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Implications of warming on western United States landfalling atmospheric 
rivers and their flood damages 

Alan M. Rhoades a,*, Mark D. Risser a, Dáithí A. Stone b, Michael F. Wehner c, Andrew D. Jones a 

a Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA 
b National Institute of Water and Atmospheric Research, Wellington, New Zealand 
c Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA   
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A B S T R A C T   

Atmospheric rivers (ARs) are critical to the hydrological cycle of the western United States with both favorable 
and formidable impacts to society based on their landfalling characteristics. In this study, we provide a first-of- 
its-kind evaluation of how landfalling ARs may respond to several stabilized warming scenarios. To do this we 
combine a recently developed AR detection workflow with an ensemble of uniform high-resolution (0.25◦) 
Community Earth System Model simulations designed to facilitate detection and attribution of extreme events 
with global warming. These simulations include a world that might have been in the absence of anthropogenic 
warming (+0◦C), a world that corresponds to present day warming (+0.85◦C), and several future worlds cor-
responding to +1.5◦C, +2◦C and +3◦C global warming. We show that warming increases the number of water 
management relevant landfalling ARs from 19.1 ARs per year at +0◦C to 23.6 ARs per year at +3◦C. Addi-
tionally, this warming intensifies the amount of water transported by landfalling ARs resulting in a decrease in 
the fraction of ARs that are “mostly to primarily beneficial” to water resource management (i.e., 91% of ARs at 
+0◦C to 78% at +3◦C) and an increase in the fraction of ARs that are “mostly or primarily hazardous” to water 
resource management (i.e., 2% of ARs at +0◦C to 8% at +3◦C). Shifts in AR character also have important 
ramifications on flood damages, whereby for every +1◦C of additional warming from present conditions annual 
average flood damages increase by ~$1 billion. These findings highlight the pragmatic implications of climate 
mitigation aimed at limiting global warming to under +2◦C.   

1. Introduction 

The meridional branch of the atmospheric portion of the global hy-
drologic cycle occurs primarily via filamentary pulses of anomalously 
high water vapor (Newell et al., 1992). These filamentary structures, 
seen through fields such as integrated vapor transport (IVT), are now 
commonly referred to as atmospheric rivers (ARs) (Ralph et al., 2018). 
The anomalous vapor transported via ARs are critical to the local hy-
drologic cycle in mid-latitudes as the efficiency (on average, ~30%) of 
turning water vapor into precipitation is limited (Trenberth et al., 2003) 
and locally available moisture from evapotranspiration alone is insuf-
ficient to generate locally observed precipitation totals (Dirmeyer and 
Brubaker, 2007). The annual variability in the frequency and intensity of 
ARs are dictated by the interactions between seasonal variations in 
sea-surface temperatures, equatorial convection and 
synoptic-to-mesoscale atmospheric dynamics (Payne and Magnusdottir, 

2014; Zhou et al., 2018; Kim et al., 2019), particularly through in-
fluences on tropical moisture exports and warm conveyer belts (Ralph 
et al., 2017). The societal implications of this annual variability is 
considerable as landfalling ARs are central to both water supply and 
flood risk in many mid-latitude coastal regions (Dettinger et al., 2011; 
Gimeno et al., 2014; Lamjiri et al., 2018; Payne et al., 2020). 

Anthropogenic climate change is expected to intensify the global 
hydrologic cycle (Thackeray et al., 2018; Prein and Pendergrass, 2019). 
However, this intensification will likely alter components of the global 
hydrologic cycle in different ways as adjustments can occur rapidly to 
slowly (Allan et al., 2020) and have important energetic constraints 
(Allen and Ingram, 2002). More specific to ARs, these rapid-to-slow 
adjustments occur primarily through climate change induced changes 
to dynamical and/or thermodynamical processes (Payne et al., 2020). 
Feedbacks that alter thermodynamic processes arise primarily from the 
Clausius-Clapeyron relationship (i.e., column-integrated water vapor 
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increases at approximately +7.5%/K (Held and Soden, 2006)) that in 
turn influences the magnitude and variability of moisture sources that 
seed ARs. Feedbacks to dynamical processes occur primarily through 
modifications to AR lifecycles through synoptic to mesoscale changes in 
the seasonal storm-track location and its variability and through more 
localized changes in wind speed, direction, and shear. The interaction 
between these two processes can regionally offset one another (Payne 
et al., 2020) and lead to more heterogeneous responses that may impact 
AR families (Fish et al., 2019) or flavors (Gonzales et al., 2019) in 
different ways. Importantly, the relative strength and interplay between 
these processes is emissions scenario dependent and will likely differ 
across various spatiotemporal scales and time horizons of climate 
change. 

The true emissions scenario that the global climate will experience in 
the coming century is highly uncertain given the nonlinear behavior of 
human decision making (e.g., policy implementation and technological 
innovation). To address this, a new subfield of climate science known as 
detection and attribution has emerged over the last decade and provides 
a means to isolate the effects of anthropogenic emissions on weather 
events and/or climate trends (Hannart et al., 2016; Stott et al., 2016; 
Mitchell et al., 2017; Stone et al., 2019). Detection and attribution 
presents a unique scientific framework by which to isolate how various 
emissions scenarios after stabilization may intensify the global hydro-
logic cycle, or more specific to this study landfalling AR characteristics. 
Moreover, the current generation of climate models that can be run 
under centennial-scale emissions scenarios are poor at resolving the 
filamentary form of ARs and, in particular, the landfall lifecycle of AR 
characteristics (Dettinger, 2011; Hagos et al., 2015; Rhoades et al., 
2020a) which, in turn, muddles the attribution of how much an emis-
sions scenario, or its warming signal, directly or indirectly modifies a 
single AR event (e.g., strengthening of landfalling AR IVT) or long-term 
trend in the AR climatology (e.g., shifts in landfalling AR latitude). A 
different approach looks at past and future global temperature-based 
scenarios over a shorter time period, rather than centennial-long, tran-
sient emissions-based scenarios, in part inspired by the reformulation of 
climate policy within the Paris Climate Agreement (Hannart et al., 2016; 
Stott et al., 2016; Mitchell et al., 2017; Stone et al., 2019). These tem-
perature scenarios run over more targeted time periods after emissions 
have peaked and stabilized permit the usage of atmospheric climate 
models of high spatial resolution, thus better resolving the AR filaments 
and their landfall lifecycle. 

To the best of our knowledge, little to no research has been con-
ducted to date in studying landfalling AR character and frequency using 
stabilized warming experiments. This is a major research gap as ARs 
have been shown to be both constructive and destructive to water 
resource management based on their landfall duration and maximum 
intensity reached (Ralph et al., 2019). In fact, a third of all droughts in 
the western United States (US) have been ended by an increase in 
landfall AR activity (Dettinger, 2013), most recently in 2017 (Ullrich 
et al., 2018). However, ARs have also accounted for the vast majority 
(84%) of flood damages in the western US with 13 AR events accounting 
for more than half of the total damages (Corringham et al., 2019). As 
evidenced by various modeling strategies, more destructive AR events 
will occur more regularly in a warmer world (Gao et al., 2015; Shields 
and Kiehl, 2016; Gershunov et al., 2019; Huang et al., 2020; Rhoades 
et al., 2020b). Yet, these studies are likely upper-bound estimates on 
shifts in AR characteristics as they only assess the highest commonly 
simulated emission scenario. Given that global climate policy now 
explicitly intends to avoid a high-temperature (and hence 
high-emissions) future, a more nuanced analysis of the shifts in AR 
character with systematic warming is needed. 

In this study, we aim to address these literature gaps. We do this by 
leveraging an ensemble of high-resolution Community Earth System 
Model simulations performed under stabilized warming scenarios 
(Bacmeister et al., 2014; Wehner, 2014; Wehner, 2014) and a recently 
developed AR lifecycle tracking workflow (Rhoades et al., 2020a, 

2020b). By combining these approaches, we are able to isolate how 
landfalling AR characteristics in the western US differ between a world 
that might have been (i.e. with no historical anthropogenic emissions) 
from the world that is (i.e., with anthropogenic emissions). In addition, 
we evaluate how three future stabilized warming scenarios of +1.5◦C, 
+2.0◦C, and +3.0◦C influence AR character and frequency. To make this 
work more useable for stakeholder communities, we employ the 
recently developed Ralph et al. (2019) AR impacts category scale that 
relates AR characteristics (i.e., maximum IVT and AR duration) to water 
management outcomes. Lastly, we build upon the work of Corringham 
et al. (2019) in characterizing historic flood-related damages from ARs 
to show how future changes in AR character could lead to dramatically 
increased flood damages. 

The paper proceeds as follows: in section 2, we discuss the methods 
used to investigate the effects of global warming on AR characteristics 
including the AR tracking algorithm, AR impacts scale, and the statis-
tical methods employed. Section 3 presents the results of our analysis. 
Section 4 provides a discussion on potential limitations of our study and 
how our results compare with the broader literature. Section 5 sum-
marizes the major findings of our analysis. 

2. Methods 

2.1. Earth system model simulations 

The atmosphere and land components of the Community Earth 
System Model (CESM) version 1 are used in our experiments (Hurrell 
et al., 2013). More specifically, the atmospheric component is the 
Community Atmosphere Model version 5.3 with the finite-volume 
dynamical core (CAM5.3-FV (Neale et al., 2010)) and the land compo-
nent is the Community Land Model version 4 (CLM4.0 (Oleson et al., 
2010)). The horizontal resolution of the simulations are 0.23◦x 0.31◦

with 30 vertical levels. The physics timestep is set to 900 s with 18× as 
many dynamics timesteps. Further details on these simulations, 
including sub-grid-scale parameterizations, are provided in (Wehner, 
2014). 

2.2. Stabilized warming scenarios 

The Climate of the 20th Century Plus Detection and Attribution 
(C20C+ D&A) project seeks to understand natural climate variability, 
particularly in the atmosphere, and changes to this variability due to 
anthropogenic emissions (Stone et al., 2019). To do this, standard 
experimental protocols are set (e.g., prescribed ocean conditions, stan-
dardized climate forcings, common historical time-periods and outputs, 
etc.) and utilized by a broad-number of Earth system modeling groups to 
better isolate cause and effect. Within the C20C+ D&A, broadly, there 
are two simulation types: natural historical (Nat-Hist) and all historical 
(All-Hist). All-Hist simulations are run under observed historical climate 
forcings, including anthropogenic greenhouse gases, aerosol burdens, 
stratospheric ozone, solar luminosity, monthly sea surface temperatures 
(SSTs), and monthly sea ice coverage (SIC). Nat-Hist simulations are run 
under year-1855 anthropogenic forcings, and naturalized versions of the 
All-Hist SSTs and SIC. For Nat-Hist, the All-Hist observed SSTs are 
cooled according to a spatially, seasonally, and interannually-varying 
attributable warming pattern based on the anthropogenic warming in 
an ensemble of coupled atmosphere-ocean climate models, while the SIC 
is advanced through a delta method based on the attributable warming 
(Stone and Pall, 2021). In each of the CESM simulations used in this 
study, the simulations are spun-up from their initial conditions over the 
first simulated year prior to inclusion into the analysis. This is done to 
ensure, in particular, that atmosphere-land feedbacks are in equilibrium 
(e.g., soil moisture feedback). For this analysis, we use all five ensemble 
members from Nat-Hist and All-Hist. However we only use the simulated 
years that span 2006–2015 and leave out simulated years 1996–2005. 
Additionally, because of corrupted output files we only use 
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complete-year simulations which provided 3-hourly specific humidity 
and meridional and zonal winds which are used to compute integrated 
vapor transport (IVT) to track ARs. This resulted in 31 and 45 total 
simulated years for Nat-Hist and All-Hist, respectively. 

In response to the realignment of global climate change policy to-
ward temperature thresholds, the Half a Degree Additional Warming, 
Prognosis and Projected Impacts (HAPPI) project proposed a series of 
experiments similar to the C20C+ D&A experiments, but for warmer 
worlds anticipated in the future (Mitchell et al., 2017). The intent of the 
HAPPI experiments is to isolate the societal implications of global 
warming up to +1.5◦C (HAPPI1.5) and +2.0◦C (HAPPI2.0) from 
pre-industrial conditions, particularly on extreme weather events. Given 
the usefulness of a “world averted” counterfactual for diagnosing the 
benefits of the Paris Agreement warming limits, another HAPPI simu-
lation of +3.0◦C (the so-called UNHAPPI3.0 experiment) was devel-
oped. The HAPPI1.5, HAPPI2.0, and UNHAPPI3.0 experiments all take 
analogous 2006–2015 boundary conditions, yet simulate the conditions 
with deltas derived from stabilized near-surface air temperatures of 
+1.55◦C, +2.05◦C, and +3.05◦C at end-century. HAPPI1.5 uses RCP2.6 
radiative forcings and SST deltas based on the circa year-2100 warming 
in an ensemble of coupled atmosphere-ocean model simulations driven 
by the RCP2.6 emissions scenario. HAPPI2.0 follows HAPPI1.5, but with 
CO2 concentrations and SSTs adjusted using the linear combination of 
two ensembles of coupled atmosphere-ocean model simulations, forced 
by the RCP2.6 and RCP4.5 emissions scenarios respectively, in order to 
obtain an additional 0.5◦C of warming. UNHAPPI3.0 in turn adjusts CO2 
concentrations and SSTs by following the linear combination of en-
sembles forced by the RCP4.5 and RCP8.5 emissions scenarios in order 
to obtain an additional 1.0◦C of warming. SICs for the HAPPI1.5 and 
HAPPI2.0 experiments are adjusted for consistency with SSTs, while 
UNHAPPI3.0 maintains HAPPI2.0 SICs. A consequence of this experi-
ment design is that the climate response moving from the approximately 
+0.5◦C between All-Hist to HAPPI1.5 is different than the response 
moving the same amount from HAPPI1.5 to HAPPI2.0, due to the 
different balance of greenhouse gas and non-greenhouse gas forcings 
involved (Wehner et al., 2018a). More details about the high-resolution 
CESM simulations used in this study and their application to investi-
gating shifts in tropical cyclone characteristics can be found in Wehner 
et al. (2018b) and, more broadly, across the multi-model ensemble of 
HAPPI simulations to investigate shifts in heat extremes in Wehner et al. 
(2018a). With similar constraints as Nat-Hist and All-Hist we are able to 
use 57, 57, and 49 simulated years from HAPPI1.5, HAPPI2.0, and 
UNHAPPI3.0, respectively. 

2.3. Atmospheric river tracking 

To isolate ARs that make landfall along the coastline of the western 
US, we employ the TempestExtremes AR tracking algorithm (Ullrich and 
Zarzycki, 2017; Ullrich et al., 2021). Customized TempestExtremes al-
gorithm choices in SplineARs (i.e., min area of 25, size laplacian of 35, 
min val of 250, min laplacian of 50,000, min abslat of 15) and Stitch-
Blobs (i.e., min time of 16 and min size of 35) were chosen for this study. 
These parameters were chosen based on the horizontal-resolution 
(0.25◦) and 3-hourly outputs of the C20C+ D&A and HAPPI experi-
ments. As discussed in Rhoades et al. (2020a) several extensions were 
made to TempestExtremes that enable AR path tracking and diagnostics 
of the AR events from their origin through landfall (Table 1). Once ARs 
make landfall, we then employ more recent TempestExtremes exten-
sions (discussed in Rhoades et al. (2020b)) to identify the societal im-
pacts of AR events using a recently developed AR impacts category scale 
(Ralph et al., 2019), herein called AR Cats. AR Cats, analogous to the 
Saffir–Simpson hurricane category scale, were designed to more clearly 
relay the societal impacts of landfalling ARs, particularly how beneficial 
or hazardous they are to water resource management. Specifically, AR 
Cats relate maximum IVT, which correlates with maximum precipitation 
rates, with AR duration, which correlates with storm-total precipitation. 
Importantly, these AR Cats also have been shown to correlate well with 
flood insurance damages on a logarithmic scale (Corringham et al., 
2019). 

2.4. Bayesian geospatial analysis of AR counts 

Using a Bayesian framework, we employ a geospatial statistics 
methodology to cast our AR counts derived from the ensemble of high- 
resolution CESM simulations into a probability distribution. This is done 
to more formally characterize uncertainty due to issues with the number 
of simulated years and signal-to-noise issues of warming on landfalling 
AR characteristics (e.g., return periods for Cat 4 and 5 AR events). 

For each warming scenario and AR category, the input data for this 
analysis is the AR counts for each year at each CESM grid cell over 
Washington, Oregon, and California. At each grid cell, we statistically 
model the counts in each year arising from a Poisson distribution, which 
is a discrete probability distribution that specifies the likelihood of a 
given number of “events” (here, AR occurrence) in a fixed time interval 
(here, each year). The Poisson distribution is determined by a single 
statistical parameter, often denoted λ, which in this case specifies the 
average number of ARs for each AR Cat per year at each grid cell. A 

Table 1 
Coastal western US AR characteristics under global warming conditions of +0 ◦C (Nat-Hist), +0.85 ◦C (All-Hist), +1.5 ◦C (HAPPI1.5), +2.0 ◦C (HAPPI2.0) and +3.0 ◦C 
(UNHAPPI3.0) with 95% confidence intervals. Annual counts represent the average number of ARs over the entire North Pacific (Latitude: 15N–60N, Longitude: 120E 
to 100W) each year. Annual landfall counts represent the annual average number of ARs that make landfall anywhere in the coastal western US for at least one 
timeslice. Total lifetime is the average AR lifetime from origin in the North Pacific through terminus in the coastal western US. Lifetime gridcell count is the average 
total number of gridcells impinged upon by an AR from its origin in the North Pacific through terminus in the coastal western US over the total lifetime of the AR. 
Landfall duration is the average landfall duration of an AR from the first landfall timeslice in the coastal western US through termination. Landfall maximum IVT is the 
average maximum IVT value reached at any gridcell of the coastal western US over an AR landfall duration. AR category is the average Ralph et al. (2019) AR category 
reached within the impacts scale across all landfalling ARs. Landfall interval is the annual average interval between AR landfalls anywhere within the coastal western 
US. Back-to-back AR landfalls are the annual average number of coastal western US AR landfalls within one week of one another.  

Stabilized 
Warming 
Scenario 

Number of 
years 

Annual 
Count 

Annual 
Land fall 
Count 

Total 
Lifetime 
(Days) 

Lifetime 
Grid− Cell 

Land fall 
Duration 
(Days) 

Land fall 
Maximum IVT 
(kg/m/s) 

AR 
Category 

Land fall 
Interval 
(Days) 

Back to Back AR 
Land falls (One −
Week) 

þ0◦C 31 137 ±
4 

38 ± 2 5.1 ± 0.1 28,300 ±
1430 

0.7 ± 0.06 762 ± 18 1.80 ±
0.10 

21.5 ± 1.5 8 ± 1 

þ0.85◦C 45 132 ±
2 

41 ± 2 5.3 ± 0.1 33,400 ±
1160 

0.7 ± 0.05 776 ± 11 1.95 ±
0.08 

21.1 ± 1.7 8 ± 1 

þ1.5◦C 57 134 ±
2 

43 ± 2 5.5 ± 0.1 36,200 ±
1280 

0.8 ± 0.04 806 ± 12 2.06 ±
0.08 

19.0 ± 1.1 10 ± 1 

þ2◦C 57 133 ±
2 

44 ± 2 5.6 ± 0.1 37,900 ±
1280 

0.8 ± 0.05 823 ± 13 2.19 ±
0.07 

18.8 ± 1.1 10 ± 1 

þ3◦C 49 131 ±
3 

48 ± 3 5.9 ± 0.1 43,900 ±
1600 

0.9 ± 0.05 858 ± 16 2.38 ±
0.09 

18.1 ± 1.3 11 ± 1  
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useful quantity that can be derived using λ is the probability of experi-
encing at least one AR of a given AR Cat per year, defined as P ≥ 1:   

Prob(at least 1 AR per year) ≡ P ≥ 1 = 1 − e− λ.                                        

This probability can be converted to a return period by taking its 
inverse; in this case, the return period corresponds to the average 
number of years it will take for a grid cell to experience at least one AR 
event of a specific AR Cat. 

Given the spatial structure of ARs and their spatial coherence in 
landfall locations (i.e., if a grid cell experiences an AR, a neighboring 
grid cell is more likely to also experience an AR), we assign the spatial 
field of rate parameters a prior distribution that explicitly incorporates 
spatial autocorrelation. Specifically, we use a hybrid version of the 
conditionally autoregressive (CAR) prior distribution for the natural 
logarithm of λ. The CAR distribution, which is a natural prior for gridded 
climate model output, models the natural logarithm of λ as a spatially- 
dependent random effect (Banerjee et al., 2004; Pascutto et al., 2000) 
wherein λ at a particular grid cell is conditionally independent of all 
other grid cells given the values in neighboring grid cells. However, to 
more flexibly model the spatial dependence in the AR count data, we use 
a hybrid version of the CAR prior (Leroux et al., 2000) in which the 
precision matrix of the random effects is a convex combination of the 
CAR precision matrix and a spatially-independent precision matrix; note 
that the popular intrinsic CAR prior (Rue and Held, 2005) is a special 
case of this statistical model. The final component of our Bayesian hi-
erarchical model is a prior distribution on the hyperparameters of the 
hybrid CAR distribution; here, we simply use flat, noninformative prior 
distributions in all cases. For each warming scenario and AR category 
group, we then use Markov chain Monte Carlo methods to draw samples 
from the posterior distribution of the rate parameters. These samples are 
used to calculate the posterior mean of the average number of ARs per 
year, the probability of experiencing at least one AR per year (i.e., P ≥ 1), 
and the return period of this probability as well as quantify all statistical 
uncertainties. For the map indicating differences in P ≥ 1 across warming 
scenarios, we use stippling to indicate grid cells where the 99% credible 
interval of the difference does not include zero (i.e., equivalent to the 
“virtually certain” uncertainty condition outlined in the Intergovern-
mental Panel on Climate Change (Mastrandrea et al., 2010)). 

2.5. Analysis of shift in annual AR flood damages with warming 

To estimate the shift in annual AR flood damages with warming, we 
leverage historical western US AR flood damage estimates provided by 
Corringham et al., 2019. Our analysis consists of the following steps: (1) 
fit a statistical distribution to the observed damages for each AR cate-
gory, match the boxplot summary statistics provided in Corringham 
et al. (2019); (2) use the All-Hist as a baseline, calculate the percent 
change in the annual AR counts by category from the simulations; and 
(3) apply these percent changes to the historical annual AR counts and 
resample the cost distributions with these modified counts. 

For the first step of the analysis, given the extremely heavy tail of the 
flood damage cost distributions from Corringham et al. (2019) (see 
Table 3), we opted to fit a skew-t distribution to the log of the percen-
tiles, specifically the 25th, 50th, 62.5th, 75th, 85th, and 95th percen-
tiles. Analogous to Corringham et al. (2019), lower bounds of the skew-t 
distributions are bounded between $10 thousand dollars per event (Cat 
1-3) to $5 billion dollars per event (Cat 5). We constrain our upper 
bounds on the skew-t distributions for each AR Cat distribution to 
three-fourths the distance between the 95th percentile and maximum 
value. This choice ensures that our estimates are not heavily influenced 
by sampling an extreme outlier event and yields the best match with the 
observed cost distributions in Corringham et al. (2019) (i.e., comparable 
annual average flood damages of $1.1 billion). Using the fitted skew-t 
distributions from above, for each of 1000 Monte Carlo replicates we 
conducted the following steps:  

1. For AR category k = 1, …, 5, draw nk values from the fitted distri-
bution corresponding to the kth category, where nk is the number of 
observed ARs from Corringham et al. (2019) in category k from the 
full 40 year period. This sampling accounts for the upper and lower 
bounds on the category-specific cost distributions as described 
above. 

2. For each category, sum the nk values and divide by 40. This repre-
sents the total damages from Cat k ARs over the 40 years.  

3. Finally, sum the total damages from all AR categories to arrive at a 
total damages from all ARs per year. 

Using this approach, the Monte Carlo average damages per year is 
estimated to be $1.06 billion, with a 95% confidence interval of ($762 
million, $1.41 billion), which is comparable to the estimates provided in 
Corringham et al. (2019) (Figure S1). 

Next, we use a percent-based bias correction procedure on the AR 
frequencies to update our AR flood damage estimates. As described 
above, using the All-Hist counts as a baseline, we first calculate the 
percent change in the annual AR counts by category. For reference, the 
number of ARs in each category for each warming scenario per year and 
the percent changes in AR counts relative to All-Hist are given in Table 2. 
Applying these multiplicative changes to the number of ARs in each 
category per year from Corringham et al. (2019), we then multiply by 
100 to end up with an estimated number of ARs per 100 years. Note that 
we multiply by 100 years, instead of the 40 year period used in Cor-
ringham et al. (2019), in order to avoid issues associated with rounding. 
Again, using the fitted skew-t distributions for each of 1000 Monte Carlo 
replicates and for each warming experiment, we conduct a similar 
sampling scheme as described above. The resulting Monte Carlo samples 
are used to estimate the average total flood damages from ARs per year 
in each warming experiment along with 95% Monte Carlo based un-
certainty intervals. 

3. Results 

We first isolate how each stabilized warming scenario influences AR 
characteristics from their origin in the North Pacific through landfall in 
the coastal western US. Table 1 summarizes annual average AR lifecycle 
characteristics across the C20C+ D&A and HAPPI experiments. The 
lifetime size and the life cycle duration of an AR increases by 15% and 6 
h per ◦ C, respectively. These two AR characteristic changes with 
warming are in line with well-established thermodynamic feedbacks to 
ARs enabling them to be larger and more long-lived (Payne et al., 2020). 
In addition, a notable, steady increase in the annual average number of 
western US landfalling ARs is seen from +0◦C (38 ARs/year) to +3◦C 
(48 ARs/year) at a rate of +3 landfalling ARs per ◦C per year. Important 
to AR related impacts, landfalling ARs reach higher average max IVT 
values of +30 kg/m/s per ◦C and longer average durations of +3 h per 
◦C. The net result is an increase in the average AR Cat reached from 
+0◦C (1.8) to +3◦C (2.4), which correlates with an increase in 
maximum precipitation rate and/or storm-total precipitation (Ralph 
et al., 2019). Similar to results found in Rhoades et al. (2020b), a 
decrease in the annual average interval between western US landfalling 
ARs is found from +0◦C (21.5 days) to +3◦C (18.0 days) and, more 
specifically, +1 AR per ◦C per year occurs within one-week of another. 
Back-to-back AR events that occur within one-to-two weeks of one 
another are particularly impactful to water resource managers as they 
precondition the land-surface to generate amplified and abrupt runoff 
and can stress-test flood pool assumptions built into reservoir operation 
(Hatchett et al., 2020; Henn et al., 2020; Sumargo et al., 2020). 

Estimates provided in the previous paragraph include all coastal 
western US landfalling ARs, yet the Ralph et al. (2019) AR impacts scale 
provides a means to better translate their potential in being either 
beneficial or hazardous to water resource managers. Figure S2 shows all 
of the tracked coastal western US landfalling AR events simulated by the 
C20C+ D&A and HAPPI experiments overlain on the Ralph et al. (2019) 
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AR impacts scale. Fig. 1 shows only landfalling ARs that met at least a 
Cat 1 on the Ralph et al. (2019) AR impacts scale normalized by the 
number of simulated years used from each experiment. A steady increase 
in the number of landfalling ARs per year that reach, at least, Cat 1 is 
seen from +0◦C (19.1/year) to +3◦C (23.6/year) with ARs more regu-
larly occupying a more hazardous role to water resource management. 
Cat 1-2 events, “mostly to primarily beneficial” to water resource 
management, represent 91% of all ARs at +0◦C and at +3◦C this de-
creases to 78% of all ARs. Conversely, a steady uptick in Cat 3 events, 
“balance of beneficial and hazardous” to water resource management, 
occurs. In a world of +0–0.85◦C, Cat 3 AR events make up 7-9% of all AR 
events, whereas in a +2-3◦C future these events occupy 13-14%, 
respectively. Worryingly, Cat 4-5 events, “mostly to primarily hazard-
ous” to water resource management, occupy 2% of all landfalling AR 
events at +0–0.85◦C, steadily increase to 4-5% at +1.5–2◦C and reach 
8% at +3◦C. The seasonality of coastal western US landfalling AR totals 
are also sensitive to warming. Fig. 2 shows the average number of 
landfalling ARs across each month of the water year binned by the 
maximum AR Cat reached. The most active months of AR activity across 
C20C+ D&A and HAPPI experiments is in November through January. 
However, at +0◦C a more distinguished peak in AR activity is seen in 

December (4/year) compared with other months (3/year in November 
and January and 2/year in the shoulder months). Comparatively, +0.85 
◦C increases average AR activity in November, January and February 
(>12/year). This increase in wintertime AR activity is maintained at 
+1.5 through +3 ◦C, yet ARs more frequently reach higher AR Cats with 
increased warming. 

To assess how warming influences coastal AR activity and character 
differently across the coastal western US we present spatial distributions 
of the posterior mean of the rate of ARs (number per year) in Fig. 3, 
obtained from the geospatial analysis described in Section 2.4. A clear 
and systematic increase in the number of landfalling ARs per year is seen 
in the Pacific Northwest with each +1◦C of warming. In particular, shifts 
in the inland penetration of ARs is particularly pronounced in Wash-
ington and Oregon. More specifically, a +2-3◦C of warming ensures that 
there is a >90% probability that an AR will impinge upon every portion 
of the state each year (Figure S3). Further the probability of, at least, one 
Cat 3 and 4-5 AR making landfall anywhere along the coast of Oregon 
and Washington each year is doubled from +0◦C to +3◦C with yearly 
odds increased to >1/3 and >1/6, respectively. An increase in AR 
probability from +0.85◦C to +2-3◦C is significant over the entire coastal 
western US for AR Cat 1-2 and the coastal regions of Oregon and 

Table 2 
Monte Carlo based annual average estimated flood damages from coastal western US landfalling ARs (millions of dollars) across the C20C+ D&A and HAPPI ex-
periments with 95% confidence intervals (best estimate provided along with the lower and upper bound in parantheses). The total AR frequency, as shown in Fig. 1, is 
computed as the annual average total AR landfalls within any of the coastal western US states that meet, at least, a category (Cat) 1 on the Ralph et al. (2019) AR 
impacts scale. Percents relative to +0.85◦C (All-Hist) are included in parentheses.  

Stabilized Warming 
Scenario 

Annual Average 
Damages 

Total AR 
Frequency 

Cat 1 AR 
Frequency 

Cat 2 AR 
Frequency 

Cat 3 AR 
Frequency 

Cat 4 AR 
Frequency 

Cat 5 AR 
Frequency 

þ0◦◦C $1040 ($852-$1240) 19.1 (93.3%) 11.3 (99.7%) 6.1 (88.0%) 1.3 (74.4%) 0.5 (127%) 0.1 (62.2%) 
þ0.85◦◦C $1070 ($890-$1270) 20.5 (100%) 11.4 (100%) 6.9 (100%) 1.8 (100%) 0.4 (100%) 0.2 (100%) 
þ1.5◦◦C $1820 ($1560- 

$2090) 
21.7 (106%) 10.6 (93.6%) 7.8 (113%) 2.4 (136%) 0.8 (237%) 0.1 (90.2%) 

þ2◦◦C $2080 ($1800- 
$2360) 

21.9 (107%) 9.6 (84.5%) 8.4 (122%) 2.9 (165%) 0.9 (262%) 0.2 (124%) 

þ3◦◦C $3250 ($2900- 
$3600) 

23.6 (115%) 9.6 (84.3%) 8.9 (129%) 3.3 (186%) 1.5 (413%) 0.5 (328%)  

Fig. 1. Annual average totals of coastal western US landfalling AR events simulated by each of the C20C+ D&A and HAPPI experiments. Each AR is binned by the 
maximum Ralph et al. (Ralph et al., 2019) category reached. Histograms are labeled by C20C+ D&A and HAPPI experiment name and spaced on the x-axis according 
to their average global temperature delta from the Nat-Hist experiment. AR frequencies are also summarized in Table 2. 
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Washington for AR Cats 3-5 (Supplemental Figure S4). The systematic 
influence of warming on AR landfalls over California is less clear than 
the Pacific Northwest, particularly in Cat 3-5 ARs. This is likely indic-
ative that more simulated years are needed to better isolate the signal of 
warming from the noise of natural variability as the rate of higher Cat 
ARs in California is more infrequent than the Pacific Northwest. 

To more clearly quantify how warming influences the bulk frequency 
of AR landfalls from the lens of water resource management, we now 
discuss return period shifts across C20C+ and HAPPI experiments. 
Generally, return periods across AR Cats decrease with warming. At 
+3◦C of warming it is nearly assured that every portion of the coastal 
western US will be impacted by an AR each year (i.e., average return 
period is nearly one). In addition, more hazardous ARs become 
considerably more frequent. Cat 3 AR return periods decrease by ~3 
years with warming from +0 to 2◦C and at +3◦C become a 1-in-10 year 
event. Cat 4-5 ARs also become much more frequent with warming, but, 
importantly, have a noisier signal. This is because higher return period 
events are further out into the tail of the assumed Poisson distribution 
(see Methods section for more details) and therefore more sensitive to 
the number of simulated years (i.e., 30-60 years across experiments). 
With that said, from +0 to 3◦C Cat 4-5 AR events shift from approxi-
mately a 1-in-50 or 1-in-100 year event to approximately a 1-in-25 year 
event. 

As shown in the seminal work of Corringham et al. (2019) western 
US landfalling ARs generate, on average, flood damages amounting to 
$1.1 billion per year. Importantly, annual average flood damages are 
closely tied with the occurrence of Cat 4-5 ARs as these events have an 
order of magnitude higher cost than Cat 1-2 ARs. Therefore, any shift in 
the frequency of higher Cat ARs with warming disproportionately in-
fluences AR flood damage totals. Fig. 4 and Table 2 provide AR 

frequency changes across AR Cats and the resultant flood damage totals 
for each of the C20C+ D&A and HAPPI experiments. A notable increase 
in average AR flood damages of $1 billion per year per ◦C of warming is 
shown. From +0◦C to +0.85◦C, an increase of $30 million per year is 
associated with +1 AR per year, namely Cat 2-3 ARs. However, from 
+0.85◦C to +2◦C a near doubling of annual average AR damages 
(+$1.04 billion) is found. This is due to an uptick in the number of ARs 
per year (+1.5/year), particularly Cat 3-5 ARs. From +0.85◦C to +3◦C 
AR frequency increases by +3.1/year and Cat 4-5 frequency increases by 
413% and 328%, respectively. This results in a tripling of annual 
average flood damages from +0.85◦C ($1.07 billion/year) to +3◦C 
($3.25 billion/year). 

4. Discussion 

Before we discuss our major findings, we first highlight potential 
uncertainties in our analysis and their broader implications. First, we 
utilize a single-model ensemble to assess shifts in landfalling AR char-
acter. Therefore, there may be model dependent uncertainties in our 
CESM simulations that may influence AR characteristics (e.g., maximum 
IVT reached) and frequency. For example, Hagos et al. (2015), Gao et al. 
(2015), and Hagos et al. (2016) have all shown that there are systematic 
CESM biases related to higher AR frequencies associated with an erro-
neous equatorward position of the subtropical jet in November–March 
(NDJFM). We note a brief analysis in this study that indicates our CESM 
simulations have similar biases, namely higher NDJFM geopotential 
heights in the northwest Pacific and an amplified IVT climatology near 
20N in the All-Hist simulation relative to the ERA5 reanalysis dataset 
(Copernicus Climate Change, 2017) (left column of Figure S5). The in-
fluences of warming on NDJFM IVT tracks and relation to the 

Fig. 2. Monthly average totals of coastal western US landfalling AR events simulated by each of the C20C+ D&A and HAPPI experiments and binned by the 
maximum Ralph et al., 2019 AR category reached. Each plot is labeled by the average global temperature delta from the Nat-Hist experiment. 
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subtropical jet was also briefly analyzed by comparing the UNHAPPI3.0 
and All-Hist experiments (right column of Figure S5). UNHAPPI3.0 was 
chosen as it has the largest warming signal of all HAPPI experiments and 
would most clearly indicate any subtropical jet position change that 
might then influence the NDJFM IVT climatology. We note that 
UNHAPPI3.0 compared with All-Hist has IVT fields that are generally 
larger throughout the North Pacific and, in particular, at higher lati-
tudes. Although the IVT field presents a mixture of both the thermo-
dynamical (e.g., Clausius-Clapeyron) and dynamical (e.g., storm tracks 
and/or subtropical jet shift) effects of warming, this may indicate that 
the subtropical jet does move northward in a +3◦C future enhancing IVT 
transport in northern latitudes (although this is beyond the scope of the 
current study to definitively confirm). 

Another example of CESM specific biases was discussed in Reed et al. 
(2015) who showed that CESM run with the Community Atmosphere 
Model with the Finite Volume (CAM-FV) versus the Spectral Element 
(CAM-SE) dynamical core has shown important influences on the 

number and intensity of tropical cyclones (i.e., CAM-FV produces less 
and weaker tropical cyclones than CAM-SE). Although the All-Hist ex-
periments in this study were run with slightly different sub-grid-scale 
parameterizations and time periods than Rhoades et al. (2020a) and 
Rhoades et al. (2020b), there is qualitative evidence that CAM-FV pro-
duces a smaller number of Cat reaching ARs per year than CAM-SE too, 
in particular less Cat 4-5 ARs. However, even though CAM-FV may 
produce less total Cat reaching ARs per year in the All-Hist experiment 
(20.5 ARs/year) than the CAM-SE based results in Rhoades et al. 
(2020b) (24.7 ARs/year) the counts more align with estimates found in 
the ERA5 reanalysis dataset in that study (19.5 ARs/year). The impor-
tant caveat is the number of Cat 4-5 landfalling ARs in the All-Hist 
simulations (0.4 ARs/year) are, at least, half as frequent as in ERA5 
(0.9 ARs/year) and in Ralph et al. (2019) (0.9 ARs/year) and Corring-
ham et al. (2019) (2.8 ARs/year) who used the MERRA-2 and 
NCEP-NCAR reanalyses, respectively. However, as mentioned in the 
Methods section, we utilize a percent-bias adjustment in AR counts to 

Fig. 3. Spatial distributions of the posterior mean of statistical estimates for coastal western US landfalling AR events per year derived from C20C+ D&A and HAPPI 
simulations. Per year landfalling AR estimates are combined according to their qualitative water management designations in the Ralph et al., 2019 AR category scale 
in a) Cat 1-2 “mostly or primarily beneficial”, b) Cat 3 “balance between beneficial and hazardous”, and c) Cat 4-5 “mostly or primarily hazardous”. Plots are labeled 
by each C20C+ and HAPPI experiment’s average global temperature delta from the Nat-Hist experiment. 
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account for potential CAM-FV biases in the All-Hist experiment relative 
to Corringham et al. (2019). Since we use a single model in this study we 
assume that this bias correction will consistently address uncertainty 
across other C20C+ D&A and HAPPI experiments. Therefore, given the 
aforementioned assumption holds, our flood damages estimates should 
be robust to any model related AR biases. 

Additionally, although the uniform high-resolution (0.25◦) CESM 
simulations used in this study are representative of the cutting-edge in 
Earth system models (Haarsma et al., 2016) they may still be insufficient 
in resolving all local effects of landfalling ARs. Specifically, the simu-
lations may not resolve the topographic complexity of the western US 
coastal mountain ranges which in turn could influence the inland 
penetration of ARs and the maximum AR Cat reached in these regions 
due to less water vapor being translated into precipitation. This partic-
ular source of uncertainty is partly why we isolate our analysis to the 
three westernmost states of the US. 

Further, we use a single AR tracker in this study. The Tempest-
Extremes AR tracker is known to be more restrictive than other AR 
tracking algorithms (Shields et al., 2018; Rutz et al., 2019; O’Brien et al., 
2020). Therefore, in contrast to the previously mentioned uncertainty, 
our results may underestimate the area, inland penetration, and the 
duration of landfalling ARs. However, it was recently shown that AR 
algorithm choice has little influence on landfalling ARs that reach higher 
AR Cats (Zhou et al., 2020). As a result, we do not foresee our choice of 

AR algorithm significantly influencing our estimated AR flood damage 
estimates as they are primarily driven by the most hazardous events. 
Although AR algorithm choice may have a limited influence on AR Cat 4 
and 5 event counts, we do note that some of the discrepancies in sys-
tematic warming effects on AR Cat 4 and 5 frequencies in Fig. 3, 
particularly in southern California, may have been due to the need for 
larger sample sizes of simulated years across experiments to get clearer 
statistical convergence in AR Cat 4 and 5 frequencies with warming. We 
also note that the AR flood damages discussed in Corringham et al. 
(2019) are dependent on the spatial distribution of population and 
infrastructure, and in particular how those relate to the spatial distri-
bution of hazards such as floods. This spatial dependence of AR landfall 
near flood-prone infrastructure is not accounted for in our economic 
analysis. 

Importantly, some of the simulated years in the C20C+ D&A and 
HAPPI experiments were left out of our analysis due to experimental 
design decisions. For example, we only use historical (2006-2015) and 
future (2106-2115) time periods that overlap to eliminate potential 
confounding factors of climate variability, arising via the imposed ocean 
conditions, on AR characteristics. Therefore, in Nat-Hist and All-Hist we 
do not use the simulated years of 1996–2005 in our analysis because 
they are not included in the HAPPI simulations. Similarly, we only use a 
simulated year as long as the components needed to compute 3-hourly 
IVT estimates are provided for an entire simulated year. This results in 

Fig. 4. Annual AR flood damage estimates based 
on Markov chain Monte Carlo sampling of the 
C20C+ D&A and HAPPI experiments. Box-and- 
whisker plots are labeled on the x-axis according 
to each C20C+ D&A and HAPPI experiment’s 
average global temperature delta from the Nat-Hist 
experiment. Box-and-whiskers indicate the 5th to 
95th percentiles with the 25th percentile, median, 
and 75th percentile demarcating the box region. 
Flood damage outliers outside of the 5th and 95th 
percentiles are shown via dots.   
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9 of 40 years, 5 of 50 years, 3 of 60 years, 3 of 60 years, and 1 of 60 years 
left out of our analysis for Nat-Hist, All-Hist, HAPPI1.5, HAPPI2.0, and 
UNHAPPI3.0, respectively, because of corrupt output files. Additionally, 
based on the experimental design of the HAPPI simulations (i.e., future 
recreations of 2006–2015) we may not account for the full spectrum of 
climate modes of variability and their interactions with AR activity and 
intensity. For example, the El Niño Longitude Index shows that 
2006–2015 had seven La Niña events (weak-to-strong), two neutral 
events, and one El Niño event (weak) (Patricola et al., 2019). As a result 
our study does not explicitly account for the effects of 
moderate-to-strong El Niño events on ARs. 

5. Conclusions 

Our study provides several important findings. First, an important 
shift in total counts of coastal western US landfalling ARs with warming 
is shown (+3 landfalling ARs per ◦C per year). This is likely due to ARs 
becoming larger (+15% lifetime area per ◦C) and more long-lived (+6 h 
per ◦C) over the North Pacific with warming. The societal importance of 
this is made more apparent when ARs are binned by their Ralph et al. 
(2019) AR impact scale category. We show that ARs generally become 
less beneficial and more hazardous to water resource management with 
warming. In fact, the most hazardous AR events (Cat 4-5) increase from 
2% of all events at +0–0.85◦C to 8% at +3◦C. In other words, at +3◦C 
Cat 3 ARs shift from approximately a 1-in-30 year event to a <1-in-10 
year event and Cat 4-5 ARs shift from approximately a 1-in-100 year 
event to approximately a 1-in-25 year event. The warming induced shift 
has a clearer signal-to-noise in Washington and Oregon than it does in 
California, likely due to issues of simulation sample size. Therefore, we 
likely need more than the ~30-60 simulated years available from by the 
experiments used in this study to make definitive conclusions about how 
warming influences higher Cat ARs in subregions of the coastal western 
US, particularly southern California. Yet, even with these limitations, we 
show that shifts in Cat 3-5 AR event return periods at +3◦C will certainly 
stress-test current infrastructure and water management practices. This 
is because infrastructure has historically only been designed using his-
torically observed events (e.g., 1-in-100 year events) under an 
assumption of stationarity. However, operational lifetime of infra-
structure is often a half-century or more due to funding and regulatory 
restraints. For example, two-thirds of dams in California are, at least, 50 
years old (Escriva-Bou et al., 2019). The increase in regularity of haz-
ardous ARs will also be compounded by the fact that back-to-back ARs 
become more frequent with warming too (+1 AR per ◦C per year occurs 
within one-week of another). The combination of the aforementioned 
findings results in significantly higher flood damages with warming 
across coastal western US states. In fact, we find a 3× increase in the 
annual average flood damages from +0◦C ($1.04 billion/year) to +3◦C 
($3.25 billion/year). All together, we show the potential societal and 
economic ramifications of inaction on climate mitigation (e.g., Paris 
Climate Agreement) to limit global warming to +2◦C. 

It is important to note that there is still ample time to limit global 
warming to below +3◦C. Yet, even an increase of +0.5◦C from present 
day is projected to increase coastal western US flood damages by +$750 
million/year (+70% from 2006 to 2015 rates). Notably, our flood 
damage estimates have been bias-corrected for model inconsistencies 
compared with historical reanalysis data from Corringham et al. (2019), 
yet these estimates do not account for factors such as societal innovation 
nor compounding effects in the future. Innovations that may diminish 
the impact of more frequent hazardous ARs in a warmer world include 
alterations to water management practices such as forecast informed 
reservoir operation (Delaney et al., 2020), climate change informed 
engineering design criteria such as intensity-duration-frequency and/or 
depth-area-duration curves (Srivastava et al., 2019), and more perme-
able and less flood-prone infrastructure design (Enzi et al., 2017). 
Compounding effects that could lead to enhanced damages include 
aging water infrastructure that are in operation beyond their intended 

lifetimes (Saleh, 2019), continued conurbation in flood prone regions 
(Mount, 2017) and alterations to the frequency of rain-instead-of-snow 
and/or rain-on-snow events (Hatchett et al., 2020; Henn et al., 2020), 
particularly in headwater regions of reservoirs that have variable 
freezing levels (Chen et al., 2019; Sumargo et al., 2020). 

Data availability 

The computed IVT files and coastal western US landfalling AR masks 
from the C20C+ D&A and HAPPI simulation can be found via a NERSC 
Science Gateway - https://portal.nersc.gov/archive/home/a/arho 
ades/Shared/www/WCE_2020. 
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