
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Controlling Attention To Solve Working Memory Tasks Using aMemory-Augmented Neural 
Network

Permalink
https://escholarship.org/uc/item/71x6k26t

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 41(0)

Authors
Jayram, T. S.
Bouhadjar, Younes
Kornuta, Tomasz
et al.

Publication Date
2019
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/71x6k26t
https://escholarship.org/uc/item/71x6k26t#author
https://escholarship.org
http://www.cdlib.org/


Controlling Attention To Solve Working Memory Tasks Using a
Memory-Augmented Neural Network

T.S. Jayram1, Younes Bouhadjar, Tomasz Kornuta2, Ryan L. McAvoy, Alexis Asseman, and Ahmet S. Ozcan3

IBM Research AI, Almaden Research Center, San Jose, CA 95120

Abstract
We introduce a memory-augmented neural network, called
Differentiable Working Memory (DWM), that captures some
key aspects of attention in working memory. We tested DWM
on a suite of psychology inspired tasks, where the model had to
develop a strategy only by processing sequences of inputs and
desired outputs. Thanks to novel attention control mechanisms
called bookmarks, the model was able to rapidly learn a good
strategy—generalizing to sequence lengths even two orders of
magnitude larger than that used for training—allowing it to re-
tain, ignore or forget information based on its relevance. The
behavior of DWM is interpretable and allowed us to analyze
its performance on different tasks. Surprisingly, as the train-
ing progressed, we observed that in some cases the model was
able to discover more than one successful strategy, possibly
involving sophisticated use of memory and attention.

Introduction
Keeping information in mind after it is no longer present in
the environment is critical for all higher cognitive behaviors.
Working memory (WM) is the term used for this ability, which
is distinct from the storage of vast amount of information in
long-term memory (Baddeley, 2003; Oberauer, 2009). The
two main distinguishing characteristics of WM are the lim-
ited capacity (3-5 items) (Cowan, 2001) and temporary re-
tention (secs-minutes). Hence, WM is not a storage per se,
but a mental workspace utilized during planning, reasoning
and solving problems. Most psychologists differentiate WM
from “short-term” memory because it can involve the ma-
nipulation of information rather than being a passive stor-
age (Cowan, 2017). Along the same lines, Engle, Tuholski,
Laughlin, and Conway (1999) argued that WM is all about
the capacity for controlled, sustained attention in the face of
interference or distraction. Attention-control is a fundamen-
tal component of the WM system and probably the main lim-
iting factor for capacity (Conway & Engle, 1994; Engle &
Kane, 2004). Consequently, the inability to effectively par-
allel process two-attention demanding tasks limits our multi-
tasking performance severely.

Over the past several decades psychologists have devel-
oped tests to measure the individual differences in WM ca-
pacity and better understand the underlying mechanisms.
These tests have been carefully crafted to focus on the spe-
cific aspects of WM such as task-driven attention control,

1jayram@us.ibm.com. Primary contact author.
2tkornut@us.ibm.com
3asozcan@us.ibm.com

interference and capacity limits (Oberauer & Lin, 2017).
The best known and successfully applied class of tasks for
measuring WM capacity is the “complex span” paradigm.
The challenge presented by complex span tasks is recalling
the list of items, despite being distracted by the processing
task. Studies show that individuals with high WM capacity
are less likely to store irrelevant distractors (Vogel, McCol-
lough, & Machizawa, 2005) and they are better at retaining
task-relevant information (Maxcey-Richard & Hollingworth,
2013). Developing task-driven strategies for cognitive control
are essential for the effective use of WM.

In the past there were several attempts to build compu-
tational models that mimic the operation of a human work-
ing memory (Henson, 1998; Farrell & Lewandowsky, 2002;
Oberauer & Lewandowsky, 2011; Lemaire & Portrat, 2018).
For example, Burgess and Hitch (1999, 2005) used a shal-
low neural network and put the emphasis on Hebbian-like
learning rules that enabled the model to achieve similar be-
havior to the one achieved by human subjects. In those works
the experimental paradigm was the serial recall task, which
is limited in testing the complex processing and attention
component of WM. One notable exception was (Oberauer,
Lewandowsky, Farrell, Jarrold, & Greaves, 2012), where the
authors focused on the complex span task.

The power of maintaining information over time has also
been recognized by the AI community. Starting with the
basic recurrent neural network architectures (Elman, 1990;
Hopfield & Tank, 1986) followed by the introduction of gat-
ing mechanisms (Hochreiter & Schmidhuber, 1997), the re-
search has recently moved onto more complex architectures
with memories (Graves, Wayne, & Danihelka, 2014; Joulin
& Mikolov, 2015; Weston, Chopra, & Bordes, 2015; Graves
et al., 2016; Santoro, Bartunov, Botvinick, Wierstra, & Lil-
licrap, 2016; Gulcehre, Chandar, & Bengio, 2017). These
models are typically applied to tasks (e.g. associative recall,
bAbI QA (Weston, Bordes, Chopra, & Mikolov, 2015)) that
require a complex mixture of long-term memory (episodic
and semantic) and working memory. In the human brain,
these kinds of memory systems are distinct: working memory
is instantiated in multiple interconnected areas with the pre-
frontal cortex playing a major role (Constantinidis & Kling-
berg, 2016), whereas for episodic memory the hippocampus
is the critical structure (Fortin, Agster, & Eichenbaum, 2002).
Studying these mechanisms separately is necessary to disen-

478



Input OutputController

Memory

Bookmark 1
(Fixed)

Bookmark 2
(Dynamic)

Bookmarks

Attention

M

Gating
Addresses

t

B1

B2t-1
wt-1

wt

Pt

xt yt

Interface
rt

ht-1

a t e t

Figure 1: Illustration of the operation of the DWM Model

tangle the contributions of each memory system and develop
a detailed understanding of human intelligence.

In this work, we take inspiration from biological and com-
putational models of working memory to develop an artifi-
cial neural network model augmented with external memory,
called Differentiable Working Memory (DWM). We provide
the DWM model a set of generic mechanisms to encode in-
puts, access the memory, and control its attention over the
memory contents. Key to this design is a new attention con-
trol mechanism in memory, called bookmarks, which helps
in dealing with interference. In contrast to previous works,
we applied our model to a variety of psychometry-inspired
tasks, each requiring the system to control its attention in a
slightly different way. We show that the DWM is capable of
solving these diverse tasks by looking only at input-output
pairs using the provided attention mechanisms. The model
is easy to train and accurately generalizes to sequences two
orders of magnitude longer than the training data. We also
describe the strategies that the DWM develops during train-
ing and demonstrate that the bookmarks can effectively deal
with interference in complex tasks. Finally, we show that the
DWM is also capable of learning multiple strategies during
training and, moreover, develop better strategies in the pres-
ence of memory scarcity.

Differentiable Working Memory (DWM)
The operation of Differentiable Working Memory (DWM)
model is presented in Fig. 1. As a memory-augmented neural
network (MANN), the DWM has three main components: a
controller, an external memory and an interface between the
two (Zaremba, Mikolov, Joulin, & Fergus, 2016). The in-
terface is composed of several attention mechanisms that the
controller learns to use by generating appropriate parameters
for accessing the external memory. The procedure is sketched
in Algorithm 1. We describe the main steps, Lines 4–7, below
in order of significance.

Attention control. The memory consists of N addresses,
each storing a vector of real numbers of length L. Thus the
memory contents are given by an L×N matrix of real num-
bers. The read and write operations share a single attention

Algorithm 1 Operation of Differentiable Working Memory
1: Initialize:

• the hidden state h0 and memory array M0

• the read/write attention vector w0

• bookmarks {Bi
0 : i = 1,2, . . . ,K}

2: for t ∈ {1,2, . . . ,T} do
3: Memory read: rt ←Mt−1wt−1
4: Controller: ht , Pt ← φ(xt ,rt ,ht−1)
5: Memory update: Mt ← update(wt−1,Pt ,Mt−1)
6: Attention control: wt ,{Bi

t}= attn(wt−1,{Bi
t−1},Pt)

mechanism. Further, we use soft addressing: let w denote
a non-negative weight vector of dimension N whose compo-
nents sum up to 1. Each component indicates the relative
strength with which a value (i.e. a vector of dimension L)
will be read/written at the corresponding address.

The behavioral studies indicate that people can access
memories sequentially (Singh, Tiganj, & Howard, 2018). For
that reason we have decided to add a mechanism based on
circular convolution, similar to the one used in Neural Tur-
ing Machine (NTM) (Graves et al., 2014), enabling it to shift
attention over memory:

wt = convolution(wg
t ,st), (1)

where wg
t and wt are the vectors of attention weights over

cells in memory at time t before and after shifting, and st
is a shift vector outputted by the controller. We also apply
a weight sharpening step typically used after the shifting; as
we observed, it seemed to be crucial for models using circular
convolution to converge properly.

The Embedded-Processes Framework (Cowan, 1988) as-
sumed the presence of Focus of Attention (FOA). In this
model the items in the FOA were interpreted as pointers to
the representations stored in the long-term memory rather
then being the actual representations themselves. Inspired
by this concept, we introduced a new attention mechanism
called bookmarks that store the system’s attention at pre-
vious time steps. This is recorded in K bookmark vectors
{Bi

t : i = 1,2, . . . ,K} at time t. The first bookmark B1 := B1
t

has a time-independent fixed attention to a single address so
that the model maintains a reference frame for memory. The
remaining bookmarks are dynamic: at time t, the DWM must
decide whether to remember its previous (read/write) atten-
tion wt−1 by recording it in a bookmark, as:

Bi
t = gi

twt−1 +(1−gi
t)B

i
t−1, i = 2,3, . . .K, (2)

where the gating parameter gi
t is emitted by the controller.

As discussed later, we found in our experiments that even
limiting to only two bookmarks (one fixed and one dynamic),
the model could still solve all tasks.

The DWM must also decide before moving sequentially
whether it wishes to return to a previous bookmark. For this

479



purpose we once again use a gating mechanism, this time in
a slightly more sophisticated form:

wg
t = δ

0
t wt−1 +

K

∑
i=1

δ
i
tB

i
t−1, (3)

where δi
t , i = 1,2, . . .K are gating parameters emitted by the

controller. These gating parameters are scalars, normalized
using a softmax function.

The DWM attention control incorporates the presented
mechanisms by applying equations (3), (2), and (1) in order.

Memory read and update. We use the standard formula
for soft attention, e.g., (Weston, Chopra, & Bordes, 2015),
that computes the read vector rt from memory Mt−1:

rt = Mt−1wt−1 (4)

For memory update, we decided to use the simple erase-add
scheme derived from NTM (Graves et al., 2014):

Mt = Mt−1 ◦ (E− et ⊗wt)+at ⊗wt , (5)

where E is a matrix of all ones, et and at are vectors of content
to be erased and added to memory, respectively. The param-
eters et and at are emitted by the controller.

Controller. The controller’s role is to process inputs so as
to produce outputs as well as interface parameters. In DWM
we use a single-layer recurrent neural network controller:

ht = σ(Wh[xt ,ht−1,rt ]), (6)

where xt denotes the current input and ht−1 and rt are the hid-
den state and vector read from memory in the previous time
step, respectively. To prevent the controller from acting as a
separate working memory, the hidden state size is chosen to
be smaller than that of a single input vector (in all of our ex-
periments it was set to 5). The output logits, yt and interface
vector Pt are produced similarly as:

yt =Wy[xt ,ht−1,rt ] (7)

Pt =WP[xt ,ht−1,rt ] (8)

Wh, Wy and WP are the only trainable parameters of our DWM
model. The interface vector Pt contains all of the parameters
that control reading, writing, and the attention mechanisms.
Denoting the unprocessed parameters from the interface with
a hat, the full list of parameters in Pt is as follows:

• The write vector at ∈ RNM

• The erase vector et = σ(êt) ∈ [0,1]NM

• The shift vector st = softmax(softplus(ŝ)) ∈ [0,1]3

• The bookmark update gates gi
t = σ(ĝi

t) ∈ [0,1]K−1

• The attention update gate δi
t = softmax(δ̂i

t) ∈ [0,1]K+1

• The sharpening parameter γ = 1+ softplus(γ̂) ∈ [1,∞]

D

T

A

R

D T A ... RRecall:

Time

Recall:

Time

B

4+5

F

8+7Time

B F Z ...Recall:

Interruption
Serial Recall Shape Rotation Operation span

Z

Interruption

9

15

Figure 2: Exemplary tasks for testing the performance of hu-
man working memory

Psychometric tasks for working memory
Over last several decades cognitive psychologists have de-
veloped many psychometric tests (Conway et al., 2005) to
measure the performance of human WM (See Fig. 2 for ex-
amples). These tasks are mainly sequential and typically di-
vided into verbal and visuospatial domains. Given that diver-
sity and various categorizations by different researchers, we
built a taxonomy of tasks (Fig. 3) and carefully selected tasks
that seem to be the most representative for a given category.
First order categorization is based on the number and com-
plexity of tasks. For simple tasks, the presence of data ma-
nipulation is the next level sub-category, with Serial Recall
being a prime example of a task without manipulation. The
tasks requiring manipulation we further categorized into spa-
tial and temporal domains. The complex tasks involve mul-
tiple sequential inputs or sub-tasks but not necessarily imply
“multi-tasking”. We follow the framework of Clapp, Rubens,
and Gazzaley (2009) to distinguish the sources of goal inter-
ference, i.e. Distraction (to-be-ignored) and Interruption (i.e.
multi-tasking). For example, in Operation Span (Fig. 2c) the
subjects had to attend and process the summation (Interrup-
tion) even though they did not need to recall the results af-
terwards, whereas in Reading Span (Daneman & Carpenter,
1980) subjects had to read sentences and recall the last word
of each one. In addition to the classical psychometric tasks,
we introduced several tasks testing the effectiveness of atten-
tion control in memory (Ignore, Forget and Scratch Pad). As
a result, a suite of tasks presented in Table 1 emerged.

The input to every task is a sequence of items. As we
wanted to be agnostic to audio/visual preprocessing, we have
implemented those tasks using sequences of randomly gen-
erated binary patterns (vectors of bits) as items (instead of
words/images). At a higher level, we view the input as a con-
catenation of various subsequences that represent different
functional units of processing. For all simple tasks, there is
only one type of subsequence, and the output will be repro-
duced from the memory with or without manipulation. The
complex tasks may involve a secondary set of subsequences,
optionally requiring immediate output as indicated in the For-
get and Operation Span tasks.

Additionally, we use a constant-sized set of special items
(called command markers) to both mark the beginning of a
subsequence as well as indicate its functional type. It is im-

480



Simple task

Manipulation No manipulation

Temporal Spatial

Serial Recall

Reverse RecallRotate Shape

Complex task

Interruption Distraction
Reading Span Operation Span
Ignore Forget

Scratch Pad

Figure 3: Taxonomy of working memory tasks

portant to note that the system does not know a priori what
kind of operation is associated with a given type of marker
and must learn that from data. We ignored markers in Table 1
to keep the description simple. Also, note that such markers
are also commonly employed in the psychometric tests, e.g.,
see McNab and Klingberg (2008).

Experimental results
We evaluated the performance of DWM on the proposed tasks
and compared it to two models: LSTM (Long Short-Term
Memory) (Hochreiter & Schmidhuber, 1997), considered as
a classical baseline for sequential problems, and DNC (Dif-
ferentiable Neural Computer) (Graves et al., 2016) being one
of the state-of-the-art MANN models. In our implementation
we used the MI-Prometheus (Kornuta et al., 2018) framework
built on top of PyTorch (Paszke et al., 2017). During training
we used the Adam (Adaptive Momentum) optimizer (Kingma

Task (I)input/(O)output sequences

Si
m

pl
e

Serial I: x1x2 . . .xn | . . .

Recall O: . . . | x1x2 . . .xn

Scratch I: x1x2 . . .xk |
Pad O: . . . | xk

Reverse I: x1x2 . . .xn | . . .

Recall O: . . . | xnxn−1 . . .x1

Rotate I: x1x2 . . .xn | . . .

Shape O: . . . | x	
1 x	

2 . . .x	
n

C
om

pl
ex

Reading I: x1x2 . . .xk | . . .

Span O: . . . | z1z2 . . .zk

Ignore
I: x1y1 . . .xkyk | . . .

O: . . . | x1 . . .xk

Operation I: x1y1 . . .xkyk | . . .

Span O: y	
1 . . . y	

k | x1 . . .xk

Forget
I: x1y1 . . .xkyk | . . .

O: y1 . . . yk | x1 . . .xk

Table 1: Working Memory Tasks. A bold letter denotes a
subsequence of items. The | sign indicates delay between
input and output of the primary subsequence(s). Above, x	

i
denotes the circular shift of xi by half its bitlength. In the
Reading Span task, zi is the last item of xi.

Task
Validation Accuracy Test Accuracy
Seq. Size 100 [%] Seq. Size 1000 [%]

LSTM DNC DWM LSTM DNC DWM

Serial 53.3* 100 100 50.2* 64.6 100
Scr. Pad 71.3* 100 100 70.0* 75.0 100
Reverse 53.0* 50.6* 100 50.4* 50.2* 99.8
Rot. Shape 52.2* 100 100 50.2* 60.9 100
Read. Span 50.9* 53.4* 100 50.4* 49.0* 91.9
Ignore 56.1* 69.3* 100 50.9* 50.0* 90.0
Op. Span 58.2* 79.2* 99.9 51.3* 53.6* 99.6
Forget 55.9* 69.4* 98.9 50.5* 49.9* 94.1

Table 2: Summary of experimental results. The first column
is the average of validation accuracies achieved by the mod-
els for 10 training runs on each task. The second column is
the average of test accuracies achieved by models that con-
verged during training. For the majority of tasks, the DNC
and LSTM models did not converge. In those cases (indicated
with *) we report scores of the best (even though diverged)
model.

& Ba, 2014) and (average) binary cross-entropy as the loss
function. We apply early stopping based on validation loss
(10−4). Additionally, we terminate training when the num-
ber of training episodes reach 100,000 where a single episode
involves processing a batch of sequences. The size of batch
was a hyper-parameter that was tuned along with training rate
for each model using validation loss as the reference.

As stated in the introduction, the main question we wanted
to answer was whether a model can learn an algorithm to
solve a task. In case of tasks presented in Table 1, this implies
that the model should generalize over the sequence lengths.
For that reason, our methodology assumed that we will use
different lengths of sequences for training (up to 10), valida-
tion (exactly 100) and testing (exactly 1000). Although hu-
man WM does not have the capacity to handle 1000 items,
our goal was to show that the model truly generalizes in that
actually develops an effective memory strategy, i.e., it learns
an algorithm to solve the task.

All models achieved perfect accuracies on training se-
quences. However, as presented in Table 2, LSTM and DNC
struggled with generalization to longer sequences. Besides,
the DWM models converged faster, requiring less than 5000
episodes in most cases (exemplary convergence plot is pre-
sented in Fig. 4). The convergence speed is associated with
number of trainable parameters of those models (the DWM
controller had 1066, the DNC had 4,792, whereas for LSTM
baseline we used stacked LSTM with 3 layers and over 5 mil-
lion trainable weights). Please note that fair comparison sim-
ply made no sense, as the LSTM and DNC models with less
trainable parameters could not even learn to generalize over
short (i.e. training) sequences. Aside of that, we hypothesize
that the DNC had problems with convergence because of the

481



complexity of its attention and memory management mecha-
nisms (the Temporal Link Matrix, in particular).

Analysis of strategies for solving tasks

The proposed tasks require the models to develop different
strategies for solving them. For example, ignoring distrac-
tions without encoding them in the memory is arguably the
best strategy to minimize memory consumption. On the other
hand, for a complex task with an interruption (i.e. multi-
tasking), the secondary task cannot be ignored and may re-
quire extensive memory usage. In this case, the best strategy
might be to forget (e.g. erase or overwrite) the secondary in-
formation as soon as possible in order to maintain sufficient
memory capacity for the main task.

During the training and testing of all of the tasks reported
in Table 2 we provided sufficient memory size, so that the
system could store all the encoded input items in the mem-
ory (if it has chosen to). However, limitation of the memory
size can force the system to develop more memory efficient
strategies, thus we decided to investigate that issue further.

Strategies for the Scratch Pad task The goal of the
Scratch Pad task is to recall only the last input subsequence.

0 5000 10000 15000 20000 25000
Iterations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Problem: Distraction Ignore
Training Loss DWM
Training Loss DNC
Training Loss LSTM

)TMWSHIW

Figure 4: Convergence of the best models on Ignore task

x1 x5

x1 x5

-
Time

-
Time

-
Time

Figure 5: Overwrite strategy developed by DWM for Scratch
Pad (episode 969). Memory plot contains a snapshot of the
memory content from the last iteration, whereas the other
ones present concatenation of states from consecutive itera-
tions (evolution in time)

Given the DWM mechanisms, we expect two possible strate-
gies for the model to learn in order to solve this task.

The “Expand” strategy exploits the fact that memory can
be used in a similar way to a circular buffer, storing each con-
secutive subsequences one after the other in the memory. In
this case the model should write each subsequence, then place
the dynamic bookmark at the start of given subsequence, and
then update the bookmark position to the beginning of the
next subsequence. Finally, when the model receives a com-
mand marker indicating it needs to recall, it should recall the
attention associated with that dynamic bookmark and then re-
trieve consecutive items one by one by shifting.

The “Overwrite” strategy for the Scratch Pad relies on the
fact that when a new subsequence appears, the elements from
the previous one can be discarded. The model could exploit
this by learning to recall attention stored in the fixed book-
mark every time it processes a command marker denoting the
next subsequence, which will result in overwriting the pre-
vious subsequences until the system is told to recall. This
strategy may be interpreted as memory saving, as the system
reuses the same addresses and overwrites them repeatedly.

To our (initial) surprise, the model always developed the
Overwrite strategy, irrespective of the memory size (i.e. as
long as the memory size was sufficient to fit all the encoded
items of a single subsequence). An exemplary run of an early
training episode is presented in Fig. 5. Note that memory ad-
dresses 1 and 2 remain unchanged and the model stores con-
secutive items of subsequences x1 to x5 in the same addresses
3-7. After analyzing several runs, we hypothesize that over-
writing was simpler to learn for this task because: a) both for
storing and recalling the command markers, the model had to
learn exactly the same behavior: recalling the attention stored
in the fixed bookmark, b) for every other input item it had to
shift by one address location with the circular convolution.
As a result, it could converge rapidly by disregarding the con-
trol (update, recalling) of the dynamic bookmark (in the later
training episodes the dynamic bookmark was typically “fol-
lowing” the current attention, despite it wasn’t recalled at all).

Strategies for the Ignore task The main goal of the Ignore
task is to test the retention capabilities of the system in the
presence of distractors. For this task the input consists of two
types of subsequences x and y, where the system is supposed
to ignore all yi and at the end recall xi one by one in the
order of their appearance. The task can be solved with two
strategies which we call “Overwrite” and “Skip”.

The “Overwrite” strategy involves overwriting of the dis-
tractors, similarly to the “Overwrite” from Scratch Pad task.
It assumes that model will store the consecutive items in
memory and use the bookmark for moving its attention to
the first address containing y to be overwritten. The differ-
ence is, however, that in here the model must learn to use
the dynamic bookmark for that purpose. Our experiments
with sufficient memory have shown that the system can learn
this strategy. Exemplary plot from one of the final train-
ing episodes (Fig. 6a) shows that the dynamic bookmark re-

482



y1y2
y1y2

(a) Overwrite strategy
(episode 17000)

y1

y2

y1

y2

(b) Skip strategy
(limited memory, episode 5614)

Figure 6: Strategies developed by DWM for solving the Ig-
nore task (two different training runs)

tains its attention while processing items from y1 and y2. As
soon as the command marker indicating x appears, the model
jumps back its attention to the dynamic bookmark and starts
to overwrite memory content. Finally, when the recall marker
appears, it recalls the attention stored in the fixed bookmark.

The “Skip” strategy involves ignoring elements within the
y subsequences, i.e. skipping writing them to memory. Our
experiments with limited memory have shown that the model
could also learn this strategy. Exemplary plots from the final
episode from one of the training runs are presented in Fig. 6b.
Note that in this case the model has learned to keep its atten-
tion focused on a single address for all items of yi and shift
attention only for items belonging to xi.

That behavior of the model that mastered the “Skip” strat-
egy seems to be more difficult from the operational point of
view. In the “Overwrite” strategy the system develops a re-
active behavior, i.e. it always performs convolutional shift
except for the rare cases when it hits the command marker –
at that point it has to retrieve attention from one or the other
bookmark. In the “Skip” strategy the command markers for
x and y activate one of two distinct operation modes that will
be executed for the whole subsequence until hitting the next
marker, i.e. for x attention is supposed to move to the next
address, whereas for y it is supposed to stay at the same posi-
tion. The only way to perform this is that the controller must
learn how to carry the information about the current oper-
ation mode from one iteration to another in its hidden state,
which is more difficult to learn.

We performed several experiments to support that hypoth-

(a) episode 1757: utilization
of Overwrite strategy

(b) episode 17685: utilization
of Skip strategy

Figure 7: Evolution of the strategy developed by DWM, when
learning the Ignore task (during a single training run, inten-
tionally used the same verification sequence in both cases)

esis. In Fig. 7 we present two episodes from one of the train-
ing runs when the operation of the system seems to be evolv-
ing from one strategy to the other. At the early stages of the
training (Fig. 7a) we can observe that the attention shift with
the circular convolution is active for both types of input sub-
sequences, whereas the dynamic bookmark already learned
how to follow attention for x and freeze for y. As learning
to shift attention is crucial for learning both storing and re-
call, model has to master that first. However, once achieved,
it seems to switch to different operation mode. Obviously,
learning two modes is simpler for dynamic bookmark, as it
possesses simpler gating mechanism and cannot shift its at-
tention. As the training progresses (Fig. 7b) the model fi-
nally learns to freeze its attention when processing y subse-
quences.

Conclusion
We have demonstrated that DWM has the appropriate atten-
tion mechanisms to tackle psychology-inspired tasks. When
compared to existing models such as DNC, LSTM it appeared
to manage generalization to much longer sequences. Be-
sides, after careful step-by-step analysis we discovered that
the model is able to develop more than one strategy to con-
trol attention and use its memory resources for a given task.
While some strategies are harder to learn, DWM can develop
them by first finding any working strategy and then gradually
modifying it towards a different one as learning progresses.
Why the model seems to prefer some strategies is intriguing
and worth further investigation. Another direction is to incor-
porate this mechanism into a larger system in order to solve
tasks that require both working and long-term memory.

References
Baddeley, A. (2003). Working memory: Looking back

and looking forward. Nature Reviews Neuroscience, 4(10),
829–839.

Burgess, N., & Hitch, G. (1999). Memory for serial order:
a network model of the phonological loop and its timing.
Psychological review, 106(3), 551.

Burgess, N., & Hitch, G. (2005). Computational models of
working memory: putting long-term memory into context.
Trends in cognitive sciences, 9(11), 535–541.

Clapp, W., Rubens, M., & Gazzaley, A. (2009). Mecha-
nisms of working memory disruption by external interfer-
ence. Cerebral Cortex, 20(4), 859–872.

Constantinidis, C., & Klingberg, T. (2016, may). The neuro-
science of working memory capacity and training. Nature
Reviews Neuroscience, 17, 438.

Conway, A., & Engle, R. (1994). Working memory and re-
trieval: A resource-dependent inhibition model. Journal of
Experimental Psychology: General, 123(4), 354.

Conway, A., Kane, M., Bunting, M., Hambrick, D., Wilhelm,
O., & Engle, R. (2005). Working memory span tasks: A
methodological review and user’s guide. Psychonomic bul-
letin & review, 12(5), 769–786.

483



Cowan, N. (1988). Evolving conceptions of memory stor-
age, selective attention, and their mutual constraints within
the human information-processing system. Psychological
bulletin, 104(2), 163.

Cowan, N. (2001). The magical number 4 in short-term mem-
ory: A reconsideration of mental storage capacity. Behav-
ioral and Brain Sciences, 24(1), 87–114.

Cowan, N. (2017). The many faces of working memory
and short-term storage. Psychonomic Bulletin and Review,
24(4), 1158–1170.

Daneman, M., & Carpenter, P. (1980). Individual differences
in working memory and reading. Journal of verbal learn-
ing and verbal behavior, 19(4), 450–466.

Elman, J. L. (1990). Finding structure in time. Cognitive
science, 14(2), 179–211.

Engle, R., & Kane, M. (2004). Executive attention, working
memory capacity, and a two-factor theory of cognitive con-
trol. Psychology of learning and motivation, 44, 145–200.

Engle, R., Tuholski, S., Laughlin, J., & Conway, A. (1999).
Working memory, short-term memory, and general fluid in-
telligence: a latent-variable approach. Journal of experi-
mental psychology: General, 128(3), 309.

Farrell, S., & Lewandowsky, S. (2002). An endogenous dis-
tributed model of ordering in serial recall. Psychonomic
bulletin & review, 9(1), 59–79.

Fortin, N. J., Agster, K. L., & Eichenbaum, H. B. (2002, mar).
Critical role of the hippocampus in memory for sequences
of events. Nature Neuroscience, 5, 458.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing
machines. arXiv preprint arXiv:1410.5401.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka,
I., Grabska-Barwińska, A., . . . others (2016). Hybrid com-
puting using a neural network with dynamic external mem-
ory. Nature, 538(7626), 471.

Gulcehre, C., Chandar, S., & Bengio, Y. (2017). Memory
augmented neural networks with wormhole connections.
arXiv preprint arXiv:1701.08718.

Henson, R. (1998). Short-term memory for serial order: The
start-end model. Cognitive psychology, 36(2), 73–137.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735–1780.

Hopfield, J. J., & Tank, D. W. (1986). Computing with neural
circuits: A model. Science, 233(4764), 625–633.

Joulin, A., & Mikolov, T. (2015). Inferring algorithmic pat-
terns with stack-augmented recurrent nets. In Advances in
neural information processing systems (pp. 190–198).

Kingma, D., & Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Kornuta, T., Marois, V., McAvoy, R. L., Bouhadjar, Y., As-
seman, A., Albouy, V., . . . Ozcan, A. S. (2018). Accel-
erating machine learning research with mi-prometheus. In
NeurIPS 2018 MLOSS Workshop.

Lemaire, B., & Portrat, S. (2018). A computational model
of working memory integrating time-based decay and in-
terference. Frontiers in psychology, 9, 416.

Maxcey-Richard, A. M., & Hollingworth, A. (2013). The
strategic retention of task-relevant objects in visual work-
ing memory. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 39(3), 760.

McNab, F., & Klingberg, T. (2008). Prefrontal cortex and
basal ganglia control access to working memory. Nature
Neuroscience, 11(1), 103–107.

Oberauer, K. (2009). Chapter 2: Design for a working mem-
ory (1st ed.). Elsevier.

Oberauer, K., & Lewandowsky, S. (2011). Modeling work-
ing memory: A computational implementation of the time-
based resource-sharing theory. Psychonomic Bulletin &
Review, 18(1), 10–45.

Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., &
Greaves, M. (2012). Modeling working memory: An in-
terference model of complex span. Psychonomic bulletin
& review, 19(5), 779–819.

Oberauer, K., & Lin, H.-y. (2017). An interference model
of visual working memory. Psychological Review, 124(1),
1–39. doi: 10.1037/rev0000044

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., . . . Lerer, A. (2017). Automatic differentiation
in pytorch. In NIPS Autodiff Workshop.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & Lil-
licrap, T. (2016). Meta-learning with memory-augmented
neural networks. In International conference on machine
learning (pp. 1842–1850).

Singh, I., Tiganj, Z., & Howard, M. (2018). Is working
memory stored along a logarithmic timeline? converging
evidence from neuroscience, behavior and models. Neuro-
biology of learning and memory.

Vogel, E. K., McCollough, A. W., & Machizawa, M. G.
(2005). Neural measures reveal individual differences in
controlling access to working memory. Nature, 438(7067),
500.

Weston, J., Bordes, A., Chopra, S., & Mikolov, T. (2015).
Towards ai-complete question answering: A set of prereq-
uisite toy tasks. CoRR, abs/1502.05698.

Weston, J., Chopra, S., & Bordes, A. (2015). Memory net-
works. In International conference on learning representa-
tions (ICLR).

Zaremba, W., Mikolov, T., Joulin, A., & Fergus, R. (2016).
Learning simple algorithms from examples. In Interna-
tional conference on machine learning (pp. 421–429).

484




