements, which can be functionally significant but are heavily overrepresented
in the genomes [19]. We found that reducing the weight of prediction loss for repetitive
regions led to lower test perplexity in non-repetitive regions, which are often of greater
interest (Table B.2). Compared to full down-weighting, moderate down-weighting results in a
similar improvement in perplexity for non-repetitive regions without sacrificing genome-wide
perplexity as much. Consequently, we focus on this model throughout the remainder of the
paper unless otherwise specified.

Unsupervised clustering of genomic regions. To understand how well the model
has learned the structure of the genome, we averaged GPN’s contextual embeddings (512
dimensions) of nucleotides over 100 base pair (bp) windows from the reference genome
and visualized them using UMAP [93] (Figure 3.2a). Notably, GPN, trained without any
supervision, has learned to distinguish genomic regions such as intergenic, introns, coding
sequences (CDS), untranslated regions (UTR) and non-coding RNA (ncRNA). To quantify
GPN’s ability to distinguish genomic regions, we trained a logistic regression classifier using
the averaged embeddings as features, achieving the highest accuracy on CDS (96%) and the
lowest on ncRNA (51%), the least frequent class. As summarized in Figure 3.2b, the highest
confusion was observed between intergenic regions and ncRNAs; this may be partly explained
by errors in ncRNA annotation, which is especially challenging given their low expression
levels and poor conservation [88]. This level of classification accuracy cannot be achieved
merely through k-mer frequencies (k = 3: 8% to 70%; k = 6: 15% to 67%; see Figure B.1).
We also note that, to some extent, GPN embeddings can distinguish different repeat families
(Figure B.2).

DNA motifs revealed by high-confidence model predictions. To further understand
GPN, we individually masked each position in the genome and obtained the model output
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distribution over nucleotides, given its context. To facilitate utilizing these predicted distri-
butions, we created sequence logos that can be visualized in the UCSC Genome Browser [69,
99] (https://genome.ucsc.edu/s/gbenegas/gpn-arabidopsis), where the height of each
letter is proportional to its probability, and the overall height is given by the information
content, measured in bits [118] (see Figure 3.3a for an example). The model’s prediction
confidence correlates with the expected functionality of the sites. For example, exonic po-
sitions are predicted with higher confidence than the surrounding introns, except for the
canonical splice acceptor and donor dinucleotide motifs. Similarly, within codons, the third
nucleotide position (CDS3), which usually does not affect amino acid identity, is generally
predicted with lower confidence than the first two positions (CDS1, CDS2). Start and stop
codon motifs are also generally well predicted (examples in Figure B.3). Across a 1 Mb
region in the test chromosome (containing 264 genes and 471 transcripts), model perplexities
in splice donors (median = 1.02), splice acceptors (median = 1.03), start codons (median
= 1.08), CDS2 (median = 2.24), CDS1 (median = 2.44), CDS3 (median = 2.79), and stop
codons (median = 2.8) are significantly smaller than those in intergenic and intronic regions
(median = 3.24, all Mann–Whitney p-values < 10−17, Figure B.4). Perplexity in CDS2 is
significantly smaller than that in CDS1, which in turn is significantly smaller than that in
CDS3 (all Mann–Whitney p-values < 10−300), consistent with their different expected levels
of constraint [110].

We hypothesized that scanning promoters for small regions of high-confidence GPN
predictions could help identify transcription factor binding sites. To achieve this, we adapted
TF-MoDISco [121], a tool for de novo discovery of transcription factor binding sites using
supervised models. This tool clusters high-scoring regions into motifs and compares them to
databases of known motifs. Applying the adapted TF-MoDISco to GPN scores in promoter
regions, we discovered approximately a hundred and sixty motifs (Figure B.5), with four
examples shown in Figure 3.3b, the first two having a significant match in PlantTFDB [135]
(with q-value < 0.05 in Tomtom [51]). Some of the discovered motifs are well-documented in
the literature but do not have a significant match in this database, such as the third motif
[35] in Figure 3.3b. Some motifs could represent novel promoter elements, like the fourth
motif, which is palindromic with symmetrical entropies, suggesting that it could potentially
form RNA or DNA alternative secondary structure [130].

Unsupervised variant effect prediction. GPN can be employed to calculate a pathogenic-
ity or functionality score for any single-nucleotide polymorphism (SNP) in the genome using
the log-likelihood ratio between the alternate and reference allele (GPN score, Figure 3.1).
Visually, this involves comparing the heights of the letters in the logo plot (Figure 3.3a).

In silico mutagenesis. We first computed GPN scores for in silico mutagenesis of SNPs within
a 1 Mb region and aggregated the results across variant types (Figure 3.4). The ranking
of variant types based on the lowest percentile of GPN scores is generally consistent with
established notions of deleteriousness [94]1. For example, the four lowest scored variant types

1https://useast.ensembl.org/info/genome/variation/prediction/predicted_data.html

https://genome.ucsc.edu/s/gbenegas/gpn-arabidopsis
https://useast.ensembl.org/info/genome/variation/prediction/predicted_data.html
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are splice donor, splice acceptor, stop gained and start lost variants, which significantly
disrupt the open reading frame. As expected, missense variants are predicted to have a
bigger impact than synonymous variants. However, we observed that some variants within
repetitive elements were assigned rather low GPN scores, ranking close to missense variants.
Furthermore, the proportion of low GPN scores for repeat variants depends on the training loss
weight on repeats (Figure B.6a). More precisely, in models with 0.0 and 0.1 down-weighting,
respectively, 8% and 9% of repeat variants are ranked before the first decile of missense
variants. These represent a substantial decrease compared to the 27% observed in the model
without any down-weighting (Figure B.6b, Fisher’s exact test p < 10−300).

Benchmarking using allele frequencies in 1001 Genomes. Following our in silico mutagenesis
experiments, we analyzed over 10 million SNPs from naturally occurring accessions of the
1001 Genomes Project [1]. While most variants have a neutral GPN score, there is a heavy
tail of putative functional variants with negative GPN scores (Figure 3.5a). Notably, variants
with lower GPN scores are, on average, less frequent in the population, suggesting they could
be under purifying selection (Figure 3.5b, full distribution in Figure B.7). To evaluate the
capability of identifying putative functional variants, we assessed the enrichment of rare
versus common variants in the tail of genome-wide score distributions. Putative functional
SNPs, defined as the lowest 0.1% of GPN scores, exhibit a 5.5-fold enrichment in rare variants
(Figure 3.5c); see Figure B.8 for different allele frequency thresholds. GPN outperforms other
genome-wide variant effect predictors for Arabidopsis, specifically phyloP and phastCons,
which are conservation scores derived from a broader set of 18 Brassicales species (Figure 3.5d).
In fact, GPN scores are only weakly correlated with phyloP (r = 0.22, p < 10−300) and
phastCons (r = 0.13, p < 10−300). We also considered the alternative abs(phyloP) (the
absolute value of phyloP), but it did not achieve a significant enrichment. A notable
advantage of GPN is that it is able to score variants that could not be scored by phyloP
and phastCons due to unsuccessful whole-genome alignment (14.2% of all variants). GPN
performs comparably to phyloP and phastCons when using less stringent thresholds for
defining putative functional SNPs (Figure B.9), indicating its particular strength in detecting
deleterious variants at the extreme tail. GPN also achieves significant odds ratios when
computed only within particular variant classes, but its performance relative to phyloP and
phastCons varies (Figure B.9). On a separate note, a slightly higher odds ratio is achieved
by the GPN model trained with an intermediate loss weight on repeats (Figure B.6c). The
model trained on only a single species performs substantially worse (Figure B.10a).

Enrichment of GWAS hits in regions with low GPN scores. In our pursuit to further evaluate
the efficacy of GPN, we examined the AraGWAS Catalog [137], a comprehensive database
of genome-wide association studies (GWAS) in Arabidopsis thaliana. We hypothesized that
GWAS hits may be enriched in regions with low GPN scores. An advantage of GPN is that it
can give substantially different scores to variants in strong linkage disequilibrium (LD) with
each other, if their surrounding contexts are different (e.g., see Figure 3.6a, top). In contrast,
the standard GWAS would give similar scores to such variants; in particular, neutral variants
in strong LD with a functional variant would also be associated with a trait. To account for
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this difference, we devised a new score, GPN×LD, which weighs GPN scores by LD (Materials
and Methods). With this approach, GPN×LD effectively distinguishes GWAS hits from
non-hits in this example locus (Figure 3.6a, bottom). More generally across the genome and
all traits, the tail of GPN×LD scores is greatly enriched in GWAS hits, much more so than
the tail of raw GPN scores (Figure 3.6b). In particular, by analyzing odds ratios (Figure 3.6c),
we found that SNPs with the lower 1% of GPN×LD scores are 10.3-fold enriched in GWAS
hits compared to the upper 99% of GPN×LD scores, while less than 7.5-fold enrichment was
observed for other methods (Figure 3.6d); see Figure B.11 for different thresholds. Using the
Bonferroni correction instead of the permutation-based significance threshold recommended
by AraGWAS [138] yields lower odds ratios for all methods, but GPN×LD still achieves the
highest enrichment (Figure B.12). Interestingly, the GPN model trained with an intermediate
loss weight on repeats achieves the best performance (Figure B.6d). The model trained
on only a single species performs worse (Figure B.10b). Furthermore, GPN×LD achieves
much higher odds ratios when considering the full variant set, including regions that do not
align to other Brassicales (Figure 3.6e); failed alignment could be partly due to genomic
rearrangements that may be potentially associated with local adaptation in Arabidopsis
thaliana [67].

3.3 Discussion

Here we present the first unsupervised genome-wide variant effect predictor based on un-
supervised pre-training of DNA language models. We demonstrate that GPN outperforms
other genome-wide variant effect predictors in Arabidopsis thaliana, a model species for
plant biology. Since GPN is trained only on DNA sequence, it can be readily applied to
understudied non-model organisms even in the absence of extensive functional genomics data,
while still providing state-of-the-art unsupervised variant effect prediction genome-wide.

We can think of GPN as a generalized conservation score. Similar to phyloP and
phastCons, GPN is genome-wide, can be trained on genomic sequence alone, and is cell-type
and mechanism agnostic [128]. The key distinction is that while phyloP and phastCons
only consider nucleotide frequencies at a specific site, GPN can learn from joint nucleotide
distributions across all similar contexts appearing in the genome. Furthermore, GPN does
not rely on whole-genome alignments, which can often have a lower quality in non-coding
regions.

The capability of GPN to score genome-wide variants on a unified scale renders it ideal
for integration into rare disease diagnosis, fine-mapping, and polygenic risk scores, including
burden tests. The separation of genomic regions based on GPN embeddings suggests that
it could be further fine-tuned for de novo genome annotation. Combining GPN predictions
with TF-MoDISco offers a promising strategy for discovering functional motifs. Although in
this study we focused on transcription factor binding sites, we believe that GPN predictions
around splice junctions could also facilitate the identification of splicing factor binding sites.

Repetitive elements, which are inherent components of eukaryotic genomes, pose several
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challenges that have been underexplored in DNA language modeling studies. First, these
elements are significantly over-represented [19]. The lower perplexity in non-repetitive regions
upon down-weighting repeats can be attributed to the model allocating fewer parameters
exclusively to repetitive elements. Second, repetitive elements display reduced sequence vari-
ation compared to other regions, in particular younger repeats with little time to accumulate
mutations [170]. We believe that these factors together may cause differences in model likeli-
hoods in these regions to be less clearly associated with differences in fitness. Our proposed
down-weighting of repeats only partially mitigates these issues, and we encourage further
investigation by the scientific community. Potential research directions include examining
the effects of down-weighting repeats based on their respective families or inferred age.

While the current implementation of GPN achieves state-of-the-art variant effect prediction
for Arabidopsis thaliana, there is room for improving its training scheme. Mounting evidence
suggests that larger models and more extensive training data can enhance performance [68].
Our current proof-of-concept model is considerably smaller — by 200 times — than the
largest published protein language model [83]. One strategy to improve GPN, inspired by
protein modeling, involves explicitly incorporating multiple sequence alignments [113, 66].
However, this enhancement will be bottle-necked by the quality of alignment in non-coding
genome regions. Other promising avenues for DNA language modeling include incorporating
DNA-specific inductive biases, such as reverse-complement equivariance [167], as opposed to
our current method of averaging model outputs for both strands during testing. Additionally,
integrating long-range information using recent advances in state space models [49] may
further boost performance. In conclusion, DNA language models represent a powerful
framework for genome-wide variant effect prediction, and we believe that exploring the above
avenues to further improve GPN would be worthwhile.

3.4 Materials and Methods

Pre-training. We obtained a list of Brassicales reference genome assemblies from NCBI
Genome (https://www.ncbi.nlm.nih.gov/data-hub/genome/), filtered for RefSeq-
annotated and kept only one per genus, resulting in a total of 8 reference genomes (Table B.1).
We held out Arabidopsis thaliana chromosomes 4 and 5 for validation and testing, respectively.
For each genome, we subsampled genomic windows of size 512 bp, with a step of 256 bp
and augmented with the reverse complement. However, we did not draw genomic windows
uniformly from the whole genome, but emphasized certain regions. In particular, we took the
union of exons (with a small intronic flank), promoters (1000 bp upstream of transcription
start sites) as well as an equivalent amount of random windows from the whole genome. We
think this decision may improve performance, but leave experimentation for further studies.
Additionally, we subset the number of windows from each genome to the number of windows
from Arabidopsis, given its unusually small genome.

We set up a masked language modeling task [33], in which 15% of the tokens in a nucleotide
sequence were masked and had to be predicted from their context. In contrast to most DNA

https://www.ncbi.nlm.nih.gov/data-hub/genome/
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language models that tokenize sequences into overlapping k-mers [63, 161, 52] or use byte-pair
encoding [164], we used bare nucleotides as tokens. While a thorough benchmark of different
tokenization strategies is lacking, using single-nucleotide tokens makes interpretation easier,
in particular for unsupervised variant effect prediction.

While language model pre-training successes were first showcased by transformer archi-
tectures, convolutional models have shown similarly good performance in natural language
[133] and protein modeling [160]. In our initial experiments, we noticed that convolutional
models converged faster than transformer models. The locality of convolutions may be a good
inductive bias for modeling DNA sequences at this scale. The linear complexity of convolution
also simplifies inference or fine-tuning on longer sequences such as entire chromosomes, which
in the case of transformers might require chunking (with some overlap) and aggregating the
results.

We implemented GPN, a convolutional neural network, using the Hugging Face library
[158]. The masked DNA sequence was one-hot encoded and then consecutively processed
by 25 convolutional blocks. Each convolutional block consisted of a dilated convolutional
layer followed by a feed-forward layer, with intermediate residual connections and layer
normalization (Figure 3.1). Throughout the layers, the embedding dimension (number of
convolutional filters) was kept fixed at 512. The dilation was increased exponentially up
to a certain value and then cycled. A list of hyperparameters is displayed in Table B.3.
We trained three models varying only in the loss weight on repetitive elements (marked
lowercase in the FASTA file). We trained each model for 150 K steps, taking approximately
4 days with 4 NVIDIA A100 80GB GPUs. Perplexity is defined as the exponentiation of the
cross-entropy loss, which is equivalent to 1 over the probability given to the correct nucleotide.
Test perplexity is displayed in Table B.2. We also trained a separate model on the single
genome of Arabidopsis thaliana, with a repeat weight of 0.1 and the same hyperparameters
except for only 12,000 steps with decaying learning rate, as we noticed it would soon start
overfitting. This model obtained a higher test perplexity of 3.13 (3.17 on non-repeat regions).

Analysis of model embeddings. Model embeddings were averaged over non-overlapping
100-bp windows. Embeddings from the forward and reverse strand were averaged, and then
standardized. UMAP was run with default parameters. The gene annotation was downloaded
from EnsemblPlants. The annotation of repetitive elements was downloaded from http://

ucsc.gao-lab.org/cgi-bin/hgTables?hgsid=167291_E9nY5UIAQRUOAR01xJAsum4vDukw.
We considered intergenic regions with 100% overlap with repeats as a separate “Repeat”
class. Windows with ambiguous annotation (e.g., 50% CDS and 50% intron) were excluded
from the analysis. Genomic region classification was performed with logistic regression as
implemented by scikit-learn [107], using class weight inversely proportional to frequency
and L2 regularization strength chosen via cross-validation. Windows in each chromosome
were predicted by a model trained on the remaining chromosomes.

Motif analysis. Each position in the genome was independently masked and the model
distribution over nucleotides was extracted. The distribution was averaged between the
results from the forward and reverse strands. The held-out model perplexity was computed

http://ucsc.gao-lab.org/cgi-bin/hgTables?hgsid=167291_E9nY5UIAQRUOAR01xJAsum4vDukw
http://ucsc.gao-lab.org/cgi-bin/hgTables?hgsid=167291_E9nY5UIAQRUOAR01xJAsum4vDukw
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for splice acceptors, splice donors, start codons, stop codons, CDS and intergenic and intronic
positions in the 1 Mb region Chr5:3,500,000-4,500,000, after excluding repeats.

An adaptation of TF-MoDISco was run with model predictions in regions 1000 bp upstream
and downstream of transcription start sites (all chromosomes), after filtering repeats and
coding exons. The exact score fed into Modisco was the nucleotide probability minus 0.25, so
it would be roughly centered at 0. Since TF-MoDISco expects genomic windows of equal
length, we concatenated our variable-length windows into one large window, interspersed
with 20 undefined ‘N’ nucleotides.

Variant effect prediction. We scored variants by masking the position and calculating
the log-likelihood ratio between the alternate and reference allele. Scores computed from
the forward and reverse strands were averaged. We calculated odds ratio and p-value with
Fisher’s exact test. When comparing to phyloP and phastCons, we excluded variants where
these scores are undefined (due to the lack of whole-genome alignment).

All possible SNPs in the region Chr5:3,500,000-4,500,000 were generated and their
consequences annotated with Ensembl Variant Effect Predictor [94] web interface https://pl
ants.ensembl.org/Arabidopsis_thaliana/Tools/VEP, with the upstream/downstream

argument set to 500, used to call variants as upstream/downstream instead of intergenic. We
compared scores for variant types with at least 1000 variants, and we excluded variants with
different consequences in different transcripts.

The 1001 Genomes genotype matrix was downloaded from https://aragwas.1001ge

nomes.org/api/genotypes/download and combined with metadata from https://1001

genomes.org/data/GMI-MPI/releases/v3.1/1001genomes_snp-short-indel_only_AC

GTN.vcf.gz. This genotype matrix is binary, since all the accessions are homozygous, as
Arabidopsis is predominantly selfing. For variants with alternate allele frequency greater than
50%, we flipped the sign of GPN scores (equivalent to taking the log-likelihood ratio between
the minor and the major allele), and did all analyses in terms of minor allele frequency.
Variant consequences produced by Ensembl Variant Effect Predictor were downloaded from
Ensembl Plants. Conservation scores were downloaded from http://plantregmap.gao-l

ab.org/download.php#alignment-conservation. For conservation scores phyloP and
phastCons, we simply flipped the sign to obtain a variant score, i.e., variants at conserved
sites should be considered more pathogenic. We additionally scored variants using (minus)
the absolute value of phyloP, referred to as abs(phyloP), which means prioritizing putative
accelerated regions over putative neutral ones. We defined rare variants as those with allele
count equal to 1 (to be precise, it is two alleles in the same homozygous accession), and
common variants as those with allele frequency above 5%. Model scores were defined as
pathogenic or benign based on a quantile threshold that we varied from 0.1% to 10%.

GWAS summary statistics for all 462 phenotypes were downloaded through the AraGWAS
API, with the default threshold of minimum allele count of 6 (i.e., at least 6 homozygous
accessions having the allele). The summary statistics include information on whether
an association is significant according to a permutation-based approach (recommended
[138]) as well as a Bonferroni threshold. The LD matrix of squared Pearson correlations

https://plants.ensembl.org/Arabidopsis_thaliana/Tools/VEP
https://plants.ensembl.org/Arabidopsis_thaliana/Tools/VEP
https://aragwas.1001genomes.org/api/genotypes/download
https://aragwas.1001genomes.org/api/genotypes/download
https://1001genomes.org/data/GMI-MPI/releases/v3.1/1001genomes_snp-short-indel_only_ACGTN.vcf.gz
https://1001genomes.org/data/GMI-MPI/releases/v3.1/1001genomes_snp-short-indel_only_ACGTN.vcf.gz
https://1001genomes.org/data/GMI-MPI/releases/v3.1/1001genomes_snp-short-indel_only_ACGTN.vcf.gz
http://plantregmap.gao-lab.org/download.php#alignment-conservation
http://plantregmap.gao-lab.org/download.php#alignment-conservation
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(r2) was calculated within a radius of 100 kb around each variant, using sgkit (https:
//pystatgen.github.io/). We define a weighted sum of GPN scores according to LD (i
and j index SNPs):

GPN×LDi = −
∑
j

|GPNj| · r2ij.

This is known as a stratified LD Score [46] and can also be interpreted as the multiplication
between the LD matrix and the vector of GPN scores. The reason why we used unsigned LD
and model scores is that we focused on assessing whether a variant would have a significant
association with differences in a trait, regardless of the direction of the association. Since
the association p-value is invariant to recoding of reference and alternate alleles, we took the
absolute value of GPN scores. We arbitrarily added a negative sign in front to be consistent
with more negative implying more likely functional. We similarly defined phyloP×LD (first
shifting the scores to reside entirely on the negative side of the number line), abs(phyloP)×
and phastCons×LD. We considered the baseline LD Score [25], the unweighted sum of LD
with a given variant:

LD Scorei = −
∑
j

r2ij.

Code availability. Code to reproduce all results, including instructions to load the pre-
trained model, is available at https://github.com/songlab-cal/gpn.

https://pystatgen.github.io/
https://pystatgen.github.io/
https://github.com/songlab-cal/gpn
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Figure 3.2: Unsupervised clustering of genomic windows.
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Figure 3.2 (continued): (a) UMAP visualization of GPN embeddings averaged over non-overlapping
100 bp windows along the genome, annotated with gene region. (b) Confusion matrix for classification
of gene regions using a logistic regression model trained on averaged embeddings. Each chromosome
was predicted from a model trained on the remaining chromosomes.

b GPN motif extracted by TF-MoDISco Reported match in PlantTFDB
Motif 18 (780 occurrences) AT4G24470

Motif 2 (3386 occurrences) AT1G72740

Motif 9 (1385 occurrences)

Motif 10 (1057 occurrences)

(no match)

(no match)

Splice acceptor Splice donor
a

Figure 3.3: Sequence logos derived from model predictions. Each position in the genome
was independently masked and the model distribution over the four nucleotides was computed. (a)
Sequence logo visualized in the UCSC Genome Browser (https://genome.ucsc.edu/s/gbenegas
/gpn-arabidopsis). The height of each letter is proportional to its probability, while the overall
height at each position is equal to 2 minus the entropy of the distribution. (b) Example GPN motifs
in promoter regions, extracted by TF-MoDISco, with significant matches in PlantTFDB.

https://genome.ucsc.edu/s/gbenegas/gpn-arabidopsis
https://genome.ucsc.edu/s/gbenegas/gpn-arabidopsis
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Figure 3.4: Variant effect prediction: in silico mutagenesis. Distribution of GPN scores
computed for all possible single-nucleotide polymorphisms (SNPs) in a 1 Mb region, across categories,
sorted by 1st percentile (dashed vertical lines).
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a b

c d

Figure 3.5: Variant effect prediction: rare vs. common. The GPN score was computed for
over 10 million variants in the 1001 Genomes. (a) Distribution of GPN scores. (b) Mean allele
frequency for different GPN score bins ([−9.5,−8.5), [−8.5,−7.5), . . . , [3.5, 4.5)). (c) Contingency
table and odds ratio showing enrichment of putative functional GPN scores in rare (AC = 1) vs.
common (AF ≥ 5%) variants. AC: allele count. AF: allele frequency. (d) Comparison of odds ratios
as in (c) obtained with different models. abs(phyloP) is excluded as it did not achieve a significant
enrichment.
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lowest GPN score
in this window

eVariants with whole-
genome alignment All variants

Figure 3.6: Variant effect prediction: GWAS. GPN scores were analyzed for around half a
million variants tested in AraGWAS. (a) Example window with six variants tested for association
with maximum temperature in January. GPN×LD successfully separates GWAS hits and non-hits.
(b) Percentage of GWAS hits (for any trait) in each percentile bin of GPN and GPN×LD scores.
(c) Contingency table and odds ratio showing enrichment of GWAS hits (for any trait) in putative
functional (associated) GPN×LD scores. (d) Comparison of odds ratios obtained with different
models (n = 453, 281 variants with whole-genome alignment). (e) Odds ratios with the full variant
set (n = 510, 462).
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Chapter 4

GPN-MSA: an alignment-based DNA
language model for genome-wide
variant effect prediction

This is joint work with Carlos Albors, Alan J. Aw, Chengzhong Ye and Yun S. Song, released
on bioRxiv [12] and currently under review. I thank Martin Kircher for helpful correspondence
regarding CADD.

4.1 Introduction

With the rising trend in whole-genome sequencing, there is a pressing need to understand
the effects of genome-wide variants, which would lay the foundation for precision medicine
[48]. In particular, predicting variant deleteriousness is key to rare disease diagnosis [91] and
rare variant burden tests [78]. Indeed, a recent review highlights analysis of functional rare
variants as the biggest contribution of human genetics to drug discovery [139].

Language models are gaining traction as deleteriousness predictors, with their ability to
learn from massive sequence databases and score variants in an unsupervised manner. Given
the success of accurately scoring missense variants with protein language models [97, 21, 62],
it is natural to consider scoring genome-wide variants with DNA language models. For this
task, we recently developed the Genomic Pre-trained Network (GPN), a model based on a
convolutional neural network trained on unaligned genomes, and showed that it achieves
excellent variant effect prediction results in the compact genome of Arabidopsis thaliana
[10]. The human genome – which harbors a similar number of genes but interspersed over
nearly 23 times larger regions and contains much more repetitive elements, most of which
may not be functional – is substantially harder to model, however. In fact, previous attempts
at unsupervised variant effect prediction with human DNA language models (e.g., Nucleotide
Transformer [32]) have shown inferior performance compared to simpler conservation scores.
Increasing the scale of the model, data, and compute improves performance, but it can still
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be poor, even for a model trained for 28 days using 128 top-line graphics processing units
(GPUs) [32].

To address the above challenge, we here introduce GPN-MSA, a novel DNA language
model which is designed for genome-wide variant effect prediction and is based on the
biologically-motivated integration of a multiple-sequence alignment (MSA) across diverse
species using the flexible Transformer architecture [143]. We apply this modeling framework
to humans using an MSA of diverse vertebrate genomes [4] and show that it outperforms
not only previous DNA language models but also current widely-used models such as CADD
[114], phyloP [110], ESM-1b [116, 21], Enformer [7], and SpliceAI [61]. Our model takes only
4.75 hours to train on 4 GPUs, which is a considerable reduction in the required computing
resources compared to the aforementioned Nucleotide Transformer [32]. We anticipate that
this massive reduction in computational footprint will enable the efficient exploration of new
ideas to train improved DNA language models for genome-wide variant effect prediction.

4.2 Results

GPN-MSA is trained on a whole-genome MSA of 100 vertebrate species (Figure 4.1a, full
tree in Figure C.1), after suitable processing (Figure 4.1b) and filtering (Figure 4.1c). It is
an extension of GPN [10] to learn nucleotide probability distributions conditioned not only
on surrounding sequence contexts but also on aligned sequences from related species that
provide important information about evolutionary constraints and adaptation (Figure 4.1d,
Materials and Methods). It draws heavy inspiration from the MSA Transformer [113], a
protein language model trained on MSAs of diverse protein families; it was originally designed
for structure prediction but was later shown to achieve excellent missense variant effect
prediction performance [97]. Besides the fact that our model operates on whole-genome DNA
alignments – which comprise small, fragmented synteny blocks with highly variable levels of
conservation, and hence considerably more complex than protein alignments – there are also
essential differences in the architecture and training process of GPN-MSA from the MSA
Transformer (Materials and Methods).

We demonstrate the capability of GPN-MSA to improve unsupervised deleteriousness
prediction on several human variant datasets (Materials and Methods). We emphasize that
only the reference genome is used to train GPN-MSA and that no human variant dataset is
utilized in training. Nevertheless, GPN-MSA can still capture several functional attributes of
variants, such as epigenetic marks and the impact of natural selection (Figure C.2, Figure C.3).

For evaluation, we first consider the classification of ClinVar [74] pathogenic vs. common
missense variants in gnomAD [28]. We use common variants as control instead of ClinVar
benign-labeled variants, as recommended by the developers of CADD to reduce ascertainment
bias [114]. We find that GPN-MSA achieves the best performance compared to genome-
wide predictors CADD [115], phyloP [110], the Nucleotide Transformer (NT) [32], and the
missense-specific ESM-1b [116, 21] (Figure 4.2a, Figure C.4a).
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Next, we consider the classification of somatic missense variants frequently observed across
cancer tumors (COSMIC, the Catalogue of Somatic Mutations in Cancer [132]) vs. gnomAD
common missense variants. Because of the extreme class imbalance in this case, we focus on
the precision and recall metrics. GPN-MSA again achieves the highest performance, with
substantial margins of improvement over other models (Figure 4.2b, Figure C.4b).

Moving on to regulatory variants, we evaluate on the classification of a curated set
of variants implicated in Mendelian disorders (OMIM, Online Mendelian Inheritance in
Man [123]) vs. gnomAD common variants. We again consider precision and recall because
of the extreme class imbalance, and find that GPN-MSA achieves the best performance
overall, as well as in each variant category (Figure 4.2c, Figure C.4c). For several variant
categories, CADD’s precision increases from near zero as recall increases, which indicates
that a substantial fraction of its top discoveries are actually false (Figure C.4c).

Lastly, we evaluate on the enrichment of rare vs. common gnomAD variants in the tail of
deleteriousness scores. Deleterious mutations should be under purifying selection and hence
their frequencies tend to be low in the population. Therefore, if a variant effect predictor is
accurate, we expect rare variants to be enriched compared to common variants for extreme
deleteriousness scores. GPN-MSA achieves the highest overall enrichment, as well as in
each variant category, with different margins (Figure 4.2d). For missense variants, high
enrichment is obtained by GPN-MSA with even less stringent deleteriousness score cutoffs
(Figure C.5). In the case of intron variants, it also outperforms SpliceAI [61], a state-of-the-art
splicing predictor. We note that the overall performance is not merely an averaging of the
performances in the different categories; it also involves scoring variants relative to each other
across these categories. On a separate enrichment analysis of low-frequency vs. common
gnomAD variants in gene flanking and intergenic regions, GPN-MSA achieves a substantially
improved performance over Enformer [7] (Figure 4.2e).

Examining the complete gnomAD variant set, there seems to be a near-linear relationship
between the GPN-MSA score bin and the logarithm of the average minor allele frequency
within that specific bin (Figure 4.2f). We believe that the deleteriousness of GPN-MSA scores
should be interpreted as a continuum; if a hard threshold is helpful, we recommend a cutoff
around −7, based on the distribution of scores in different datasets (Figure C.6). Incidentally,
the bimodality of score distribution for frequent variants in COSMIC suggests that many of
them could be passenger mutations (Figure C.6b).

While we observe that SpliceAI and Enformer, which are functional genomics models,
perform worse than the simpler phyloP in deleteriousness prediction, we note that this is
an application they were not designed for. It is also worth noting that although phyloP
trained on 241 mammals (Zoonomia) was recently proposed as a deleteriousness predictor
[128], the older vertebrate phyloP actually achieves better results in most of our benchmarks
(Figure C.7).

To understand the importance of different components of our model, we perform an
ablation study and assess the impact on variant effect prediction performance (Figure C.8).
We find that the inclusion of the MSA is most critical and that different ways of prioritizing
conserved regions can have a significant impact on the results.
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GPN-MSA’s predictions for every position of chromosome 6 can be visualized as sequence
logos [118] in the UCSC Genome Browser [69, 99] (example in Figure C.9); we plan to
release predictions for all ∼9 billion possible single nucleotide variants in the human genome
using the final, revised model upon publication. We also provide scores for ∼530 million
single-nucleotide variant in gnomAD, as well as a Jupyter notebook detailing how to run
predictions on a given VCF file using our trained model.

4.3 Discussion

To recapitulate, our main contributions are threefold. First, we propose the first DNA language
model operating directly on a whole-genome alignment. Second, we demonstrate state-of-
the-art performance in humans on a number of clinically-relevant variant effect prediction
datasets. Lastly, the general approach we have developed for humans is computationally
efficient, which would enable future research in the field.

In the rapidly advancing landscape of DNA language modeling, scaling up model and
context sizes has been the primary avenues of exploration [32, 100, 38]. In contrast, in our
work we focus on the explicit modeling of related sequences (known as retrieval augmentation
in natural language processing [17]). This has led to a highly computationally efficient model
and state-of-the-art variant effect prediction performance for both coding and non-coding
variants. It remains to be explored how useful GPN-MSA’s learned representations would
be for downstream applications, e.g., for genome annotation or gene expression prediction.
Expanding the context length, possibly through leveraging recent technical developments
[100], might be beneficial for such tasks.

The masked language modeling objective can be too easy if sequences very similar to the
human genome are included in the MSA, resulting in the learned probability distribution
being not very useful for variant effect prediction. This observation has led us to exclude
most primate genomes during training. To tackle this limitation, we are actively exploring
alternative training objectives which are aware of phylogenetic relationships. We are also
exploring how best to integrate population genetic variation information, instead of relying
on a single reference genome.

In our view, one of the most promising applications of GPN-MSA is effective genome-wide
rare variant burden testing, which has been mostly restricted to coding regions [152]. We
envision that several other statistical genetics tasks can be empowered by GPN-MSA, such
as functionally informed fine-mapping [153] and polygenic risk scores [89].

Sequence models (such as phyloP and GPN-MSA) might achieve better deleteriousness
prediction results but are still less interpretable than functional genomics models such as
SpliceAI and Enformer. While both functional genomics models and DNA language models
have much room for independent improvement, it is likely that jointly modeling DNA sequence
and functional genomics may have the biggest impact.
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Figure 4.1: Overview of GPN-MSA. (a) Subsampled phylogenetic tree of 100 vertebrate species
constituting the whole-genome MSA (full tree in Figure C.1). (b) MSA processing. Starting with
a Multiple Alignment Format file, alignment blocks are stitched together following the order in
the human reference. Columns with gaps in the human reference are discarded, followed by the
removal of the 10 primate species closest to human (Chimp to squirrel monkey). (c) Training
window selection. For each 128-bp window along the genome, conservation is computed as the 75th

percentile of phastCons. The top 5% conserved windows are chosen alongside a random 0.1% from
the remaining windows. (d) Model architecture. The input is a 128-bp MSA window where certain
positions in the human reference have been masked, and the goal is to predict the nucleotides at the
masked positions, given the context across both columns (positions) and rows (species) of the MSA.
During training, 15% of the positions are masked. During variant effect prediction, only the variant
position is masked. The sequence of MSA columns is processed through a Transformer neural
network resulting in a high-dimensional contextual embedding of each position. Then, a final layer
outputs four nucleotide probabilities at each masked position. The model is trained with a weighted
cross-entropy loss, designed to downweight repetitive elements and up-weight conserved elements
(Materials and Methods). As data augmentation in non-conserved regions, prior to computing the
loss, the reference is sometimes replaced by a random nucleotide (Materials and Methods). The
GPN-MSA variant effect prediction score is defined as the log-likelihood ratio between the alternate
and reference allele. REF: reference allele. ALT: alternate allele.
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a b c

d

e f

Figure 4.2: Comparison of variant effect prediction results. (a) Classification of Clin-
Var pathogenic vs. gnomAD common missense variants. NT: Nucleotide Transformer (version
2.5b-multi-species). (b) Classification of COSMIC frequent (frequency > 0.1%) vs. gnomAD
common missense variants. (c) Classification of OMIM pathogenic vs. gnomAD common regulatory
variants. We matched OMIM promoter variants with gnomAD upstream-of-gene variants, enhancer
with intergenic, and “all” with the union of the matches of the specific categories, after removing
any overlap with missense variants.
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Figure 4.2 (continued): (d) Enrichment of rare (singletons) vs. common (MAF > 5%) gnomAD
variants (subset) in the tail of deleterious scores (defined using different threshold quantiles, e.g.
the 10% most extreme scores are considered deleterious, or the 1% most extreme). The number
of rare and common variants in each category is as follows. all: 4812825 vs. 4811795, missense:
37757 vs. 13118, synonymous: 18647 vs. 17566, 5′ UTR: 35538 vs. 26488, 3′ UTR: 82954 vs. 69316,
upstream-of-gene: 849851 vs. 820082, downstream-of-gene: 869964 vs. 852410, intron: 1804469 vs.
1690417, intergenic: 1226643 vs. 1309626, ncRNA: 183960 vs. 175574. In categories other than
“all” or “missense”, we removed any overlap with missense variants. Odds ratios and p-values were
computed using one-sided Fisher’s exact test. All shown odds ratios have p-value < 0.05. The
minimum threshold was chosen such that no score has less than 10 counts in the contingency table.
(e) Comparison with Enformer. Enrichment of low-frequency (0.5% < AF < 5%, n = 3539816)
vs. common (MAF > 5%, n = 2125523) gnomAD flanking and intergenic variants in the tail of
deleterious scores. We removed any overlap with missense variants. Enformer scores were calculated
as L2 norm of delta predictions. We used the same odds ratio plotting considerations as in (d). (f)
Mean MAF for different bins of GPN-MSA scores ([−13.5,−12.5), [−12.5,−11.5), . . . , [7.5, 9.5)) in
the full gnomAD set. AUROC: area under the receiving operating characteristic curve. AUPRC:
area under the precision-recall curve. MAF: minor allele frequency. AF: allele frequency. “phyloP”
refers to the statistic computed on the 100 vertebrates alignment.

4.4 Materials and Methods

MSA Processing

The multiz [15] whole-genome alignment of 100 vertebrates was downloaded from https:

//hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/maf/. Contiguous
alignment blocks were stitched together using the multiz utility maf2fasta and any columns
with gaps in human were removed. The 10 primate species closest to human were removed.
We also downloaded associated conservation scores phastCons [122] https://hgdownload.s
oe.ucsc.edu/goldenPath/hg38/phastCons100way and phyloP [110] https://hgdownload
.soe.ucsc.edu/goldenPath/hg38/phyloP100way.

Training Region Selection

Instead of training on the whole genome, we focused on the most conserved genomic windows,
aiming to emphasize functionally-important regions such as exons, promoters and enhancers.
The conservation of a genomic window was defined as the 75th percentile of phastCons scores
in the window. We then chose a cutoff; in our current experiments we included the top 5%
most conserved windows. We also included 0.1% of the remaining windows of the genome
to ensure there is no extreme distribution shift when performing variant effect prediction in
non-conserved regions. The reverse complement of each selected window was added as data
augmentation. Chromosome 21 was held out for validation (early-stopping) and chromosome
22 was held out for possible testing (not actually used in this study).

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/maf/
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/maf/
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/phastCons100way
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/phastCons100way
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/phyloP100way
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/phyloP100way
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Model Architecture

We adopt the general approach of masked language modeling [33]. As a general caveat, in
this work we did not systematically tune hyperparameters, so they are likely far from optimal.
The input is a 128-bp MSA window where certain positions in the human reference have
been masked, and the goal is to predict the nucleotides at the masked positions, given its
context across both columns (positions) and rows (species) of the MSA. During training, 15%
of the positions are masked. During variant effect prediction, only the variant position is
masked. The 1-hot encodings of nucleotides from different species at each position are first
concatenated. Then, the sequence of MSA columns is processed through a Transformer neural
network (RoFormer [127]) resulting in a high-dimensional contextual embedding of each
position. Then, a final layer outputs four nucleotide probabilities at each masked position.
The model is trained on the reference sequence with a weighted cross-entropy loss.

Our considerations for the loss weight were the following: downweighting repeats and
upweighting conserved elements (so wrong predictions in neutral regions are penalized less).
We introduce a smoothed version of phastCons, phastConsM , as the max of phastCons over
a window of 7 nucleotides. The goal was to not only give importance to conserved regions,
but to regions immediately next to them. The loss weight w is defined as follows:

w ∝ (0.1× 1{repeat}+ 1{¬repeat})×max(phyloP, 1)× (phastConsM + 0.1)

which includes 10-fold downweighting on repetitive elements [10] plus upweighting based on
both phyloP and phastConsM .

As data augmentation in non-conserved regions, prior to computing the loss, the reference
is replaced by a random nucleotide with a certain probability q:

q = 0.5× 1{phastConsM < 0.1}
The intention is to guide the model to assign more neutral scores in non-conserved regions.

Our code is based on the Hugging Face Transformers library [158]. All models were
trained with default hyperparameters 1 (e.g. 12 layers with 12 attention heads each) except
for the ones listed in Table C.1. The total number of parameters is approximately 86 million.
We performed early stopping based on validation loss. We manage to train the model in
approximately 4.75 hours using 4 NVIDIA A100 GPUs.

The GPN-MSA variant effect prediction score is defined as the log-likelihood ratio
between the alternate and reference allele. In our experiments, we average the predictions
from the positive and negative strand. With our 4 NVIDIA A100 GPUs, we manage to score
approximately 5 million variants per hour.

1https://huggingface.co/docs/transformers/model_doc/roformer#transformers.RoFormerCon

fig

https://huggingface.co/docs/transformers/model_doc/roformer#transformers.RoFormerConfig
https://huggingface.co/docs/transformers/model_doc/roformer#transformers.RoFormerConfig
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Differences between GPN-MSA and MSA Transformer

While the MSA Transformer takes as input an arbitrary set of aligned sequences, GPN-MSA
is trained on sequences from a fixed set of species. This allows simpler modeling of the MSA as
a sequence of fixed-size alignment columns, reducing computation and memory requirements.
Variant effect prediction, masking only the target sequence (in our case, human), is identical
[97]. Since variant effect prediction is our main goal, during training we also only mask
positions from the target sequence. The MSA Transformer, however, proposes masking MSA
entries at random during training, based on results from structure prediction, their intended
application.

Ablation Study

We performed an ablation study to understand the impact of each of our design choices on
variant effect prediction when modified independently (Figure C.8). For each setting, three
replicate models with different seeds were trained, where applicable. Since we hold the rest of
the hyperparameters fixed, results should be interpreted as differences given a similar training
procedure and compute budget.

• w/o MSA: the model is only trained on the human sequence, without access to other
species.

• MSA frequency: variants are scored using the log-likelihood ratio of observed frequencies
in the MSA column, with a pseudocount of 1.

• Train on 50% most conserved: expand the training region from the smaller 5% most
conserved to a larger set with less overall conservation.

• Include closest primates: do not filter out from the MSA the 10 primates closest to
human.

• Don’t upweight conserved: do not upweight the loss function on conserved elements.

• Don’t replace non-conserved: do not replace the reference in non-conserved positions
with random nucleotides when computing the loss function.

Modeling the single human sequence instead of the MSA has by far the biggest impact.
Using the column-wide MSA frequencies as predictor also shows a large decrease in perfor-
mance. Including primate species close to human, or training on less conserved regions, have
a moderate impact on performance. Finally, of relatively minor impact are removing the
upweighting of conserved elements or removing the data augmentation procedure of replacing
nucleotides in non-conserved positions.
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Variant Effect Prediction (VEP) glossary

We summarize datasets and their provenance, metrics used to evaluate each dataset, and
technical details in constructing VEP scores below.

VEP data sources:

• ClinVar [74]: downloaded release 20230730.

• COSMIC [132]: downloaded Cosmic MutantCensus v98 GRCh38.tsv.gz and computed
frequency as the proportion of samples containing the mutation, restricting to whole-
genome or whole-exome samples.

• OMIM [123]: downloaded a set of curated pathogenic regulatory variants.

• gnomAD [28]: downloaded version 3.1.2 and filtered to autosomal variants with allele
number of at least 2×70 000, besides the official quality-control flags. In each autosomal
chromosome, selected all common variants (minor allele frequency > 5%) as well as an
equally-sized subset of rare variants (singletons).

VEP metrics:

• ClinVar: area under the receiving operating characteristic curve (AUROC) for classifi-
cation of ClinVar “Pathogenic” vs. gnomAD common missense variants.

• COSMIC: area under the precision-recall curve (AUPRC) for classifying COSMIC
frequent (frequency > 0.1%) vs. gnomAD common missense variants.

• OMIM: AUPRC for classification of OMIM pathogenic vs. gnomAD common regulatory
variants. We matched OMIM promoter variants with gnomAD upstream-of-gene
variants, enhancer with intergenic, and “all” with the union of the matches of the
specific categories, after removing any overlap with missense variants.

• gnomAD: enrichment of rare vs. common gnomAD variants in the tail of deleterious
scores (defined using different threshold quantiles, e.g. the 10% most extreme scores
are considered deleterious, or the 1% most extreme). In categories other than “all” or
“missense”, we removed any overlap with missense variants.

VEP scores:

• GPN-MSA: log-likelihood ratio between alternate and reference allele. Predictions from
both strands were averaged.

• CADD: raw scores, negated so lower means more deleterious.

• phyloP: computed on 100 vertebrate alignment, negated so lower means more deleterious.
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• Nucleotide Transformer (NT): the center 6-mer was masked and the score was computed
as the log-likelihood ratio between alternate and reference 6-mer. Predictions from both
strands were averaged. Given the high computational requirements, we only scored
variants for the ClinVar metric. The performance of the four different models can be
seen in Figure C.10.

• ESM-1b: precomputed log-likelihood ratios between alternate and reference alleles
were obtained in protein coordinates [21]. For variants affecting multiple isoforms, the
minimum (most deleterious) score was considered.

• SpliceAI: precomputed scores recommended for variant effect prediction (spliceai scor

es.masked.snv.hg38.vcf.gz) were downloaded from https://basespace.illumina

.com/s/otSPW8hnhaZR. The authors do not recommend any specific way of computing
a single deleteriousness score. We scored variants using minus the maximum absolute
delta in splice acceptor or donor probability in any gene.

• Enformer: precomputed scores for variants with minor allele frequency (MAF) greater
than 0.5% in any 1000 Genomes population [30] were downloaded from https://co

nsole.cloud.google.com/storage/browser/dm-enformer/variant-scores. These
were intersected with upstream-of-gene, downstream-of-gene and intergenic variants
with gnomAD MAF greater than 0.5%. The authors do not recommend any specific
way of computing a single deleteriousness score. We scored variants using minus the
norm of the 5 313 delta features (SNP Activity Difference or SAD). We found that the
L1 and L2 norms seem to perform similarly, better than the L∞ norm (Figure C.11).

GPN-MSA Captures Variant Functional Impact

A variant’s impact on loss of fitness is mediated by genetic and functional pathways. To
investigate whether GPN-MSA captures any functional impact of a variant, we performed
functional enrichment analysis separately on four datasets curated across four public variant
interpretation databases, ClinVar, COSMIC, OMIM and gnomAD. We used 18 functional
annotations obtained from the FAVOR database [168] (accessed via Harvard Dataverse on
April 10, 2023), which measure both impact of natural selection and gene regulatory activity
of a variant (see Table C.2). For clarity, we collect computational details of the functional
annotations and summarize them below.

• B Statistic [95], nucleotide diversity [46] and recombination rate [46] are mathematical
quantities derived from evolutionary models, and are computed directly on the genomic
position of the variant. They provide population-genetic interpretation of the impact of
natural selection on the variant.

• Epigenetic tracks, RNA-seq, DNAse-seq, percent GC and percent CpG were all com-
puted on genomic positions, to be included as training features in CADD [115]. Specif-
ically, ENCODE track features are not gene-specific but are distributed as “bigWig”

https://basespace.illumina.com/s/otSPW8hnhaZR
https://basespace.illumina.com/s/otSPW8hnhaZR
https://console.cloud.google.com/storage/browser/dm-enformer/variant-scores
https://console.cloud.google.com/storage/browser/dm-enformer/variant-scores
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value tracks along genomic coordinates. Values for each cell-type for which a track
is available are summarized to create a new genome coordinate based track, which is
subsequently assigned to the variant based on its genomic position. Whenever a variant
is not annotatable for a track (e.g., RNA-seq level for a non-exonic variant), an NA

value is assigned.

We found evidence of GPN-MSA capturing gene regulatory activity and impact of natural
selection. Across all four datasets, significant negative correlations were observed between
GPN-MSA and 8 histone mark levels (not including H3K9me3 and H3K27me3, which are
recognized gene repressors; see Figure C.2). Additionally, GPN-MSA was positively correlated
with nucleotide diversity and B statistic — for the both of which a smaller value indicates
stronger impact of natural selection. In general, the strongest correlations of any annotation
were observed in the dataset consisting of ClinVar pathogenic and gnomAD common missense
variants.

Next, to investigate whether extreme values of GPN-MSA were associated with functional
impact, we ran Mann-Whitney tests between the lowest (most deleterious) 1% GPN-MSA
scoring (“target”) variants and the remaining (“background”) variants within each dataset,
across all 18 annotations. Sample sizes were reasonably large between the target and
background samples: the minimum sample size of any target set was 124. We found
significant enrichment (p < 0.05 after controlling for FWER) of H4K20me1, a transcription
activation mark, and RNA-seq levels in each dataset, and significant depletion of nucleotide
diversity (Figure C.3). Interestingly, for H3K27me3, generally recognized as a gene repressor,
all but the COSMIC pathogenic and gnomAD common missense dataset reported enrichment
in the target variants. These results suggest that extremely negative GPN-MSA scores could
potentially prioritize variants with impact on gene expression and regulation.

Code Availability

Code to reproduce all results is available at https://github.com/songlab-cal/gpn.

Data Availability

The processed whole-genome MSA is available at https://huggingface.co/datasets/song
lab/multiz100way. The specific genomic windows used for training are available at https:
//huggingface.co/datasets/songlab/gpn-msa-sapiens-dataset. The variants used for
benchmarking (including predictions) are available at https://huggingface.co/datasets/
songlab/human_variants. Predictions for ∼530 million gnomAD variants are available at
https://huggingface.co/datasets/songlab/gnomad. Predictions for all 9 billion possible
single nucleotide variants in the human genome will be provided with the final, revised model
upon publication. Predictions with the draft model can be performed with the Jupyter
notebook at https://github.com/songlab-cal/gpn/blob/main/examples/msa/vep.ip

https://github.com/songlab-cal/gpn
https://huggingface.co/datasets/songlab/multiz100way
https://huggingface.co/datasets/songlab/multiz100way
https://huggingface.co/datasets/songlab/gpn-msa-sapiens-dataset
https://huggingface.co/datasets/songlab/gpn-msa-sapiens-dataset
https://huggingface.co/datasets/songlab/human_variants
https://huggingface.co/datasets/songlab/human_variants
https://huggingface.co/datasets/songlab/gnomad
https://github.com/songlab-cal/gpn/blob/main/examples/msa/vep.ipynb
https://github.com/songlab-cal/gpn/blob/main/examples/msa/vep.ipynb


CHAPTER 4. GPN-MSA 67

ynb. Sequence logos derived from GPN-MSA’s predictions (currently available for chromosome
6 only) can be visualized at https://genome.ucsc.edu/s/gbenegas/gpn-msa-sapiens.

Model Availability

The pretrained model is available at https://huggingface.co/songlab/gpn-msa-sapiens.

https://github.com/songlab-cal/gpn/blob/main/examples/msa/vep.ipynb
https://github.com/songlab-cal/gpn/blob/main/examples/msa/vep.ipynb
https://genome.ucsc.edu/s/gbenegas/gpn-msa-sapiens
https://huggingface.co/songlab/gpn-msa-sapiens
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Appendix A

Supplementary Information for
Chapter 2

Overview of available methods for alternative splicing

analysis in full-length scRNA-seq data

Due to experimental considerations, the analysis of transcript variation in 10x Chromium
data is mostly restricted to the 3’ end of genes; in contrast, Smart-seq2 and other full-
length, short-read protocols theoretically enable characterization of transcript variation along
the whole gene. Nevertheless, numerous challenges impede such analyses in practice. For
example, low transcript capture efficiency introduces additional technical noise into transcript
quantification [5, 156, 24], and incomplete transcriptome annotations result in discarded reads
and reduced sensitivity to cross-cell differences [156]. Some authors have even recommended
avoiding the analysis of alternative splicing in single-cell RNA sequencing (scRNA-seq) data
until such obstacles can be suitably overcome [156]. Despite these difficulties, several methods
(summarized in Table A.1) have sought to analyze transcript variation in short-read, full-
length scRNA-seq. Many methods, including kallisto [22], Census [111], BRIE [59], SCATS
[58], Quantas [159], VALERIE (meant only for visualization) [155], DESJ [86], BRIE2 [60]
and DTUrtle [134], depend on transcript annotations and consequently cannot easily identify
unannotated alternative splicing events, which may comprise a sizable fraction of events.
Currently available annotation-free methods, such as ODEGR-NMF [92], Expedition [124],
ASCOT [84], SingleSplice [154] and RNA-Bloom [101], do not provide a statistical test for
differential transcript usage across conditions. Table A.1 summarizes this information and
makes the comparison of different methods easier.
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Table A.1: Summary of methods available to analyze transcript variation in short-read
full-length scRNA-seq. Annotation-free: Does quantification require an accurate transcriptome
reference? Differential transcript usage: Does the method provide a two-sample test for differences
in transcript proportions? Some methods, denoted by (*), provide other statistical tests. Quantas
requires cells to be aggregated into known subgroups of each group and therefore does not perform
a test at the single-cell level. SingleSplice tests for alternative splicing within a single population.
kallisto and ODEGR-NMF test for differential transcript expression, i.e., changes in absolute
transcript expression rather than their proportions. Census tests for differential transcript usage
along a pseudotime trajectory.

Method Annotation-free Differential transcript usage

Quantas [159] *
SingleSplice [154] ✓ *
kallisto [22] *
Census [111] *
BRIE [59] ✓
Expedition [124] ✓
ODEGR-NMF [92] ✓ *
SCATS [58] ✓
RNA-Bloom [101] ✓
ASCOT [84] ✓
DESJ [86] ✓
BRIE2 [60] ✓
DTUrtle [134] ✓
scQuint ✓ ✓
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Supplementary Figures
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Figure A.1: Coverage artifacts in mammary gland basal cells from Tabula Muris. Aggregate
read coverage of basal cells is shown for three genes in two female mice: 3 38 F, processed in three
different plates, and 3 56 F, processed in two different plates. Visualization on the UCSC Genome
Browser. (a) Akr1r1, with relatively uniform coverage, what we expect. (b) Ctnbb1, with a gradual
drop in coverage away from the 3’ end. The rate of coverage decay varies across plates. (c) Pdpn,
with a sudden drop in coverage halfway through the 3’ UTR. The magnitude of the drop varies
across plates.
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Vip - batches R8S4-180530 & R8S4-180524

Vip - other batches

Sst - batches R8S4-180530 & R8S4-180524

Sst - other batches

Ensembl GTF
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3'5'

High Read Depth

High Read Depth

Low Read Depth

Low Read Depth

Short 3' UTR Long 3' UTR

Figure A.2: Technical artifacts in BICCN Cortex. Aggregate read coverage in Pdpk1 in two
cell types, Vip and Sst, further separated according to the “batch” metadata label into two groups.
The first group contains cells from batches R8S4-180530 and R8S4-180524, while the second group
contains the remaining batches. Cells from different batches belong to different mice and were
processed on different dates. In all groups, coverage decreases rapidly in the 3’ UTR of the isoform
with the longest 3’ UTR, eventually reaching zero. Additionally, the relative coverage in this region
compared to the rest of the gene (seeming to originate from a different isoform with a short 3’ UTR)
varies drastically across batches, and consistently in different cell types. In principle, this could
be due to biological differences between mice from different batches, but an explanation based on
technical factors such as amplification bias may be more plausible.
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Figure A.3: Splicing latent space when alternative intron counts are shuffled. To verify
that absolute gene expression does not affect the splicing latent space, we perturbed the BICCN
Cortex data set by resampling alternative intron counts with a fixed proportion in all cells (the
proportions in different alternative intron groups varied and were sampled from a uniform Dirichlet
distribution). In this scenario, different cell types still vary in their gene expression levels but not in
their splicing patterns. As hoped, the splicing latent space does not distinguish between cell types,
indicating it is only capturing differences in splicing proportions rather than changes in absolute
gene expression.
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(a) Quantification runtime

(b) Differential splicing runtime and memory usage

(c) Differential splicing -value calibration

Figure A.4: Comparison with LeafCutter.
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Figure A.4 (continued): (a) Quantification runtime. Time to perform intron quantification on
BICCN Cortex dataset, including cell subsampling to understand effect of number of cells.
(b) Differential splicing runtime and memory usage. We randomly split all 6220 BICCN Cortex
cells into two equally sized groups and performed differential splicing between them. Runtime (left)
and memory usage (right) are displayed.
(c) Differential splicing p-value calibration. In the same random split of (b), the null hypothesis of
no difference in splicing proportions holds, and we expect the distribution of p-values to be uniform.
The quantile-quantile plot of p-values obtained with scQuint shows their distribution is indeed
uniform, suggesting that the model is well-calibrated under the null; this is not true for p-values
obtained by LeafCutter.

All experiments were performed on a Skylake processor (2x16 cores @ 2.1 GHz) with 96 GB of
RAM.
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Figure A.5: Marker genes for cell types in BICCN Cortex. Mean (log-transformed)
expression for some of the top differentially expressed genes in each cell type.
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Figure A.6: PSI distribution of Pgm2 32951. Only six individuals with highest number of cells
are displayed. Marked N/A are cell types where the individuals have PSI defined in fewer than 3
cells. Per the experimental design of this dataset, the top 3 individuals have only Glutamatergic
cell types sequenced, while the bottom 3 have only GABAergic.
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Figure A.7: PSI distribution of Rbfox1 26172. Only six individuals with highest number of
cells are displayed. Marked N/A are cell types where the individuals have PSI defined in fewer than
3 cells. Per the experimental design of this dataset, the top 3 individuals have only Glutamatergic
cell types sequenced, while the bottom 3 have only GABAergic.
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Figure A.8: PSI distribution of Nrxn1 8067. Only six individuals with highest number of cells
are displayed. Marked N/A are cell types where the individuals have PSI defined in fewer than 3
cells. Per the experimental design of this dataset, the top 3 individuals have only Glutamatergic
cell types sequenced, while the bottom 3 have only GABAergic.
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Figure A.9: PSI distribution of Smarca4 28720.
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Figure A.10: PSI distribution of Foxp1 11076.
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Figure A.11: Full-gene view of novel alternative TSS in Itpr1. Large intestine secretory
cells aggregate read coverage visualized in the UCSC Genome Browser.
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Figure A.12: PSI distribution of Itpr1 26257. Only six individuals with highest number of
cells are displayed. Marked N/A are cell types where the individuals have PSI defined in fewer than
3 cells.
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Figure A.13: PSI distribution of Khk 24896. Only six individuals with highest number of cells
are displayed. Marked N/A are cell types where the individuals have PSI defined in fewer than 3
cells.
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Figure A.14: Full plot of associations between splicing factors and alternative splicing.
Regression analysis of exon skipping based on expression and splicing of splicing factors, using the
BICCN mouse primary motor cortex dataset. Left panel: mean PSI of skipped exons across cell
types. Bottom panel: mean z-scores of selected splicing factor features across cell types, including
whole-gene expression (gene name) and PSI of alternative introns (gene name and numerical
identifier). Center panel: regression coefficients (log-odds) of each splicing factor feature used to
predict skipped exon PSI in our sparse Dirichlet-Multinomial linear model.
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Figure A.15: PSI distribution of Khdrbs3 25689. Only six individuals with highest number of
cells are displayed. Marked N/A are cell types where the individuals have PSI defined in fewer than
3 cells. Per the experimental design of this dataset, the top 3 individuals have only Glutamatergic
cell types sequenced, while the bottom 3 have only GABAergic.
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Figure A.16: PSI distribution of Mbnl2 25376. Only six individuals with highest number of
cells are displayed. Marked N/A are cell types where the individuals have PSI defined in fewer than
3 cells. Per the experimental design of this dataset, the top 3 individuals have only Glutamatergic
cell types sequenced, while the bottom 3 have only GABAergic.
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Figure A.17: PSI distribution of Mbnl2 25378. Only six individuals with highest number of
cells are displayed. Marked N/A are cell types where the individuals have PSI defined in fewer than
3 cells. Per the experimental design of this dataset, the top 3 individuals have only Glutamatergic
cell types sequenced, while the bottom 3 have only GABAergic.
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Table B.1: Genome assemblies used for training

Assembly Accession Assembly Name Organism Name

GCF 000001735.4 TAIR10.1 Arabidopsis thaliana
GCF 000309985.2 CAAS Brap v3.01 Brassica rapa
GCF 000633955.1 Cs Camelina sativa
GCF 000375325.1 Caprub1 0 Capsella rubella
GCF 000150535.2 Papaya1.0 Carica papaya
GCF 000478725.1 Eutsalg1 0 Eutrema salsugineum
GCF 000801105.1 Rs1.0 Raphanus sativus
GCF 000463585.1 ASM46358v1 Tarenaya hassleriana

Table B.2: Test perplexity. Perplexity, defined as the exponentiation of the cross-entropy loss, is
equivalent to 1 over the probability given to the correct nucleotide. Arabidopsis thaliana chromosomes
4 and 5 were used for validation and testing, respectively. Note that reducing the repeat weight leads
to improved test perplexity in non-repetitive regions, which are often of greater interest. Compared
to full down-weighting, moderate down-weighting results in a similar improvement in perplexity for
non-repetitive regions without sacrificing genome-wide perplexity as much.

Model Chromosome-wide Non-repeat regions

Repeat weight 1 2.88 2.99
Repeat weight 0.1 2.90 2.92
Repeat weight 0 3.03 2.92
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Table B.3: GPN training hyperparameters

Window size (L) 512
Repeat weight 0.1

Embedding dimension (D) 512
Convolutional blocks 25
Convolutional kernel size 9
Convolutional dilation schedule 1, 2, 4, 8, 16, 32, 1, 2, 4, 8, 16, 32, . . .

Optimizer AdamW
Weight decay 0.01
Batch size 2048
Learning rate 10−3 for 120 K steps +

decaying (cosine) for 30 K steps
Learning rate warmup 1 K steps
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Supplementary Figures

a

b

c

d

Figure B.1: UMAP visualization of k-mer spectrum of different windows, as in Figure 3.2,
annotated with gene region. (a,b) k = 3. (c,d) k = 6.
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Figure B.2: UMAP visualization of GPN embeddings, as in Figure 3.2, annotated by
repeat family.
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a

b

Figure B.3: Additional GPN sequence logos. (a) Start codon. (b) Stop codon.
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Figure B.4: Perplexity on select positions from the 1 Mb region Chr5:3,500,000-4,500,000

(test chromosome). CDS1-3: frame within the coding sequence.
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pattern num_seqlets modisco_cwm_fwd modisco_cwm_rev match0 qval0 match0_logo

pos_patterns.pattern_0 5028

pos_patterns.pattern_1 4509 AT4G38000 0.0

pos_patterns.pattern_2 3386 AT1G72740 0.000117

pos_patterns.pattern_3 1658

pos_patterns.pattern_4 1611

pos_patterns.pattern_5 1556

pos_patterns.pattern_6 1490 AT2G01930 0.0

pos_patterns.pattern_7 1424

pos_patterns.pattern_8 1391 AT5G18090 0.044918

pos_patterns.pattern_9 1385

pos_patterns.pattern_10 1057

pos_patterns.pattern_11 1052

pos_patterns.pattern_12 928

pos_patterns.pattern_13 921

pos_patterns.pattern_14 844

pos_patterns.pattern_15 837

pos_patterns.pattern_16 836 AT3G48430 0.000584

pos_patterns.pattern_17 828

Figure B.5: Promoter motifs predicted by GPN and matching motifs in PlantTFDB.



APPENDIX B. SUPPLEMENTARY INFORMATION FOR CHAPTER 3 106

pattern num_seqlets modisco_cwm_fwd modisco_cwm_rev match0 qval0 match0_logo

pos_patterns.pattern_18 780 AT4G24470 0.0

pos_patterns.pattern_19 775 AT2G41835 0.016114

pos_patterns.pattern_20 756

pos_patterns.pattern_21 743

pos_patterns.pattern_22 729 AT1G49560 0.029145

pos_patterns.pattern_23 708

pos_patterns.pattern_24 702

pos_patterns.pattern_25 696

pos_patterns.pattern_26 688

pos_patterns.pattern_27 674

pos_patterns.pattern_28 643 AT2G36610 0.026016

pos_patterns.pattern_29 640

pos_patterns.pattern_30 631

pos_patterns.pattern_31 631

pos_patterns.pattern_32 630

pos_patterns.pattern_33 604 AT3G58630 0.029229

pos_patterns.pattern_34 595

pos_patterns.pattern_35 595

Figure B.5: (Continued)
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pattern num_seqlets modisco_cwm_fwd modisco_cwm_rev match0 qval0 match0_logo

pos_patterns.pattern_36 590 AT3G28920 0.000035

pos_patterns.pattern_37 580

pos_patterns.pattern_38 566

pos_patterns.pattern_39 558

pos_patterns.pattern_40 544

pos_patterns.pattern_41 523

pos_patterns.pattern_42 512 AT3G10480 0.000001

pos_patterns.pattern_43 511

pos_patterns.pattern_44 508

pos_patterns.pattern_45 506

pos_patterns.pattern_46 492 AT2G28810 0.000187

pos_patterns.pattern_47 480

pos_patterns.pattern_48 480

pos_patterns.pattern_49 477 AT4G38000 0.002972

pos_patterns.pattern_50 454 AT4G24470 0.000033

pos_patterns.pattern_51 451 AT3G10800 0.025896

pos_patterns.pattern_52 433

pos_patterns.pattern_53 426

Figure B.5: (Continued)
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pattern num_seqlets modisco_cwm_fwd modisco_cwm_rev match0 qval0 match0_logo

pos_patterns.pattern_54 407 AT2G01930 0.002768

pos_patterns.pattern_55 404

pos_patterns.pattern_56 387 AT4G34000 0.000455

pos_patterns.pattern_57 357 AT5G42520 0.037446

pos_patterns.pattern_58 354 AT1G69570 0.0

pos_patterns.pattern_59 352 AT3G62420 0.000053

pos_patterns.pattern_60 322

pos_patterns.pattern_61 319

pos_patterns.pattern_62 314

pos_patterns.pattern_63 311

pos_patterns.pattern_64 309

pos_patterns.pattern_65 302 AT1G21910 0.0

pos_patterns.pattern_66 293

pos_patterns.pattern_67 291 AT2G33860 0.005094

pos_patterns.pattern_68 285

pos_patterns.pattern_69 282

pos_patterns.pattern_70 280

pos_patterns.pattern_71 280 AT1G53170 0.001163

Figure B.5: (Continued)
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pattern num_seqlets modisco_cwm_fwd modisco_cwm_rev match0 qval0 match0_logo

pos_patterns.pattern_72 275

pos_patterns.pattern_73 265

pos_patterns.pattern_74 263

pos_patterns.pattern_75 262

pos_patterns.pattern_76 259

pos_patterns.pattern_77 253

pos_patterns.pattern_78 249

pos_patterns.pattern_79 248

pos_patterns.pattern_80 242 AT1G49480 0.000331

pos_patterns.pattern_81 228 AT5G67580 0.016528

pos_patterns.pattern_82 225

pos_patterns.pattern_83 221

pos_patterns.pattern_84 215

pos_patterns.pattern_85 209

pos_patterns.pattern_86 206

pos_patterns.pattern_87 199

pos_patterns.pattern_88 198

pos_patterns.pattern_89 194 AT3G22170 0.002435

Figure B.5: (Continued)
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pattern num_seqlets modisco_cwm_fwd modisco_cwm_rev match0 qval0 match0_logo

pos_patterns.pattern_90 186

pos_patterns.pattern_91 169

pos_patterns.pattern_92 167

pos_patterns.pattern_93 167

pos_patterns.pattern_94 167

pos_patterns.pattern_95 159 AT4G38000 0.005238

pos_patterns.pattern_96 158

pos_patterns.pattern_97 157

pos_patterns.pattern_98 157

pos_patterns.pattern_99 156

pos_patterns.pattern_100 154

pos_patterns.pattern_101 151

pos_patterns.pattern_102 146

pos_patterns.pattern_103 136

pos_patterns.pattern_104 135

pos_patterns.pattern_105 135 AT5G02840 0.041659

pos_patterns.pattern_106 131

pos_patterns.pattern_107 131

Figure B.5: (Continued)
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pattern num_seqlets modisco_cwm_fwd modisco_cwm_rev match0 qval0 match0_logo

pos_patterns.pattern_108 130

pos_patterns.pattern_109 128

pos_patterns.pattern_110 126

pos_patterns.pattern_111 125

pos_patterns.pattern_112 121

pos_patterns.pattern_113 117

pos_patterns.pattern_114 115

pos_patterns.pattern_115 107 AT2G20110 0.049803

pos_patterns.pattern_116 106

pos_patterns.pattern_117 105

pos_patterns.pattern_118 105 AT3G55370 0.025597

pos_patterns.pattern_119 104

pos_patterns.pattern_120 103

pos_patterns.pattern_121 102

pos_patterns.pattern_122 100 AT3G22170 0.007859

pos_patterns.pattern_123 96

pos_patterns.pattern_124 93 AT4G24470 0.000435

pos_patterns.pattern_125 91 AT3G10500 0.000013

Figure B.5: (Continued)
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pattern num_seqlets modisco_cwm_fwd modisco_cwm_rev match0 qval0 match0_logo

pos_patterns.pattern_126 88

pos_patterns.pattern_127 88

pos_patterns.pattern_128 87

pos_patterns.pattern_129 86 AT2G01930 0.007347

pos_patterns.pattern_130 80

pos_patterns.pattern_131 79

pos_patterns.pattern_132 75

pos_patterns.pattern_133 72

pos_patterns.pattern_134 67

pos_patterns.pattern_135 63

pos_patterns.pattern_136 61 AT5G23280 0.000262

pos_patterns.pattern_137 61

pos_patterns.pattern_138 61

pos_patterns.pattern_139 56

pos_patterns.pattern_140 55

pos_patterns.pattern_141 54 AT3G10030 0.000039

pos_patterns.pattern_142 52 AT1G67260 0.031614

pos_patterns.pattern_143 52

Figure B.5: (Continued)
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pattern num_seqlets modisco_cwm_fwd modisco_cwm_rev match0 qval0 match0_logo

pos_patterns.pattern_144 49

pos_patterns.pattern_145 49

pos_patterns.pattern_146 45

pos_patterns.pattern_147 41

pos_patterns.pattern_148 40 AT4G34000 0.002944

pos_patterns.pattern_149 39

pos_patterns.pattern_150 35

pos_patterns.pattern_151 35

pos_patterns.pattern_152 32

pos_patterns.pattern_153 29

pos_patterns.pattern_154 28 AT2G45660 0.02262

pos_patterns.pattern_155 28

pos_patterns.pattern_156 28

pos_patterns.pattern_157 27

pos_patterns.pattern_158 27

pos_patterns.pattern_159 26

pos_patterns.pattern_160 26

pos_patterns.pattern_161 23

Figure B.5: (Continued)
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pattern num_seqlets modisco_cwm_fwd modisco_cwm_rev match0 qval0 match0_logo

pos_patterns.pattern_162 23

pos_patterns.pattern_163 22

Figure B.5: (Continued)

Repeat weight 1 Repeat weight 0.1 Repeat weight 0a

c db

Figure B.6: Comparison of GPN models trained with different loss weights on repeats.
(a) Cumulative distribution function of GPN scores for simulated variants in specific categories,
as described in Figure 3.4. (b) Percentage of simulated repeat variants scored lower than the first
decile of simulated missense variants. (c) Odds ratios for rare (AC = 1) vs. common (AF ≥ 5%)
variants, as described in Figure 3.5c. AC: allele count. AF: allele frequency. (d) Odds ratios for
GWAS hits, as described in Figure 3.6c.
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Figure B.7: Cumulative distribution function of allele frequency (AF) for variants in
different GPN score bins, as described in Figure 3.5b.

Rare: AC = 1; Common: AF >= 0.01 Rare: AC <= 5; Common: AF >= 0.05

Figure B.8: Rare vs. common odds ratios for different thresholds for defining rare and
common variants. Odds ratios (OR) were calculated as described in Figure 3.5c.
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Figure B.9: Rare vs. common odds ratios for specific variant categories and different
thresholds for defining functional scores. Odds ratios (OR) were calculated as described in
Figure 3.5c. Only significant odds ratios are shown. The most stringent threshold in 5’ UTR was
excluded due to certain models having less than 10 counts in an entry of the contingency table.
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a b

Figure B.10: Comparison of GPN models trained on a different number of species. (a)
Odds ratios for rare (AC = 1) vs. common (AF ≥ 5%), as described in Figure 3.5c. AC: allele
count. AF: allele frequency. (b) Odds ratios for GWAS hits, as described in Figure 3.6c.
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Figure B.11: GWAS hit odds ratios for different thresholds for defining functional-tagged
scores. Odds ratios (OR) were calculated as described in Figure 3.6c.
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Figure B.12: Odds ratios for GWAS hits, using the Bonferroni correction instead of
permutation-based significance threshold, as described in Figure 3.6c. Only significant
odds ratios are shown.
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Appendix C

Supplementary Information for
Chapter 4

Supplementary Tables

Table C.1: GPN-MSA training hyperparameters

Weight decay 0.01
Max steps 30 K
Batch size 2048
Learning rate 10−4

Learning rate schedule Cosine
Learning rate warmup steps 1 K



APPENDIX C. SUPPLEMENTARY INFORMATION FOR CHAPTER 4 120

Table C.2: Functional annotations considered in our analysis of functional enrichment. In particular,
annotations relying on predictive models are not considered.

Functional Annotation Category Definition / Interpretation

Recombination
Rate

Local Nucleotide
Diversity

How likely a region
tends to undergo
recombination

Nuclear Diversity
Local Nucleotide

Diversity
How likely the
region diversifies

B Statistic
Local Nucleotide

Diversity

Population-genetic quantity.
Lower value means

greater impact of selection
on removing diversity

Percent GC Epigenetics
Percent GC in

+/− 75bp window

Percent CpG Epigenetics
Percent CpG in

+/− 75bp window

RNA-seq Epigenetics
Max level over

10 cell lines (ENCODE)

DNase-seq Epigenetics
Max level over

12 cell lines (ENCODE)

H3K4me1 Epigenetics
Max level over

13 cell lines (ENCODE)

H3K4me2 Epigenetics
Max level over

14 cell lines (ENCODE)

H3K4me3 Epigenetics
Max level over

14 cell lines (ENCODE)

H3K9ac Epigenetics
Max level over

13 cell lines (ENCODE)

H3K9me3 Epigenetics
Max level over

14 cell lines (ENCODE)

H3K27ac Epigenetics
Max level over

14 cell lines (ENCODE)

H3K27me3 Epigenetics
Max level over

14 cell lines (ENCODE)

H3K36me3 Epigenetics
Max level over

10 cell lines (ENCODE)

H3K79me2 Epigenetics
Max level over

13 cell lines (ENCODE)

H4K20me1 Epigenetics
Max level over

11 cell lines (ENCODE)

H2AFZ Epigenetics
Max level over

13 cell lines (ENCODE)
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Supplementary Figures
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Figure C.1: Phylogenetic tree of 100 vertebrates.
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Figure C.2: Functional impact of GPN-MSA. Rank correlation between GPN-MSA and 18
assay-based or biologically interpretable functional annotations, across four datasets. Only significant
(with FWER controlled at 0.05) correlations are shown. For tracks like RNA-seq, which require the
variant to be exonic, variants without the annotation are not included in correlation computations.
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Figure C.3: Functional enrichment and depletion of deleterious tail. Significant (Wilcoxon-
Mann-Whitney test with FWER controlled at 0.05) enrichments and depletions of functional
annotations between the deleterious GPN-MSA tail set of variants and background variants, across
four datasets. For tracks like RNA-seq, which require the variant to be exonic, variants without the
annotation are not included in the two-sample test.
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b

c

a

Figure C.4: Receiver Operating Characteristic and Precision-Recall curves for variant
effect prediction. (a) Same setting as Figure 4.2a. (b) Same setting as Figure 4.2b. (c) Same
setting as Figure 4.2c.
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Figure C.5: Enrichment in rare vs. common gnomAD missense variants. The same setting
as Figure 4.2d with higher quantile thresholds.
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a

b

c

d e

Figure C.6: Histogram of GPN-MSA scores. (a) Scores for Figure 4.2a. (b) Scores for
Figure 4.2b. (c) Scores for Figure 4.2c. (d) Scores for Figure 4.2d. (e) A zoomed-in version of (d)
highlighting the left tail.
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a b c

e

d

Figure C.7: Variant effect prediction with conservation scores. (a) Same setting as Figure 4.2a.
(b) Same setting as Figure 4.2b. (c) Same setting as Figure 4.2c. (d) Same setting as Figure 4.2d.
(e) Same setting as Figure 4.2e.
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Figure C.8: Ablation study. Performance of three random seeds of each independent ablation
on two variant effect prediction metrics. ClinVar AUROC: same setting as Figure 4.2a. gnomAD
odds ratio: same setting as Figure 4.2d (threshold quantile = 10−3). Ablations include: training
solely on the human sequence (w/o MSA), scoring variants based on MSA column frequencies
(MSA frequency), expanding training to include 50% most conserved regions, including nearest
primates in MSA, not upweighting conserved elements, and not replacing non-conserved positions
when calculating loss. Further details in Materials and Methods.

Figure C.9: GPN-MSA logo track on the UCSC Genome Browser. Shown region:
chr6:31,575,700-31,575,754.
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Figure C.10: Variant effect prediction with Nucleotide Transformer models. Same setting
as Figure 4.2a.
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Figure C.11: Variant effect prediction with different norms of Enformer delta predictions.
Same setting as Figure 4.2e.
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