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Abstract

Computational and Machine Learning Methods for Understanding Gene Regulation and
Variant Effects

by

Gonzalo Benegas

Doctor of Philosophy in Computational Biology

University of California, Berkeley

Professor Yun S. Song, Chair

The field of genomics has been advancing at a fast pace ever since the development of
high-throughput sequencing technologies. While we have access to more data than ever
before, the number of open questions has only increased. In this dissertation, I present novel
machine learning techniques to draw insights from genomic data. First, I tackle the analysis
of alternative splicing — a crucial but overlooked step in gene regulation — from short-read
single-cell RNA-seq data. To account for the large scale and sparsity of such data, I develop
scQuint, a suite of efficient probabilistic methods for dimensionality reduction and differential
splicing. Next, I approach the problem of genome-wide variant effect prediction with a new
direction: DNA language models. We first propose GPN, trained on unaligned genomes, and
apply it to study genetic variants in Arabidopsis thaliana. GPN shows an improved power for
highlighting variants under negative selection as well as those affecting traits. Furthermore, I
show that GPN learns important genomic features such as gene annotations and transcription
factor binding site motifs, without any supervision. We then present GPN-MSA, a DNA
language model trained on whole-genome alignments of vertebrates, and showcase its excellent
performance predicting deleteriousness across the entire human genome. These contributions
not only pave the way for enhanced genomic understanding but also propose a methodological
shift in genome analysis.
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Chapter 1

Introduction

1.1 Background

The �eld of genomics has seen remarkable advancements in recent decades. This progress has
been fueled by rapid technological developments and a growing understanding of the complex
interplay between genetic sequences and their functional outputs. At the heart of this �eld
lies the endeavor to decode the wealth of information encoded within our DNA, which serves
as the blueprint for building and operating biological organisms.

One of the most signi�cant applications of genomics is personalized medicine. The ability
to tailor medical treatment based on an individual's genetic makeup is a big promise in
healthcare. By understanding the genetic basis of diseases, treatments can be more e�ectively
targeted, leading to better patient outcomes and fewer side e�ects [47].

In agriculture, genomics is playing a pivotal role in the development of more resilient and
productive crops. Through genetic engineering and breeding programs informed by genomic
insights, crops can be made more resistant to pests, diseases, and environmental stresses.
This progress is crucial for ensuring food security in the face of a growing global population
and changing climate conditions [165].

Additionally, genomics has applications in other �elds such as forensic science [53] and
ancestry inference [104], providing powerful tools for identifying individuals and tracing
genetic lineages. This has profound implications for law enforcement, historical research, and
understanding human migration patterns.

However, the �eld of genomics is not without its challenges. One such challenge is
understanding the complex mechanisms of gene regulation. While transcriptional regulation
has been a major focus, especially with the advent of technologies like single-cell RNA
sequencing (scRNA-seq), it represents just one layer in the multifaceted process of gene
expression. Alternative splicing, a process by which a single gene can produce multiple
transcript isoforms, is a key component of this regulatory complexity in higher eukaryotes.
Despite its importance, alternative splicing is often underrepresented in genomic studies,
largely due to technical challenges in accurately quantifying these events with current
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sequencing technologies.
Another major challenge in genomics is identifying the functional impacts of genetic

variants. While genome-wide association studies (GWAS) have been successful in associating
genetic variants with particular traits or diseases, pinpointing the causal variants and
understanding their mechanisms of action remains di�cult. The sheer number of variants
and the complexity of their interactions within the genome make it a daunting task. This
challenge is compounded by the high cost and labor intensity of experimental validation
methods.

Thus, the �eld of genomics stands at a crossroads, where the need for advanced com-
putational methods to analyze and interpret genomic data has never been greater. These
methods hold the key to unlocking the full potential of genomic information, enabling us to
understand and harness the complexities of life at its most fundamental level.

1.2 Outline

In this dissertation, I present computational methods to improve our understanding of two
areas of genomics: gene regulation and the e�ect of genetic variants. The speci�c tasks and
computational tools developed in each chapter are summarized as follows:

ˆ Chapter 2: alternative splicing analysis with variational auto-encoders and generalized
linear models.

ˆ Chapter 3: variant e�ect prediction with alignment-free DNA language models.

ˆ Chapter 4: variant e�ect prediction with alignment-based DNA language models.

I will now introduce the content of each chapter in more detail.
In Chapter 2, I undertake the analysis of alternative splicing across numerous diverse

murine cell types from two large-scale single-cell datasets|theTabula Muris [117] and BRAIN
Initiative Cell Census Network [162]|while accounting for understudied technical artifacts
and unannotated events. I �nd strong and general cell-type-speci�c alternative splicing,
complementary to total gene expression but of similar discriminatory value, and identify a
large volume of novel splicing events. I speci�cally highlight splicing variation across di�erent
cell types in primary motor cortex neurons, bone marrow B cells, and various epithelial cells,
and I show that the implicated transcripts include many genes which do not display total
expression di�erences. To elucidate the regulation of alternative splicing, I build a custom
predictive model based on splicing factor activity, recovering several known interactions while
generating new hypotheses, including potential regulatory roles for novel alternative splicing
events in critical genes likeKhdrbs3 and Rbfox1. I make the results available using public
interactive browsers to spur further exploration by the community.

Inspired by recent progress in natural language processing, unsupervised pre-training on
large protein sequence databases has proven successful in extracting complex information
related to proteins [116]. These models showcase their ability to learn variant e�ects in
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coding regions using an unsupervised approach [97]. Expanding on this idea, in Chapter 3 I
introduce the GenomicPre-trained N etwork (GPN ), a model designed to learn genome-
wide variant e�ects through unsupervised pre-training on genomic DNA sequences. The
model also successfully learns gene structure and DNA motifs without any supervision. To
demonstrate its utility, I train GPN on unaligned reference genomes ofArabidopsis thaliana
and seven related species within the Brassicales order, and evaluate its ability to predict the
functional impact of genetic variants inArabidopsis thalianaby utilizing allele frequencies
from the 1001 Genomes Project [1] and a comprehensive database of GWAS [137]. Notably,
GPN outperforms predictors based on popular conservation scores such as phyloP [110] and
phastCons [122].

Whereas protein language models have demonstrated remarkable e�cacy in predicting the
e�ects of missense variants, DNA counterparts have not yet achieved a similar competitive
edge for genome-wide variant e�ect predictions, especially in complex genomes such as that
of humans. To address this challenge, in Chapter 4 I introduce GPN-MSA, a novel framework
for DNA language models that leverages whole-genome sequence alignments across multiple
species and takes only a few hours to train. Across several benchmarks on clinical databases
(ClinVar [74], COSMIC [132], and OMIM [123]) and population genomic data (gnomAD
[28]), our model for the human genome achieves outstanding performance on deleteriousness
prediction for both coding and non-coding variants, surpassing widely-used models such as
CADD [115], ESM-1b [116], SpliceAI [61] and Enformer [7].
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Chapter 2

Robust and annotation-free analysis of
alternative splicing across diverse cell
types in mice

This is joint work with Jonathan Fischer and Yun S. Song, published ineLife [11]. I would like
to thank Angela Oliveira Pisco, Spyros Darmanis, and Kif Liakath-Ali for helpful discussions.
I also thank the Chan Zuckerberg Biohub for hosting our cell� gene sessions and Aaron
McGeever for assistance.

2.1 Introduction

The past decade's advances in single-cell genomics have enabled the data-driven character-
ization of a wide variety of distinct cell populations. Despite a�ecting more than 90% of
human pre-mRNAs [149], isoform-level variation in gene expression has often been ignored
because of quanti�cation di�culties when using data from popular short-read sequencing
technologies such as 10x Genomics Chromium and Smart-seq2 [109]. Long-read single-cell
technologies, which greatly simplify isoform quanti�cation, are improving [26, 50, 145, 76,
64], but remain more costly and lower-throughput than their short-read counterparts. For
these reasons and others, short-read datasets predominate and we must work with short
reads to make use of the rich compendium of available data. In response, researchers have
developed several computational methods to investigate splicing variation despite the sizable
technical challenges inherent to this regime. A selection of these challenges and methods are
summarized in Appendix A.

To complement single-cell gene expression atlases, we analyze alternative splicing in
large single-cell RNA-seq (scRNA-seq) datasets from theTabula Muris consortium [117] and
BRAIN Initiative Cell Census Network (BICCN) [162]. These data span a broad range of
mouse tissues and cell types, and remain largely unexplored at the level of transcript variation.
During our initial analyses, we encountered pervasive coverage biases, a heretofore largely
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unappreciated mode of technical variation which greatly confounds biological variation across
cell types. Unsatis�ed with the performance of current methods when confronted by these
biases, we implemented our own quanti�cation, visualization, and testing pipeline, named
scQuint (single-cell quanti�cation of int rons), which allowed us to continue our analyses in a
robust, annotation-free, and computationally tractable manner. Parts of the scQuint pipeline
are based on adaptations of the bulk RNA-seq alternative splicing analysis method LeafCutter
[81] to handle the unique challenges of scRNA-seq data. As we demonstrate in subsequent
sections, our modi�cations in the quanti�cation, statistical modeling, and optimization
procedures lead to improved robustness, scalability, and calibration when working with data
from single cells (Figure A.4, also see Methods).

Applying scQuint to these data sets, we �nd a strong signal of cell-type-speci�c alternative
splicing and demonstrate that cell type can be accurately predicted given only splicing
proportions. Moreover, our annotation-free approach enables us to detect a large quantity of
cell-type-speci�c novel splicing events. In certain cell types, particularly the neuron subclasses,
as many as 30% of di�erential splicing events that we detect are novel. In general, across
the many considered cell types and tissues in both datasets, we �nd only a narrow overlap
between the top di�erentially expressed and the top di�erentially spliced genes within a given
cell type, illustrating the complementarity of splicing to expression. Our examination of
neurons in the primary motor cortex suggests that splicing distinguishes neuron classes and
subclasses as readily as does expression. We showcase alternative splicing patterns speci�c to
the GABAergic (inhibitory) and Glutamatergic (excitatory) neuron classes as well as the
subclasses therein. The implicated transcripts include key synaptic molecules and genes
which do not display expression di�erences across subclasses. In developing marrow B cells,
we �nd alternative splicing and novel transcription start sites (TSS) in critical transcription
factors such asSmarca4 and Foxp1, while further investigation reveals dissimilar trajectories
for expression and alternative splicing in numerous genes across B cell developmental stages.
These �ndings buttress our belief in the complementary nature of these processes and provide
clues to the regulatory architecture controlling the early B cell life cycle. To facilitate easy
exploration of these datasets and our results, we make available several interactive browsers
as a resource for the genomics community.

Finally, to advance our understanding of alternative splicing regulation, we build a
statistical machine learning model to predict splicing events by leveraging both the expression
levels and splicing patterns of splicing factors across cell types. This model recovers several
known regulatory interactions such as the repression of splice site 4 exons in neurexins
by Khdrbs3, while generating new hypotheses for experimental follow-up. For example, in
addition to the regulatory e�ect of the whole-geneKhdrbs3 expression, the model predicts
a regulatory role for a novel alternative TSS in this gene. In aggregate, our results imply
that alternative splicing serves as a complementary rather than redundant component of
transcriptional regulation and supports the mining of large-scale single-cell transcriptomic
data via careful modeling to generate hypothetical regulatory roles for splicing events.
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2.2 Results

Methods overview

Robust, annotation-free quanti�cation based on alternative introns. Most methods
rely on the assumption that coverage depth across a transcript is essentially uniform (e.g.,
Akr1r1, Figure A.1a). We instead found that Smart-seq2 data [109] frequently contain sizable
fractions of genes with coverage that decays with increasing distance from the 3' ends of
transcripts. For example, in mammary gland basal cells from theTabula Muris data set
[117],Ctnbb1 shows a gradual drop in coverage (Figure A.1b) whilePdpn displays an abrupt
reduction halfway through the 3' UTR (Figure A.1c). That the magnitude of these e�ects
varies across technical replicates (plates) suggests they could be artifacts, possibly related
to degradation or interrupted reverse transcription. Similar coverage bias artifacts are also
apparent in the BICCN primary motor cortex data [162] (Figure A.2).

Such coverage biases a�ect gene expression quanti�cation, and in some cases these batch
e�ects are su�cient to comprise a signi�cant proportion of the observed variation in expression
levels. For theTabula Muris mammary gland data set, a low-dimensional embedding of cells
based on gene expression reveals that some cell type clusters exhibit internal strati�cation by
plate (Figure 2.1a). A subsequent test of di�erential gene expression between plate B002438
and all other plates returns 2,870 signi�cant hits after correction for multiple hypothesis
testing, and all manually inspected di�erentially expressed genes exhibit these types of
coverage biases. Perhaps unsurprisingly, quanti�cation at the transcript level is apt to be
even more sensitive to these artifacts than gene-level quanti�cation, especially if it is based
on coverage di�erences across the whole length of the transcript. The UMAP embeddings
of isoform proportions (kallisto by Bray et al. [22]), exon proportions (DEXSeq by Anders,
Reyes, and Huber [3]), 100 bp bin coverage proportions (ODEGR-NMF by Matsumoto et al.
[92]) or junction usage proportions across the whole gene (DESJ by Liu et al. [86]) depict a
plate clustering pattern which scrambles the anticipated cell type clusters (Figure 2.1b-e).

With these considerations in mind, we sought to quantify transcript variation in a fashion
that would be more robust to coverage di�erences along the transcript. Although some
bulk RNA-seq methods such as RSEM [80] can model positional bias, they do so globally
rather than in the gene-speci�c manner we encounter. One potential approach is alternative
intron quanti�cation as performed by bulk RNA-seq methods MAJIQ [142], JUM [150], and
LeafCutter [81]. Promisingly, quanti�cation via LeafCutter (Figure 2.1f) yields an embedding
that displays less clustering by plate than the other approaches we tried. We therefore based
scQuint's quanti�cation approach on LeafCutter's, with the key di�erence of restricting
to alternative introns which share a common 3' acceptor site (Figure 2.2). This results in
alternative splicing events that are equidistant from the 3' end of transcripts and which
are less a�ected by the coverage biases we observed in scRNA-seq data. The embedding of
cells based on our quanti�cation approach (Figure 2.1g) shows less clustering by plate than
LeafCutter and other methods.

Another advantage of alternative intron quanti�cation is the ability to easily discover
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Figure 2.1: Clustering patterns by cell type and plate in the mammary gland from a
three month-old female mouse in Tabula Muris.
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Figure 2.1 (continued): Cell embeddings based on di�erent features were obtained by running PCA
(gene expression) or VAE (the rest) followed by UMAP and subsequently colored by cell type (left
column) and the plate in which they were processed (right column).(a) Gene expression, quanti�ed
using featureCounts (log-transformed normalized counts). (b) Isoform proportions. Isoform
expression was estimated with kallisto and divided by the total expression of the corresponding gene
to obtain isoform proportions. (c) Coverage proportions of 100 base-pair bins along the gene, as
proposed by ODEGR-NMF. (d) Exon proportions, as proposed by DEXSeq.(e) Intron proportions
across the whole gene, as proposed by DESJ.(f ) Alternative intron proportions quanti�ed by
LeafCutter. (g) Alternative intron proportions (for introns sharing a 3' acceptor site) as quanti�ed
by scQuint.

novel alternative splicing events. Whereas short reads generally cannot be associated with
speci�c transcript isoforms, nor even exons if they partially overlap, split reads uniquely
associate with a particular intron. Consequently, intron-based quanti�cation does not depend
on annotated transcriptome references and permits the discovery of novel alternative splicing
events. This is important since, as detailed later, we estimate up to 30% of cell-type-speci�c
di�erential splicing events are novel. Other annotation-free methods have been applied to
single-cell short-read full-length data, but they do not provide a statistical test for di�erential
splicing between two groups of cells (Table A.1).

We do not recommend using scQuint to analyze alternative splicing in 10X Genomics
Chromium data given its strong 3' transcript bias and evidence suggesting that these data
can detect about half the number of junctions detected by Smart-seq2 [151]. This imposes a
fundamental limit on the number of transcripts that can be distinguished, and we expect
alternative intron quanti�cation to be sub-optimal in this setting. Nonetheless, several
approaches for di�erential transcript usage in 10X data have been developed: Sierra [106],
SpliZ [103], and a kallisto-based approach which could be adapted for this task [102].

Dimensionality reduction with Variational Autoencoder. To perform dimensionality
reduction using splicing pro�les, we developed a novel Variational Autoencoder (VAE) [71]
with a Dirichlet-Multinomial noise model, a natural distribution for sparse, overdispersed
count data (Figure 2.2b, Materials and Methods). For example, the often encountered \binary"
splicing [24] can be modeled by �tting a concentration parameter close to zero. VAEs are
exible and scalable generative models which have been successfully applied to analyze gene
expression [87] but have not yet been employed to investigate alternative splicing. To verify
that we prevent leakage of gene expression information into our splicing pro�les, we applied
our VAE to embed a shu�ed data set obtained by resampling alternative intron counts with
a �xed proportion in all cells. This shu�ed data set contained expression variability between
cells but no splicing di�erences, and, as hoped, the resulting splicing latent space did not
distinguish among cell types, indicating that it captures di�erences in splicing proportions
rather than changes in absolute gene expression (Figure A.3). We compared the latent space
obtained with the VAE to the one obtained using Principal Component Analysis (PCA), a
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Figure 2.2: Overview of scQuint. (a) Intron usage is quanti�ed from split reads in each cell, with
introns sharing 3' splice sites forming alternative intron groups. (b) Genome-wide intron usage is
mapped into a low dimensional latent space using a Dirichlet-Multinomial VAE. Visualization of
the latent space is done via UMAP. (c) A Dirichlet-Multinomial GLM tests for di�erential splicing
across conditions such as prede�ned cell types or clusters identi�ed from the splicing latent space.

standard dimensionality reduction technique used in the LeafCutter and BRIE2 software
packages. The VAE better distinguishes cell types than PCA (Figure 2.3), especially in the
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Figure 2.3: Comparison of splicing latent spaces obtained with PCA and VAE. Cells from
(a) the cortex, (b) mammary gland and (c) diaphragm are projected into a latent space using PCA
or VAE and visualized using UMAP. Cell type labels are obtained from the original data sources
and are based on clustering in the expression latent space. The VAE is able to better distinguish
cell types in the splicing latent space than PCA.

mammary gland and diaphragm.

Di�erential splicing hypothesis testing with Generalized Linear Model. To test
for di�erential splicing across cell types or conditions, we adopt a Dirichlet-Multinomial
Generalized Linear Model (GLM) coupled with a likelihood-ratio test (Figure 2.2c, Materials
and Methods). We do so by adapting one of LeafCutter's proposed models for bulk RNA-seq
to the scRNA-seq setting and apply it to our Smart-seq2 intron quanti�cation. Namely,
due to the sparse nature of scRNA-seq splicing data, we implement a more parsimonious
statistical model featuring gene-level rather than intron-level parameters. Furthermore, we
adjust the model-�tting algorithm at the initialization and optimization stages (see Materials
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and Methods). After our modi�cations, we obtain well-calibratedp-values whereas those
from LeafCutter's original di�erential splicing model are anti-conservative (Figure A.4) and
perhaps prone to extra false positives if applied directly to scRNA-seq data. We also �nd
improvements in computational cost, both in runtime and memory usage (Figure A.4).

As described in Materials and Methods, we generated synthetic data in order to benchmark
scQuint against three other methods that also o�er two-sample tests for di�erential transcript
usage proportions: BRIE2 and DTUrtle, both designed for scRNA-seq, and LeafCutter,
designed for bulk RNA-seq (Figure 2.4). While the choice of an appropriate simulation
model for scRNA-seq data is very much an open area of debate, particularly at the transcript
level, we attempted to recreate a challenging setting for inference by assuming low coverage
(1-2X) and high overdispersion (variance-to-mean ratio of 8). We performed threein silico
experiments to assess performance under the di�ering conditions of even transcript coverage,
unannotated events, and coverage decay across the transcript. In the case of even coverage,
scQuint, LeafCutter, and BRIE2 perform similarly and do a good job of correctly identifying
events, while DTUrtle is slightly behind. scQuint does only slightly worse with low cell counts
and low coverage, which is probably a trade-o� for the robustness that comes from only using
reads from junctions sharing 3' acceptor sites. Next, we recreated the unannotated setting by
masking the reference given to methods. Only scQuint and LeafCutter are able to perform
di�erential transcript usage testing in this setting, and, as expected, they performed nearly
identically to the annotated setting with even coverage. Lastly, we created a setting where
transcript coverage decays with distance from the 3' in one of the two groups, mirroring a
pattern we often saw in the real data analyzed for this paper. Here, scQuint outperforms
the other tested methods by a wide margin with performance improving at higher coverages,
unlike other methods. These results validate that scQuint is robust to both incomplete
annotations and coverage decay while only paying a modest penalty relative to other methods
under ideal conditions (even coverage and annotated events).

Augmenting cell atlases with splicing information

We applied scQuint to two of the largest available Smart-seq2 data sets. The �rst compre-
hensively surveys the mouse primary motor cortex (BICCN Cortex) [162] while the second
contains over 100 cell types distributed across 20 mouse organs (Tabula Muris) [117] (Ta-
ble 2.1). We detect more alternative introns inBICCN Cortex neurons than in the entire
broad range of cell types present inTabula Muris (which includes neurons but in much smaller
number). This observation comports with previous �ndings that the mammalian brain has
exceptionally high levels of alternative splicing [163]. Booeshaghi et al. [16] analyzedBICCN
Cortex at the transcript level, but focused on changes in absolute transcript expression
rather than proportions. While the authors indirectly �nd some di�erences in transcript
proportions by inspecting genes with no di�erential expression, this is not a systematic
analysis of di�erential transcript usage. Meanwhile, only microglial cells inTabula Muris
[101] have been analyzed at the transcript level. (Tabula Muris also contains 10x Chromium
data analyzed at the transcript level [106]).
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Figure 2.4: Evaluation of di�erential splicing test on simulated data. ROC AUC for detecting
di�erential transcript usage between two groups, based on thep-value produced by di�erent methods.
Unannotated: the transcript reference given to methods is masked.Coverage decay: coverage decay
with distance to the 3' end of the transcript is induced in one of the two groups.

Table 2.1: Overview of analyzed data sets. Number of cells, tissues, cell types, individuals,
detected genes, and detected alternative introns (including the percentage of introns that are not
present in the Ensembl reference) for both data sources.

Data set Cells Tissues Cell types Individuals Genes Alt. introns Unannotated

BICCN Cortex 6220 1 11 45 26488 39357 29%
Tabula Muris 44518 23 117 8 27348 29965 25%

As a community resource, we provide complementary ways to interactively explore splicing
patterns present in these data sets (Figure 2.5), available athttps://github.com/songlab
-cal/scquint-analysis/ with an accompanying tutorial video. The UCSC Genome Browser
[69] permits exploration of alternative splicing events within genomic contexts such as amino
acid sequence, conservation score, or protein binding sites, while allowing users to select
di�erent length scales for examination. We additionally leverage the cell� gene browser [96]
(designed for gene expression analysis) to visualize alternative intron PSI (percent spliced-in,
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de�ned as the proportion of reads supporting an intron relative to the total in the intron
group) via cell embeddings. Further, one can generate histograms to compare across di�erent
groups de�ned by cell type, gender, or even manually selected groups of cells. These tools
remain under active development by the community, and we hope that both the genome- and
cell-centric views will soon be integrated into one browser.

Cell-type-speci�c splicing signal is strong and complementary to
gene expression

Primary motor cortex. We �rst explored the splicing latent space ofBICCN Cortex cells
by comparing it to the usual expression latent space (Figure 2.6a). Cells in the splicing latent
space strongly cluster by cell type (annotated by Yao et al. [162] based on gene expression). A
similar analysis was recently performed [36] on a di�erent cortex subregion in which most, but
not all, neuron subclasses could be distinguished based on splicing pro�les (e.g., L6 CT and
L6b could not be separated). However, the authors only considered annotated skipped exons,
a subset of the events we quantify, and used a di�erent dimensionality reduction technique.

Figure 2.6b (top left) highlights some di�erentially spliced genes between Glutamatergic
and GABAergic neurons, including the glutamate metabotropic receptorGrm5 as well as
Shisa9/Ckamp44, which associates with AMPA ionotropic glutamate receptors [146]. The
expression pattern of these genes, meanwhile, does not readily distinguish the neuron classes
(Figure 2.6b, top right). In Pgm2, a gene of the glycolysis pathway thought to be regulated
in the developing cortex by mTOR [119], we discover a novel exon preferentially included in
Glutamatergic neurons (Figure 2.6c, Figure A.6).

Our di�erential splicing test reveals thousands of cell-type-speci�c splicing events (further
discussed below in subsectionComparison of selected tissues ), highlighting marker
introns that distinguish neuron subclasses, while the expression of their respective genes does
not; e.g., compare bottom left and bottom right panels of Figure 2.6b. Genes that better
distinguish cell types at the expression level can be seen in Figure A.5. As another example
of the many novel events we discover, we showcase a novel alternative transcription start
site in Rbfox1, a splicing factor known to regulate cell-type-speci�c alternative splicing in
the brain [148] (Figure 2.6d, Figure A.7). This novel TSS (exonchr16:5763871-5763913,
intron Rbfox1 26172), which lies in a highly-conserved region, is (partially) used by only
L6b neurons. We are also able to detect well-known cell-type-speci�c alternatively spliced
genes such asNrxn1, which encodes a key pre-synaptic molecule (Figure 2.6e, Figure A.8)
[41]. In this case, we observe an exon (known as splice site 2) exclusively skipped in Vip and
Lamp5 neurons.

General patterns in Tabula Muris . We next turned our attention to Tabula Muris, which
comprises a wide variety of organs and cell types from across the entire body. As before, we
initially compared the expression and splicing latent spaces using UMAP (Figure 2.7a). This
revealed broadly consistent clusters between projections, but a visible shift in the global layout
of these clusters. In particular, whereas cell types were better separated in the expression
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projection, cell classes (e.g., endothelial, epithelial, immune) formed more coherent clusters
in the splicing projection.

To supplement our qualitative comparison of UMAP projections with a more rigorous
approach, we built dendrograms and a tanglegram using the respective distances between
cells in each of the expression and splicing latent spaces (Figure 2.7b). Despite minor
shifts, the dendrograms resemble one another, and most subtree structure is preserved.
The low value of their entanglement, a quantitative measure of the discrepancy between
hierarchical clusterings, at only 6% indicates a high degree of similarity. (For comparison, the
entanglement value between the dendrogram for all expressed genes and that for transcript
factors is 11% [117].) As in the UMAP visualization, immune cells group together more
closely in the splicing dendrogram. However, unlike the UMAP projection, we observe that
several types of pancreatic cells cluster together with neurons, a cell type long believed to
share an evolutionary origin [75]. Notably, the left dendrogram in Figure 2.7b shows that
hepatocytes are clear outliers in the expression latent space. We suspect this may be due to
technical di�erences from using 96-well plates rather than the 384-well plates used for other
cell types.

B cell development in the marrow. We then focused on developing B cells from the bone
marrow in Tabula Muris. In the splicing latent space, we found that immature B cells are
harder to distinguish from the other B cell subpopulations (Figure 2.8a), reecting less re�ned
splicing programs or limitations in transcript capture e�ciency. Immature B cells have also
fewer di�erential splicing events when compared to the other stages of B cell development
(Figure 2.8b). The top di�erential splicing events we identi�ed throughout development
displayed splicing trajectories mostly independent from the trajectories of gene expression
(Figure 2.8c). We highlight alternative TSSs (one of them novel) in two transcription factors
essential for B cell development:Smarca4, encoding BRG1 [18] (Figure 2.8d, Figure A.9);
and Foxp1 [57] (Figure 2.8e, Figure A.10). WhileFoxp1 expression peaks in pre-B cells
and does not follow a monotonic trend over developmental stages, the alternative TSS is
progressively included throughout B cell development. Combining gene-level expression with
TSS usage, which can inuence translation rate, provides a more nuanced characterization of
the expression patterns of these important transcription factors. Some other di�erentially
spliced genes with well-known roles in B cell development areSyk [31],Dock10[43],Selplg/Psgl-
1 [141], andRps6ka1[125].

Epithelial and endothelial cell types across organs. Having compared di�erent cell
types within organs, we analyzed putatively similar cell types which are present in multiple
organs to investigate splicing variation associated with tissue environment and function. We
�nd many alternative introns with strong PSI di�erences across epithelial cell types, including
several which are novel (Figure 2.9a). Conversely, apart from those in the brain, endothelial
cell types fail to display such striking di�erences (Figure 2.9b). These patterns are consistent
with the UMAP projection and dendrogram, both of which suggested less heterogeneity
among endothelial than epithelial cells (Figure 2.7).

Our analysis revealed a novel alternative TSS inItpr1 (Figure 2.9c, Figure A.12), an
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intracellular calcium channel in the endoplasmic reticulum, which regulates secretory activity
in epithelial cells of the gastrointestinal tract [79]. This novel TSS yields a shorter protein
isoform (full view in Figure A.11) which preserves the transmembrane domain, though it
is unclear whether this isoform is functional. Notably, it is the predominant isoform in
large intestine secretory cells, and these cells expressItpr1 at the highest level among all
epithelial cell types in the dataset. All nine novel alternative splicing events in Figure 2.9a
are alternative TSSs, with four a�ecting the 5' UTR and �ve a�ecting the coding sequence.

Figure 2.9d (PSI distribution in Figure A.13) illustrates a complex alternative splicing
event in Khk involving the well-studied exons 3a and 3c [55]. Khk catalyzes the conversion
of fructose into fructose-1-phosphate, and the two protein isoforms corresponding to either
exon 3a or 3c inclusion di�er in their thermostability and substrate a�nity [6]. While the
literature describes these exons as mutually exclusive, the transcriptome reference includes
transcripts where neither or both may be included. Although we did not �nd cell types
with high inclusion rates for both exons, we did see multiple cell types where both exons are
predominantly excluded, e.g., epithelial cells from the large intestine. Other di�erentially
spliced genes are involved in cellular junctions, which are particularly important in epithelial
tissue. These includeGsn, Eps8, Tln2, Fermt3, and Mapre2.

Comparison of selected tissues. Because of the breadth of theTabula Muris data set,
we can look for general trends across a diverse array of tissues and cell types. Table 2.2
summarizes di�erential expression and splicing for some of the cell types and tissues with the
largest sample sizes. First, we note the intersection between the top 100 most di�erentially
expressed and top 100 most di�erentially spliced genes (ranked byp-value) is consistently low.
This means that most di�erentially spliced genes, which might be of critical importance in a
biological system, will go unnoticed if a study only considers di�erential expression. Second,
L5 IT neurons have a larger fraction of genes with di�erential splicing relative to the number
of di�erentially expressed genes.

We found many more cell-type-speci�c di�erential splicing events in the cortex than
in the marrow, as expected [163], as well as a higher proportion of events involving novel
junctions, which can reach 30% (Figure 2.10a). Di�erences in proportion of novel junctions
should be interpreted with care, however, since they can be a�ected by sequencing depth
and number of cells, both of which vary between the two tissues. Very similar patterns are
seen when grouping di�erential splicing events that occur in the same gene (Figure 2.10b).
Most di�erential splicing events that we detected with alternative introns fall in the coding
portion of the gene, with high proportions in the 5' UTR (Figure 2.10c). This is a property
of our quanti�cation approach and does not reect the total number of alternative splicing
events in di�erent gene regions; still, the relative proportion can be compared across tissues.
We �nd an increased proportion of di�erentially spliced non-coding RNA in the cortex, the
majority of which are previously unannotated events. To systematically evaluate how well
cell types can be distinguished in the expression and splicing latent spaces, we calculated
the ROC AUC score for the one-versus-all classi�cation task for each cell type in each tissue
using a binary logistic regression model (Figure 2.10d). Since cell type labels were de�ned
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Table 2.2: Summary of di�erential expression and splicing for select cell types with the
largest sample sizes. The overlap between the top 100 di�erentially expressed genes and the top
100 di�erentially spliced genes is low, indicating that splicing provides complementary information.
In addition, L5 IT neurons have a higher ratio of di�erentially spliced genes to di�erentially expressed
genes than the other cell types.Di�. spl. genes : number of di�erentially spliced genes between
the cell type and other cell types in the same tissue.Di�. exp. genes: number of di�erentially
expressed genes between the cell type and other cell types in the same tissue. See Materials and
Methods for details on the tests for di�erential splicing and expression.

Tissue Total
#

cells

#
cell

types

Cell type #
cells

Di�.
spl.

genes

Di�.
exp.

genes

Ra-
tio

Top-
100

overlap

Brain Non-Myeloid 3049 6 Oligodendrocyte 1390 880 8835 0.10 4
Cortex 6220 10 L5 IT 1571 1447 6402 0.23 2
Heart 4144 6 Endothelial cell of

coronary artery
1126 465 7108 0.07 5

Large Intestine 3729 5 Enterocyte of
epithelium

1112 586 10786 0.05 2

Marrow 4783 10 Hematopoietic
stem cell

1363 692 9909 0.07 2

using gene expression values, near-perfect classi�cation is to be expected using the expression
latent space. Classi�cation based only on the splicing latent space is very good in general,
suggesting that cell-type-speci�c di�erential splicing is rather pervasive. A few cell types
were more challenging to classify correctly using splicing patterns alone. One such example is
immature B cells, a reection of the lower degree of separation observed in the embedding of
Figure 2.8a.

Finding splicing factors associated with speci�c alternative splicing
events

Several splicing factors have been identi�ed as regulators of speci�c alternative splicing events,
but most regulatory interactions remain unknown (see Vuong, Black, and Zheng [147] for a
review focused on the brain). To complement expensive and laborious knockout experiments,
we sought to generate regulatory hypotheses by analyzing the correlation between splicing
outcomes and splicing factor variation across cell types. Focusing on a subset of highly
expressed genes in BICCN primary motor cortex neurons, we �t a sparse linear model
regressing PSI of skipped exons on both expression and splicing patterns of splicing factors
(Figure 2.11a and Figure A.14). Our model recovers several known regulatory interactions
such as Khdrbs3/Slm2/T-Star's repression of splice site 4 (SS4) in neurexins, modulating their
binding with post-synaptic partners [140]. Additionally, the proportion of a novel alternative
TSS (though annotated in the human reference) inKhdrbs3 (Figure 2.11b, Figure A.15) is
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negatively associated with SS4 inNrxn1 and Nrxn3. This novel isoform lacks the �rst 30
amino acids of the Qua1 homodimerization domain and could a�ect dimerization, which
modulates RNA a�nity [37]. The model also recovers the known regulation of a skipped
exon in Camta1, a transcription factor required for long-term memory [9], by Rbfox1 [108].
The skipping of exon 5 (E5) ofGrin1, which controls long-term synaptic potentiation and
learning [120], is known to be regulated by Mbnl2 and Rbfox1 [147]. The model associates
Grin1 E5 PSI with the expression ofRbfox1 but not Mbnl2; however, it does suggest
an association with the PSI of two skipped exons inMbnl2 (Figure 2.11c, Figure A.16,
Figure A.17) and further implicates the inclusion level of the novel alternative TSS inRbfox1
reported above (Rbfox1 26172, chr16:5763912-6173605, Figure 2.6d). These results help
clarify the disparate impacts of expression and alternative splicing in splicing factors, and
encourage the use of regression models to suggest candidate regulators of cell-type-speci�c
alternative splicing. Such computationally generated hypotheses are particularly valuable
for splicing events in splicing factors because of the heightened di�culty to experimentally
perturb speci�c exons rather than whole genes.

2.3 Discussion

In this study, we introduce scQuint, a toolkit for the quanti�cation, visualization, and
statistical inference of alternative splicing in full-length scRNA-seq data without the need
for annotations. This allows us to successfully extend the analysis of two single-cell atlases
to the level of alternative splicing, overcoming the usual technical challenges as well as
coverage artifacts and incomplete annotations. Our results, which we make available for
public exploration via interactive browsers, indicate the presence of strong cell-type-speci�c
alternative splicing and previously unannotated splicing events across a broad array of
cell types. In most cases, splicing variation is able to di�erentiate cell types just as well
as expression levels. We also note a striking lack of overlap between the most strongly
di�erentially expressed and spliced genes (Table 2.2), suggesting that expression and splicing
are complementary rather than integrated processes. Moreover, this complementarity may
also manifest temporally, as we show in developing B cells in the marrow. Another outstanding
question is the functional signi�cance of isoforms, and we �nd that most di�erential splice
sites appear in the coding sequence with a sizeable minority also mapping to 5' UTRs. The
apparent predilection for events to occur in these regions rather than 3' UTRs poses questions
about the role of splicing in protein synthesis from translational regulation to the formation
of polypeptide chains. Answering these questions requires a more precise understanding
of how variation in UTRs and coding sequences a�ects �nal protein output as well as the
biophysical characteristics of protein isoforms and their roles in di�erent biological systems.
These factors, combined with the large fraction of unannotated events in several cell types,
should encourage tissue specialists to more deeply consider the contribution of transcript
variation to cell identity and cell and tissue homeostasis.

Despite the clear association between splicing and cell identity, our analyses are yet to pro-
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duce instances in which clustering in the splicing latent space reveals new cell subpopulations
not visible in the expression latent space. This, of course, does not preclude the possibility
in other settings where alternative splicing is known to be important, such as in speci�c
developmental transitions or disease conditions. Nevertheless, our current experience leads
us to believe that gene expression and splicing proportions provide two di�erent projections
of the same underlying cell state. Incidentally, RNA Velocity [73] estimates can be distorted
by alternative splicing, and Bergen et al. [14] discuss incorporating isoform proportions into
the model as a future direction.

To support our understanding of cell-type-speci�c splicing, we implemented a regularized
generalized linear regression model which exploits the natural variation of splicing factors in
di�erent cell types. We recovered a number of previously identi�ed (via knockout experiments)
regulatory interactions and propose novel regulatory interactions involving genes known to
play important regulatory roles. A key component of our analysis is the decision to include
both the expression and alternative splicing patterns of splicing factors as features in the
model. Consequently, we infer that several alternative splicing events in splicing factors
themselves (some previously unannotated) contribute to their regulatory activity. Our model
thus provides several opportunities for follow-up and does so with an increased granularity
that distinguishes between e�ects due to expression and splicing di�erences. To facilitate
further exploration of these data, we have uploaded our results to cell and genome browsers
(linked at https://github.com/songlab-cal/scquint-analysis/ ).

Our experience analyzing these large data sets, initially with prior methods and then
scQuint, has led to a series of general observations regarding the analysis of splicing in
scRNA-seq data. As most analyses use full-length short-read protocols because of the cost
of long-read data and the necessary focus on the 3' end of transcripts in most UMI-based
techniques, we restrict our attention to the full-length short-read setting and its incumbent
challenges. For example, low transcript capture e�ciency introduces additional technical
noise into isoform quanti�cation [5, 156, 24], and incomplete transcriptome annotations result
in discarded reads and reduced sensitivity to cross-cell di�erences [156]. Nonetheless, we
considered several methods (summarized in Table A.1) to analyze transcript variation in
short-read, full-length scRNA-seq. We found each of the classes of current methods to be
problematic in the context of our data sets for varying reasons. Methods which depend
on transcript annotations [22, 111, 59, 58, 159, 155, 86, 60, 134] cannot easily identify
unannotated alternative splicing events. In large collections of previously unsurveyed cell
types, these may comprise a sizable fraction of events. Indeed, we found up to 30% of
di�erential splicing events were unannotated in certain cell types. Annotation-free approaches
are also available, but they either do not provide a formal statistical test for di�erential
transcript usage across conditions [124, 84, 101, 154], or only do so in a specialized manner
[92], reducing their potential impacts. Finally, methods' di�erent approaches to quanti�cation
are a�ected by coverage biases to varying degrees. Some methods may thus lead to erroneous
inference of cell clusters due to technical rather than biological variation. Until the prevalence
and severity of coverage biases are better understood, we advocate quantifying transcript
variation in a robust manner.
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Recent and future experimental advances will catalyze the study of isoform variation in
single cells. For instance, Smart-seq3 [54] allows sequencing of short reads from the entire
length of a gene together with unique molecular identi�ers, improving mRNA capture and
allowing for the �ltering of PCR duplicates; however, experiments show that less than 40% of
reads can be unambiguously assigned to a single (annotated) isoform. Ultimately, long-read
scRNA-seq will provide the de�nitive picture of isoform variation between cells. Until then,
there is much biology to be studied using short-read protocols, and variation at the transcript
level should not be disregarded.

2.4 Materials and Methods

Data sets. Tabula Muris data [117] have accession code GSE109774. Cells were �ltered to
those from three month-old mice present in this collection:https://czb-tabula-muris-s
enis.s3-us-west-2.amazonaws.com/Data-objects/tabula-muris-senis-facs-proce
ssed-official-annotations.h5ad (�ltering details in [131]). BICCN Cortex data [162]
were downloaded fromhttps://assets.nemoarchive.org/dat-ch1nqb7 and �ltered as in
[16].

Simulation. A preliminary set of exon skipping events was obtained by runningbriekit-event
from the BRIE2 software package. For each event, one pair of transcripts was selected if
they only di�ered on the skipped exon, resulting in 561 pairs, each from a di�erent gene.
Reads were simulated using Polyester [39], which allows to control overdispersion and induce
di�erent kinds of biases. For roughly half of the genes, di�erential transcript usage (DTU)
was induced by overexpressing one transcript 1.5 fold in one of the two conditions. The
number of reads was generated using a highly-overdispersed negative binomial distribution,
with variance equal to eight times the mean. To simulate coverage decay in one of the
conditions, the option bias="cdnaf" was added. To ensure coverage decays as a function of
absolute distance to the 3' end of the transcript, reads were generated no farther away from
the 3' than the minimum of the lengths of the two alternative transcripts. The Area Under
the Receiver Operating Characteristic Curve (ROC AUC) for classifying genes into DTU vs.
non-DTU was computed using thep-values from each method, excluding genes that were not
tested by a given method (e.g., because of a minimum reads threshold).

Quanti�cation. The bioinformatic pipeline was implemented using Snakemake [72]. Raw
reads were trimmed from Smart-seq2 adapters using Cutadapt [90] before mapping to
the GRCm38/mm10 genome reference (https://hgdownload.soe.ucsc.edu/golden
Path/mm10/chromosomes/) and the transcriptome reference from Ensembl release 101
(ftp://ftp.ensembl.org/pub/release-101/gtf/mus_musculus/Mus_musculus.GRC
m38.101.gtf.gz ). Alignment was done using STAR [34] two-pass mode allowing novel
junctions as long as they were supported by reads with at least 20 base pair overhang (30
if they are non-canonical) in at least 30 cells. Also, multimapping and duplicate reads
were discarded using the ag- -bamRemoveDuplicatesType UniqueIdentical (while this can
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remove duplicates from the second PCR step of Smart-seq, it will not remove duplicates
from the �rst PCR step). Soft-clipped reads were removed as well. Additionally, reads were
discarded if they belonged to the ENCODE region blacklist [2] (downloaded fromhttps:
//github.com/Boyle-Lab/Blacklist/raw/master/lists/mm10-blacklist.v2.bed.gz ).

Gene expression was quanti�ed using featureCounts [82], and total-count normalized
such that each cell had 10,000 reads (as in the Scanpy [157] tutorial). Intron usage was
quanti�ed using split reads with an overhang of at least 6 base pairs. Introns were discarded
if observed in fewer than 30 cells inBICCN Cortex or 100 cells inTabula Muris. Introns
were grouped into alternative intron groups based on shared 3' splice acceptor sites. Introns
not belonging to any alternative intron group were discarded. Additionally, we decided to
subset our analysis to introns with at least one of their donor or acceptor sites annotated, so
we could assign a gene to them and facilitate interpretation for our speci�c analyses.

Dimensionality reduction. To run PCA, we worked with alternative intron proportions
(PSI, Percent Spliced In) rather than their absolute counts, as the latter would be confounded
by gene expression di�erences. We �rst introduce some notation:

ˆ c: cell identi�er

ˆ g: intron group identi�er

ˆ ~y(c)
g : vector of counts of introns in intron groupg and cell c

ˆ normalize(~x) = ~x
sum (~x) : function to divide each entry of a vector by the total sum.

Then, PSI can be de�ned as:
��!
PSI(c)

g = normalize
�
~y(c)

g

�

However, given the sparsity of single-cell data, a very high proportion of alternative intron
groups will have no reads in a given cell, leaving PSI unde�ned. More generally, an intron
group may contain few reads, resulting in de�ned but noisy PSI estimates. To navigate this
issue, we introduce a form of empirical shrinkage towards a central value. We �rst de�ne the
\global PSI" by aggregating reads from all cells and normalizing. Then, we add this global
PSI as a pseudocount vector to each cell before re-normalizing to obtain each cell's shrunken
PSI pro�le (these are non-uniform pseudocounts adding up to one).

��!
PSI(global)

g = normalize

 
X

c

~y(c)
g

!

�������������!
SMOOTHED PSI(c)

g = normalize
�

~y(c)
g +

��!
PSI(global)

g

�

We then run standard PCA on the cell-by-intron-smoothed PSI matrix.
The VAE was implemented using PyTorch [105] and scvi-tools [45]. The following is the

generative model, repeated for each cell (we drop the superscript indexing the cell in~z, ~p, ~y
and ~n):
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Table 2.3: VAE hyperparameters.

Data set Decoder Layers � Latent dimension

BICCN Cortex Linear 1 26.8 18
Tabula Muris Non-linear 2 - 34

1. Sample the latent cell state~z � Normal(0; I)

2. For each intron groupg:

a) Obtain the underlying intron proportions:
~pg = softmax(f g(~z))

b) Sample the intron counts conditioning on the total observedng:
~ygjng � DirichletMultinomial ( ng; � g � ~pg)

Here f g, known as the decoder, can be any di�erentiable function, including linear mappings
and neural networks. � g is a scalar controlling the amount of dispersion. We optimize a
variational posterior on cell latent variablesq(zjy) (Gaussian with diagonal covariance, given
by an encoder neural network) as well as point estimates of global parametersf g, � g. The
encoder takes as input the smoothed PSI values, as in PCA, but the likelihood is based on
the raw intron counts. The objective to maximize is the evidence lower bound (ELBO),
consisting of a reconstruction term and a regularization term:

ELBO(y) = Ez� q(zjy) [logp(yjz)] � KL( q(zjy)kp(z));

whereKL( �k�) denotes the Kullback{Leibler divergence. Optimization is performed using
Adam [70], a stochastic gradient descent method. To avoid over�tting in cases of relatively
few cells with respect to the number of features, we considered a linear decoder [129], as well
as aNormal(0; � ) prior on the entries of the decoder matrix. Hyperparameters were tuned
using reconstruction error on held-out data and are described in Table 2.3.

Di�erential splicing test. Our di�erential splicing test across conditions (such as cell
types) is based on a modi�ed version of the Dirichlet-Multinomial Generalized Linear Model
proposed in LeafCutter [81] for bulk RNA-seq. For each intron groupg with L alternative
introns:

ˆ ~yg is a vector of counts for each of theL introns;

ˆ The independent variable,x, equals 0 in one condition and 1 in the other;

ˆ ~ag;~bg 2 RL � 1 are the intercept and coe�cients of the linear model;

ˆ � g 2 R is a dispersion parameter shared across conditions; and
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ˆ the function softmax : (z1; : : : ; zL � 1) 7!
�

ez1

1+
P L � 1

i =1 ezi
; : : : ; ezL � 1

1+
P L � 1

i =1 ezi
; 1

1+
P L � 1

i =1 ezi

�
maps

from RL � 1 to the (L � 1)-dimensional probability simplex.

The Dirichlet-Multinomial Generalized Linear Model then proceeds as follows:

1. Obtain the underlying intron proportions:
~pg = softmax(~ag + ~bgx)

2. Sample the intron counts conditioned on the total observed,ng:
~ygjng � DirichletMultinomial ( ng; � g~pg)

We implemented this model in PyTorch and optimized it using L-BFGS [85].
To test for di�erential splicing across the two conditions, we compare the following two

hypotheses:

Null hypothesis H0: ~bg = ~0

Alternative hypothesis H1: ~bg 6= ~0

We use the likelihood-ratio test, the test statistic for which is asymptotically distributed as a
� 2 random variable with L � 1 degrees of freedom underH0. Finally, we correct p-values for
multiple testing using the Benjamini-Hochberg FDR procedure [13].

The di�erences with LeafCutter are the following:

ˆ LeafCutter groups introns that share a 5' donor or 3' acceptor site while scQuint groups
introns that share a 3' acceptor site.

ˆ LeafCutter has a vector of concentration parameters, one for each intron, while scQuint
uses a single concentration parameter per intron group.

ˆ The LeafCutter and scQuint optimization procedures were implemented separately and
di�er in initialization strategies as well as L-BFGS hyperparameters.

Latent space analysis. The expression latent space was obtained by running PCA with
40 components on log-transformed and normalized gene expression values. The splicing
latent space was obtained by running the VAE on the alternative intron count matrix (or
equivalent features, e.g., Kallisto transcript counts, DEXSeq exon counts). Both latent
spaces were visualized using UMAP [93]. In the comparison of Figure 2.1, we used our own
implementation of the quanti�cations proposed by ODEGR-NMF, DEXSeq, and DESJ for
ease of application to large single-cell datasets.

Dendrograms were constructed using hierarchical clustering (R function hclust) based
on euclidean distance between the median latent space embedding of cells of each type.
Tanglegram and entanglement were calculated using the dendextend R package, with the
step2side method, as also described in Schaum et al. [117].
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Reported scores for cell type classi�cation within a tissue were obtained by running a
binary logistic regression classi�er over di�erent splits of cells into train and test sets. To
assess generalization across individuals, we ensured the same individual was not present in
both train and test sets.

Cell-type-speci�c di�erential splicing. For di�erential splicing testing between a given
cell type and the rest of the tissue, we only considered introns expressed in at least 50 cells
and intron groups with at least 50 cells from both of the conditions. We called an intron
group \di�erentially spliced" if it was both statistically signi�cant using a 5% FDR and if
it contained an intron with a PSI change greater than 0.05. We considered a di�erentially
spliced intron group as unannotated if it contained an unannotated intron with a PSI change
greater than 0.05. Di�erential expression was performed using the Mann-Whitney test. A
gene was considered di�erentially expressed if it was statistically signi�cant using a 5% FDR
and if the fold change was at least 1.5.

For selection of marker genes or introns, we proceeded in a semi-automated fashion. For
each cell type, we �rst �ltered to keep only signi�cant genes or introns and then ranked them
by e�ect size. We picked a certain number of genes or introns from the top of this list for
each cell type, while ensuring there were no repetitions.

Splicing factor regression analysis. We obtained 75 mouse splicing factors using the
Gene Ontology term \alternative mRNA splicing, via spliceosome" (http://amigo.gene
ontology.org/amigo/term/GO:0000380 ). A skipped exon annotation, processed by BRIE
[59], was downloaded fromhttps://sourceforge.net/projects/brie-rna/files/ann
otation/mouse/gencode.vM12/SE.most.gff3/download . Instead of using single cells as
replicates, we partitioned the BICCN primary motor cortex dataset into roughly 200 clusters
of 30 cells each that were pooled to create pseudobulks, aiming to reduce variance in the
expression and splicing of splicing factors used as covariates in the model. We �ltered target
exon skipping events to those de�ned in at least 95% of the replicates, and those having a PSI
standard deviation of at least 0.2. We used log-transformed normalized expression and PSI of
alternative splicing events as input features. We chose to keep the PSI of only one intron per
intron group to avoid the presence of highly correlated features and improve clarity, even if
some information from non-binary events is lost. Input features were �ltered to those having
standard deviation of at least 0.05, and then standardized. A lasso Dirichlet-Multinomial
GLM was �t to the data (in this instance, the model reduces to a Beta-Binomial because
skipped exons are binary events), with the sparsity penalty selected via cross-validation. As
a �rst approach, we �t a regular lasso linear regression model on PSI instead of raw counts,
resulting in roughly similar patterns in the coe�cients. Figure 2.11c shows the coe�cients
of the lasso Dirichlet-Multinomial model for the top 30 targets with the highest variance
explained by the regular lasso model, all above 68%.

Code and data availability. scQuint implementation in Python is available athttps:
//github.com/songlab-cal/scquint . Di�erential splicing results and access to cell and
genome browsers, together with code to reproduce results, are available athttps://gith
ub.com/songlab-cal/scquint-analysis . Processed alternative intron count matrices are
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provided in the AnnData format (anndata.readthedocs.io ) for easy manipulation with
Scanpy [157], Seurat [126], and other tools.
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Figure 2.5: Interactive visualizations of splicing patterns.
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Figure 2.5 (continued): As an example, a skipped exon inMyl6. (a) The UCSC Genome browser
visualization of this locus. Bottom: annotated isoforms ofMyl6, including a skipped exon. Center:
aggregate read coverage in three cell types with varying inclusion levels of the skipped exon. Top:
three alternative introns that share a 3' acceptor site. The identi�ed intron's proportion corresponds
to the skipped exon's inclusion level.(b) cell� gene browser visualization of the marked intron's
proportions (Myl6 chr10:128491034-128491720). Center: intron proportion for each cell in the
UMAP expression embedding. Sides: intron proportion histogram for (left) di�erent cell types and
(right) all cells.



CHAPTER 2. SCQUINT 27

Figure 2.6: Splicing patterns in BICCN Cortex .
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Figure 2.6 (continued): (a) Expression and splicing latent spaces, visualized using UMAP. The
expression (splicing) latent space is de�ned by running PCA (VAE) on the gene expression (alternative
intron proportion, PSI) matrix. Cell types separate well in both latent spaces. (b) PSI of selected
introns (left) and expression (log-transformed normalized counts) of their respective genes (right)
averaged across cell types. Top: introns distinguishing Glutamatergic and GABAergic neuron
classes. Bottom: introns distinguishing neuron subclasses.(c-e) Sashimi plots [44] of speci�c
alternative splicing events, displaying overall read coverage with arcs indicating usage of di�erent
introns (certain introns are shrunk for better visualization). (c) Novel skipped exon inPgm2. (d)
Novel alternative transcription start site (TSS) in Rbfox1. (e) Annotated skipped exon (SE) in
Nrxn1.
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Figure 2.7: Global analysis of Tabula Muris .
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Figure 2.7 (continued): (a) UMAP visualization of the expression (left) and splicing (right) latent
spaces. Each dot is a cell, colored by organ, and overlays indicate the primary cell type comprising
that cluster. (b) Tanglegram comparing dendrograms of major cell types based on distances in
the expression (left) and splicing (right) latent spaces, highlighting functional classes with speci�c
colors.
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Figure 2.8: Splicing in developing marrow B cells from Tabula Muris .
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Figure 2.8 (continued): B cell developmental stages include pro-B, pre-B, immature B, and naive B.
(a) Expression versus splicing latent space, as de�ned previously. In the splicing latent space, some
cells types (pro-B) are better distinguished than others (immature B). (b) Number of di�erential
splicing events when comparing a B cell stage vs. the rest.(c) PSI of some introns that are
di�erentially spliced throughout development, together with expression of the respective genes
(log-transformed normalized counts). Expression and splicing can have very di�erent trajectories.
(d) Sashimi plot of novel alternative transcription start site (TSS) in Smarca4. The novel TSS
has maximum usage in pre-B cells, and then decays, while the expression peaks at pro-B cells.(e)
Sashimi plot of an annotated alternative TSS in Foxp1. The proximal TSS in increasingly used as
development progresses, while the expression peaks at pre-B cells.



CHAPTER 2. SCQUINT 33

Figure 2.9: Alternative splicing patterns across epithelial and endothelial cell types.
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Figure 2.9 (continued): (a-b) PSI of selected introns (left) and expression (log-transformed nor-
malized counts) of the corresponding genes (right) averaged across cell types. Novel intron groups
are marked with (*). (a) Introns distinguishing epithelial cell types. (b) Introns distinguishing
endothelial cell types. (c) Sashimi plot of an alternative TSS in Itpr1 . (d) Sashimi plot of a complex
alternative splicing event in Khk.
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Figure 2.10: Patterns across tissues.
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Figure 2.10(continued): (a) Number of di�erential splicing events detected in each cell type. Cortex
cell types have more di�erential splicing events and larger proportions of novel events (those involving
an intron absent from the reference). (b) Number of genes with a detected di�erential splicing
event, for di�erent cell types. (c) Number of di�erential splicing events in di�erent gene regions
aggregated over cell types (duplicate events removed). Cortex cell types have higher proportions
of events in coding regions and non-coding RNAs. Note: y-axes are not on the same scale.(d)
ROC AUC score for classi�cation of each cell type versus the rest based on either the expression
or splicing latent space, using logistic regression, training and testing in non-overlapping sets of
individuals. The score for splicing-based classi�cation is near-perfect in most cell types with some
exceptions such as immature B cells in the marrow.
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Figure 2.11: Associations between splicing factors and alternative splicing.
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Figure 2.11 (continued): (a) Regression analysis of exon skipping based on expression and splicing
of splicing factors, using the BICCN mouse primary motor cortex dataset. Left panel: mean PSI of
skipped exons across cell types. Bottom panel: mean z-scores of selected splicing factor features
across cell types, including whole-gene expression (gene name) and PSI of alternative introns (gene
name and numerical identi�er). Center panel: regression coe�cients (log-odds) of each splicing
factor feature used to predict skipped exon PSI in our sparse Dirichlet-Multinomial linear model.
(b) Novel alternative TSS in Khdrbs3. (c) Annotated skipped exons inMbnl2.
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Chapter 3

DNA language models are powerful
predictors of genome-wide variant
e�ects

This is joint work with Sanjit Singh Batra and Yun S. Song, published inPNAS [10]. I
would like to thank Carlos Albors, Jes�us Mart��nez-G�omez, Eyes Robson, Nilah Ioannidis and
Allison Gaudinier for helpful discussions.

3.1 Introduction

The emergence of genome-wide association studies (GWAS) has signi�cantly enhanced our
ability to examine the genetic basis of complex traits and diseases in both humans and plants.
In humans, GWAS have played a crucial role in identifying genetic variants associated with
a range of traits, including schizophrenia and obesity [144]. Similarly, in plants, GWAS
have shed light on the genetic factors inuencing traits such as drought tolerance, disease
resistance, and yield [136]. A central challenge in GWAS is pinpointing causal variants for
a trait, as linkage disequilibrium (LD) can lead to spurious associations [20]. This process,
known as �ne-mapping, serves as a foundation for constructing accurate, portable polygenic
risk scores and understanding the underlying biological mechanisms. Although experimental
validation of causal variants is the gold standard, it is not scalable. Instead, a scalable
�ne-mapping strategy involves utilizing computational variant e�ect predictors [153], which
vary from conservation scores to deep learning models trained on functional genomics data.
Accurate variant e�ect prediction is also vital for diagnosing rare diseases and interpreting
rare variants that lie beyond the scope of traditional GWAS [91].

Recently, state-of-the-art performance in predicting the e�ects of missense (coding)
variants has been achieved by training unsupervised models on extensive protein sequence
databases [97] or their corresponding multiple sequence alignments [40]. These large language
models can predict missense variant e�ects in an unsupervised manner, without the need
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for additional training on labeled data. This progress has been driven by advancements
in natural language processing, where signi�cant strides have been made by pre-training
language models on vast text corpora. Pre-trained models such as BERT can be �ne-tuned
for downstream tasks such as sentiment analysis [33]. More recently, language models like
GPT-4 have demonstrated impressive leaps in test performance across various disciplines,
from law to computer science [23].

A widely-used approach to interpreting non-coding variant e�ects involves training a
supervised model to predict functional genomics data | such as chromatin accessibility,
transcription factor binding, or gene expression | and then evaluating variants based on
how they disrupt these predictions. This approach was �rst introduced by DeepSEA [169],
which utilized 919 functional genomics tracks, and has since been re�ned by Enformer [7]
with 6,956 tracks and Sei [27] with 21,907 tracks. However, this approach's success depends
on the availability of high-quality functional genomics data from a diverse array of cell types,
which can be prohibitively expensive to generate for most species. Certain models focus on
speci�c classes of non-coding variants. For instance, classi�ers trained solely on sequence
data can predict the impact of intron variants on splicing patterns [61, 29]. To evaluate
the e�ects of regulatory variants, Leeet al. [77] developed a support vector machine that
distinguishes putative regulatory sequences from random genomic sequences. More recently,
a deep learning model capable of predicting Hi-C signal from sequence data demonstrated its
potential to predict the impact of regulatory variants on DNA folding within the nucleus
[42]. Additionally, a deep learning model [166] was successfully trained to predict DNA
methylation levels of CpG sites from sequence data, enabling the prediction of non-coding
variant e�ects on DNA methylation.

However, variant type-speci�c models may not be well-suited for detecting trait-associated
rare variants, �ne-mapping, or calculating polygenic scores, as these tasks are facilitated by
the comparison of genome-wide variants all together. For instance, a model that is exclusively
designed for either missense or regulatory variants would not be able to prioritize between
a de novomissense variant and ade novopromoter variant observed in an individual with
a rare disease. An important class of genome-wide scores are conservation scores such as
phyloP [110] and phastCons [122], which are computed from genome-wide alignment of
multiple species. Since these do not require functional genomics data, they have been widely
applied to many systems, including non-model organisms [135]. In humans, CADD is another
important genome-wide variant e�ect predictor that combines conservation and functional
genomics annotations, and is trained to distinguish between an inferred set of putative benign
and putative pathogenic variants [115, 112].

In this paper, we introduce theGenomicPre-trained N etwork (GPN ), a multi-species
DNA language model trained using self-supervision. While existing DNA language models
[164, 63, 98, 161, 56, 52, 8] have not yet demonstrated the ability to make accurate variant
e�ect predictions based on self-supervision alone, GPN presents a uni�ed approach capable of
accurate unsupervised prediction of genome-wide variant e�ects. We demonstrate its utility
by achieving state-of-the-art performance inArabidopsis thaliana, a model organism for plant
biology closely related to many agriculturally important species, as well as a source of insight
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Figure 3.1: Overview of GPN (Genomic Pre-trained Network). The input is a 512 bp DNA
sequence where certain positions have been masked, and the goal is to predict the nucleotides at
the masked positions. During training, 15% of the positions are masked. During variant e�ect
prediction, only the variant position is masked. The sequence is processed through a convolutional
neural network resulting in a high-dimensional contextual embedding of each position. Then, a �nal
layer outputs four nucleotide probabilities at each masked position. The model is trained on the
reference sequence with the cross-entropy loss. The GPN variant e�ect prediction score is de�ned
as the log-likelihood ratio between the alternate and reference allele. L: window length in base pairs.
D: embedding dimension. REF: reference allele. ALT: alternate allele.



CHAPTER 3. GPN 42

into human diseases [65]. Moreover, GPN outperforms genome-wide conservation scores
such as phyloP and PhastCons, which rely on whole-genome alignments of 18 closely related
species [135]. GPN's internal representation of DNA sequences can distinguish genomic
regions like introns, untranslated regions, and coding sequences. Additionally, the con�dence
of GPN's predictions can help reveal regulatory grammar, such as transcription factor binding
motifs. Our results lay the foundation for developing state-of-the-art genome-wide variant
e�ect predictors for any species using genomic sequence alone, which can be readily integrated
into GWAS �ne-mapping and polygenic risk scores.

3.2 Results

Training a multi-species DNA language model. We usedunaligned reference genomes
from Arabidopsis thaliana and seven related species within the Brassicales order to pre-
train a language model based on a convolutional neural network (Table B.1). This model
was designed to predict masked nucleotides conditioned on their local genomic context
(Figure 3.1, Materials and Methods). During the training process, we encountered challenges
with repetitive elements, which can be functionally signi�cant but are heavily overrepresented
in the genomes [19]. We found that reducing the weight of prediction loss for repetitive
regions led to lower test perplexity in non-repetitive regions, which are often of greater
interest (Table B.2). Compared to full down-weighting, moderate down-weighting results in a
similar improvement in perplexity for non-repetitive regions without sacri�cing genome-wide
perplexity as much. Consequently, we focus on this model throughout the remainder of the
paper unless otherwise speci�ed.

Unsupervised clustering of genomic regions. To understand how well the model
has learned the structure of the genome, we averaged GPN's contextual embeddings (512
dimensions) of nucleotides over 100 base pair (bp) windows from the reference genome
and visualized them using UMAP [93] (Figure 3.2a). Notably, GPN, trained without any
supervision, has learned to distinguish genomic regions such as intergenic, introns, coding
sequences (CDS), untranslated regions (UTR) and non-coding RNA (ncRNA). To quantify
GPN's ability to distinguish genomic regions, we trained a logistic regression classi�er using
the averaged embeddings as features, achieving the highest accuracy on CDS (96%) and the
lowest on ncRNA (51%), the least frequent class. As summarized in Figure 3.2b, the highest
confusion was observed between intergenic regions and ncRNAs; this may be partly explained
by errors in ncRNA annotation, which is especially challenging given their low expression
levels and poor conservation [88]. This level of classi�cation accuracy cannot be achieved
merely through k-mer frequencies (k = 3: 8% to 70%;k = 6: 15% to 67%; see Figure B.1).
We also note that, to some extent, GPN embeddings can distinguish di�erent repeat families
(Figure B.2).

DNA motifs revealed by high-con�dence model predictions. To further understand
GPN, we individually masked each position in the genome and obtained the model output
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distribution over nucleotides, given its context. To facilitate utilizing these predicted distri-
butions, we created sequence logos that can be visualized in the UCSC Genome Browser [69,
99] (https://genome.ucsc.edu/s/gbenegas/gpn-arabidopsis ), where the height of each
letter is proportional to its probability, and the overall height is given by the information
content, measured in bits [118] (see Figure 3.3a for an example). The model's prediction
con�dence correlates with the expected functionality of the sites. For example, exonic po-
sitions are predicted with higher con�dence than the surrounding introns, except for the
canonical splice acceptor and donor dinucleotide motifs. Similarly, within codons, the third
nucleotide position (CDS3), which usually does not a�ect amino acid identity, is generally
predicted with lower con�dence than the �rst two positions (CDS1, CDS2). Start and stop
codon motifs are also generally well predicted (examples in Figure B.3). Across a 1 Mb
region in the test chromosome (containing 264 genes and 471 transcripts), model perplexities
in splice donors (median = 1:02), splice acceptors (median = 1:03), start codons (median
= 1:08), CDS2 (median = 2:24), CDS1 (median = 2:44), CDS3 (median = 2:79), and stop
codons (median = 2:8) are signi�cantly smaller than those in intergenic and intronic regions
(median = 3:24, all Mann{Whitney p-values< 10� 17, Figure B.4). Perplexity in CDS2 is
signi�cantly smaller than that in CDS1, which in turn is signi�cantly smaller than that in
CDS3 (all Mann{Whitney p-values< 10� 300), consistent with their di�erent expected levels
of constraint [110].

We hypothesized that scanning promoters for small regions of high-con�dence GPN
predictions could help identify transcription factor binding sites. To achieve this, we adapted
TF-MoDISco [121], a tool forde novodiscovery of transcription factor binding sites using
supervised models. This tool clusters high-scoring regions into motifs and compares them to
databases of known motifs. Applying the adapted TF-MoDISco to GPN scores in promoter
regions, we discovered approximately a hundred and sixty motifs (Figure B.5), with four
examples shown in Figure 3.3b, the �rst two having a signi�cant match in PlantTFDB [135]
(with q-value < 0:05 in Tomtom [51]). Some of the discovered motifs are well-documented in
the literature but do not have a signi�cant match in this database, such as the third motif
[35] in Figure 3.3b. Some motifs could represent novel promoter elements, like the fourth
motif, which is palindromic with symmetrical entropies, suggesting that it could potentially
form RNA or DNA alternative secondary structure [130].

Unsupervised variant e�ect prediction. GPN can be employed to calculate a pathogenic-
ity or functionality score for any single-nucleotide polymorphism (SNP) in the genome using
the log-likelihood ratio between the alternate and reference allele (GPN score, Figure 3.1).
Visually, this involves comparing the heights of the letters in the logo plot (Figure 3.3a).

In silico mutagenesis.We �rst computed GPN scores forin silico mutagenesis of SNPs within
a 1 Mb region and aggregated the results across variant types (Figure 3.4). The ranking
of variant types based on the lowest percentile of GPN scores is generally consistent with
established notions of deleteriousness [94]1. For example, the four lowest scored variant types

1https://useast.ensembl.org/info/genome/variation/prediction/predicted_data.html
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are splice donor, splice acceptor, stop gained and start lost variants, which signi�cantly
disrupt the open reading frame. As expected, missense variants are predicted to have a
bigger impact than synonymous variants. However, we observed that some variants within
repetitive elements were assigned rather low GPN scores, ranking close to missense variants.
Furthermore, the proportion of low GPN scores for repeat variants depends on the training loss
weight on repeats (Figure B.6a). More precisely, in models with 0.0 and 0.1 down-weighting,
respectively, 8% and 9% of repeat variants are ranked before the �rst decile of missense
variants. These represent a substantial decrease compared to the 27% observed in the model
without any down-weighting (Figure B.6b, Fisher's exact testp < 10� 300).

Benchmarking using allele frequencies in 1001 Genomes.Following our in silico mutagenesis
experiments, we analyzed over 10 million SNPs from naturally occurring accessions of the
1001 Genomes Project [1]. While most variants have a neutral GPN score, there is a heavy
tail of putative functional variants with negative GPN scores (Figure 3.5a). Notably, variants
with lower GPN scores are, on average, less frequent in the population, suggesting they could
be under purifying selection (Figure 3.5b, full distribution in Figure B.7). To evaluate the
capability of identifying putative functional variants, we assessed the enrichment of rare
versus common variants in the tail of genome-wide score distributions. Putative functional
SNPs, de�ned as the lowest 0.1% of GPN scores, exhibit a 5.5-fold enrichment in rare variants
(Figure 3.5c); see Figure B.8 for di�erent allele frequency thresholds. GPN outperforms other
genome-wide variant e�ect predictors forArabidopsis, speci�cally phyloP and phastCons,
which are conservation scores derived from a broader set of 18 Brassicales species (Figure 3.5d).
In fact, GPN scores are only weakly correlated with phyloP (r = 0:22; p < 10� 300) and
phastCons (r = 0:13; p < 10� 300). We also considered the alternative abs(phyloP) (the
absolute value of phyloP), but it did not achieve a signi�cant enrichment. A notable
advantage of GPN is that it is able to score variants that could not be scored by phyloP
and phastCons due to unsuccessful whole-genome alignment (14.2% of all variants). GPN
performs comparably to phyloP and phastCons when using less stringent thresholds for
de�ning putative functional SNPs (Figure B.9), indicating its particular strength in detecting
deleterious variants at the extreme tail. GPN also achieves signi�cant odds ratios when
computed only within particular variant classes, but its performance relative to phyloP and
phastCons varies (Figure B.9). On a separate note, a slightly higher odds ratio is achieved
by the GPN model trained with an intermediate loss weight on repeats (Figure B.6c). The
model trained on only a single species performs substantially worse (Figure B.10a).

Enrichment of GWAS hits in regions with low GPN scores.In our pursuit to further evaluate
the e�cacy of GPN, we examined the AraGWAS Catalog [137], a comprehensive database
of genome-wide association studies (GWAS) inArabidopsis thaliana. We hypothesized that
GWAS hits may be enriched in regions with low GPN scores. An advantage of GPN is that it
can give substantially di�erent scores to variants in strong linkage disequilibrium (LD) with
each other, if their surrounding contexts are di�erent (e.g., see Figure 3.6a, top). In contrast,
the standard GWAS would give similar scores to such variants; in particular, neutral variants
in strong LD with a functional variant would also be associated with a trait. To account for
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this di�erence, we devised a new score, GPN� LD, which weighs GPN scores by LD (Materials
and Methods). With this approach, GPN� LD e�ectively distinguishes GWAS hits from
non-hits in this example locus (Figure 3.6a, bottom). More generally across the genome and
all traits, the tail of GPN � LD scores is greatly enriched in GWAS hits, much more so than
the tail of raw GPN scores (Figure 3.6b). In particular, by analyzing odds ratios (Figure 3.6c),
we found that SNPs with the lower 1% of GPN� LD scores are 10.3-fold enriched in GWAS
hits compared to the upper 99% of GPN� LD scores, while less than 7.5-fold enrichment was
observed for other methods (Figure 3.6d); see Figure B.11 for di�erent thresholds. Using the
Bonferroni correction instead of the permutation-based signi�cance threshold recommended
by AraGWAS [138] yields lower odds ratios for all methods, but GPN� LD still achieves the
highest enrichment (Figure B.12). Interestingly, the GPN model trained with an intermediate
loss weight on repeats achieves the best performance (Figure B.6d). The model trained
on only a single species performs worse (Figure B.10b). Furthermore, GPN� LD achieves
much higher odds ratios when considering the full variant set, including regions that do not
align to other Brassicales (Figure 3.6e); failed alignment could be partly due to genomic
rearrangements that may be potentially associated with local adaptation inArabidopsis
thaliana [67].

3.3 Discussion

Here we present the �rst unsupervised genome-wide variant e�ect predictor based on un-
supervised pre-training of DNA language models. We demonstrate that GPN outperforms
other genome-wide variant e�ect predictors inArabidopsis thaliana, a model species for
plant biology. Since GPN is trained only on DNA sequence, it can be readily applied to
understudied non-model organisms even in the absence of extensive functional genomics data,
while still providing state-of-the-art unsupervised variant e�ect prediction genome-wide.

We can think of GPN as a generalized conservation score. Similar to phyloP and
phastCons, GPN is genome-wide, can be trained on genomic sequence alone, and is cell-type
and mechanism agnostic [128]. The key distinction is that while phyloP and phastCons
only consider nucleotide frequencies at a speci�c site, GPN can learn from joint nucleotide
distributions across all similar contexts appearing in the genome. Furthermore, GPN does
not rely on whole-genome alignments, which can often have a lower quality in non-coding
regions.

The capability of GPN to score genome-wide variants on a uni�ed scale renders it ideal
for integration into rare disease diagnosis, �ne-mapping, and polygenic risk scores, including
burden tests. The separation of genomic regions based on GPN embeddings suggests that
it could be further �ne-tuned for de novogenome annotation. Combining GPN predictions
with TF-MoDISco o�ers a promising strategy for discovering functional motifs. Although in
this study we focused on transcription factor binding sites, we believe that GPN predictions
around splice junctions could also facilitate the identi�cation of splicing factor binding sites.

Repetitive elements, which are inherent components of eukaryotic genomes, pose several
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challenges that have been underexplored in DNA language modeling studies. First, these
elements are signi�cantly over-represented [19]. The lower perplexity in non-repetitive regions
upon down-weighting repeats can be attributed to the model allocating fewer parameters
exclusively to repetitive elements. Second, repetitive elements display reduced sequence vari-
ation compared to other regions, in particular younger repeats with little time to accumulate
mutations [170]. We believe that these factors together may cause di�erences in model likeli-
hoods in these regions to be less clearly associated with di�erences in �tness. Our proposed
down-weighting of repeats only partially mitigates these issues, and we encourage further
investigation by the scienti�c community. Potential research directions include examining
the e�ects of down-weighting repeats based on their respective families or inferred age.

While the current implementation of GPN achieves state-of-the-art variant e�ect prediction
for Arabidopsis thaliana, there is room for improving its training scheme. Mounting evidence
suggests that larger models and more extensive training data can enhance performance [68].
Our current proof-of-concept model is considerably smaller | by 200 times | than the
largest published protein language model [83]. One strategy to improve GPN, inspired by
protein modeling, involves explicitly incorporating multiple sequence alignments [113, 66].
However, this enhancement will be bottle-necked by the quality of alignment in non-coding
genome regions. Other promising avenues for DNA language modeling include incorporating
DNA-speci�c inductive biases, such as reverse-complement equivariance [167], as opposed to
our current method of averaging model outputs for both strands during testing. Additionally,
integrating long-range information using recent advances in state space models [49] may
further boost performance. In conclusion, DNA language models represent a powerful
framework for genome-wide variant e�ect prediction, and we believe that exploring the above
avenues to further improve GPN would be worthwhile.

3.4 Materials and Methods

Pre-training. We obtained a list of Brassicales reference genome assemblies from NCBI
Genome (https://www.ncbi.nlm.nih.gov/data-hub/genome/ ), �ltered for RefSeq-
annotated and kept only one per genus, resulting in a total of 8 reference genomes (Table B.1).
We held out Arabidopsis thalianachromosomes 4 and 5 for validation and testing, respectively.
For each genome, we subsampled genomic windows of size 512 bp, with a step of 256 bp
and augmented with the reverse complement. However, we did not draw genomic windows
uniformly from the whole genome, but emphasized certain regions. In particular, we took the
union of exons (with a small intronic ank), promoters (1000 bp upstream of transcription
start sites) as well as an equivalent amount of random windows from the whole genome. We
think this decision may improve performance, but leave experimentation for further studies.
Additionally, we subset the number of windows from each genome to the number of windows
from Arabidopsis, given its unusually small genome.

We set up a masked language modeling task [33], in which 15% of the tokens in a nucleotide
sequence were masked and had to be predicted from their context. In contrast to most DNA
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language models that tokenize sequences into overlappingk-mers [63, 161, 52] or use byte-pair
encoding [164], we used bare nucleotides as tokens. While a thorough benchmark of di�erent
tokenization strategies is lacking, using single-nucleotide tokens makes interpretation easier,
in particular for unsupervised variant e�ect prediction.

While language model pre-training successes were �rst showcased by transformer archi-
tectures, convolutional models have shown similarly good performance in natural language
[133] and protein modeling [160]. In our initial experiments, we noticed that convolutional
models converged faster than transformer models. The locality of convolutions may be a good
inductive bias for modeling DNA sequences at this scale. The linear complexity of convolution
also simpli�es inference or �ne-tuning on longer sequences such as entire chromosomes, which
in the case of transformers might require chunking (with some overlap) and aggregating the
results.

We implemented GPN, a convolutional neural network, using the Hugging Face library
[158]. The masked DNA sequence was one-hot encoded and then consecutively processed
by 25 convolutional blocks. Each convolutional block consisted of a dilated convolutional
layer followed by a feed-forward layer, with intermediate residual connections and layer
normalization (Figure 3.1). Throughout the layers, the embedding dimension (number of
convolutional �lters) was kept �xed at 512. The dilation was increased exponentially up
to a certain value and then cycled. A list of hyperparameters is displayed in Table B.3.
We trained three models varying only in the loss weight on repetitive elements (marked
lowercase in the FASTA �le). We trained each model for 150 K steps, taking approximately
4 days with 4 NVIDIA A100 80GB GPUs. Perplexity is de�ned as the exponentiation of the
cross-entropy loss, which is equivalent to 1 over the probability given to the correct nucleotide.
Test perplexity is displayed in Table B.2. We also trained a separate model on the single
genome ofArabidopsis thaliana, with a repeat weight of 0.1 and the same hyperparameters
except for only 12,000 steps with decaying learning rate, as we noticed it would soon start
over�tting. This model obtained a higher test perplexity of 3.13 (3.17 on non-repeat regions).

Analysis of model embeddings. Model embeddings were averaged over non-overlapping
100-bp windows. Embeddings from the forward and reverse strand were averaged, and then
standardized. UMAP was run with default parameters. The gene annotation was downloaded
from EnsemblPlants. The annotation of repetitive elements was downloaded fromhttp://
ucsc.gao-lab.org/cgi-bin/hgTables?hgsid=167291_E9nY5UIAQRUOAR01xJAsum4vDukw.
We considered intergenic regions with 100% overlap with repeats as a separate \Repeat"
class. Windows with ambiguous annotation (e.g., 50% CDS and 50% intron) were excluded
from the analysis. Genomic region classi�cation was performed with logistic regression as
implemented byscikit-learn [107], using class weight inversely proportional to frequency
and L2 regularization strength chosen via cross-validation. Windows in each chromosome
were predicted by a model trained on the remaining chromosomes.

Motif analysis. Each position in the genome was independently masked and the model
distribution over nucleotides was extracted. The distribution was averaged between the
results from the forward and reverse strands. The held-out model perplexity was computed
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for splice acceptors, splice donors, start codons, stop codons, CDS and intergenic and intronic
positions in the 1 Mb regionChr5:3,500,000-4,500,000 , after excluding repeats.

An adaptation of TF-MoDISco was run with model predictions in regions 1000 bp upstream
and downstream of transcription start sites (all chromosomes), after �ltering repeats and
coding exons. The exact score fed into Modisco was the nucleotide probability minus 0.25, so
it would be roughly centered at 0. Since TF-MoDISco expects genomic windows of equal
length, we concatenated our variable-length windows into one large window, interspersed
with 20 unde�ned `N' nucleotides.

Variant e�ect prediction. We scored variants by masking the position and calculating
the log-likelihood ratio between the alternate and reference allele. Scores computed from
the forward and reverse strands were averaged. We calculated odds ratio andp-value with
Fisher's exact test. When comparing to phyloP and phastCons, we excluded variants where
these scores are unde�ned (due to the lack of whole-genome alignment).

All possible SNPs in the regionChr5:3,500,000-4,500,000 were generated and their
consequences annotated with Ensembl Variant E�ect Predictor [94] web interfacehttps://pl
ants.ensembl.org/Arabidopsis_thaliana/Tools/VEP , with the upstream/downstream
argument set to 500, used to call variants as upstream/downstream instead of intergenic. We
compared scores for variant types with at least 1000 variants, and we excluded variants with
di�erent consequences in di�erent transcripts.

The 1001 Genomes genotype matrix was downloaded fromhttps://aragwas.1001ge
nomes.org/api/genotypes/download and combined with metadata fromhttps://1001
genomes.org/data/GMI-MPI/releases/v3.1/1001genomes_snp-short-indel_only_AC
GTN.vcf.gz . This genotype matrix is binary, since all the accessions are homozygous, as
Arabidopsis is predominantly sel�ng. For variants with alternate allele frequency greater than
50%, we ipped the sign of GPN scores (equivalent to taking the log-likelihood ratio between
the minor and the major allele), and did all analyses in terms of minor allele frequency.
Variant consequences produced by Ensembl Variant E�ect Predictor were downloaded from
Ensembl Plants. Conservation scores were downloaded fromhttp://plantregmap.gao-l
ab.org/download.php#alignment-conservation . For conservation scores phyloP and
phastCons, we simply ipped the sign to obtain a variant score, i.e., variants at conserved
sites should be considered more pathogenic. We additionally scored variants using (minus)
the absolute value of phyloP, referred to as abs(phyloP), which means prioritizing putative
accelerated regions over putative neutral ones. We de�ned rare variants as those with allele
count equal to 1 (to be precise, it is two alleles in the same homozygous accession), and
common variants as those with allele frequency above 5%. Model scores were de�ned as
pathogenic or benign based on a quantile threshold that we varied from 0.1% to 10%.

GWAS summary statistics for all 462 phenotypes were downloaded through the AraGWAS
API, with the default threshold of minimum allele count of 6 (i.e., at least 6 homozygous
accessions having the allele). The summary statistics include information on whether
an association is signi�cant according to a permutation-based approach (recommended
[138]) as well as a Bonferroni threshold. The LD matrix of squared Pearson correlations
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(r 2) was calculated within a radius of 100 kb around each variant, usingsgkit (https:
//pystatgen.github.io/ ). We de�ne a weighted sum of GPN scores according to LD (i
and j index SNPs):

GPN� LD i = �
X

j

jGPNj j � r 2
ij :

This is known as a strati�ed LD Score [46] and can also be interpreted as the multiplication
between the LD matrix and the vector of GPN scores. The reason why we used unsigned LD
and model scores is that we focused on assessing whether a variant would have a signi�cant
association with di�erences in a trait, regardless of the direction of the association. Since
the associationp-value is invariant to recoding of reference and alternate alleles, we took the
absolute value of GPN scores. We arbitrarily added a negative sign in front to be consistent
with more negative implying more likely functional. We similarly de�ned phyloP� LD (�rst
shifting the scores to reside entirely on the negative side of the number line), abs(phyloP)�
and phastCons� LD. We considered the baseline LD Score [25], the unweighted sum of LD
with a given variant:

LD Scorei = �
X

j

r 2
ij :

Code availability. Code to reproduce all results, including instructions to load the pre-
trained model, is available athttps://github.com/songlab-cal/gpn .
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Figure 3.2: Unsupervised clustering of genomic windows.
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Figure 3.2 (continued): (a) UMAP visualization of GPN embeddings averaged over non-overlapping
100 bp windows along the genome, annotated with gene region. (b) Confusion matrix for classi�cation
of gene regions using a logistic regression model trained on averaged embeddings. Each chromosome
was predicted from a model trained on the remaining chromosomes.

Figure 3.3: Sequence logos derived from model predictions. Each position in the genome
was independently masked and the model distribution over the four nucleotides was computed. (a)
Sequence logo visualized in the UCSC Genome Browser (https://genome.ucsc.edu/s/gbenegas
/gpn-arabidopsis ). The height of each letter is proportional to its probability, while the overall
height at each position is equal to 2 minus the entropy of the distribution. (b) Example GPN motifs
in promoter regions, extracted by TF-MoDISco, with signi�cant matches in PlantTFDB.
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Figure 3.4: Variant e�ect prediction: in silico mutagenesis. Distribution of GPN scores
computed for all possible single-nucleotide polymorphisms (SNPs) in a 1 Mb region, across categories,
sorted by 1st percentile (dashed vertical lines).
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